//
// Copyright 2010 Ettus Research LLC
//
/*
* Copyright 2007,2008 Free Software Foundation, Inc.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include
#include
#include "u2_init.h"
#include "memory_map.h"
#include "spi.h"
#include "hal_io.h"
#include "buffer_pool.h"
#include "pic.h"
#include
#include "ethernet.h"
#include "nonstdio.h"
#include "dbsm.h"
#include
#include
#include "memcpy_wa.h"
#include
#include
#include
#include "clocks.h"
#include
#include "usrp2/fw_common.h"
#include
#include
#include
#include
#include
#include
#define FW_SETS_SEQNO 1 // define to 0 or 1 (FIXME must be 1 for now)
#if (FW_SETS_SEQNO)
static int fw_seqno; // used when f/w is filling in sequence numbers
#endif
/*
* Full duplex Tx and Rx between ethernet and DSP pipelines
*
* Buffer 1 is used by the cpu to send frames to the host.
* Buffers 2 and 3 are used to double-buffer the DSP Rx to eth flow
* Buffers 4 and 5 are used to double-buffer the eth to DSP Tx eth flow
*/
//#define CPU_RX_BUF 0 // eth -> cpu
#define DSP_RX_BUF_0 2 // dsp rx -> eth (double buffer)
#define DSP_RX_BUF_1 3 // dsp rx -> eth
#define DSP_TX_BUF_0 4 // eth -> dsp tx (double buffer)
#define DSP_TX_BUF_1 5 // eth -> dsp tx
/*
* ================================================================
* configure DSP TX double buffering state machine (eth -> dsp)
* ================================================================
*/
// DSP Tx reads ethernet header words
#define DSP_TX_FIRST_LINE ((sizeof(padded_eth_hdr_t) + sizeof(struct ip_hdr) + sizeof(struct udp_hdr))/sizeof(uint32_t))
// Receive from ethernet
buf_cmd_args_t dsp_tx_recv_args = {
PORT_ETH,
0,
BP_LAST_LINE
};
// send to DSP Tx
buf_cmd_args_t dsp_tx_send_args = {
PORT_DSP,
DSP_TX_FIRST_LINE, // starts just past transport header
0 // filled in from last_line register
};
dbsm_t dsp_tx_sm; // the state machine
/*
* ================================================================
* configure DSP RX double buffering state machine (dsp -> eth)
* ================================================================
*/
// DSP Rx writes ethernet header words
#define DSP_RX_FIRST_LINE 1 //1 = control stuff to udp sm
// receive from DSP
buf_cmd_args_t dsp_rx_recv_args = {
PORT_DSP,
DSP_RX_FIRST_LINE,
BP_LAST_LINE
};
// send to ETH
buf_cmd_args_t dsp_rx_send_args = {
PORT_ETH,
0, // starts with ethernet header in line 0
0, // filled in from list_line register
};
dbsm_t dsp_rx_sm; // the state machine
// The mac address of the host we're sending to.
eth_mac_addr_t host_mac_addr;
#define TIME_NOW ((uint32_t)(~0))
// variables for streaming mode
static bool streaming_p = false;
static unsigned int streaming_items_per_frame = 0;
static uint32_t time_secs = TIME_NOW;
static uint32_t time_ticks = TIME_NOW;
static int streaming_frame_count = 0;
#define FRAMES_PER_CMD 2
bool is_streaming(void){ return streaming_p; }
// ----------------------------------------------------------------
// the fast-path setup global variables
// ----------------------------------------------------------------
static eth_mac_addr_t fp_mac_addr_src, fp_mac_addr_dst;
static struct socket_address fp_socket_src, fp_socket_dst;
// ----------------------------------------------------------------
void start_rx_streaming_cmd(void);
void stop_rx_cmd(void);
static void print_ip_addr(const void *t){
uint8_t *p = (uint8_t *)t;
printf("%d.%d.%d.%d", p[0], p[1], p[2], p[3]);
}
void handle_udp_data_packet(
struct socket_address src, struct socket_address dst,
unsigned char *payload, int payload_len
){
//its a tiny payload, load the fast-path variables
fp_mac_addr_src = *ethernet_mac_addr();
arp_cache_lookup_mac(&src.addr, &fp_mac_addr_dst);
fp_socket_src = dst;
fp_socket_dst = src;
printf("Storing for fast path:\n");
printf(" source mac addr: ");
print_mac_addr(fp_mac_addr_src.addr); newline();
printf(" source ip addr: ");
print_ip_addr(&fp_socket_src.addr); newline();
printf(" source udp port: %d\n", fp_socket_src.port);
printf(" destination mac addr: ");
print_mac_addr(fp_mac_addr_dst.addr); newline();
printf(" destination ip addr: ");
print_ip_addr(&fp_socket_dst.addr); newline();
printf(" destination udp port: %d\n", fp_socket_dst.port);
newline();
}
#define OTW_GPIO_BANK_TO_NUM(bank) \
(((bank) == USRP2_DIR_RX)? (GPIO_RX_BANK) : (GPIO_TX_BANK))
void handle_udp_ctrl_packet(
struct socket_address src, struct socket_address dst,
unsigned char *payload, int payload_len
){
//printf("Got ctrl packet #words: %d\n", (int)payload_len);
if (payload_len < sizeof(usrp2_ctrl_data_t)){
//TODO send err packet
return;
}
//setup the input and output data
usrp2_ctrl_data_t *ctrl_data_in = (usrp2_ctrl_data_t *)payload;
usrp2_ctrl_data_t ctrl_data_out = {
.id=USRP2_CTRL_ID_HUH_WHAT,
.seq=ctrl_data_in->seq
};
//handle the data based on the id
switch(ctrl_data_in->id){
/*******************************************************************
* Addressing
******************************************************************/
case USRP2_CTRL_ID_GIVE_ME_YOUR_IP_ADDR_BRO:
ctrl_data_out.id = USRP2_CTRL_ID_THIS_IS_MY_IP_ADDR_DUDE;
memcpy(&ctrl_data_out.data.ip_addr, get_ip_addr(), sizeof(struct ip_addr));
break;
case USRP2_CTRL_ID_HERE_IS_A_NEW_IP_ADDR_BRO:
ctrl_data_out.id = USRP2_CTRL_ID_THIS_IS_MY_IP_ADDR_DUDE;
set_ip_addr((struct ip_addr *)&ctrl_data_in->data.ip_addr);
memcpy(&ctrl_data_out.data.ip_addr, get_ip_addr(), sizeof(struct ip_addr));
break;
case USRP2_CTRL_ID_GIVE_ME_YOUR_MAC_ADDR_BRO:
ctrl_data_out.id = USRP2_CTRL_ID_THIS_IS_MY_MAC_ADDR_DUDE;
memcpy(&ctrl_data_out.data.mac_addr, ethernet_mac_addr(), sizeof(eth_mac_addr_t));
break;
case USRP2_CTRL_ID_HERE_IS_A_NEW_MAC_ADDR_BRO:
ctrl_data_out.id = USRP2_CTRL_ID_THIS_IS_MY_MAC_ADDR_DUDE;
ethernet_set_mac_addr((eth_mac_addr_t *)&ctrl_data_in->data.mac_addr);
memcpy(&ctrl_data_out.data.mac_addr, ethernet_mac_addr(), sizeof(eth_mac_addr_t));
break;
case USRP2_CTRL_ID_GIVE_ME_YOUR_DBOARD_IDS_BRO:
ctrl_data_out.id = USRP2_CTRL_ID_THESE_ARE_MY_DBOARD_IDS_DUDE;
ctrl_data_out.data.dboard_ids.tx_id = read_dboard_eeprom(I2C_ADDR_TX_A);
ctrl_data_out.data.dboard_ids.rx_id = read_dboard_eeprom(I2C_ADDR_RX_A);
break;
/*******************************************************************
* Clock Config
******************************************************************/
case USRP2_CTRL_ID_HERES_A_NEW_CLOCK_CONFIG_BRO:
//TODO handle MC_PROVIDE_CLK_TO_MIMO when we do MIMO setup
ctrl_data_out.id = USRP2_CTRL_ID_GOT_THE_NEW_CLOCK_CONFIG_DUDE;
//handle the 10 mhz ref source
uint32_t ref_flags = 0;
switch(ctrl_data_out.data.clock_config.ref_source){
case USRP2_REF_SOURCE_INT:
ref_flags = MC_WE_DONT_LOCK; break;
case USRP2_REF_SOURCE_SMA:
ref_flags = MC_WE_LOCK_TO_SMA; break;
case USRP2_REF_SOURCE_MIMO:
ref_flags = MC_WE_LOCK_TO_MIMO; break;
}
clocks_mimo_config(ref_flags & MC_REF_CLK_MASK);
//handle the pps config
uint32_t pps_flags = 0;
//fill in the pps polarity flags
switch(ctrl_data_out.data.clock_config.pps_polarity){
case USRP2_PPS_POLARITY_POS:
pps_flags |= 0x01 << 0; break;
case USRP2_PPS_POLARITY_NEG:
pps_flags |= 0x00 << 0; break;
}
//fill in the pps source flags
switch(ctrl_data_out.data.clock_config.pps_source){
case USRP2_PPS_SOURCE_SMA:
pps_flags |= 0x00 << 1; break;
case USRP2_PPS_SOURCE_MIMO:
pps_flags |= 0x01 << 1; break;
}
sr_time64->flags = pps_flags;
break;
/*******************************************************************
* GPIO
******************************************************************/
case USRP2_CTRL_ID_USE_THESE_GPIO_DDR_SETTINGS_BRO:
hal_gpio_set_ddr(
OTW_GPIO_BANK_TO_NUM(ctrl_data_in->data.gpio_config.bank),
ctrl_data_in->data.gpio_config.value,
ctrl_data_in->data.gpio_config.mask
);
ctrl_data_out.id = USRP2_CTRL_ID_GOT_THE_GPIO_DDR_SETTINGS_DUDE;
break;
case USRP2_CTRL_ID_SET_YOUR_GPIO_PIN_OUTS_BRO:
hal_gpio_write(
OTW_GPIO_BANK_TO_NUM(ctrl_data_in->data.gpio_config.bank),
ctrl_data_in->data.gpio_config.value,
ctrl_data_in->data.gpio_config.mask
);
ctrl_data_out.id = USRP2_CTRL_ID_I_SET_THE_GPIO_PIN_OUTS_DUDE;
break;
case USRP2_CTRL_ID_GIVE_ME_YOUR_GPIO_PIN_VALS_BRO:
ctrl_data_out.data.gpio_config.value = hal_gpio_read(
OTW_GPIO_BANK_TO_NUM(ctrl_data_in->data.gpio_config.bank)
);
ctrl_data_out.id = USRP2_CTRL_ID_HERE_IS_YOUR_GPIO_PIN_VALS_DUDE;
break;
case USRP2_CTRL_ID_USE_THESE_ATR_SETTINGS_BRO:{
//setup the atr registers for this bank
int bank = OTW_GPIO_BANK_TO_NUM(ctrl_data_in->data.atr_config.bank);
set_atr_regs(
bank,
ctrl_data_in->data.atr_config.rx_value,
ctrl_data_in->data.atr_config.tx_value
);
//setup the sels based on the atr config mask
int mask = ctrl_data_in->data.atr_config.mask;
for (int i = 0; i < 16; i++){
// set to either GPIO_SEL_SW or GPIO_SEL_ATR
hal_gpio_set_sel(bank, i, (mask & (1 << i)) ? 'a' : 's');
}
ctrl_data_out.id = USRP2_CTRL_ID_GOT_THE_ATR_SETTINGS_DUDE;
}
break;
/*******************************************************************
* SPI
******************************************************************/
case USRP2_CTRL_ID_TRANSACT_ME_SOME_SPI_BRO:{
uint8_t num_bytes = ctrl_data_in->data.spi_args.bytes;
//load the data from the array of bytes
uint32_t data = 0x0;
for (size_t i = 0; i < num_bytes; i++){
data = (data << 8) | ctrl_data_in->data.spi_args.data[i];
}
//transact
uint32_t result = spi_transact(
(ctrl_data_in->data.spi_args.readback == 0)? SPI_TXONLY : SPI_TXRX,
(ctrl_data_in->data.spi_args.dev == USRP2_DIR_RX)? SPI_SS_RX_DB : SPI_SS_TX_DB,
data, num_bytes*8, //length in bits
(ctrl_data_in->data.spi_args.push == USRP2_CLK_EDGE_RISE)? SPIF_PUSH_RISE : SPIF_PUSH_FALL |
(ctrl_data_in->data.spi_args.latch == USRP2_CLK_EDGE_RISE)? SPIF_LATCH_RISE : SPIF_LATCH_FALL
);
//load the result into the array of bytes
for (size_t i = 0; i < num_bytes; i++){
uint8_t byte_shift = num_bytes - i - 1;
ctrl_data_out.data.spi_args.data[i] = (result >> (byte_shift*8)) & 0xff;
}
ctrl_data_out.data.spi_args.bytes = num_bytes;
ctrl_data_out.id = USRP2_CTRL_ID_OMG_TRANSACTED_SPI_DUDE;
}
break;
/*******************************************************************
* I2C
******************************************************************/
case USRP2_CTRL_ID_DO_AN_I2C_READ_FOR_ME_BRO:{
uint8_t num_bytes = ctrl_data_in->data.i2c_args.bytes;
i2c_read(
ctrl_data_in->data.i2c_args.addr,
ctrl_data_out.data.i2c_args.data,
num_bytes
);
ctrl_data_out.id = USRP2_CTRL_ID_HERES_THE_I2C_DATA_DUDE;
ctrl_data_out.data.i2c_args.bytes = num_bytes;
}
break;
case USRP2_CTRL_ID_WRITE_THESE_I2C_VALUES_BRO:{
uint8_t num_bytes = ctrl_data_in->data.i2c_args.bytes;
i2c_write(
ctrl_data_in->data.i2c_args.addr,
ctrl_data_in->data.i2c_args.data,
num_bytes
);
ctrl_data_out.id = USRP2_CTRL_ID_COOL_IM_DONE_I2C_WRITE_DUDE;
ctrl_data_out.data.i2c_args.bytes = num_bytes;
}
break;
/*******************************************************************
* AUX DAC/ADC
******************************************************************/
case USRP2_CTRL_ID_WRITE_THIS_TO_THE_AUX_DAC_BRO:
if (ctrl_data_in->data.aux_args.dir == USRP2_DIR_RX){
lsdac_write_rx(
ctrl_data_in->data.aux_args.which,
ctrl_data_in->data.aux_args.value
);
}
if (ctrl_data_in->data.aux_args.dir == USRP2_DIR_TX){
lsdac_write_tx(
ctrl_data_in->data.aux_args.which,
ctrl_data_in->data.aux_args.value
);
}
ctrl_data_out.id = USRP2_CTRL_ID_DONE_WITH_THAT_AUX_DAC_DUDE;
break;
case USRP2_CTRL_ID_READ_FROM_THIS_AUX_ADC_BRO:
if (ctrl_data_in->data.aux_args.dir == USRP2_DIR_RX){
ctrl_data_out.data.aux_args.value = lsadc_read_rx(
ctrl_data_in->data.aux_args.which
);
}
if (ctrl_data_in->data.aux_args.dir == USRP2_DIR_TX){
ctrl_data_out.data.aux_args.value = lsadc_read_tx(
ctrl_data_in->data.aux_args.which
);
}
ctrl_data_out.id = USRP2_CTRL_ID_DONE_WITH_THAT_AUX_ADC_DUDE;
break;
/*******************************************************************
* DDC
******************************************************************/
case USRP2_CTRL_ID_SETUP_THIS_DDC_FOR_ME_BRO:
dsp_rx_regs->freq = ctrl_data_in->data.ddc_args.freq_word;
dsp_rx_regs->scale_iq = ctrl_data_in->data.ddc_args.scale_iq;
//setup the interp and half band filters
{
uint32_t decim = ctrl_data_in->data.ddc_args.decim;
uint32_t hb1 = 0;
uint32_t hb2 = 0;
if (!(decim & 1)){
hb2 = 1;
decim = decim >> 1;
}
if (!(decim & 1)){
hb1 = 1;
decim = decim >> 1;
}
uint32_t decim_word = (hb1<<9) | (hb2<<8) | decim;
dsp_rx_regs->decim_rate = decim_word;
printf("Decim: %d, register %d\n", ctrl_data_in->data.ddc_args.decim, decim_word);
}
ctrl_data_out.id = USRP2_CTRL_ID_TOTALLY_SETUP_THE_DDC_DUDE;
break;
case USRP2_CTRL_ID_CONFIGURE_STREAMING_FOR_ME_BRO:
time_secs = ctrl_data_in->data.streaming.secs;
time_ticks = ctrl_data_in->data.streaming.ticks;
streaming_items_per_frame = ctrl_data_in->data.streaming.samples;
if (ctrl_data_in->data.streaming.enabled == 0){
stop_rx_cmd();
}
else{
start_rx_streaming_cmd();
}
ctrl_data_out.id = USRP2_CTRL_ID_CONFIGURED_THAT_STREAMING_DUDE;
break;
/*******************************************************************
* DUC
******************************************************************/
case USRP2_CTRL_ID_SETUP_THIS_DUC_FOR_ME_BRO:
dsp_tx_regs->freq = ctrl_data_in->data.duc_args.freq_word;
dsp_tx_regs->scale_iq = ctrl_data_in->data.duc_args.scale_iq;
//setup the interp and half band filters
{
uint32_t interp = ctrl_data_in->data.duc_args.interp;
uint32_t hb1 = 0;
uint32_t hb2 = 0;
if (!(interp & 1)){
hb2 = 1;
interp = interp >> 1;
}
if (!(interp & 1)){
hb1 = 1;
interp = interp >> 1;
}
uint32_t interp_word = (hb1<<9) | (hb2<<8) | interp;
dsp_tx_regs->interp_rate = interp_word;
printf("Interp: %d, register %d\n", ctrl_data_in->data.duc_args.interp, interp_word);
}
ctrl_data_out.id = USRP2_CTRL_ID_TOTALLY_SETUP_THE_DUC_DUDE;
break;
/*******************************************************************
* Time Config
******************************************************************/
case USRP2_CTRL_ID_GOT_A_NEW_TIME_FOR_YOU_BRO:
sr_time64->imm = (ctrl_data_in->data.time_args.now == 0)? 0 : 1;
sr_time64->ticks = ctrl_data_in->data.time_args.ticks;
sr_time64->secs = ctrl_data_in->data.time_args.secs; //set this last to latch the regs
ctrl_data_out.id = USRP2_CTRL_ID_SWEET_I_GOT_THAT_TIME_DUDE;
break;
/*******************************************************************
* MUX Config
******************************************************************/
case USRP2_CTRL_ID_UPDATE_THOSE_MUX_SETTINGS_BRO:
dsp_rx_regs->rx_mux = ctrl_data_in->data.mux_args.rx_mux;
dsp_tx_regs->tx_mux = ctrl_data_in->data.mux_args.tx_mux;
ctrl_data_out.id = USRP2_CTRL_ID_UPDATED_THE_MUX_SETTINGS_DUDE;
break;
default:
ctrl_data_out.id = USRP2_CTRL_ID_HUH_WHAT;
}
send_udp_pkt(USRP2_UDP_CTRL_PORT, src, &ctrl_data_out, sizeof(ctrl_data_out));
}
/*
* Called when an ethernet packet is received.
* Return true if we handled it here, otherwise
* it'll be passed on to the DSP Tx pipe
*/
static bool
eth_pkt_inspector(dbsm_t *sm, int bufno)
{
//point me to the ethernet frame
uint32_t *buff = (uint32_t *)buffer_ram(bufno);
//treat this as fast-path data?
// We have to do this operation as fast as possible.
// Therefore, we do not check all the headers,
// just check that the udp port matches
// and that the vrt header is non zero.
// In the future, a hardware state machine will do this...
if ( //warning! magic numbers approaching....
(((buff + ((2 + 14 + 20)/sizeof(uint32_t)))[0] & 0xffff) == USRP2_UDP_DATA_PORT) &&
((buff + ((2 + 14 + 20 + 8)/sizeof(uint32_t)))[0] != 0)
) return false;
//test if its an ip recovery packet
typedef struct{
padded_eth_hdr_t eth_hdr;
char code[4];
union {
struct ip_addr ip_addr;
} data;
}recovery_packet_t;
recovery_packet_t *recovery_packet = (recovery_packet_t *)buff;
if (recovery_packet->eth_hdr.ethertype == 0xbeee && strncmp(recovery_packet->code, "addr", 4) == 0){
printf("Got ip recovery packet: "); print_ip_addr(&recovery_packet->data.ip_addr); newline();
set_ip_addr(&recovery_packet->data.ip_addr);
return true;
}
//pass it to the slow-path handler
size_t len = buffer_pool_status->last_line[bufno] - 3;
handle_eth_packet(buff, len);
return true;
}
//------------------------------------------------------------------
static uint16_t get_vrt_packet_words(void){
return streaming_items_per_frame + \
USRP2_HOST_RX_VRT_HEADER_WORDS32 + \
USRP2_HOST_RX_VRT_TRAILER_WORDS32;
}
static bool vrt_has_trailer(void){
return USRP2_HOST_RX_VRT_TRAILER_WORDS32 > 0;
}
void
restart_streaming(void)
{
// setup RX DSP regs
sr_rx_ctrl->nsamples_per_pkt = streaming_items_per_frame;
sr_rx_ctrl->nchannels = 1;
sr_rx_ctrl->clear_overrun = 1; // reset
sr_rx_ctrl->vrt_header = (0
| VRTH_PT_IF_DATA_WITH_SID
| (vrt_has_trailer()? VRTH_HAS_TRAILER : 0)
| VRTH_TSI_OTHER
| VRTH_TSF_SAMPLE_CNT
);
sr_rx_ctrl->vrt_stream_id = 0;
sr_rx_ctrl->vrt_trailer = 0;
streaming_p = true;
streaming_frame_count = FRAMES_PER_CMD;
sr_rx_ctrl->cmd =
MK_RX_CMD(FRAMES_PER_CMD * streaming_items_per_frame,
(time_ticks==TIME_NOW)?1:0, 1); // conditionally set "now" bit, set "chain" bit
// kick off the state machine
dbsm_start(&dsp_rx_sm);
sr_rx_ctrl->time_secs = time_secs;
sr_rx_ctrl->time_ticks = time_ticks; // enqueue first of two commands
// make sure this one and the rest have the "now" and "chain" bits set.
sr_rx_ctrl->cmd =
MK_RX_CMD(FRAMES_PER_CMD * streaming_items_per_frame, 1, 1);
sr_rx_ctrl->time_secs = 0;
sr_rx_ctrl->time_ticks = 0; // enqueue second command
}
/*
* 1's complement sum for IP and UDP headers
*
* init chksum to zero to start.
*/
static unsigned int
CHKSUM(unsigned int x, unsigned int *chksum)
{
*chksum += x;
*chksum = (*chksum & 0xffff) + (*chksum>>16);
*chksum = (*chksum & 0xffff) + (*chksum>>16);
return x;
}
/*
* Called when eth phy state changes (w/ interrupts disabled)
*/
volatile bool link_is_up = false; // eth handler sets this
void
link_changed_callback(int speed)
{
link_is_up = speed != 0;
hal_set_leds(link_is_up ? LED_RJ45 : 0x0, LED_RJ45);
printf("\neth link changed: speed = %d\n", speed);
}
void
start_rx_streaming_cmd(void)
{
/*
* Construct ethernet header and preload into two buffers
*/
struct {
uint32_t ctrl_word;
} mem _AL4;
memset(&mem, 0, sizeof(mem));
printf("samples per frame: %d\n", streaming_items_per_frame);
printf("words in a vrt packet %d\n", get_vrt_packet_words());
mem.ctrl_word = get_vrt_packet_words()*sizeof(uint32_t) | 1 << 16;
memcpy_wa(buffer_ram(DSP_RX_BUF_0), &mem, sizeof(mem));
memcpy_wa(buffer_ram(DSP_RX_BUF_1), &mem, sizeof(mem));
//setup ethernet header machine
sr_udp_sm->eth_hdr.mac_dst_0_1 = (fp_mac_addr_dst.addr[0] << 8) | fp_mac_addr_dst.addr[1];
sr_udp_sm->eth_hdr.mac_dst_2_3 = (fp_mac_addr_dst.addr[2] << 8) | fp_mac_addr_dst.addr[3];
sr_udp_sm->eth_hdr.mac_dst_4_5 = (fp_mac_addr_dst.addr[4] << 8) | fp_mac_addr_dst.addr[5];
sr_udp_sm->eth_hdr.mac_src_0_1 = (fp_mac_addr_src.addr[0] << 8) | fp_mac_addr_src.addr[1];
sr_udp_sm->eth_hdr.mac_src_2_3 = (fp_mac_addr_src.addr[2] << 8) | fp_mac_addr_src.addr[3];
sr_udp_sm->eth_hdr.mac_src_4_5 = (fp_mac_addr_src.addr[4] << 8) | fp_mac_addr_src.addr[5];
sr_udp_sm->eth_hdr.ether_type = ETHERTYPE_IPV4;
//setup ip header machine
unsigned int chksum = 0;
sr_udp_sm->ip_hdr.ver_ihl_tos = CHKSUM(0x4500, &chksum); // IPV4, 5 words of header (20 bytes), TOS=0
sr_udp_sm->ip_hdr.total_length = UDP_SM_INS_IP_LEN; // Don't checksum this line in SW
sr_udp_sm->ip_hdr.identification = CHKSUM(0x0000, &chksum); // ID
sr_udp_sm->ip_hdr.flags_frag_off = CHKSUM(0x4000, &chksum); // don't fragment
sr_udp_sm->ip_hdr.ttl_proto = CHKSUM(0x2011, &chksum); // TTL=32, protocol = UDP (17 decimal)
//sr_udp_sm->ip_hdr.checksum .... filled in below
uint32_t src_ip_addr = fp_socket_src.addr.addr;
uint32_t dst_ip_addr = fp_socket_dst.addr.addr;
sr_udp_sm->ip_hdr.src_addr_high = CHKSUM(src_ip_addr >> 16, &chksum); // IP src high
sr_udp_sm->ip_hdr.src_addr_low = CHKSUM(src_ip_addr & 0xffff, &chksum); // IP src low
sr_udp_sm->ip_hdr.dst_addr_high = CHKSUM(dst_ip_addr >> 16, &chksum); // IP dst high
sr_udp_sm->ip_hdr.dst_addr_low = CHKSUM(dst_ip_addr & 0xffff, &chksum); // IP dst low
sr_udp_sm->ip_hdr.checksum = UDP_SM_INS_IP_HDR_CHKSUM | (chksum & 0xffff);
//setup the udp header machine
sr_udp_sm->udp_hdr.src_port = fp_socket_src.port;
sr_udp_sm->udp_hdr.dst_port = fp_socket_dst.port;
sr_udp_sm->udp_hdr.length = UDP_SM_INS_UDP_LEN;
sr_udp_sm->udp_hdr.checksum = UDP_SM_LAST_WORD; // zero UDP checksum
if (FW_SETS_SEQNO)
fw_seqno = 0;
restart_streaming();
}
void
stop_rx_cmd(void)
{
if (is_streaming()){
streaming_p = false;
// no samples, "now", not chained
sr_rx_ctrl->cmd = MK_RX_CMD(0, 1, 0);
sr_rx_ctrl->time_secs = 0;
sr_rx_ctrl->time_ticks = 0; // enqueue command
}
}
#if (FW_SETS_SEQNO)
/*
* Debugging ONLY. This will be handled by the tx_protocol_engine.
*
* This is called when the DSP Rx chain has filled in a packet.
* We set and increment the seqno, then return false, indicating
* that we didn't handle the packet. A bit of a kludge
* but it should work.
*/
bool
fw_sets_seqno_inspector(dbsm_t *sm, int buf_this) // returns false
{
// queue up another rx command when required
if (streaming_p && --streaming_frame_count == 0){
streaming_frame_count = FRAMES_PER_CMD;
sr_rx_ctrl->time_secs = 0;
sr_rx_ctrl->time_ticks = 0;
}
return false; // we didn't handle the packet
}
#endif
inline static void
buffer_irq_handler(unsigned irq)
{
uint32_t status = buffer_pool_status->status;
dbsm_process_status(&dsp_tx_sm, status);
dbsm_process_status(&dsp_rx_sm, status);
}
int
main(void)
{
u2_init();
putstr("\nTxRx-NEWETH\n");
print_mac_addr(ethernet_mac_addr()->addr);
newline();
print_ip_addr(get_ip_addr()); newline();
ethernet_register_link_changed_callback(link_changed_callback);
ethernet_init();
register_mac_addr(ethernet_mac_addr());
register_ip_addr(get_ip_addr());
register_udp_listener(USRP2_UDP_CTRL_PORT, handle_udp_ctrl_packet);
register_udp_listener(USRP2_UDP_DATA_PORT, handle_udp_data_packet);
#if 0
// make bit 15 of Tx gpio's be a s/w output
hal_gpio_set_sel(GPIO_TX_BANK, 15, 's');
hal_gpio_set_ddr(GPIO_TX_BANK, 0x8000, 0x8000);
#endif
output_regs->debug_mux_ctrl = 1;
#if 0
hal_gpio_set_sels(GPIO_TX_BANK, "1111111111111111");
hal_gpio_set_sels(GPIO_RX_BANK, "1111111111111111");
hal_gpio_set_ddr(GPIO_TX_BANK, 0xffff, 0xffff);
hal_gpio_set_ddr(GPIO_RX_BANK, 0xffff, 0xffff);
#endif
// initialize double buffering state machine for ethernet -> DSP Tx
dbsm_init(&dsp_tx_sm, DSP_TX_BUF_0,
&dsp_tx_recv_args, &dsp_tx_send_args,
eth_pkt_inspector);
// initialize double buffering state machine for DSP RX -> Ethernet
if (FW_SETS_SEQNO){
dbsm_init(&dsp_rx_sm, DSP_RX_BUF_0,
&dsp_rx_recv_args, &dsp_rx_send_args,
fw_sets_seqno_inspector);
}
else {
dbsm_init(&dsp_rx_sm, DSP_RX_BUF_0,
&dsp_rx_recv_args, &dsp_rx_send_args,
dbsm_nop_inspector);
}
// tell app_common that this dbsm could be sending to the ethernet
ac_could_be_sending_to_eth = &dsp_rx_sm;
sr_tx_ctrl->clear_state = 1;
bp_clear_buf(DSP_TX_BUF_0);
bp_clear_buf(DSP_TX_BUF_1);
// kick off the state machine
dbsm_start(&dsp_tx_sm);
//int which = 0;
while(1){
// hal_gpio_write(GPIO_TX_BANK, which, 0x8000);
// which ^= 0x8000;
buffer_irq_handler(0);
int pending = pic_regs->pending; // poll for under or overrun
if (pending & PIC_UNDERRUN_INT){
dbsm_handle_tx_underrun(&dsp_tx_sm);
pic_regs->pending = PIC_UNDERRUN_INT; // clear interrupt
putchar('U');
}
if (pending & PIC_OVERRUN_INT){
dbsm_handle_rx_overrun(&dsp_rx_sm);
pic_regs->pending = PIC_OVERRUN_INT; // clear pending interrupt
// FIXME Figure out how to handle this robustly.
// Any buffers that are emptying should be allowed to drain...
if (streaming_p){
// restart_streaming();
// FIXME report error
}
else {
// FIXME report error
}
putchar('O');
}
}
}