// // Copyright 2013-2014 Ettus Research LLC // /* This file defines the application that runs on the Cypress FX3 device, and * enables the user to program the FPGA with an FPGA image. Since the FPGA * doesn't yet have a clock, the image must be bit-banged into the FPGA. */ #include #include #include "b200_main.h" #include "b200_gpifconfig.h" #include "b200_vrq.h" #include "b200_i2c.h" #include "cyu3dma.h" #include "cyu3error.h" #include "cyu3gpif.h" #include "cyu3gpio.h" #include "cyu3spi.h" #include "cyu3os.h" #include "cyu3pib.h" #include "cyu3system.h" #include "cyu3usb.h" #include "cyu3utils.h" #include "cyfxversion.h" #include "pib_regs.h" #include #include #define STATIC_SAVER static // Save stack space for variables in a non-re-entrant function (e.g. USB setup callback) /* * WARNING: Before you enable any of the features below, please read the comments on the same line for that feature! * Indented features must have the parent feature enabled as well. */ //#define HAS_HEAP // This requires memory to be set aside for the heap (e.g. required for printing floating-point numbers). You can apply the accompanying patch ('fx3_mem_map.patch') to fx3.ld & cyfxtx.c to create one. //#define ENABLE_MSG // This will cause the compiled code to exceed the default text memory area (SYS_MEM). You can apply the accompanying patch ('fx3_mem_map.patch') to fx3.ld & cyfxtx.c to resize the memory map so it will fit. //#define ENABLE_AD9361_LOGGING // When enabling this, you *must* enable the heap with HAS_HEAP (and apply the accompanying memory map patch 'fx3_mem_map.patch') otherwise the FW will crash when printing a floating-point number (as there is no heap for _sbrk by default) //#define ENABLE_MANUAL_DMA_XFER //#define ENABLE_MANUAL_DMA_XFER_FROM_HOST //#define ENABLE_MANUAL_DMA_XFER_TO_HOST //#define ENABLE_DMA_BUFFER_PACKET_DEBUG //#define ENABLE_FPGA_SB // Be careful: this will add an ever-so-slight delay to some operations (e.g. AD3961 tune) #define ENABLE_RE_ENUM_THREAD #define ENABLE_USB_EVENT_LOGGING //#define PREVENT_LOW_POWER_MODE //#define ENABLE_INIT_B_WORKAROUND // This should only be enabled if you have a board where the FPGA INIT_B line is broken, but the FPGA is known to work //#define ENABLE_DONE_WORKAROUND // This should only be enabled if you have a board where the FPGA DONE line is broken, but the FPGA is known to work #define WATCHDOG_TIMEOUT 1500 #define CHECK_POWER_STATE_SLEEP_TIME 500 // Should be less than WATCHDOG_TIMEOUT #define FPGA_PROGRAMMING_POLL_SLEEP 10 // ticks #define FPGA_PROGRAMMING_BITSTREAM_START_POLL_COUNT 250 // ~2.5 secs #define FPGA_PROGRAMMING_INITB_POLL_COUNT 100 // ~1 sec #define FPGA_PROGRAMMING_DONE_POLL_COUNT 250 // ~2.5 secs // This is the interval *after* no FPGA programming activity has been detected #define FPGA_RESET_SETTLING_TIME (1*10) // ~10ms (for SB to initialise) #define RE_ENUM_THREAD_SLEEP_TIME 100 #define KEEP_ALIVE_LOOP_COUNT 200 #pragma message "----------------------" #ifdef ENABLE_MSG #pragma message "msg enabled" #ifdef ENABLE_AD9361_LOGGING #pragma message " AD9361 logging enabled" #else #pragma message " AD9361 logging disabled" #endif // ENABLE_AD9361_LOGGING #else #pragma message "msg disabled" #endif // ENABLE_MSG #ifdef ENABLE_MANUAL_DMA_XFER #pragma message "Manual DMA transfers" #ifdef ENABLE_MANUAL_DMA_XFER_FROM_HOST #pragma message " -> From host" #endif // ENABLE_MANUAL_DMA_XFER_FROM_HOST #ifdef ENABLE_MANUAL_DMA_XFER_TO_HOST #pragma message " <- To host" #endif // ENABLE_MANUAL_DMA_XFER_TO_HOST #ifdef ENABLE_DMA_BUFFER_PACKET_DEBUG #pragma message " Packet debugging enabled" #endif // ENABLE_DMA_BUFFER_PACKET_DEBUG #else #pragma message "Auto DMA transfers" #endif // ENABLE_MANUAL_DMA_XFER #ifdef ENABLE_FPGA_SB #pragma message "FPGA Settings Bus enabled" #else #pragma message "FPGA Settings Bus disabled" #endif // ENABLE_FPGA_SB #ifdef ENABLE_RE_ENUM_THREAD #pragma message "Re-enumeration & statistics thread enabled" #else #pragma message "Re-enumeration & statistics thread disabled" #endif // ENABLE_RE_ENUM_THREAD #ifdef ENABLE_USB_EVENT_LOGGING #pragma message "USB event logging enabled" #else #pragma message "USB event logging disabled" #endif // ENABLE_USB_EVENT_LOGGING #ifdef PREVENT_LOW_POWER_MODE #pragma message "Preventing Low Power Mode" #else #pragma message "Allowing Low Power Mode" #endif // PREVENT_LOW_POWER_MODE #ifdef HAS_HEAP #pragma message "Heap enabled" #else #pragma message "Heap disabled" #endif // HAS_HEAP #ifdef ENABLE_INIT_B_WORKAROUND #pragma message "INIT_B workaround enabled" #else #pragma message "INIT_B workaround disabled" #endif // ENABLE_INIT_B_WORKAROUND #ifdef ENABLE_DONE_WORKAROUND #pragma message "DONE workaround enabled" #else #pragma message "DONE workaround disabled" #endif // ENABLE_DONE_WORKAROUND #pragma message "----------------------" /* Declare global & static fields for our bit-bang application. */ static CyU3PDmaChannel data_cons_to_prod_chan_handle; static CyU3PDmaChannel data_prod_to_cons_chan_handle; static CyU3PDmaChannel ctrl_cons_to_prod_chan_handle; static CyU3PDmaChannel ctrl_prod_to_cons_chan_handle; static CyU3PEvent g_event_usb_config; static CyU3PThread thread_main_app; static CyU3PThread thread_fpga_config; #ifdef ENABLE_RE_ENUM_THREAD static CyU3PThread thread_re_enum; #endif // ENABLE_RE_ENUM_THREAD static CyU3PThread thread_ad9361; static CyBool_t g_app_running = CyFalse; static uint8_t g_fx3_state = STATE_UNDEFINED; //#define AD9361_DISPATCH_PACKET_SIZE 64 // Must fit into smallest VREQ #define USB2_VREQ_BUF_SIZE 64 #define USB3_VREQ_BUF_SIZE 512 #define MIN_VREQ_BUF_SIZE USB2_VREQ_BUF_SIZE #define MAX_VREQ_BUF_SIZE USB3_VREQ_BUF_SIZE #if AD9361_DISPATCH_PACKET_SIZE > MIN_VREQ_BUF_SIZE #error "AD9361_DISPATCH_PACKET_SIZE must be less than MIN_VREQ_BUF_SIZE" #endif static uint16_t g_vendor_req_buff_size = MIN_VREQ_BUF_SIZE; static uint8_t g_vendor_req_buffer[MAX_VREQ_BUF_SIZE] __attribute__ ((aligned (32))); static uint16_t g_vendor_req_read_count = 0; static uint8_t fpga_hash[4] __attribute__ ((aligned (32))); static uint8_t fw_hash[4] __attribute__ ((aligned (32))); static uint8_t compat_num[2]; static uint32_t g_fpga_programming_write_count = 0; static char g_ad9361_response[AD9361_DISPATCH_PACKET_SIZE]; #define COUNTER_MAGIC 0x10024001 #define LOG_BUFFER_SIZE /*MAX_VREQ_BUF_SIZE*/1024 // [Max vreq @ USB3 (64 @ USB2)] Can be larger static char log_buffer[LOG_BUFFER_SIZE]; static char log_contiguous_buffer[LOG_BUFFER_SIZE]; static int log_buffer_idx = 0, log_buffer_len = 0; #ifdef ENABLE_MSG static int log_count = 0; #endif // ENABLE_MSG #define USB_EVENT_LOG_SIZE 64 static uint8_t g_usb_event_log[USB_EVENT_LOG_SIZE]; static uint16_t g_last_usb_event_log_index = 0; static uint8_t g_usb_event_log_contiguous_buf[USB_EVENT_LOG_SIZE]; #ifdef ENABLE_FPGA_SB static CyBool_t g_fpga_sb_enabled = CyFalse; static uint16_t g_fpga_sb_uart_div = 434*2; static uint16_t g_fpga_sb_last_usb_event_log_index = 0; static CyU3PThread thread_fpga_sb_poll; static CyU3PMutex g_suart_lock; #endif // ENABLE_FPGA_SB static CyU3PMutex g_log_lock, g_counters_lock, g_counters_dma_from_host_lock, g_counters_dma_to_host_lock; #define FPGA_SB_UART_ADDR_BASE 0x00 enum UARTRegs { SUART_CLKDIV, SUART_TXLEVEL, SUART_RXLEVEL, SUART_TXCHAR, SUART_RXCHAR }; enum UARTPacketType { UPT_NONE = '\0', UPT_MSG = ' ', UPT_COUNTERS = 'C', UPT_USB_EVENTS = 'U', }; enum ConfigFlags { CF_NONE = 0, CF_TX_SWING = 1 << 0, CF_TX_DEEMPHASIS = 1 << 1, CF_DISABLE_USB2 = 1 << 2, CF_ENABLE_AS_SUPERSPEED = 1 << 3, CF_PPORT_DRIVE_STRENGTH = 1 << 4, CF_DMA_BUFFER_SIZE = 1 << 5, CF_DMA_BUFFER_COUNT = 1 << 6, CF_MANUAL_DMA = 1 << 7, CF_RE_ENUM = 1 << 31 }; typedef struct Config { int tx_swing; // [90] [65] 45 int tx_deemphasis; // 0x11 int disable_usb2; // 0 int enable_as_superspeed; // 1 int pport_drive_strength; // CY_U3P_DS_THREE_QUARTER_STRENGTH int dma_buffer_size; // [USB3] (max) int dma_buffer_count; // [USB3] 1 int manual_dma; // 0 int sb_baud_div; // 434*2 } CONFIG, *PCONFIG; typedef struct ConfigMod { int flags; CONFIG config; } CONFIG_MOD, *PCONFIG_MOD; static CONFIG g_config; static CONFIG_MOD g_config_mod; #define REG_LNK_PHY_ERROR_STATUS 0xE0033044 enum PhyErrors { PHYERR_PHY_LOCK_EV = 1 << 8, PHYERR_TRAINING_ERROR_EV = 1 << 7, PHYERR_RX_ERROR_CRC32_EV = 1 << 6, PHYERR_RX_ERROR_CRC16_EV = 1 << 5, PHYERR_RX_ERROR_CRC5_EV = 1 << 4, PHYERR_PHY_ERROR_DISPARITY_EV = 1 << 3, PHYERR_PHY_ERROR_EB_UND_EV = 1 << 2, PHYERR_PHY_ERROR_EB_OVR_EV = 1 << 1, PHYERR_PHY_ERROR_DECODE_EV = 1 << 0, PHYERR_MAX = PHYERR_PHY_LOCK_EV, PHYERR_MASK = (PHYERR_MAX << 1) - 1 }; typedef struct USBErrorCounters { int phy_error_count; int link_error_count; int PHY_LOCK_EV; int TRAINING_ERROR_EV; int RX_ERROR_CRC32_EV; int RX_ERROR_CRC16_EV; int RX_ERROR_CRC5_EV; int PHY_ERROR_DISPARITY_EV; int PHY_ERROR_EB_UND_EV; int PHY_ERROR_EB_OVR_EV; int PHY_ERROR_DECODE_EV; } USB_ERROR_COUNTERS, *PUSB_ERROR_COUNTERS; typedef struct DMACounters { int XFER_CPLT; int SEND_CPLT; int RECV_CPLT; int PROD_EVENT; int CONS_EVENT; int ABORTED; int ERROR; int PROD_SUSP; int CONS_SUSP; int BUFFER_MARKER; int BUFFER_EOP; int BUFFER_ERROR; int BUFFER_OCCUPIED; int last_count; int last_size; int last_sid; int bad_sid_count; } DMA_COUNTERS, *PDMA_COUNTERS; typedef struct Counters { int magic; DMA_COUNTERS dma_to_host; DMA_COUNTERS dma_from_host; int log_overrun_count; int usb_error_update_count; USB_ERROR_COUNTERS usb_error_counters; int usb_ep_underrun_count; int heap_size; int resume_count; } COUNTERS, *PCOUNTERS; volatile static COUNTERS g_counters; #ifndef min #define min(a,b) ((a)<(b)?(a):(b)) #endif // min #define LOCKP(p) CyU3PMutexGet(p, CYU3P_WAIT_FOREVER) #define UNLOCKP(p) CyU3PMutexPut(p) #define LOCK(p) LOCKP(&p) #define UNLOCK(p) UNLOCKP(&p) //////////////////////////////////////////////////////////////////////////////// char *heap_end = 0; caddr_t _sbrk(int incr) { #ifdef HAS_HEAP extern char __heap_start; extern char __heap_end; char *prev_heap_end; if (heap_end == 0) { heap_end = (char *)&__heap_start; } prev_heap_end = heap_end; if (heap_end + incr > &__heap_end) { return (caddr_t) 0; } heap_end += incr; g_counters.heap_size += incr; // Not sync'd return (caddr_t) prev_heap_end; #else return (caddr_t) -1; #endif // HAS_HEAP } //////////////////////////////////////////////////////////////////////////////// void b200_start_fpga_sb_gpio(void); void sb_write(uint8_t reg, uint32_t val); void _sb_write_string(const char* msg); void msg(const char* str, ...) { #define msg_CHECK_USE_LOCK //void _msgv(int use_lock, const char* str, va_list args) { //#define msg_CHECK_USE_LOCK if (use_lock) #ifdef ENABLE_MSG va_list args; static char buf[LOG_BUFFER_SIZE]; int idx = 0; msg_CHECK_USE_LOCK LOCK(g_log_lock); ++log_count; log_count %= 10000; va_start(args, str); if (1) { // FIXME: Optional uint32_t time_now = CyU3PGetTime(); idx += sprintf(buf, "%08X %04i ", (uint)time_now, log_count); } else idx += sprintf(buf, "%04i ", log_count); idx += vsnprintf(buf + idx, LOG_BUFFER_SIZE - idx, str, args); va_end(args); if ((LOG_BUFFER_SIZE - log_buffer_len) < (idx + 1 + 1)) { msg_CHECK_USE_LOCK LOCK(g_counters_lock); ++g_counters.log_overrun_count; msg_CHECK_USE_LOCK UNLOCK(g_counters_lock); goto msg_exit; } // Circular buffer if we need it later, but currently won't wrap due to above condition memcpy(log_buffer + log_buffer_len, buf, min(idx + 1, LOG_BUFFER_SIZE - log_buffer_len)); if ((idx + 1) > (LOG_BUFFER_SIZE - log_buffer_len)) { memcpy(log_buffer, buf + (LOG_BUFFER_SIZE - log_buffer_len), (idx + 1) - (LOG_BUFFER_SIZE - log_buffer_len)); log_buffer[(idx + 1) - (LOG_BUFFER_SIZE - log_buffer_len)] = '\0'; } else log_buffer[log_buffer_len + idx + 1] = '\0'; log_buffer_len += (idx + 1); msg_exit: msg_CHECK_USE_LOCK UNLOCK(g_log_lock); #ifdef ENABLE_FPGA_SB LOCK(g_suart_lock); sb_write(SUART_TXCHAR, UPT_MSG); _sb_write_string(buf); _sb_write_string("\r\n"); UNLOCK(g_suart_lock); #endif // ENABLE_FPGA_SB #endif // ENABLE_MSG } /* void msg(const char* str, ...) { va_list args; va_start(args, str); _msgv(1, str, args); va_end(args); } void msg_nl(const char* str, ...) { va_list args; va_start(args, str); _msgv(0, str, args); va_end(args); } */ void log_reset(void) { //LOCK(g_log_lock); log_buffer_idx = 0; log_buffer_len = 0; log_buffer[0] = '\0'; //UNLOCK(g_log_lock); } void counters_auto_reset(void) { //LOCK(g_counters_lock); g_counters.log_overrun_count = 0; //UNLOCK(g_counters_lock); } void counters_dma_reset(void) { LOCK(g_counters_lock); LOCK(g_counters_dma_to_host_lock); memset((void*)&g_counters.dma_to_host, 0x00, sizeof(DMA_COUNTERS)); UNLOCK(g_counters_dma_to_host_lock); LOCK(g_counters_dma_from_host_lock); memset((void*)&g_counters.dma_from_host, 0x00, sizeof(DMA_COUNTERS)); UNLOCK(g_counters_dma_from_host_lock); UNLOCK(g_counters_lock); } void counters_reset_usb_errors(void) { LOCK(g_counters_lock); g_counters.usb_error_update_count = 0; memset((void*)&g_counters.usb_error_counters, 0x00, sizeof(g_counters.usb_error_counters)); UNLOCK(g_counters_lock); } #ifdef ENABLE_MANUAL_DMA_XFER /* Callback funtion for the DMA event notification. */ void dma_callback ( CyU3PDmaChannel *chHandle, /* Handle to the DMA channel. */ CyU3PDmaCbType_t type, /* Callback type. */ CyU3PDmaCBInput_t *input, /* Callback status. */ int from_host) { CyU3PReturnStatus_t status = CY_U3P_SUCCESS; PDMA_COUNTERS cnt = (PDMA_COUNTERS)(from_host ? &g_counters.dma_from_host : &g_counters.dma_to_host); CyU3PMutex* lock = (from_host ? &g_counters_dma_from_host_lock : &g_counters_dma_to_host_lock); uint16_t buffer_status = (input->buffer_p.status & CY_U3P_DMA_BUFFER_STATUS_MASK); if (buffer_status & CY_U3P_DMA_BUFFER_MARKER) { cnt->BUFFER_MARKER++; } if (buffer_status & CY_U3P_DMA_BUFFER_EOP) { cnt->BUFFER_EOP++; } if (buffer_status & CY_U3P_DMA_BUFFER_ERROR) { cnt->BUFFER_ERROR++; } if (buffer_status & CY_U3P_DMA_BUFFER_OCCUPIED) { cnt->BUFFER_OCCUPIED++; } if (type == CY_U3P_DMA_CB_PROD_EVENT) { #ifdef ENABLE_DMA_BUFFER_PACKET_DEBUG LOCKP(lock); int prod_cnt = cnt->PROD_EVENT++; UNLOCKP(lock); if (cnt->last_count != input->buffer_p.count) msg("[DMA %05d] buffer.count (%d) != last_count (%d)", prod_cnt, input->buffer_p.count, cnt->last_count); cnt->last_count = input->buffer_p.count; if (cnt->last_size != input->buffer_p.size) msg("[DMA %05d] buffer.size (%d) != last_size (%d)", prod_cnt, input->buffer_p.size, cnt->last_size); cnt->last_size = input->buffer_p.size; uint32_t* p32 = input->buffer_p.buffer; uint32_t sid = p32[1]; cnt->last_sid = (int)sid; if ((sid != 0xa0) && (sid != 0xb0)) { cnt->bad_sid_count++; msg("[DMA %05d] Bad SID: 0x%08x", prod_cnt, sid); } uint16_t* p16 = input->buffer_p.buffer; if (p32[0] & (((uint32_t)1) << 31)) { msg("[DMA %05d] Error code: 0x%x (packet len: %d)", prod_cnt, p32[4], p16[0]); // Status //msg("[DMA] 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x", p32[0], p32[1], p32[2], p32[3], p32[4], p32[5]); } else { if (p16[1] & (((uint16_t)1) << 12)) { msg("[DMA %05d] EOB", prod_cnt); // Comes with one sample } if ((p16[0] != input->buffer_p.count) && ((p16[0] + 4) != input->buffer_p.count)) { msg("[DMA %05d] Packet len (%d) != buffer count (%d)", prod_cnt, p16[0], input->buffer_p.count); } //msg("[DMA] 0x%04x 0x%04x 0x%04x 0x%04x", p16[0], p16[1], p16[2], p16[3]); if (p16[1] & (((uint16_t)1) << 12)) msg("[DMA %05d] 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x", prod_cnt, p32[0], p32[1], p32[2], p32[3], p32[4], p32[5]); } #endif // ENABLE_DMA_BUFFER_PACKET_DEBUG status = CyU3PDmaChannelCommitBuffer (chHandle, input->buffer_p.count, 0); #ifndef ENABLE_DMA_BUFFER_PACKET_DEBUG LOCKP(lock); cnt->PROD_EVENT++; UNLOCKP(lock); #endif // !ENABLE_DMA_BUFFER_PACKET_DEBUG } else if (type == CY_U3P_DMA_CB_CONS_EVENT) { LOCKP(lock); cnt->CONS_EVENT++; UNLOCKP(lock); } else if (type == CY_U3P_DMA_CB_XFER_CPLT) { LOCKP(lock); cnt->XFER_CPLT++; UNLOCKP(lock); } else if (type == CY_U3P_DMA_CB_SEND_CPLT) { LOCKP(lock); cnt->SEND_CPLT++; UNLOCKP(lock); } else if (type == CY_U3P_DMA_CB_RECV_CPLT) { LOCKP(lock); cnt->RECV_CPLT++; UNLOCKP(lock); } else if (type == CY_U3P_DMA_CB_ABORTED) { LOCKP(lock); cnt->ABORTED++; UNLOCKP(lock); msg("! Aborted %i", from_host); } else if (type == CY_U3P_DMA_CB_ERROR) { LOCKP(lock); cnt->ERROR++; UNLOCKP(lock); msg("! Error %i", from_host); } else if (type == CY_U3P_DMA_CB_PROD_SUSP) { LOCKP(lock); cnt->PROD_SUSP++; UNLOCKP(lock); msg("! Prod suspend %i", from_host); } else if (type == CY_U3P_DMA_CB_CONS_SUSP) { LOCKP(lock); cnt->CONS_SUSP++; UNLOCKP(lock); msg("! Cons suspend %i", from_host); } } void from_host_dma_callback ( CyU3PDmaChannel *chHandle, /* Handle to the DMA channel. */ CyU3PDmaCbType_t type, /* Callback type. */ CyU3PDmaCBInput_t *input) /* Callback status. */ { return dma_callback(chHandle, type, input, 1); } void to_host_dma_callback ( CyU3PDmaChannel *chHandle, /* Handle to the DMA channel. */ CyU3PDmaCbType_t type, /* Callback type. */ CyU3PDmaCBInput_t *input) /* Callback status. */ { return dma_callback(chHandle, type, input, 0); } #endif // ENABLE_MANUAL_DMA_XFER /*! Interrupt callback for GPIOs. * * This function is invoked by the GPIO interrupt handler when pins configured * as inputs with interrupts are triggered. */ void gpio_interrupt_callback(uint8_t gpio_id) { CyBool_t gpio_value; if ((gpio_id == GPIO_DONE) && (g_fx3_state == STATE_CONFIGURING_FPGA)) { // Only proceed if in the correct FX3 state CyU3PGpioGetValue(gpio_id, &gpio_value); if(gpio_value == CyTrue) { //msg("DONE HIGH"); CyU3PEventSet(&g_event_usb_config, EVENT_GPIO_DONE_HIGH, CYU3P_EVENT_OR); } } else if ((gpio_id == GPIO_INIT_B) && (g_fx3_state == STATE_FPGA_READY)) { // Only proceed if in the correct FX3 state CyU3PGpioGetValue(gpio_id, &gpio_value); if(gpio_value == CyTrue) { //msg("INITB_RISE"); CyU3PEventSet(&g_event_usb_config, EVENT_GPIO_INITB_RISE, CYU3P_EVENT_OR); } } } // The following two functions are intended to replace write_spi_to_ad9361 // and read_spi_from_ad9361 after the code porting is complete /*! Perform a register write to the ad9361 chip. * A pointer to the register address followed by data will be provided as * parameter */ static void write_ad9361_reg(uint16_t reg, uint8_t val) { CyBool_t gpio_value; uint8_t write_buff[3]; MAKE_AD9361_WRITE(write_buff, reg, val) // Number of bytes we are writing. uint8_t num_bytes = 3; //register address = 2 bytes, data = 1 byte CyU3PGpioSetValue(GPIO_FX3_CE, 0); // Clock the data out to AD9361 over SPI. int8_t bit_count, byte_count; for(byte_count = 0; byte_count < num_bytes; byte_count++) { uint8_t miso = 0x00; uint8_t data = write_buff[byte_count]; for(bit_count = 7; bit_count >= 0; bit_count--) { CyU3PGpioSetValue(GPIO_FX3_SCLK, 1); CyU3PGpioSetValue(GPIO_FX3_MOSI, ((data >> bit_count) & 0x01)); CyU3PGpioSetValue(GPIO_FX3_SCLK, 0); CyU3PGpioGetValue(GPIO_FX3_MISO, &gpio_value); if(gpio_value) { miso |= (1 << bit_count); } } // FIXME: Determine what to do with miso value; } CyU3PGpioSetValue(GPIO_FX3_MOSI, 0); CyU3PGpioSetValue(GPIO_FX3_CE, 1); } /*! Perform a register read from to the ad9361 chip. * A pointer to register address will be provided as parameter * The function returns the value read from the register */ static uint8_t read_ad9361_reg(uint16_t reg) { CyBool_t gpio_value; uint8_t write_buff[2]; MAKE_AD9361_READ(write_buff, reg) // Each 9361 register read returns 1 byte CyU3PGpioSetValue(GPIO_FX3_CE, 0); // Write the two register address bytes. int8_t bit_count, byte_count; for(byte_count = 0; byte_count < 2; byte_count++) { uint8_t miso = 0x00; uint8_t data = write_buff[byte_count]; for(bit_count = 7; bit_count >= 0; bit_count--) { CyU3PGpioSetValue(GPIO_FX3_SCLK, 1); CyU3PGpioSetValue(GPIO_FX3_MOSI, ((data >> bit_count) & 0x01)); CyU3PGpioSetValue(GPIO_FX3_SCLK, 0); CyU3PGpioGetValue(GPIO_FX3_MISO, &gpio_value); if(gpio_value) { miso |= (1 << bit_count); } } // FIXME: Determine what to do with miso value; } CyU3PGpioSetValue(GPIO_FX3_MOSI, 0); // Read the response data from the chip. uint8_t data = 0x00; for(bit_count = 7; bit_count >= 0; bit_count--) { CyU3PGpioSetValue(GPIO_FX3_SCLK, 1); CyU3PGpioGetValue(GPIO_FX3_MISO, &gpio_value); if(gpio_value) { data |= (1 << bit_count); } CyU3PGpioSetValue(GPIO_FX3_SCLK, 0); } CyU3PGpioSetValue(GPIO_FX3_CE, 1); return data; } /*! Perform a register write to the ad9361 chip. * * This function will take data received over EP0, as a vendor request, and * perform a SPI write to ad9361. This requires that the FPGA be passing these * SPI lines through to the ad9361 chip. */ void write_spi_to_ad9361(void) { CyBool_t gpio_value; /* Pull out the number of bytes we are writing. */ uint8_t num_bytes = ((g_vendor_req_buffer[0] & 0x70) >> 4) + 1; CyU3PGpioSetValue(GPIO_FX3_CE, 0); /* Clock the data out to AD9361 over SPI. */ int8_t bit_count, byte_count; for(byte_count = 0; byte_count < (num_bytes + 2); byte_count++) { uint8_t miso = 0x00; uint8_t data = g_vendor_req_buffer[byte_count]; for(bit_count = 7; bit_count >= 0; bit_count--) { CyU3PGpioSetValue(GPIO_FX3_SCLK, 1); CyU3PGpioSetValue(GPIO_FX3_MOSI, ((data >> bit_count) & 0x01)); CyU3PGpioSetValue(GPIO_FX3_SCLK, 0); CyU3PGpioGetValue(GPIO_FX3_MISO, &gpio_value); if(gpio_value) { miso |= (1 << bit_count); } } g_vendor_req_buffer[byte_count] = miso; } CyU3PGpioSetValue(GPIO_FX3_MOSI, 0); CyU3PGpioSetValue(GPIO_FX3_CE, 1); } /*! Perform a register read from the ad9361 chip. * * This function will write a command to the ad9361 chip, performing a register * read, and store the returned data in the vendor request buffer. This data can * then be retrieved with another vendor request from the host. * * This requires that the FPGA be passing these SPI lines through to the * ad9361 chip. */ void read_spi_from_ad9361(void) { CyBool_t gpio_value; /* Pull out the number of bytes we are reading. */ uint8_t num_bytes = ((g_vendor_req_buffer[0] & 0x70) >> 4) + 1; CyU3PGpioSetValue(GPIO_FX3_CE, 0); /* Write the two instruction bytes. */ int8_t bit_count, byte_count; for(byte_count = 0; byte_count < 2; byte_count++) { uint8_t miso = 0x00; uint8_t data = g_vendor_req_buffer[byte_count]; for(bit_count = 7; bit_count >= 0; bit_count--) { CyU3PGpioSetValue(GPIO_FX3_SCLK, 1); CyU3PGpioSetValue(GPIO_FX3_MOSI, ((data >> bit_count) & 0x01)); CyU3PGpioSetValue(GPIO_FX3_SCLK, 0); CyU3PGpioGetValue(GPIO_FX3_MISO, &gpio_value); if(gpio_value) { miso |= (1 << bit_count); } } g_vendor_req_buffer[byte_count] = miso; } CyU3PGpioSetValue(GPIO_FX3_MOSI, 0); /* Read the response data from the chip. */ for(byte_count = 0; byte_count < num_bytes; byte_count++) { uint8_t data = 0x00; for(bit_count = 7; bit_count >= 0; bit_count--) { CyU3PGpioSetValue(GPIO_FX3_SCLK, 1); CyU3PGpioGetValue(GPIO_FX3_MISO, &gpio_value); if(gpio_value) { data |= (1 << bit_count); } CyU3PGpioSetValue(GPIO_FX3_SCLK, 0); } g_vendor_req_buffer[byte_count + 2] = data; } CyU3PGpioSetValue(GPIO_FX3_CE, 1); } uint32_t ad9361_transact_spi(const uint32_t bits) { // FIXME: Could make this more sane if ((bits >> 23) & 0x1) { write_ad9361_reg(bits >> 8, bits & 0xff); return 0; } return read_ad9361_reg(bits >> 8); } /*! Stops the application, and destroys transport data structures. * * This function is essentially a destructor for all transport configurations. * It ensures that if the USB configuration is reset without a power reboot, * everything will come back up properly. */ void b200_fw_stop(void) { msg("b200_fw_stop"); CyU3PEpConfig_t usb_endpoint_config; /* Update the flag. */ g_app_running = CyFalse; /* Flush the endpoint memory */ CyU3PUsbFlushEp(DATA_ENDPOINT_PRODUCER); CyU3PUsbFlushEp(DATA_ENDPOINT_CONSUMER); CyU3PUsbFlushEp(CTRL_ENDPOINT_PRODUCER); CyU3PUsbFlushEp(CTRL_ENDPOINT_CONSUMER); /* Reset the DMA channels */ // SDK 1.3 known issue #1 - probably not necessary since Destroy is next, but just in case CyU3PDmaChannelReset(&data_cons_to_prod_chan_handle); CyU3PDmaChannelReset(&data_prod_to_cons_chan_handle); CyU3PDmaChannelReset(&ctrl_cons_to_prod_chan_handle); CyU3PDmaChannelReset(&ctrl_prod_to_cons_chan_handle); /* Destroy the DMA channels */ CyU3PDmaChannelDestroy(&data_cons_to_prod_chan_handle); CyU3PDmaChannelDestroy(&data_prod_to_cons_chan_handle); CyU3PDmaChannelDestroy(&ctrl_cons_to_prod_chan_handle); CyU3PDmaChannelDestroy(&ctrl_prod_to_cons_chan_handle); /* Disable endpoints. */ CyU3PMemSet((uint8_t *) &usb_endpoint_config, 0, \ sizeof(usb_endpoint_config)); usb_endpoint_config.enable = CyFalse; CyU3PSetEpConfig(DATA_ENDPOINT_PRODUCER, &usb_endpoint_config); CyU3PSetEpConfig(DATA_ENDPOINT_CONSUMER, &usb_endpoint_config); CyU3PSetEpConfig(CTRL_ENDPOINT_PRODUCER, &usb_endpoint_config); CyU3PSetEpConfig(CTRL_ENDPOINT_CONSUMER, &usb_endpoint_config); } void reset_gpif(void) { g_fx3_state = STATE_BUSY; // Put the FPGA into RESET CyU3PGpioSetValue(GPIO_FPGA_RESET, CyTrue); // Bring down GPIF CyU3PGpifDisable(CyTrue); /* Reset the DMA channels */ CyU3PDmaChannelReset(&data_cons_to_prod_chan_handle); CyU3PDmaChannelReset(&data_prod_to_cons_chan_handle); CyU3PDmaChannelReset(&ctrl_cons_to_prod_chan_handle); CyU3PDmaChannelReset(&ctrl_prod_to_cons_chan_handle); /* Reset the DMA transfers */ CyU3PDmaChannelSetXfer(&data_cons_to_prod_chan_handle, \ DMA_SIZE_INFINITE); CyU3PDmaChannelSetXfer(&data_prod_to_cons_chan_handle, \ DMA_SIZE_INFINITE); CyU3PDmaChannelSetXfer(&ctrl_cons_to_prod_chan_handle, \ DMA_SIZE_INFINITE); CyU3PDmaChannelSetXfer(&ctrl_prod_to_cons_chan_handle, \ DMA_SIZE_INFINITE); /* Flush the USB endpoints */ CyU3PUsbFlushEp(DATA_ENDPOINT_PRODUCER); CyU3PUsbFlushEp(DATA_ENDPOINT_CONSUMER); CyU3PUsbFlushEp(CTRL_ENDPOINT_PRODUCER); CyU3PUsbFlushEp(CTRL_ENDPOINT_CONSUMER); /* Load the GPIF configuration for Slave FIFO sync mode. */ CyU3PGpifLoad(&CyFxGpifConfig); /* Start the state machine. */ CyU3PGpifSMStart(RESET, ALPHA_RESET); /* Configure the watermarks for the slfifo-write buffers. */ CyU3PGpifSocketConfigure(0, DATA_TX_PPORT_SOCKET, 5, CyFalse, 1); CyU3PGpifSocketConfigure(1, DATA_RX_PPORT_SOCKET, 6, CyFalse, 1); CyU3PGpifSocketConfigure(2, CTRL_COMM_PPORT_SOCKET, 5, CyFalse, 1); CyU3PGpifSocketConfigure(3, CTRL_RESP_PPORT_SOCKET, 6, CyFalse, 1); CyU3PGpioSetValue(GPIO_FPGA_RESET, CyFalse); CyU3PThreadSleep(FPGA_RESET_SETTLING_TIME); b200_start_fpga_sb_gpio(); g_fx3_state = STATE_RUNNING; } CyU3PReturnStatus_t b200_set_io_matrix(CyBool_t fpga_config_mode) { CyU3PIoMatrixConfig_t io_config_matrix; CyU3PReturnStatus_t res; /* Configure the IO peripherals on the FX3. The gpioSimpleEn arrays are * bitmaps, where each bit represents the GPIO of the matching index - the * second array is index + 32. */ CyU3PMemSet((uint8_t *) &io_config_matrix, 0, sizeof(io_config_matrix)); io_config_matrix.isDQ32Bit = (fpga_config_mode == CyFalse); io_config_matrix.lppMode = CY_U3P_IO_MATRIX_LPP_DEFAULT; io_config_matrix.gpioSimpleEn[0] = 0 | MASK_GPIO_FPGA_SB_SCL | MASK_GPIO_FPGA_SB_SDA; io_config_matrix.gpioSimpleEn[1] = MASK_GPIO_PROGRAM_B \ | MASK_GPIO_INIT_B \ | (fpga_config_mode ? 0 : \ // Used once FPGA config is done to bit-bang SPI, etc. MASK_GPIO_SHDN_SW \ | MASK_GPIO_AUX_PWR_ON \ | MASK_GPIO_FX3_SCLK \ | MASK_GPIO_FX3_CE \ | MASK_GPIO_FX3_MISO \ | MASK_GPIO_FX3_MOSI); io_config_matrix.gpioComplexEn[0] = 0; io_config_matrix.gpioComplexEn[1] = 0; io_config_matrix.useUart = CyFalse; io_config_matrix.useI2C = CyTrue; io_config_matrix.useI2S = CyFalse; io_config_matrix.useSpi = fpga_config_mode; res = CyU3PDeviceConfigureIOMatrix(&io_config_matrix); if (res != CY_U3P_SUCCESS) msg("! ConfigureIOMatrix"); return res; } CyU3PReturnStatus_t b200_gpio_init(CyBool_t set_callback) { CyU3PGpioClock_t gpio_clock_config; CyU3PReturnStatus_t res; /* Since we are only using FX3's 'simple GPIO' functionality, these values * must *NOT* change. Cypress says changing them will break stuff. */ CyU3PMemSet((uint8_t *) &gpio_clock_config, 0, \ sizeof(gpio_clock_config)); gpio_clock_config.fastClkDiv = 2; gpio_clock_config.slowClkDiv = 0; gpio_clock_config.simpleDiv = CY_U3P_GPIO_SIMPLE_DIV_BY_2; gpio_clock_config.clkSrc = CY_U3P_SYS_CLK; gpio_clock_config.halfDiv = 0; res = CyU3PGpioInit(&gpio_clock_config, (set_callback ? gpio_interrupt_callback : NULL)); if (res != CY_U3P_SUCCESS) msg("! CyU3PGpioInit"); return res; } void sb_write(uint8_t reg, uint32_t val) { #ifdef ENABLE_FPGA_SB const int len = 32; int i; if (g_fpga_sb_enabled == CyFalse) return; reg += FPGA_SB_UART_ADDR_BASE; //CyU3PBusyWait(1); // Can be used after each SetValue to slow down bit changes // START CyU3PGpioSetValue(GPIO_FPGA_SB_SCL, 1); // Should already be 1 CyU3PGpioSetValue(GPIO_FPGA_SB_SDA, 0); // ADDR[8] for (i = 7; i >= 0; i--) { uint8_t bit = ((reg & (0x1 << i)) ? 0x01 : 0x00); CyU3PGpioSetValue(GPIO_FPGA_SB_SCL, 0); CyU3PGpioSetValue(GPIO_FPGA_SB_SDA, bit); CyU3PGpioSetValue(GPIO_FPGA_SB_SCL, 1); // FPGA reads bit } // DATA[32] for (i = (len-1); i >= 0; i--) { uint8_t bit = ((val & (0x1 << i)) ? 0x01 : 0x00); CyU3PGpioSetValue(GPIO_FPGA_SB_SCL, 0); CyU3PGpioSetValue(GPIO_FPGA_SB_SDA, bit); CyU3PGpioSetValue(GPIO_FPGA_SB_SCL, 1); // FPGA reads bit } // STOP CyU3PGpioSetValue(GPIO_FPGA_SB_SDA, 0); CyU3PGpioSetValue(GPIO_FPGA_SB_SCL, 0); CyU3PGpioSetValue(GPIO_FPGA_SB_SCL, 1); // Actual stop CyU3PGpioSetValue(GPIO_FPGA_SB_SDA, 1); // Xact occurs #endif // ENABLE_FPGA_SB } void _sb_write_string(const char* msg) { #ifdef ENABLE_FPGA_SB while (*msg) { sb_write(SUART_TXCHAR, (uint8_t)(*(msg++))); } #endif // ENABLE_FPGA_SB } void sb_write_string(const char* msg) { #ifdef ENABLE_FPGA_SB LOCK(g_suart_lock); _sb_write_string(msg); UNLOCK(g_suart_lock); #endif // ENABLE_FPGA_SB } void b200_enable_fpga_sb_gpio(CyBool_t enable) { #ifdef ENABLE_FPGA_SB CyU3PGpioSimpleConfig_t gpio_config; CyU3PReturnStatus_t res; if (enable == CyFalse) { g_fpga_sb_enabled = CyFalse; return; } gpio_config.outValue = CyFalse; gpio_config.driveLowEn = CyTrue; gpio_config.driveHighEn = CyTrue; gpio_config.inputEn = CyFalse; gpio_config.intrMode = CY_U3P_GPIO_NO_INTR; res = CyU3PGpioSetSimpleConfig(GPIO_FPGA_SB_SCL, &gpio_config); if (res != CY_U3P_SUCCESS) { msg("! GpioSetSimpleConfig GPIO_FPGA_SB_SCL"); } res = CyU3PGpioSetSimpleConfig(GPIO_FPGA_SB_SDA, &gpio_config); if (res != CY_U3P_SUCCESS) { msg("! GpioSetSimpleConfig GPIO_FPGA_SB_SDA"); } CyU3PGpioSetValue(GPIO_FPGA_SB_SCL, 1); CyU3PGpioSetValue(GPIO_FPGA_SB_SDA, 1); g_fpga_sb_enabled = CyTrue; msg("Debug SB OK"); #endif // ENABLE_FPGA_SB } void b200_start_fpga_sb_gpio(void) { #ifdef ENABLE_FPGA_SB LOCK(g_suart_lock); sb_write(SUART_CLKDIV, g_fpga_sb_uart_div); // 16-bit reg, master clock = 100 MHz (434*2x = 230400/2) _sb_write_string("\r\n B2x0 FPGA reset\r\n"); UNLOCK(g_suart_lock); msg("Compat: %d.%d", FX3_COMPAT_MAJOR, FX3_COMPAT_MINOR); msg("FX3 SDK: %d.%d.%d (build %d)", CYFX_VERSION_MAJOR, CYFX_VERSION_MINOR, CYFX_VERSION_PATCH, CYFX_VERSION_BUILD); #endif // ENABLE_FPGA_SB } /*! Initialize and configure the GPIO module for FPGA programming. * * This function initializes the FX3 GPIO module, creating a configuration that * allows us to program the FPGA. After the FPGA has been programmed, the * application thread will re-configure some of the pins. */ void b200_gpios_pre_fpga_config(void) { CyU3PGpioSimpleConfig_t gpio_config; //b200_enable_fpga_sb_gpio(CyFalse); //CyU3PGpioDeInit(); b200_set_io_matrix(CyTrue); //b200_gpio_init(CyTrue); // This now done once during startup //////////////////////////////////// /* GPIO[0:32] must be set with the DeviceOverride function, instead of the * SimpleEn array configuration. */ CyU3PDeviceGpioOverride(GPIO_FPGA_RESET, CyTrue); CyU3PDeviceGpioOverride(GPIO_DONE, CyTrue); /* Configure GPIOs: * Outputs: * driveLowEn = True * driveHighEn = True * inputEn = False * Inputs: * driveLowEn = False * driveHighEn = False * outValue = Ignored */ gpio_config.outValue = CyFalse; gpio_config.driveLowEn = CyTrue; gpio_config.driveHighEn = CyTrue; gpio_config.inputEn = CyFalse; gpio_config.intrMode = CY_U3P_GPIO_NO_INTR; CyU3PGpioSetSimpleConfig(GPIO_FPGA_RESET, &gpio_config); CyU3PGpioSetSimpleConfig(GPIO_PROGRAM_B, &gpio_config); /* Reconfigure the GPIO configure struct for inputs that DO require * interrupts attached to them. */ gpio_config.outValue = CyTrue; gpio_config.inputEn = CyTrue; gpio_config.driveLowEn = CyFalse; gpio_config.driveHighEn = CyFalse; gpio_config.intrMode = CY_U3P_GPIO_INTR_POS_EDGE; CyU3PGpioSetSimpleConfig(GPIO_DONE, &gpio_config); CyU3PGpioSetSimpleConfig(GPIO_INIT_B, &gpio_config); /* Initialize GPIO output values. */ CyU3PGpioSetValue(GPIO_FPGA_RESET, 0); CyU3PGpioSetValue(GPIO_PROGRAM_B, 1); b200_enable_fpga_sb_gpio(CyTrue); // So SCL/SDA are already high when SB state machine activates } void b200_slfifo_mode_gpio_config(void) { CyU3PGpioSimpleConfig_t gpio_config; //b200_enable_fpga_sb_gpio(CyFalse); //CyU3PGpioDeInit(); b200_set_io_matrix(CyFalse); //b200_gpio_init(CyFalse); // This now done once during startup //////////////////////////////////// /* GPIO[0:32] must be set with the DeviceOverride function, instead of the * SimpleEn array configuration. */ CyU3PDeviceGpioOverride(GPIO_FPGA_RESET, CyTrue); CyU3PDeviceGpioOverride(GPIO_DONE, CyTrue); CyU3PDeviceGpioOverride(GPIO_FX3_SCLK, CyTrue); CyU3PDeviceGpioOverride(GPIO_FX3_CE, CyTrue); CyU3PDeviceGpioOverride(GPIO_FX3_MISO, CyTrue); CyU3PDeviceGpioOverride(GPIO_FX3_MOSI, CyTrue); /* Configure GPIOs: * Outputs: * driveLowEn = True * driveHighEn = True * inputEn = False * Inputs: * driveLowEn = False * driveHighEn = False * outValue = Ignored */ gpio_config.outValue = CyFalse; gpio_config.driveLowEn = CyTrue; gpio_config.driveHighEn = CyTrue; gpio_config.inputEn = CyFalse; gpio_config.intrMode = CY_U3P_GPIO_NO_INTR; CyU3PGpioSetSimpleConfig(GPIO_FPGA_RESET, &gpio_config); CyU3PGpioSetSimpleConfig(GPIO_SHDN_SW, &gpio_config); CyU3PGpioSetSimpleConfig(GPIO_FX3_SCLK, &gpio_config); CyU3PGpioSetSimpleConfig(GPIO_FX3_CE, &gpio_config); CyU3PGpioSetSimpleConfig(GPIO_FX3_MOSI, &gpio_config); /* Reconfigure the GPIO configure struct for inputs that do NOT require * interrupts attached to them. */ gpio_config.outValue = CyFalse; gpio_config.inputEn = CyTrue; gpio_config.driveLowEn = CyFalse; gpio_config.driveHighEn = CyFalse; gpio_config.intrMode = CY_U3P_GPIO_NO_INTR; CyU3PGpioSetSimpleConfig(GPIO_FX3_MISO, &gpio_config); CyU3PGpioSetSimpleConfig(GPIO_AUX_PWR_ON, &gpio_config); CyU3PGpioSetSimpleConfig(GPIO_PROGRAM_B, &gpio_config); CyU3PGpioSetSimpleConfig(GPIO_INIT_B, &gpio_config); CyU3PGpioSetSimpleConfig(GPIO_DONE, &gpio_config); /* Initialize GPIO output values. */ CyU3PGpioSetValue(GPIO_FPGA_RESET, 0); CyU3PGpioSetValue(GPIO_SHDN_SW, 1); CyU3PGpioSetValue(GPIO_FX3_SCLK, 0); CyU3PGpioSetValue(GPIO_FX3_CE, 1); CyU3PGpioSetValue(GPIO_FX3_MOSI, 0); // Disabled here as only useful once FPGA has been programmed //b200_enable_fpga_sb_gpio(CyTrue); //b200_start_fpga_sb_gpio(); // Set set up SB USART } /*! Initializes and configures USB, and DMA. * * This function creates and connects the USB endpoints, and sets up the DMA * channels. After this is done, everything is 'running' on the FX3 chip, and * ready to receive data from the host. */ void b200_fw_start(void) { msg("b200_fw_start"); CyU3PDmaChannelConfig_t dma_channel_config; CyU3PEpConfig_t usb_endpoint_config; CyU3PUSBSpeed_t usb_speed; uint16_t max_packet_size = 0; uint16_t data_buffer_count = 0; uint16_t data_buffer_size = 0; uint16_t data_buffer_size_to_host = 0; uint16_t data_buffer_size_from_host = 0; uint8_t num_packets_per_burst = 0; CyU3PReturnStatus_t apiRetStatus = CY_U3P_SUCCESS; /* Based on the USB bus speed, configure the endpoint packet size * and the DMA buffer size */ usb_speed = CyU3PUsbGetSpeed(); switch(usb_speed) { case CY_U3P_FULL_SPEED: case CY_U3P_HIGH_SPEED: max_packet_size = 512; data_buffer_count = 16; data_buffer_size = 512; g_vendor_req_buff_size = USB2_VREQ_BUF_SIZE; // Max 64 num_packets_per_burst = USB2_PACKETS_PER_BURST; // 1 data_buffer_size_to_host = data_buffer_size_from_host = data_buffer_size; break; case CY_U3P_SUPER_SPEED: //#ifdef PREVENT_LOW_POWER_MODE apiRetStatus = CyU3PUsbLPMDisable(); // This still allows my laptop to sleep if (apiRetStatus != CY_U3P_SUCCESS) msg("! LPMDisable failed (%d)", apiRetStatus); else msg("LPMDisable OK"); //#endif // PREVENT_LOW_POWER_MODE max_packet_size = 1024; // Per USB3 spec // SDK ver: total available buffer memory // 1.2.3: 204KB // 1.3.1: 188KB // These options should be ignored - data_buffer_count *MUST* be 1 // They follow is kept for future testing // 1K //data_buffer_count = 64; //data_buffer_size = 1024; // 4K //data_buffer_count = 8; //data_buffer_size = 4096; // 16K //data_buffer_count = 2*2; //data_buffer_size = 16384; // Default 16K // 32K //data_buffer_count = 2; //data_buffer_size = 16384*2; data_buffer_count = 1; data_buffer_size = ((1 << 16) - 1); data_buffer_size -= (data_buffer_size % 1024); // Align to 1K boundary data_buffer_size_to_host = data_buffer_size; data_buffer_size_from_host = data_buffer_size; g_vendor_req_buff_size = USB3_VREQ_BUF_SIZE; // Max 512 num_packets_per_burst = USB3_PACKETS_PER_BURST; // 16 break; case CY_U3P_NOT_CONNECTED: msg("! CY_U3P_NOT_CONNECTED"); return; default: return; } msg("[DMA] to host: %d, from host: %d, depth: %d, burst size: %d", data_buffer_size_to_host, data_buffer_size_from_host, data_buffer_count, num_packets_per_burst); /************************************************************************* * Slave FIFO Data DMA Channel Configuration *************************************************************************/ /* Wipe out any old config. */ CyU3PMemSet((uint8_t *) &usb_endpoint_config, 0, \ sizeof(usb_endpoint_config)); /* This is the configuration for the USB Producer and Consumer endpoints. * * The Producer endpoint is actually the endpoint on the FX3 that is * sending data BACK to the host. This endpoint enumerates as the * 'BULK IN' endpoint. * The Consumer endpoint is the endpoint on the FX3 that is * receiving data from the host. This endpoint enumerates as the * 'BULK OUT' endpoint. * * Note that this is opposite of what you might expect!. */ usb_endpoint_config.enable = CyTrue; usb_endpoint_config.epType = CY_U3P_USB_EP_BULK; usb_endpoint_config.burstLen = num_packets_per_burst; usb_endpoint_config.streams = 0; usb_endpoint_config.pcktSize = max_packet_size; /* Configure the endpoints that we are using for slave FIFO transfers. */ CyU3PSetEpConfig(DATA_ENDPOINT_PRODUCER, &usb_endpoint_config); CyU3PSetEpConfig(DATA_ENDPOINT_CONSUMER, &usb_endpoint_config); /* Create a DMA AUTO channel for U2P transfer. * DMA size is set based on the USB speed. */ //dma_channel_config.size = data_buffer_size; dma_channel_config.size = data_buffer_size_from_host; dma_channel_config.count = data_buffer_count; dma_channel_config.prodSckId = PRODUCER_DATA_SOCKET; dma_channel_config.consSckId = DATA_TX_PPORT_SOCKET; dma_channel_config.dmaMode = CY_U3P_DMA_MODE_BYTE; dma_channel_config.notification = 0 | #if defined(ENABLE_MANUAL_DMA_XFER) && defined(ENABLE_MANUAL_DMA_XFER_FROM_HOST) CY_U3P_DMA_CB_XFER_CPLT | CY_U3P_DMA_CB_SEND_CPLT | CY_U3P_DMA_CB_RECV_CPLT | CY_U3P_DMA_CB_PROD_EVENT | CY_U3P_DMA_CB_CONS_EVENT | CY_U3P_DMA_CB_ABORTED | CY_U3P_DMA_CB_ERROR | CY_U3P_DMA_CB_PROD_SUSP | CY_U3P_DMA_CB_CONS_SUSP | #endif // ENABLE_MANUAL_DMA_XFER 0; dma_channel_config.cb = #if defined(ENABLE_MANUAL_DMA_XFER) && defined(ENABLE_MANUAL_DMA_XFER_FROM_HOST) from_host_dma_callback; #else NULL; #endif // ENABLE_MANUAL_DMA_XFER dma_channel_config.prodHeader = 0; dma_channel_config.prodFooter = 0; dma_channel_config.consHeader = 0; dma_channel_config.prodAvailCount = 0; CyU3PDmaChannelCreate (&data_cons_to_prod_chan_handle, #if defined(ENABLE_MANUAL_DMA_XFER) && defined(ENABLE_MANUAL_DMA_XFER_FROM_HOST) /*CY_U3P_DMA_TYPE_AUTO_SIGNAL*/CY_U3P_DMA_TYPE_MANUAL, #else CY_U3P_DMA_TYPE_AUTO, #endif // ENABLE_MANUAL_DMA_XFER &dma_channel_config); // By default these will adopt 'usb_endpoint_config.pcktSize' //CyU3PSetEpPacketSize(DATA_ENDPOINT_PRODUCER, 16384); //CyU3PSetEpPacketSize(DATA_ENDPOINT_CONSUMER, 16384); /* Create a DMA AUTO channel for P2U transfer. */ dma_channel_config.size = data_buffer_size_to_host; dma_channel_config.prodSckId = DATA_RX_PPORT_SOCKET; dma_channel_config.consSckId = CONSUMER_DATA_SOCKET; dma_channel_config.notification = 0 | #if defined(ENABLE_MANUAL_DMA_XFER) && defined(ENABLE_MANUAL_DMA_XFER_TO_HOST) CY_U3P_DMA_CB_XFER_CPLT | CY_U3P_DMA_CB_SEND_CPLT | CY_U3P_DMA_CB_RECV_CPLT | CY_U3P_DMA_CB_PROD_EVENT | CY_U3P_DMA_CB_CONS_EVENT | CY_U3P_DMA_CB_ABORTED | CY_U3P_DMA_CB_ERROR | CY_U3P_DMA_CB_PROD_SUSP | CY_U3P_DMA_CB_CONS_SUSP | #endif // ENABLE_MANUAL_DMA_XFER 0; dma_channel_config.cb = #if defined(ENABLE_MANUAL_DMA_XFER) && defined(ENABLE_MANUAL_DMA_XFER_TO_HOST) to_host_dma_callback; #else NULL; #endif // ENABLE_MANUAL_DMA_XFER CyU3PDmaChannelCreate (&data_prod_to_cons_chan_handle, #if defined(ENABLE_MANUAL_DMA_XFER) && defined(ENABLE_MANUAL_DMA_XFER_TO_HOST) /*CY_U3P_DMA_TYPE_AUTO_SIGNAL*/CY_U3P_DMA_TYPE_MANUAL, #else CY_U3P_DMA_TYPE_AUTO, #endif // ENABLE_MANUAL_DMA_XFER &dma_channel_config); /* Flush the Endpoint memory */ CyU3PUsbFlushEp(DATA_ENDPOINT_PRODUCER); CyU3PUsbFlushEp(DATA_ENDPOINT_CONSUMER); /* Set DMA channel transfer size. */ CyU3PDmaChannelSetXfer(&data_cons_to_prod_chan_handle, DMA_SIZE_INFINITE); CyU3PDmaChannelSetXfer(&data_prod_to_cons_chan_handle, DMA_SIZE_INFINITE); /************************************************************************* * Slave FIFO Control DMA Channel Configuration *************************************************************************/ /* Wipe out any old config. */ CyU3PMemSet((uint8_t *) &usb_endpoint_config, 0, \ sizeof(usb_endpoint_config)); /* This is the configuration for the USB Producer and Consumer endpoints. * * The Producer endpoint is actually the endpoint on the FX3 that is * sending data BACK to the host. This endpoint enumerates as the * 'BULK IN' endpoint. * The Consumer endpoint is the endpoint on the FX3 that is * receiving data from the host. This endpoint enumerates as the * 'BULK OUT' endpoint. * * Note that this is opposite of what you might expect!. */ usb_endpoint_config.enable = CyTrue; usb_endpoint_config.epType = CY_U3P_USB_EP_BULK; usb_endpoint_config.burstLen = num_packets_per_burst; usb_endpoint_config.streams = 0; usb_endpoint_config.pcktSize = max_packet_size; /* Configure the endpoints that we are using for slave FIFO transfers. */ CyU3PSetEpConfig(CTRL_ENDPOINT_PRODUCER, &usb_endpoint_config); CyU3PSetEpConfig(CTRL_ENDPOINT_CONSUMER, &usb_endpoint_config); /* Create a DMA AUTO channel for U2P transfer. * DMA size is set based on the USB speed. */ dma_channel_config.size = max_packet_size; dma_channel_config.count = 2; dma_channel_config.prodSckId = PRODUCER_CTRL_SOCKET; dma_channel_config.consSckId = CTRL_COMM_PPORT_SOCKET; dma_channel_config.dmaMode = CY_U3P_DMA_MODE_BYTE; dma_channel_config.notification = 0; dma_channel_config.cb = NULL; dma_channel_config.prodHeader = 0; dma_channel_config.prodFooter = 0; dma_channel_config.consHeader = 0; dma_channel_config.prodAvailCount = 0; CyU3PDmaChannelCreate (&ctrl_cons_to_prod_chan_handle, CY_U3P_DMA_TYPE_AUTO, &dma_channel_config); /* Create a DMA AUTO channel for P2U transfer. */ dma_channel_config.prodSckId = CTRL_RESP_PPORT_SOCKET; dma_channel_config.consSckId = CONSUMER_CTRL_SOCKET; dma_channel_config.cb = NULL; CyU3PDmaChannelCreate (&ctrl_prod_to_cons_chan_handle, CY_U3P_DMA_TYPE_AUTO, &dma_channel_config); /* Flush the Endpoint memory */ CyU3PUsbFlushEp(CTRL_ENDPOINT_PRODUCER); CyU3PUsbFlushEp(CTRL_ENDPOINT_CONSUMER); /* Set DMA channel transfer size. */ CyU3PDmaChannelSetXfer(&ctrl_cons_to_prod_chan_handle, DMA_SIZE_INFINITE); CyU3PDmaChannelSetXfer(&ctrl_prod_to_cons_chan_handle, DMA_SIZE_INFINITE); //CyU3PUsbEnableEPPrefetch(); // To address USB_EVENT_EP_UNDERRUN on EP 0x86 (didn't fix it though) /* Update the application status flag. */ g_app_running = CyTrue; } /*! This callback is invoked when the FX3 detects a USB event. * * We currently handle SETCONF, RESET, and DISCONNECT. * * We are _not_ handling SUSPEND or CONNECT. */ void event_usb_callback (CyU3PUsbEventType_t event_type, uint16_t event_data) { switch(event_type) { case CY_U3P_USB_EVENT_SETCONF: msg("USB_EVENT_SETCONF (#%d)", event_data); //evData provides the configuration number that is selected by the host. if(g_app_running) { b200_fw_stop(); } b200_fw_start(); break; case CY_U3P_USB_EVENT_RESET: case CY_U3P_USB_EVENT_DISCONNECT: if (event_type == CY_U3P_USB_EVENT_RESET) msg("USB_EVENT_RESET"); else msg("USB_EVENT_DISCONNECT"); if(g_app_running) { b200_fw_stop(); } break; case CY_U3P_USB_EVENT_CONNECT: msg("USB_EVENT_CONNECT"); break; case CY_U3P_USB_EVENT_SUSPEND: msg("USB_EVENT_SUSPEND"); break; case CY_U3P_USB_EVENT_RESUME: // Known issue: this is called repeatedly after a resume //msg("USB_EVENT_RESUME"); g_counters.resume_count++; // Not locked break; case CY_U3P_USB_EVENT_SPEED: msg("USB_EVENT_SPEED"); break; case CY_U3P_USB_EVENT_SETINTF: msg("USB_EVENT_SETINTF"); break; case CY_U3P_USB_EVENT_SET_SEL: msg("USB_EVENT_SET_SEL"); break; case CY_U3P_USB_EVENT_SOF_ITP: // CyU3PUsbEnableITPEvent //msg("USB_EVENT_SOF_ITP"); break; case CY_U3P_USB_EVENT_EP0_STAT_CPLT: //msg("USB_EVENT_EP0_STAT_CPLT"); // Occurs each time there's a control transfer break; case CY_U3P_USB_EVENT_VBUS_VALID: msg("USB_EVENT_VBUS_VALID"); break; case CY_U3P_USB_EVENT_VBUS_REMOVED: msg("USB_EVENT_VBUS_REMOVED"); break; case CY_U3P_USB_EVENT_HOST_CONNECT: msg("USB_EVENT_HOST_CONNECT"); break; case CY_U3P_USB_EVENT_HOST_DISCONNECT: msg("USB_EVENT_HOST_DISCONNECT"); break; case CY_U3P_USB_EVENT_OTG_CHANGE: msg("USB_EVENT_OTG_CHANGE"); break; case CY_U3P_USB_EVENT_OTG_VBUS_CHG: msg("USB_EVENT_OTG_VBUS_CHG"); break; case CY_U3P_USB_EVENT_OTG_SRP: msg("USB_EVENT_OTG_SRP"); break; case CY_U3P_USB_EVENT_EP_UNDERRUN: // See SDK 1.3 known issues 17 if this happens (can probably ignore first logged occurence) LOCK(g_counters_lock); ++g_counters.usb_ep_underrun_count; UNLOCK(g_counters_lock); msg("! USB_EVENT_EP_UNDERRUN on EP 0x%02x", event_data); break; case CY_U3P_USB_EVENT_LNK_RECOVERY: msg("USB_EVENT_LNK_RECOVERY"); break; #if (CYFX_VERSION_MAJOR >= 1) && (CYFX_VERSION_MINOR >= 3) case CY_U3P_USB_EVENT_USB3_LNKFAIL: msg("USB_EVENT_USB3_LNKFAIL"); break; case CY_U3P_USB_EVENT_SS_COMP_ENTRY: msg("USB_EVENT_SS_COMP_ENTRY"); break; case CY_U3P_USB_EVENT_SS_COMP_EXIT: msg("USB_EVENT_SS_COMP_EXIT"); break; #endif // (CYFX_VERSION_MAJOR >= 1) && (CYFX_VERSION_MINOR >= 3) default: msg("! Unhandled USB event"); break; } } /*! Callback function that is invoked when a USB setup event occurs. * * We aren't actually handling the USB setup ourselves, but rather letting the * USB driver take care of it since the default options work fine. The purpose * of this function is to register that the event happened at all, so that the * application thread knows it can proceed. * * This function is also responsible for receiving vendor requests, and trigging * the appropriate RTOS event to wake up the vendor request handler thread. */ CyBool_t usb_setup_callback(uint32_t data0, uint32_t data1) { STATIC_SAVER uint8_t bRequestType, bRequest, bType, bTarget, i2cAddr; STATIC_SAVER uint16_t wValue, wIndex, wLength; CyBool_t handled = CyFalse; /* Decode the fields from the setup request. */ bRequestType = (uint8_t)(data0 & CY_U3P_USB_REQUEST_TYPE_MASK); bType = (uint8_t)(bRequestType & CY_U3P_USB_TYPE_MASK); bTarget = (uint8_t)(bRequestType & CY_U3P_USB_TARGET_MASK); bRequest = (uint8_t)((data0 & CY_U3P_USB_REQUEST_MASK) >> CY_U3P_USB_REQUEST_POS); wValue = (uint16_t)((data0 & CY_U3P_USB_VALUE_MASK) >> CY_U3P_USB_VALUE_POS); wIndex = (uint16_t)((data1 & CY_U3P_USB_INDEX_MASK) >> CY_U3P_USB_INDEX_POS); wLength = (uint16_t)((data1 & CY_U3P_USB_LENGTH_MASK) >> CY_U3P_USB_LENGTH_POS); if(bType == CY_U3P_USB_STANDARD_RQT) { /* Handle SET_FEATURE(FUNCTION_SUSPEND) and CLEAR_FEATURE(FUNCTION_SUSPEND) * requests here. It should be allowed to pass if the device is in configured * state and failed otherwise. */ if((bTarget == CY_U3P_USB_TARGET_INTF) \ && ((bRequest == CY_U3P_USB_SC_SET_FEATURE) \ || (bRequest == CY_U3P_USB_SC_CLEAR_FEATURE)) && (wValue == 0)) { if(g_app_running) { CyU3PUsbAckSetup(); msg("ACK set/clear"); } else { CyU3PUsbStall(0, CyTrue, CyFalse); msg("! STALL set/clear"); } handled = CyTrue; } /* Handle Microsoft OS String Descriptor request. */ if((bTarget == CY_U3P_USB_TARGET_DEVICE) \ && (bRequest == CY_U3P_USB_SC_GET_DESCRIPTOR) \ && (wValue == ((CY_U3P_USB_STRING_DESCR << 8) | 0xEE))) { /* Make sure we do not send more data than requested. */ if(wLength > b200_usb_product_desc[0]) { wLength = b200_usb_product_desc[0]; } //msg("MS string desc"); CyU3PUsbSendEP0Data(wLength, ((uint8_t *) b200_usb_product_desc)); handled = CyTrue; } /* CLEAR_FEATURE request for endpoint is always passed to the setup callback * regardless of the enumeration model used. When a clear feature is received, * the previous transfer has to be flushed and cleaned up. This is done at the * protocol level. Since this is just a loopback operation, there is no higher * level protocol. So flush the EP memory and reset the DMA channel associated * with it. If there are more than one EP associated with the channel reset both * the EPs. The endpoint stall and toggle / sequence number is also expected to be * reset. Return CyFalse to make the library clear the stall and reset the endpoint * toggle. Or invoke the CyU3PUsbStall (ep, CyFalse, CyTrue) and return CyTrue. * Here we are clearing the stall. */ if((bTarget == CY_U3P_USB_TARGET_ENDPT) \ && (bRequest == CY_U3P_USB_SC_CLEAR_FEATURE) && (wValue == CY_U3P_USBX_FS_EP_HALT)) { if(g_app_running) { if(wIndex == DATA_ENDPOINT_PRODUCER) { CyU3PDmaChannelReset(&data_cons_to_prod_chan_handle); CyU3PUsbFlushEp(DATA_ENDPOINT_PRODUCER); CyU3PUsbResetEp(DATA_ENDPOINT_PRODUCER); CyU3PDmaChannelSetXfer(&data_cons_to_prod_chan_handle, \ DMA_SIZE_INFINITE); CyU3PUsbStall(wIndex, CyFalse, CyTrue); handled = CyTrue; CyU3PUsbAckSetup(); msg("Clear DATA_ENDPOINT_PRODUCER"); } if(wIndex == DATA_ENDPOINT_CONSUMER) { CyU3PDmaChannelReset(&data_prod_to_cons_chan_handle); CyU3PUsbFlushEp(DATA_ENDPOINT_CONSUMER); CyU3PUsbResetEp(DATA_ENDPOINT_CONSUMER); CyU3PDmaChannelSetXfer(&data_prod_to_cons_chan_handle, \ DMA_SIZE_INFINITE); CyU3PUsbStall(wIndex, CyFalse, CyTrue); handled = CyTrue; CyU3PUsbAckSetup(); msg("Clear DATA_ENDPOINT_CONSUMER"); } if(wIndex == CTRL_ENDPOINT_PRODUCER) { CyU3PDmaChannelReset(&ctrl_cons_to_prod_chan_handle); CyU3PUsbFlushEp(CTRL_ENDPOINT_PRODUCER); CyU3PUsbResetEp(CTRL_ENDPOINT_PRODUCER); CyU3PDmaChannelSetXfer(&ctrl_cons_to_prod_chan_handle, \ DMA_SIZE_INFINITE); CyU3PUsbStall(wIndex, CyFalse, CyTrue); handled = CyTrue; CyU3PUsbAckSetup(); msg("Clear CTRL_ENDPOINT_PRODUCER"); } if(wIndex == CTRL_ENDPOINT_CONSUMER) { CyU3PDmaChannelReset(&ctrl_prod_to_cons_chan_handle); CyU3PUsbFlushEp(CTRL_ENDPOINT_CONSUMER); CyU3PUsbResetEp(CTRL_ENDPOINT_CONSUMER); CyU3PDmaChannelSetXfer(&ctrl_prod_to_cons_chan_handle, \ DMA_SIZE_INFINITE); CyU3PUsbStall(wIndex, CyFalse, CyTrue); handled = CyTrue; CyU3PUsbAckSetup(); msg("Clear CTRL_ENDPOINT_CONSUMER"); } } } } /* This must be & and not == so that we catch VREQs that are both 'IN' and * 'OUT' in direction. */ else if(bRequestType & CY_U3P_USB_VENDOR_RQT) { handled = CyTrue; uint16_t read_count = 0; switch(bRequest) { case B200_VREQ_BITSTREAM_START: { CyU3PUsbGetEP0Data(1, g_vendor_req_buffer, &read_count); g_fpga_programming_write_count = 0; CyU3PEventSet(&g_event_usb_config, EVENT_BITSTREAM_START, \ CYU3P_EVENT_OR); break; } case B200_VREQ_BITSTREAM_DATA: { CyU3PUsbGetEP0Data(g_vendor_req_buff_size, g_vendor_req_buffer, \ &read_count); if (g_fx3_state == STATE_CONFIGURING_FPGA) { ++g_fpga_programming_write_count; CyU3PSpiTransmitWords(g_vendor_req_buffer, read_count); CyU3PThreadSleep(1); // Newer controllers don't have an issue when this short sleep here } break; } case B200_VREQ_BITSTREAM_DATA_FILL: { CyU3PUsbGetEP0Data(g_vendor_req_buff_size, g_vendor_req_buffer, &g_vendor_req_read_count); break; } case B200_VREQ_BITSTREAM_DATA_COMMIT: { /*CyU3PReturnStatus_t*/int spi_result = -1; if (g_fx3_state == STATE_CONFIGURING_FPGA) { ++g_fpga_programming_write_count; spi_result = CyU3PSpiTransmitWords(g_vendor_req_buffer, g_vendor_req_read_count); CyU3PThreadSleep(1); // 20 MHz, 512 bytes } CyU3PUsbSendEP0Data(sizeof(spi_result), (uint8_t*)&spi_result); break; } case B200_VREQ_FPGA_CONFIG: { CyU3PUsbGetEP0Data(1, g_vendor_req_buffer, &read_count); CyU3PEventSet(&g_event_usb_config, EVENT_FPGA_CONFIG, CYU3P_EVENT_OR); break; } case B200_VREQ_GET_COMPAT: { CyU3PUsbSendEP0Data(/*2*/sizeof(compat_num), compat_num); break; } case B200_VREQ_SET_FPGA_HASH: { CyU3PUsbGetEP0Data(4, fpga_hash, &read_count); break; } case B200_VREQ_GET_FPGA_HASH: { CyU3PUsbSendEP0Data(/*4*/sizeof(fpga_hash), fpga_hash); break; } case B200_VREQ_SET_FW_HASH: { CyU3PUsbGetEP0Data(4, fw_hash, &read_count); break; } case B200_VREQ_GET_FW_HASH: { CyU3PUsbSendEP0Data(/*4*/sizeof(fw_hash), fw_hash); break; } case B200_VREQ_SPI_WRITE_AD9361: { CyU3PUsbGetEP0Data(g_vendor_req_buff_size, g_vendor_req_buffer, \ &read_count); write_spi_to_ad9361(); // FIXME: Should have g_vendor_req_buffer & read_count passed in as args break; } case B200_VREQ_SPI_READ_AD9361: { CyU3PUsbGetEP0Data(g_vendor_req_buff_size, g_vendor_req_buffer, \ &read_count); read_spi_from_ad9361(); // FIXME: Should have g_vendor_req_buffer & read_count passed in as args break; } case B200_VREQ_LOOP_CODE: { CyU3PUsbSendEP0Data(g_vendor_req_buff_size, g_vendor_req_buffer); break; } case B200_VREQ_GET_LOG: { LOCK(g_log_lock); if (log_buffer_idx == 0) CyU3PUsbSendEP0Data(log_buffer_len, (uint8_t*)log_buffer); else { int len1 = min(LOG_BUFFER_SIZE - log_buffer_idx, log_buffer_len); memcpy(log_contiguous_buffer, log_buffer + log_buffer_idx, len1); //if ((log_buffer_idx + log_buffer_len) > LOG_BUFFER_SIZE) if (len1 < log_buffer_len) memcpy(log_contiguous_buffer + len1, log_buffer, log_buffer_len - len1); CyU3PUsbSendEP0Data(log_buffer_len, (uint8_t*)log_contiguous_buffer); } // FIXME: Necessary? Not used in the other ones //CyU3PUsbSendEP0Data(0, NULL); // Send ZLP since previous send has resulted in an integral # of packets log_reset(); UNLOCK(g_log_lock); //log_reset(); break; } case B200_VREQ_GET_COUNTERS: { LOCK(g_counters_lock); CyU3PUsbSendEP0Data(sizeof(COUNTERS), (uint8_t*)&g_counters); counters_auto_reset(); UNLOCK(g_counters_lock); //counters_auto_reset(); break; } case B200_VREQ_CLEAR_COUNTERS: { CyU3PUsbAckSetup(); //CyU3PUsbGetEP0Data(g_vendor_req_buff_size, g_vendor_req_buffer, &read_count); // Dummy counters_dma_reset(); break; } case B200_VREQ_GET_USB_EVENT_LOG: { uint16_t idx = CyU3PUsbGetEventLogIndex(); // Current *write* pointer if (idx > (USB_EVENT_LOG_SIZE-1)) { msg("! USB event log idx = %i", (int)idx); break; } // Assuming logging won't wrap around between get calls (i.e. buffer should be long enough) uint16_t len = 0; if (idx < g_last_usb_event_log_index) { uint16_t len1 = (USB_EVENT_LOG_SIZE - g_last_usb_event_log_index); if (len1 > (USB_EVENT_LOG_SIZE-1)) { msg("! USB event log len 2.1 = %i", (int)len1); break; } len = len1 + idx; if (len > (USB_EVENT_LOG_SIZE-1)) { msg("! USB event log len 2.2 = %i", (int)len); break; } memcpy(g_usb_event_log_contiguous_buf, g_usb_event_log + g_last_usb_event_log_index, len1); memcpy(g_usb_event_log_contiguous_buf + len1, g_usb_event_log, idx); //msg("USB event log [2] %i %i", (int)len1, (int)len); } else { len = idx - g_last_usb_event_log_index; if (len > (USB_EVENT_LOG_SIZE-1)) { msg("! USB event log len 1 = %i", (int)len); break; } if (len > 0) { // ZLP should be OK memcpy(g_usb_event_log_contiguous_buf, g_usb_event_log + g_last_usb_event_log_index, len); //msg("USB event log [1] %i", (int)len); } } //if (len > 0) // Send a ZLP, otherwise it'll timeout CyU3PUsbSendEP0Data(len, g_usb_event_log_contiguous_buf); g_last_usb_event_log_index = idx; break; } case B200_VREQ_SET_CONFIG: { CyU3PUsbGetEP0Data(sizeof(CONFIG_MOD), (uint8_t*)g_vendor_req_buffer, &read_count); if (read_count == sizeof(CONFIG_MOD)) { memcpy(&g_config_mod, g_vendor_req_buffer, sizeof(CONFIG_MOD)); CyU3PEventSet(&g_event_usb_config, EVENT_RE_ENUM, CYU3P_EVENT_OR); } break; } case B200_VREQ_GET_CONFIG: { CyU3PUsbSendEP0Data(sizeof(g_config), (uint8_t*)&g_config); break; } case B200_VREQ_WRITE_SB: { CyU3PUsbGetEP0Data(g_vendor_req_buff_size, (uint8_t*)g_vendor_req_buffer, &read_count); #ifdef ENABLE_FPGA_SB uint16_t i; LOCK(g_suart_lock); for (i = 0; i < read_count; ++i) sb_write(SUART_TXCHAR, g_vendor_req_buffer[i]); UNLOCK(g_suart_lock); msg("Wrote %d SB chars", read_count); #else msg("SB is disabled"); #endif // ENABLE_FPGA_SB break; } case B200_VREQ_SET_SB_BAUD_DIV: { uint16_t div; CyU3PUsbGetEP0Data(sizeof(div), (uint8_t*)&div, &read_count); if (read_count == sizeof(div)) { #ifdef ENABLE_FPGA_SB LOCK(g_suart_lock); sb_write(SUART_CLKDIV, div); UNLOCK(g_suart_lock); msg("SUART_CLKDIV = %d", div); g_fpga_sb_uart_div = div; // Store for GPIF (FPGA) reset #else msg("SB is disabled"); #endif // ENABLE_FPGA_SB } else msg("! SUART_CLKDIV received %d bytes", read_count); break; } case B200_VREQ_FLUSH_DATA_EPS: { //msg("Flushing data EPs..."); CyU3PUsbAckSetup(); // From host //CyU3PDmaChannelReset(&data_cons_to_prod_chan_handle); //CyU3PUsbFlushEp(DATA_ENDPOINT_PRODUCER); //CyU3PUsbResetEp(DATA_ENDPOINT_PRODUCER); //CyU3PDmaChannelSetXfer(&data_cons_to_prod_chan_handle, DMA_SIZE_INFINITE); //CyU3PDmaChannelReset(&data_cons_to_prod_chan_handle); CyU3PDmaChannelReset(&data_prod_to_cons_chan_handle); //CyU3PUsbFlushEp(DATA_ENDPOINT_PRODUCER); CyU3PUsbFlushEp(DATA_ENDPOINT_CONSUMER); //CyU3PUsbResetEp(DATA_ENDPOINT_PRODUCER); CyU3PUsbResetEp(DATA_ENDPOINT_CONSUMER); //CyU3PDmaChannelSetXfer(&data_cons_to_prod_chan_handle, DMA_SIZE_INFINITE); CyU3PDmaChannelSetXfer(&data_prod_to_cons_chan_handle, DMA_SIZE_INFINITE); // To host //CyU3PDmaChannelReset(&data_prod_to_cons_chan_handle); //CyU3PUsbFlushEp(DATA_ENDPOINT_CONSUMER); //CyU3PUsbResetEp(DATA_ENDPOINT_CONSUMER); //CyU3PDmaChannelSetXfer(&data_prod_to_cons_chan_handle, DMA_SIZE_INFINITE); break; } case B200_VREQ_EEPROM_WRITE: { i2cAddr = 0xA0 | ((wValue & 0x0007) << 1); CyU3PUsbGetEP0Data(((wLength + 15) & 0xFFF0), g_vendor_req_buffer, NULL); CyFxUsbI2cTransfer (wIndex, i2cAddr, wLength, g_vendor_req_buffer, CyFalse); break; } case B200_VREQ_EEPROM_READ: { i2cAddr = 0xA0 | ((wValue & 0x0007) << 1); CyU3PMemSet (g_vendor_req_buffer, 0, sizeof (g_vendor_req_buffer)); CyFxUsbI2cTransfer (wIndex, i2cAddr, wLength, g_vendor_req_buffer, CyTrue); CyU3PUsbSendEP0Data(wLength, g_vendor_req_buffer); break; } case B200_VREQ_TOGGLE_FPGA_RESET: { CyU3PUsbGetEP0Data(g_vendor_req_buff_size, g_vendor_req_buffer, \ &read_count); /* CyBool_t value = (g_vendor_req_buffer[0] & 0x01) ? CyTrue : CyFalse; CyU3PGpioSetValue(GPIO_FPGA_RESET, value); */ break; } case B200_VREQ_TOGGLE_GPIF_RESET: { CyU3PUsbGetEP0Data(g_vendor_req_buff_size, g_vendor_req_buffer, \ &read_count); reset_gpif(); break; } case B200_VREQ_RESET_DEVICE: { CyU3PUsbGetEP0Data(4, g_vendor_req_buffer, &read_count); CyU3PDeviceReset(CyFalse); // FIXME: If CyTrue, this will *not* call static initialisers for global variables - must do this manually break; } case B200_VREQ_GET_USB_SPEED: { CyU3PUSBSpeed_t usb_speed = CyU3PUsbGetSpeed(); switch(usb_speed) { case CY_U3P_SUPER_SPEED: g_vendor_req_buffer[0] = 3; break; case CY_U3P_FULL_SPEED: case CY_U3P_HIGH_SPEED: g_vendor_req_buffer[0] = 2; break; default: g_vendor_req_buffer[0] = 1; break; } CyU3PUsbSendEP0Data(1, g_vendor_req_buffer); break; } case B200_VREQ_GET_STATUS: { g_vendor_req_buffer[0] = g_fx3_state; CyU3PUsbSendEP0Data(1, g_vendor_req_buffer); break; } case B200_VREQ_AD9361_CTRL_READ: { CyU3PUsbSendEP0Data(g_vendor_req_buff_size, g_vendor_req_buffer); /* * This is where vrb gets sent back to the host */ break; } case B200_VREQ_AD9361_CTRL_WRITE: { CyU3PUsbGetEP0Data(g_vendor_req_buff_size, g_vendor_req_buffer, &read_count); CyU3PEventSet(&g_event_usb_config, EVENT_AD9361_XACT_INIT, CYU3P_EVENT_OR); uint32_t event_flag; CyU3PEventGet(&g_event_usb_config, EVENT_AD9361_XACT_DONE, CYU3P_EVENT_AND_CLEAR, &event_flag, CYU3P_WAIT_FOREVER); memcpy(g_vendor_req_buffer, g_ad9361_response, AD9361_DISPATCH_PACKET_SIZE); break; } case B200_VREQ_AD9361_LOOPBACK: { CyU3PUsbGetEP0Data(g_vendor_req_buff_size, g_vendor_req_buffer, &read_count); if (read_count > 0) { ad9361_transaction_t xact; memset(&xact, 0x00, sizeof(xact)); xact.version = AD9361_TRANSACTION_VERSION; xact.action = AD9361_ACTION_SET_CODEC_LOOP; xact.sequence = 0; xact.value.codec_loop = g_vendor_req_buffer[0]; memcpy(g_vendor_req_buffer, &xact, sizeof(xact)); CyU3PEventSet(&g_event_usb_config, EVENT_AD9361_XACT_INIT, CYU3P_EVENT_OR); uint32_t event_flag; CyU3PEventGet(&g_event_usb_config, EVENT_AD9361_XACT_DONE, CYU3P_EVENT_AND_CLEAR, &event_flag, CYU3P_WAIT_FOREVER); memcpy(g_vendor_req_buffer, g_ad9361_response, AD9361_DISPATCH_PACKET_SIZE); if (xact.value.codec_loop) msg("Codec loopback ON"); else msg("Codec loopback OFF"); } break; } default: msg("! Unknown VREQ %02X", (uint32_t)bRequest); handled = CyFalse; } /* After processing the vendor request, flush the endpoints. */ CyU3PUsbFlushEp(VREQ_ENDPOINT_PRODUCER); CyU3PUsbFlushEp(VREQ_ENDPOINT_CONSUMER); } return handled; } /* Callback function to handle LPM requests from the USB 3.0 host. This function * is invoked by the API whenever a state change from U0 -> U1 or U0 -> U2 * happens. * * If we return CyTrue from this function, the FX3 device is retained * in the low power state. If we return CyFalse, the FX3 device immediately * tries to trigger an exit back to U0. */ CyBool_t lpm_request_callback(CyU3PUsbLinkPowerMode link_mode) { msg("! lpm_request_callback = %i", link_mode); return //#ifdef PREVENT_LOW_POWER_MODE CyFalse; // This still allows my laptop to sleep //#else // CyTrue; //#endif // PREVENT_LOW_POWER_MODE } /*! Initialize and start the GPIF state machine. * * This function starts the GPIF Slave FIFO state machine on the FX3. Because on * of the GPIF pins is used for FPGA configuration, this cannot be done until * after FPGA configuration is complete. */ void b200_gpif_init(void) { msg("b200_gpif_init"); CyU3PPibClock_t pib_clock_config; /* Initialize the p-port block; disable DLL for sync GPIF. */ pib_clock_config.clkDiv = 2; pib_clock_config.clkSrc = CY_U3P_SYS_CLK; pib_clock_config.isHalfDiv = CyFalse; pib_clock_config.isDllEnable = CyFalse; CyU3PPibInit(CyTrue, &pib_clock_config); /* Load the GPIF configuration for Slave FIFO sync mode. */ CyU3PGpifLoad(&CyFxGpifConfig); /* Start the state machine. */ CyU3PGpifSMStart(RESET, ALPHA_RESET); /* Configure the watermarks for the slfifo-write buffers. */ CyU3PGpifSocketConfigure(0, DATA_TX_PPORT_SOCKET, 5, CyFalse, 1); CyU3PGpifSocketConfigure(1, DATA_RX_PPORT_SOCKET, 6, CyFalse, 1); CyU3PGpifSocketConfigure(2, CTRL_COMM_PPORT_SOCKET, 5, CyFalse, 1); CyU3PGpifSocketConfigure(3, CTRL_RESP_PPORT_SOCKET, 6, CyFalse, 1); } /*! Start and configure the FX3's SPI module. * * This module is used for programming the FPGA. After the FPGA is configured, * the SPI module is disabled, as it cannot be used while we are using GPIF * 32-bit mode. */ CyU3PReturnStatus_t b200_spi_init(void) { msg("b200_spi_init"); CyU3PSpiConfig_t spiConfig; /* Start the SPI module and configure the master. */ CyU3PSpiInit(); /* Start the SPI master block. Run the SPI clock at 8MHz * and configure the word length to 8 bits. Also configure * the slave select using FW. */ CyU3PMemSet ((uint8_t *)&spiConfig, 0, sizeof(spiConfig)); spiConfig.isLsbFirst = CyFalse; spiConfig.cpol = CyFalse; spiConfig.cpha = CyFalse; spiConfig.ssnPol = CyTrue; spiConfig.leadTime = CY_U3P_SPI_SSN_LAG_LEAD_HALF_CLK; spiConfig.lagTime = CY_U3P_SPI_SSN_LAG_LEAD_HALF_CLK; spiConfig.ssnCtrl = CY_U3P_SPI_SSN_CTRL_FW; spiConfig.clock = 20000000; spiConfig.wordLen = 8; CyU3PReturnStatus_t res = CyU3PSpiSetConfig(&spiConfig, NULL); if (res != CY_U3P_SUCCESS) msg("! CyU3PSpiSetConfig"); return res; } /*! Initialize the USB module of the FX3 chip. * * This function handles USB initialization, re-enumeration (and thus coming up * as a USRP B200 device), configures USB endpoints and the DMA module. */ void b200_usb_init(void) { //msg("b200_usb_init"); /* Initialize the I2C interface for the EEPROM of page size 64 bytes. */ CyFxI2cInit(CY_FX_USBI2C_I2C_PAGE_SIZE); /* Start the USB system! */ CyU3PUsbStart(); /* Register our USB Setup callback. The boolean parameter indicates whether * or not we are using FX3's 'Fast Enumeration' mode, which relies on the * USB driver auto-detecting the connection speed and setting the correct * descriptors. */ CyU3PUsbRegisterSetupCallback(usb_setup_callback, CyTrue); CyU3PUsbRegisterEventCallback(event_usb_callback); CyU3PUsbRegisterLPMRequestCallback(lpm_request_callback); /* Check to see if a VID/PID is in the EEPROM that we should use. */ uint8_t valid[4]; CyU3PMemSet(valid, 0, 4); CyFxUsbI2cTransfer(0x0, 0xA0, 4, valid, CyTrue); if(*((uint32_t *) &(valid[0])) == 0xB2145943) { /* Pull the programmed device serial out of the i2c EEPROM, and copy the * characters into the device serial string, which is then advertised as * part of the USB descriptors. */ uint8_t vidpid[4]; CyU3PMemSet(vidpid, 0, 4); CyFxUsbI2cTransfer(0x4, 0xA0, 4, vidpid, CyTrue); b200_usb2_dev_desc[8] = vidpid[2]; b200_usb2_dev_desc[9] = vidpid[3]; b200_usb2_dev_desc[10] = vidpid[0]; b200_usb2_dev_desc[11] = vidpid[1]; b200_usb3_dev_desc[8] = vidpid[2]; b200_usb3_dev_desc[9] = vidpid[3]; b200_usb3_dev_desc[10] = vidpid[0]; b200_usb3_dev_desc[11] = vidpid[1]; } uint8_t ascii_serial[9]; CyU3PMemSet(ascii_serial, 0, 9); CyFxUsbI2cTransfer(0x4f7, 0xA0, 9, ascii_serial, CyTrue); uint8_t count; dev_serial[0] = 2; for(count = 0; count < 9; count++) { uint8_t byte = ascii_serial[count]; if (byte < 32 || byte > 127) break; dev_serial[2 + (count * 2)] = byte; // FIXME: Set count*2 + 1 = 0x00 ? dev_serial[0] += 2; } /* Set our USB enumeration descriptors! Note that there are different * function calls for each USB speed: FS, HS, SS. */ /* Device descriptors */ CyU3PUsbSetDesc(CY_U3P_USB_SET_HS_DEVICE_DESCR, 0, (uint8_t *) b200_usb2_dev_desc); CyU3PUsbSetDesc(CY_U3P_USB_SET_SS_DEVICE_DESCR, 0, (uint8_t *) b200_usb3_dev_desc); /* Device qualifier descriptors */ CyU3PUsbSetDesc(CY_U3P_USB_SET_DEVQUAL_DESCR, 0, (uint8_t *) b200_dev_qual_desc); /* Configuration descriptors */ CyU3PUsbSetDesc(CY_U3P_USB_SET_HS_CONFIG_DESCR, 0, (uint8_t *) b200_usb_hs_config_desc); CyU3PUsbSetDesc(CY_U3P_USB_SET_FS_CONFIG_DESCR, 0, (uint8_t *) b200_usb_fs_config_desc); CyU3PUsbSetDesc(CY_U3P_USB_SET_SS_CONFIG_DESCR, 0, (uint8_t *) b200_usb_ss_config_desc); /* BOS Descriptor */ CyU3PUsbSetDesc(CY_U3P_USB_SET_SS_BOS_DESCR, 0, (uint8_t *) b200_usb_bos_desc); /* String descriptors */ CyU3PUsbSetDesc(CY_U3P_USB_SET_STRING_DESCR, 0, (uint8_t *) b200_string_lang_id_desc); CyU3PUsbSetDesc(CY_U3P_USB_SET_STRING_DESCR, 1, (uint8_t *) b200_usb_manufacture_desc); CyU3PUsbSetDesc(CY_U3P_USB_SET_STRING_DESCR, 2, (uint8_t *) b200_usb_product_desc); CyU3PUsbSetDesc(CY_U3P_USB_SET_STRING_DESCR, 3, (uint8_t *) dev_serial); //////////////////////////////////////////////////////// // FIXME: CyU3PUsbSetTxDeemphasis(0x11); <0x1F // Shouldn't need to change this uint32_t tx_swing = /*65*/45; // 65 & 45 are OK, 120 causes much link recovery. <128. 1.2V is USB3 limit. if (CyU3PUsbSetTxSwing(tx_swing) == CY_U3P_SUCCESS) msg("CyU3PUsbSetTxSwing %d", tx_swing); else msg("! CyU3PUsbSetTxSwing %d", tx_swing); //////////////////////////////////////////////////////// /* Connect the USB pins, and enable SuperSpeed (USB 3.0). */ CyU3PConnectState(CyTrue, CyTrue); // connect, ssEnable } void b200_restore_gpio_for_fpga_config(void) { CyU3PDeviceGpioRestore(GPIO_FPGA_RESET); CyU3PDeviceGpioRestore(GPIO_DONE); CyU3PDeviceGpioRestore(GPIO_FX3_SCLK); CyU3PDeviceGpioRestore(GPIO_FX3_CE); CyU3PDeviceGpioRestore(GPIO_FX3_MISO); CyU3PDeviceGpioRestore(GPIO_FX3_MOSI); //CyU3PGpioDeInit(); // Moved to just before init } void thread_fpga_config_entry(uint32_t input) { uint32_t event_flag; //msg("thread_fpga_config_entry"); for(;;) { // Event is set through VREQ if(CyU3PEventGet(&g_event_usb_config, \ (EVENT_FPGA_CONFIG), CYU3P_EVENT_AND_CLEAR, \ &event_flag, CYU3P_WAIT_FOREVER) == CY_U3P_SUCCESS) { //uint8_t old_state = g_fx3_state; uint32_t old_fpga_programming_write_count = 0; if(g_fx3_state == STATE_ERROR) { CyU3PThreadRelinquish(); continue; } if(g_fx3_state == STATE_RUNNING) { /* The FX3 is currently configured for SLFIFO mode. We need to tear down * this configuration and re-configure to program the FPGA. */ b200_restore_gpio_for_fpga_config(); CyU3PGpifDisable(CyTrue); } CyU3PSysWatchDogClear(); g_fx3_state = STATE_BUSY; /* Configure the device GPIOs for FPGA programming. */ b200_gpios_pre_fpga_config(); CyU3PSysWatchDogClear(); /* Initialize the SPI module that will be used for FPGA programming. */ b200_spi_init(); // This must be done *after* 'b200_gpios_pre_fpga_config' CyU3PSysWatchDogClear(); /* Wait for the signal from the host that the bitstream is starting. */ uint32_t wait_count = 0; /* We can now begin configuring the FPGA. */ g_fx3_state = STATE_FPGA_READY; msg("Begin FPGA"); // Event is set through VREQ while(CyU3PEventGet(&g_event_usb_config, \ (EVENT_BITSTREAM_START), CYU3P_EVENT_AND_CLEAR, \ &event_flag, CYU3P_NO_WAIT) != CY_U3P_SUCCESS) { if(wait_count >= FPGA_PROGRAMMING_BITSTREAM_START_POLL_COUNT) { msg("! Bitstream didn't start"); g_fx3_state = STATE_UNCONFIGURED; // Since IO configuration has changed, leave it in the unconfigured state (rather than the previous one, which might have been running) CyU3PThreadRelinquish(); break; } wait_count++; CyU3PThreadSleep(FPGA_PROGRAMMING_POLL_SLEEP); CyU3PSysWatchDogClear(); } if (wait_count >= FPGA_PROGRAMMING_BITSTREAM_START_POLL_COUNT) continue; /* Pull PROGRAM_B low and then release it. */ CyU3PGpioSetValue(GPIO_PROGRAM_B, 0); CyU3PThreadSleep(20); CyU3PGpioSetValue(GPIO_PROGRAM_B, 1); /* Wait for INIT_B to fall and rise. */ wait_count = 0; msg("Wait FPGA"); while(CyU3PEventGet(&g_event_usb_config, \ (EVENT_GPIO_INITB_RISE), CYU3P_EVENT_AND_CLEAR, \ &event_flag, CYU3P_NO_WAIT) != CY_U3P_SUCCESS) { if(wait_count >= FPGA_PROGRAMMING_INITB_POLL_COUNT) { msg("! INITB didn't rise"); g_fx3_state = STATE_UNCONFIGURED; // Safer to call it unconfigured than the previous state CyU3PThreadRelinquish(); break; } wait_count++; CyU3PThreadSleep(FPGA_PROGRAMMING_POLL_SLEEP); CyU3PSysWatchDogClear(); } #ifdef ENABLE_INIT_B_WORKAROUND if (wait_count >= FPGA_PROGRAMMING_INITB_POLL_COUNT) { CyBool_t gpio_init_b; CyU3PGpioGetValue(GPIO_INIT_B, &gpio_init_b); if (gpio_init_b == CyTrue) { wait_count = 0; } else { msg("! INIT_B still not high"); } } #endif // ENABLE_INIT_B_WORKAROUND if (wait_count >= FPGA_PROGRAMMING_INITB_POLL_COUNT) continue; /* We are ready to accept the FPGA bitstream! */ wait_count = 0; g_fx3_state = STATE_CONFIGURING_FPGA; msg("Configuring FPGA"); // g_fpga_programming_write_count is zero'd by VREQ triggering EVENT_BITSTREAM_START while(CyU3PEventGet(&g_event_usb_config, \ (EVENT_GPIO_DONE_HIGH), CYU3P_EVENT_AND_CLEAR, \ &event_flag, CYU3P_NO_WAIT) != CY_U3P_SUCCESS) { /* Wait for the configuration to complete, which will be indicated * by the DONE pin going high and triggering the associated * interrupt. */ if(wait_count >= FPGA_PROGRAMMING_DONE_POLL_COUNT) { msg("! DONE didn't go high"); g_fx3_state = STATE_UNCONFIGURED; CyU3PThreadRelinquish(); break; } if (old_fpga_programming_write_count == g_fpga_programming_write_count) // Only increment wait count if we haven't written anything wait_count++; else { wait_count = 0; old_fpga_programming_write_count = g_fpga_programming_write_count; } CyU3PThreadSleep(FPGA_PROGRAMMING_POLL_SLEEP); CyU3PSysWatchDogClear(); } #ifdef ENABLE_DONE_WORKAROUND if (wait_count >= FPGA_PROGRAMMING_DONE_POLL_COUNT) { CyBool_t gpio_done; CyU3PGpioGetValue(GPIO_DONE, &gpio_done); if (gpio_done == CyTrue) { wait_count = 0; } else { msg("! DONE still not high"); } } #endif // ENABLE_DONE_WORKAROUND if (wait_count >= FPGA_PROGRAMMING_DONE_POLL_COUNT) continue; msg("FPGA done"); /* Tell the host that we are ignoring it for a while. */ g_fx3_state = STATE_BUSY; CyU3PSysWatchDogClear(); /* Now that the FPGA is configured, we need to tear down the current SPI and * GPIO configs, and re-config for GPIF & bit-banged SPI operation. */ CyU3PSpiDeInit(); b200_restore_gpio_for_fpga_config(); CyU3PSysWatchDogClear(); /* Load the GPIO configuration for normal SLFIFO use. */ b200_slfifo_mode_gpio_config(); /* Tone down the drive strength on the P-port. */ //CyU3PSetPportDriveStrength(CY_U3P_DS_HALF_STRENGTH); CyU3PSysWatchDogClear(); /* FPGA configuration is complete! Time to get the GPIF state machine * running for Slave FIFO. */ b200_gpif_init(); CyU3PThreadSleep(1); b200_start_fpga_sb_gpio(); // Moved here to give SB time to init /* RUN, BABY, RUN! */ g_fx3_state = STATE_RUNNING; msg("Running"); } CyU3PThreadRelinquish(); } } /*! The primary program thread. * * This is the primary application thread running on the FX3 device. It is * responsible for initializing much of the chip, and then bit-banging the FPGA * image, as it is sent from the host, into the FPGA. It then re-configures the * FX3 for slave-fifo, and enters an infinite loop where it simply updates the * watchdog timer and does some minor power management state checking. */ void thread_main_app_entry(uint32_t input) { //msg("thread_main_app_entry"); /* In your spectrum, stealing your Hz. */ for(;;) { CyU3PSysWatchDogClear(); CyU3PThreadSleep(CHECK_POWER_STATE_SLEEP_TIME); #ifdef PREVENT_LOW_POWER_MODE /* Once data transfer has started, we keep trying to get the USB * link to stay in U0. If this is done * before data transfers have started, there is a likelihood of * failing the TD 9.24 U1/U2 test. */ { CyU3PUsbLinkPowerMode current_state; if((CyU3PUsbGetSpeed () == CY_U3P_SUPER_SPEED)) { /* If the link is in U1/U2 states, try to get back to U0. */ CyU3PUsbGetLinkPowerState(¤t_state); if (current_state > CyU3PUsbLPM_U3) msg("Power state %i", current_state); while((current_state >= CyU3PUsbLPM_U1) \ && (current_state <= CyU3PUsbLPM_U3)) { msg("! LPS = %i", current_state); CyU3PUsbSetLinkPowerState(CyU3PUsbLPM_U0); // This will wake up the host if it's trying to sleep CyU3PThreadSleep(1); if (CyU3PUsbGetSpeed () != CY_U3P_SUPER_SPEED) break; CyU3PUsbGetLinkPowerState (¤t_state); } } } #endif // PREVENT_LOW_POWER_MODE } } void thread_ad9361_entry(uint32_t input) { uint32_t event_flag; //msg("thread_ad9361_entry"); while (1) { if (CyU3PEventGet(&g_event_usb_config, \ EVENT_AD9361_XACT_INIT, CYU3P_EVENT_AND_CLEAR, \ &event_flag, CYU3P_WAIT_FOREVER) == CY_U3P_SUCCESS) { ad9361_dispatch((const char*)g_vendor_req_buffer, g_ad9361_response); CyU3PEventSet(&g_event_usb_config, EVENT_AD9361_XACT_DONE, CYU3P_EVENT_OR); } } } static uint16_t g_poll_last_phy_error_count = 0, g_poll_last_link_error_count = 0; static uint32_t g_poll_last_phy_error_status = 0; void update_error_counters(void) { if (CyU3PUsbGetSpeed () != CY_U3P_SUPER_SPEED) return; uvint32_t reg = REG_LNK_PHY_ERROR_STATUS; uint32_t val = 0; if (CyU3PReadDeviceRegisters((uvint32_t*)reg, 1, &val) == CY_U3P_SUCCESS) { g_poll_last_phy_error_status |= (val & PHYERR_MASK); // Reset after read uint32_t zero = PHYERR_MASK; if (CyU3PWriteDeviceRegisters((uvint32_t*)reg, 1, &zero) != CY_U3P_SUCCESS) msg("! CyU3PWriteDeviceRegisters"); } else { // FIXME: Log once msg("! Reg read fail"); } // Equivalent code: //uint32_t* p = (uint32_t*)REG_LNK_PHY_ERROR_STATUS; //val = (*p); //(*p) = PHYERR_MASK; uint16_t phy_error_count = 0, link_error_count = 0; if (CyU3PUsbGetErrorCounts(&phy_error_count, &link_error_count) == CY_U3P_SUCCESS) { // Resets internal counters after call g_poll_last_phy_error_count += phy_error_count; g_poll_last_link_error_count += link_error_count; } else { // FIXME: Log once msg("! CyU3PUsbGetErrorCounts"); } LOCK(g_counters_lock); g_counters.usb_error_update_count++; g_counters.usb_error_counters.phy_error_count += phy_error_count; g_counters.usb_error_counters.link_error_count += link_error_count; if (val & PHYERR_MASK) { if (val & PHYERR_PHY_LOCK_EV) g_counters.usb_error_counters.PHY_LOCK_EV++; if (val & PHYERR_TRAINING_ERROR_EV) g_counters.usb_error_counters.TRAINING_ERROR_EV++; if (val & PHYERR_RX_ERROR_CRC32_EV) g_counters.usb_error_counters.RX_ERROR_CRC32_EV++; if (val & PHYERR_RX_ERROR_CRC16_EV) g_counters.usb_error_counters.RX_ERROR_CRC16_EV++; if (val & PHYERR_RX_ERROR_CRC5_EV) g_counters.usb_error_counters.RX_ERROR_CRC5_EV++; if (val & PHYERR_PHY_ERROR_DISPARITY_EV)g_counters.usb_error_counters.PHY_ERROR_DISPARITY_EV++; if (val & PHYERR_PHY_ERROR_EB_UND_EV) g_counters.usb_error_counters.PHY_ERROR_EB_UND_EV++; if (val & PHYERR_PHY_ERROR_EB_OVR_EV) g_counters.usb_error_counters.PHY_ERROR_EB_OVR_EV++; if (val & PHYERR_PHY_ERROR_DECODE_EV) g_counters.usb_error_counters.PHY_ERROR_DECODE_EV++; } UNLOCK(g_counters_lock); // FIXME: Read/write regs } void thread_re_enum_entry(uint32_t input) { uint32_t event_flag; //msg("thread_re_enum_entry"); int keep_alive = 0; while (1) { if (CyU3PEventGet(&g_event_usb_config, \ (EVENT_RE_ENUM), CYU3P_EVENT_AND_CLEAR, \ &event_flag, RE_ENUM_THREAD_SLEEP_TIME) == CY_U3P_SUCCESS) { msg("Re-config"); // FIXME: This section is not finished // Not locking this since we only expect one write in VREQ and read afterward here int re_enum = g_config_mod.flags & (CF_RE_ENUM | CF_TX_SWING | CF_TX_DEEMPHASIS); CyU3PThreadSleep(100); // Wait for EP0 xaction to complete //b200_fw_stop(); if (re_enum) { msg("Link down"); CyU3PConnectState(CyFalse, CyTrue); } if (g_config_mod.flags & CF_TX_DEEMPHASIS) { //g_config_mod.config.tx_deemphasis //CyU3PUsbSetTxDeemphasis(0x11); <0x1F } if (g_config_mod.flags & CF_TX_SWING) { //CyU3PUsbSetTxSwing(90); <128 } //CyU3PUsbControlUsb2Support(); //b200_fw_start() /* Connect the USB pins, and enable SuperSpeed (USB 3.0). */ if (re_enum) { msg("Link up"); CyU3PConnectState(CyTrue, CyTrue); // CHECK: Assuming all other important state will persist } counters_reset_usb_errors(); } else { if (++keep_alive == KEEP_ALIVE_LOOP_COUNT) { msg("Keep-alive"); keep_alive = 0; } #ifndef ENABLE_FPGA_SB update_error_counters(); #endif // !ENABLE_FPGA_SB } CyU3PThreadRelinquish(); } } void base16_encode(uint8_t v, char out[2], char first) { out[0] = first + (v >> 4); out[1] = first + (v & 0x0F); } #ifdef ENABLE_FPGA_SB void thread_fpga_sb_poll_entry(uint32_t input) { //msg("thread_fpga_sb_poll_entry"); while (1) { uint16_t i; uint8_t has_change = 0; update_error_counters(); /*if (g_poll_last_phy_error_count > 0) has_change = 1; if (g_poll_last_link_error_count > 0) has_change = 1;*/ if (g_poll_last_phy_error_status != 0) has_change = 1; uint16_t idx = CyU3PUsbGetEventLogIndex(); // Current *write* pointer if (idx > (USB_EVENT_LOG_SIZE-1)) { msg("! USB event log idx = %i", (int)idx); break; } uint8_t has_usb_events = 0; // Assuming logging won't wrap around between get calls (i.e. buffer should be long enough) if (g_fpga_sb_last_usb_event_log_index != idx) { if (idx < g_fpga_sb_last_usb_event_log_index) { for (i = g_fpga_sb_last_usb_event_log_index; i < USB_EVENT_LOG_SIZE; i++) { if (g_usb_event_log[i] != 0x14 && g_usb_event_log[i] != 0x15 && g_usb_event_log[i] != 0x16) { // CTRL, STATUS, ACKSETUP has_usb_events = 1; break; } } if (has_usb_events == 0) { for (i = 0; i < idx; i++) { if (g_usb_event_log[i] != 0x14 && g_usb_event_log[i] != 0x15 && g_usb_event_log[i] != 0x16) { // CTRL, STATUS, ACKSETUP has_usb_events = 1; break; } } } } else { for (i = g_fpga_sb_last_usb_event_log_index; i < idx; i++) { if (g_usb_event_log[i] != 0x14 && g_usb_event_log[i] != 0x15 && g_usb_event_log[i] != 0x16) { // CTRL, STATUS, ACKSETUP has_usb_events = 1; break; } } } } if (has_change || has_usb_events) { LOCK(g_suart_lock); sb_write(SUART_TXCHAR, UPT_USB_EVENTS); char out[3]; out[2] = '\0'; if (has_usb_events) { if (idx < g_fpga_sb_last_usb_event_log_index) { for (i = g_fpga_sb_last_usb_event_log_index; i < USB_EVENT_LOG_SIZE; i++) { if (g_usb_event_log[i] == 0x14 || g_usb_event_log[i] == 0x15 || g_usb_event_log[i] == 0x16) // CTRL, STATUS, ACKSETUP continue; base16_encode(g_usb_event_log[i], out, 'A'); _sb_write_string(out); } for (i = 0; i < idx; i++) { if (g_usb_event_log[i] == 0x14 || g_usb_event_log[i] == 0x15 || g_usb_event_log[i] == 0x16) // CTRL, STATUS, ACKSETUP continue; base16_encode(g_usb_event_log[i], out, 'A'); _sb_write_string(out); } } else { for (i = g_fpga_sb_last_usb_event_log_index; i < idx; i++) { if (g_usb_event_log[i] == 0x14 || g_usb_event_log[i] == 0x15 || g_usb_event_log[i] == 0x16) // CTRL, STATUS, ACKSETUP continue; base16_encode(g_usb_event_log[i], out, 'A'); _sb_write_string(out); } } } // USB events: A-P,A-P // PHY error status: a,a-i if (g_poll_last_phy_error_status != 0) { uint32_t mask; size_t offset; for (mask = PHYERR_MAX, offset = 0; mask != 0; mask >>= 1, ++offset) { if ((g_poll_last_phy_error_status & mask) != 0) { sb_write(SUART_TXCHAR, 'a'); sb_write(SUART_TXCHAR, 'a' + offset); } } } /*char buf[6]; if (g_poll_last_phy_error_count > 0) { sb_write(SUART_TXCHAR, 'b'); snprintf(buf, sizeof(buf)-1, "%d", g_poll_last_phy_error_count); _sb_write_string(buf); } if (g_poll_last_link_error_count > 0) { sb_write(SUART_TXCHAR, 'c'); snprintf(buf, sizeof(buf)-1, "%d", g_poll_last_link_error_count); _sb_write_string(buf); }*/ _sb_write_string("\r\n"); UNLOCK(g_suart_lock); } g_poll_last_phy_error_count = 0; g_poll_last_link_error_count = 0; g_poll_last_phy_error_status = 0; g_fpga_sb_last_usb_event_log_index = idx; CyU3PThreadRelinquish(); } } #endif // ENABLE_FPGA_SB /*! Application define function which creates the threads. * * The name of this application cannot be changed, as it is called from the * tx_application _define function, referenced in the rest of the FX3 build * system. * * If thread creation fails, lock the system and force a power reset. */ void CyFxApplicationDefine(void) { void *app_thread_ptr, *fpga_thread_ptr, *ad9361_thread_ptr; #ifdef ENABLE_RE_ENUM_THREAD void *re_enum_thread_ptr; #endif // ENABLE_RE_ENUM_THREAD #ifdef ENABLE_FPGA_SB void *fpga_sb_poll_thread_ptr; #endif // ENABLE_FPGA_SB g_counters.magic = COUNTER_MAGIC; #ifdef ENABLE_AD9361_LOGGING ad9361_set_msgfn(msg); #endif // ENABLE_AD9361_LOGGING memset(&g_config, 0xFF, sizeof(g_config)); // Initialise to -1 CyU3PMutexCreate(&g_log_lock, CYU3P_NO_INHERIT); CyU3PMutexCreate(&g_counters_lock, CYU3P_NO_INHERIT); CyU3PMutexCreate(&g_counters_dma_from_host_lock, CYU3P_NO_INHERIT); CyU3PMutexCreate(&g_counters_dma_to_host_lock, CYU3P_NO_INHERIT); #ifdef ENABLE_FPGA_SB CyU3PMutexCreate(&g_suart_lock, CYU3P_NO_INHERIT); #endif // ENABLE_FPGA_SB #ifdef ENABLE_USB_EVENT_LOGGING CyU3PUsbInitEventLog(g_usb_event_log, USB_EVENT_LOG_SIZE); #endif // ENABLE_USB_EVENT_LOGGING //////////////////////////////////////////////////////// /* Tell the host that we are ignoring it for a while. */ g_fx3_state = STATE_BUSY; /* Set the FX3 compatibility number. */ compat_num[0] = FX3_COMPAT_MAJOR; compat_num[1] = FX3_COMPAT_MINOR; /* Initialize the USB system. */ b200_usb_init(); /* Turn on the Watchdog Timer. */ CyU3PSysWatchDogConfigure(CyTrue, WATCHDOG_TIMEOUT); /* Go do something. Probably not useful, because you aren't configured. */ g_fx3_state = STATE_UNCONFIGURED; //////////////////////////////////////////////////////// b200_gpio_init(CyTrue); b200_enable_fpga_sb_gpio(CyTrue); msg("Compat: %d.%d", FX3_COMPAT_MAJOR, FX3_COMPAT_MINOR); msg("FX3 SDK: %d.%d.%d (build %d)", CYFX_VERSION_MAJOR, CYFX_VERSION_MINOR, CYFX_VERSION_PATCH, CYFX_VERSION_BUILD); //////////////////////////////////////////////////////// /* Create the USB event group that we will use to track USB events from the * application thread. */ CyU3PEventCreate(&g_event_usb_config); /* Allocate memory for the application thread. */ app_thread_ptr = CyU3PMemAlloc(APP_THREAD_STACK_SIZE); /* Allocate memory for the FPGA configuration thread. */ fpga_thread_ptr = CyU3PMemAlloc(APP_THREAD_STACK_SIZE); #ifdef ENABLE_RE_ENUM_THREAD re_enum_thread_ptr = CyU3PMemAlloc(APP_THREAD_STACK_SIZE); #endif // ENABLE_RE_ENUM_THREAD ad9361_thread_ptr = CyU3PMemAlloc(APP_THREAD_STACK_SIZE); #ifdef ENABLE_FPGA_SB fpga_sb_poll_thread_ptr = CyU3PMemAlloc(APP_THREAD_STACK_SIZE); #endif // ENABLE_FPGA_SB //////////////////////////////////////////////////////// /* Create the thread for the application */ if (app_thread_ptr != NULL) CyU3PThreadCreate(&thread_main_app, "200:B200 Main", thread_main_app_entry, 0, app_thread_ptr, APP_THREAD_STACK_SIZE, THREAD_PRIORITY, THREAD_PRIORITY, CYU3P_NO_TIME_SLICE, CYU3P_AUTO_START); /* Create the thread for FPGA configuration. */ if (fpga_thread_ptr != NULL) CyU3PThreadCreate(&thread_fpga_config, "300:B200 FPGA", thread_fpga_config_entry, 0, fpga_thread_ptr, APP_THREAD_STACK_SIZE, THREAD_PRIORITY, THREAD_PRIORITY, CYU3P_NO_TIME_SLICE, CYU3P_AUTO_START); #ifdef ENABLE_RE_ENUM_THREAD /* Create the thread for stats collection and re-enumeration/configuration */ if (re_enum_thread_ptr != NULL) CyU3PThreadCreate(&thread_re_enum, "400:B200 Re-enum", thread_re_enum_entry, 0, re_enum_thread_ptr, APP_THREAD_STACK_SIZE, THREAD_PRIORITY, THREAD_PRIORITY, CYU3P_NO_TIME_SLICE, CYU3P_AUTO_START); #endif // ENABLE_RE_ENUM_THREAD /* Create thread to handle AD9361 transactions */ if (ad9361_thread_ptr != NULL) CyU3PThreadCreate(&thread_ad9361, "500:B200 AD9361", thread_ad9361_entry, 0, ad9361_thread_ptr, APP_THREAD_STACK_SIZE, THREAD_PRIORITY, THREAD_PRIORITY, CYU3P_NO_TIME_SLICE, CYU3P_AUTO_START); #ifdef ENABLE_FPGA_SB /* Create thread to handling Settings Bus logging/transactions */ if (fpga_sb_poll_thread_ptr != NULL) CyU3PThreadCreate(&thread_fpga_sb_poll, "600:B200 FPGA SB poll", thread_fpga_sb_poll_entry, 0, fpga_sb_poll_thread_ptr, APP_THREAD_STACK_SIZE, THREAD_PRIORITY, THREAD_PRIORITY, CYU3P_NO_TIME_SLICE, CYU3P_AUTO_START); #endif // ENABLE_FPGA_SB } int main(void) { CyU3PReturnStatus_t status = CY_U3P_SUCCESS; CyU3PSysClockConfig_t clock_config; /* Configure the FX3 Clocking scheme: * CPU Divider: 2 (~200 MHz) * DMA Divider: 2 (~100 MHz) * MMIO Divider: 2 (~100 MHz) * 32 kHz Standby Clock: Disabled * System Clock Divider: 1 */ clock_config.cpuClkDiv = 2; clock_config.dmaClkDiv = 2; clock_config.mmioClkDiv = 2; clock_config.useStandbyClk = CyFalse; clock_config.clkSrc = CY_U3P_SYS_CLK; clock_config.setSysClk400 = CyTrue; status = CyU3PDeviceInit(&clock_config); if(status != CY_U3P_SUCCESS) goto handle_fatal_error; /* Initialize the caches. Enable instruction cache and keep data cache disabled. * The data cache is useful only when there is a large amount of CPU based memory * accesses. When used in simple cases, it can decrease performance due to large * number of cache flushes and cleans and also it adds to the complexity of the * code. */ status = CyU3PDeviceCacheControl(CyTrue, CyFalse, CyFalse); // Icache, Dcache, DMAcache if (status != CY_U3P_SUCCESS) goto handle_fatal_error; /* Configure the IO peripherals on the FX3. The gpioSimpleEn arrays are * bitmaps, where each bit represents the GPIO of the matching index - the * second array is index + 32. */ status = b200_set_io_matrix(CyTrue); if(status != CY_U3P_SUCCESS) goto handle_fatal_error; /* This function calls starts the RTOS kernel. * * ABANDON ALL HOPE, YE WHO ENTER HERE */ CyU3PKernelEntry(); /* Although we will never make it here, this has to be here to make the * compiler happy. */ return 0; /* If an error occurs before the launch of the kernel, it is unrecoverable. * Once you go down this hole, you aren't coming back out without a power * reset. */ handle_fatal_error: while(1); }