//
// Copyright 2013-2014 Ettus Research LLC
//

/* This file implements b200 vendor requests handler
 * It handles ad9361 setup and configuration
 */

#include <stdarg.h>
#include <stdio.h>
#include <math.h>

#include <ad9361_transaction.h>
#include "ad9361_filter_taps.h"
#include "ad9361_gain_tables.h"
#include "ad9361_synth_lut.h"
#include "ad9361_dispatch.h"

////////////////////////////////////////////////////////////

static void fake_msg(const char* str, ...)
{
}

static msgfn _msgfn = fake_msg;

//extern void msg(const char* str, ...);    External object must provide this symbol
#define msg (_msgfn)

void ad9361_set_msgfn(msgfn pfn)
{
    _msgfn = pfn;
}

////////////////////////////////////////////////////////////
#define AD9361_MAX_GAIN 89.75

#define DOUBLE_PI 3.14159265359
#define DOUBLE_LN_2 0.693147181

#define RX_TYPE 0
#define TX_TYPE 1

#ifndef AD9361_CLOCKING_MODE
#error define a AD9361_CLOCKING_MODE
#endif

#ifndef AD9361_RX_BAND_EDGE0
#error define a AD9361_RX_BAND_EDGE0
#endif

#ifndef AD9361_RX_BAND_EDGE1
#error define a AD9361_RX_BAND_EDGE1
#endif

#ifndef AD9361_TX_BAND_EDGE
#error define a AD9361_TX_BAND_EDGE
#endif

////////////////////////////////////////////////////////////
// the following macros evaluate to a compile time constant
// macros By Tom Torfs - donated to the public domain

/* turn a numeric literal into a hex constant
(avoids problems with leading zeroes)
8-bit constants max value 0x11111111, always fits in unsigned long
*/
#define HEX__(n) 0x##n##LU

/* 8-bit conversion function */
#define B8__(x) ((x&0x0000000FLU)?1:0) \
+((x&0x000000F0LU)?2:0) \
+((x&0x00000F00LU)?4:0) \
+((x&0x0000F000LU)?8:0) \
+((x&0x000F0000LU)?16:0) \
+((x&0x00F00000LU)?32:0) \
+((x&0x0F000000LU)?64:0) \
+((x&0xF0000000LU)?128:0)

/* *** user macros *** */

/* for upto 8-bit binary constants */
#define B8(d) ((unsigned char)B8__(HEX__(d)))

////////////////////////////////////////////////////////////
// shadow registers
static uint8_t reg_vcodivs;
static uint8_t reg_inputsel;
static uint8_t reg_rxfilt;
static uint8_t reg_txfilt;
static uint8_t reg_bbpll;
static uint8_t reg_bbftune_config;
static uint8_t reg_bbftune_mode;

////////////////////////////////////////////////////////////
// other private data fields for VRQ handler
static double _rx_freq, _tx_freq, _req_rx_freq, _req_tx_freq;
static double _baseband_bw, _bbpll_freq, _adcclock_freq;
static double _req_clock_rate, _req_coreclk;
static uint16_t _rx_bbf_tunediv;
static uint8_t _curr_gain_table;
static uint32_t _rx1_gain, _rx2_gain, _tx1_gain, _tx2_gain;
static int _tfir_factor;

double set_gain(int which, int n, const double value);
void set_active_chains(bool tx1, bool tx2, bool rx1, bool rx2);
/***********************************************************************
 * Placeholders, unused, or test functions
 **********************************************************************/
static char *tmp_req_buffer;

void post_err_msg(const char* error)
{
    msg("[AD9361 error] %s", error);
    
    if (!tmp_req_buffer)
        return;
    
    ad9361_transaction_t *request = (ad9361_transaction_t *)tmp_req_buffer;
    strncpy(request->error_msg, error, (AD9361_TRANSACTION_MAX_ERROR_MSG + 1)); // '+ 1' as length excludes terminating NUL
    request->error_msg[AD9361_TRANSACTION_MAX_ERROR_MSG] = '\0';  // If string was too long, NUL will not be copied, so force one just in case
}

void write_ad9361_reg(uint32_t reg, uint8_t val)
{
    ad9361_transact_spi((reg << 8) | val | (1 << 23));
}

uint8_t read_ad9361_reg(uint32_t reg)
{
    return ad9361_transact_spi((reg << 8)) & 0xff;
}

//shortcuts for double packer/unpacker function
#define double_pack ad9361_double_pack
#define double_unpack ad9361_double_unpack

/* Make Catalina output its test tone. */
void output_test_tone(void) {
    /* Output a 480 kHz tone at 800 MHz */
    write_ad9361_reg(0x3F4, 0x0B);
    write_ad9361_reg(0x3FC, 0xFF);
    write_ad9361_reg(0x3FD, 0xFF);
    write_ad9361_reg(0x3FE, 0x3F);
}

/* Turn on/off Catalina's TX port --> RX port loopback. */
void data_port_loopback(const int on) {
    msg("[data_port_loopback] Enabled: %d", on);
    write_ad9361_reg(0x3F5, (on ? 0x01 : 0x00));
}

/* This is a simple comparison for very large double-precision floating
 * point numbers. It is used to prevent re-tunes for frequencies that are
 * the same but not 'exactly' because of data precision issues. */
// TODO: see if we can avoid the need for this function
int freq_is_nearly_equal(double a, double b) {
    return AD9361_MAX(a,b) - AD9361_MIN(a,b) < 1;
}

/***********************************************************************
 * Filter functions
 **********************************************************************/

/* This function takes in the calculated maximum number of FIR taps, and
 * returns a number of taps that makes Catalina happy. */
int get_num_taps(int max_num_taps) {

    int num_taps = 0;
    int num_taps_list[] = {16, 32, 48, 64, 80, 96, 112, 128};
    int i;
    for(i = 1; i < 8; i++) {
        if(max_num_taps >= num_taps_list[i]) {
            continue;
        } else {
            num_taps = num_taps_list[i - 1];
            break;
        }
    } if(num_taps == 0) { num_taps = 128; }

    return num_taps;
}

/* Program either the RX or TX FIR filter.
 *
 * The process is the same for both filters, but the function must be told
 * how many taps are in the filter, and given a vector of the taps
 * themselves. Note that the filters are symmetric, so value of 'num_taps'
 * should actually be twice the length of the tap vector. */
void program_fir_filter(int which, int num_taps, \
        uint16_t *coeffs) {

    uint16_t base;
    if(which == RX_TYPE) {
        base = 0x0f0;
        write_ad9361_reg(base+6, 0x02); //filter gain
    } else {
        base = 0x060;
    }

    /* Write the filter configuration. */
    uint8_t reg_numtaps = (((num_taps / 16) - 1) & 0x07) << 5;

    /* Turn on the filter clock. */
    write_ad9361_reg(base+5, reg_numtaps | 0x1a);
    ad9361_msleep(1);

    int num_unique_coeffs = (num_taps / 2);

    /* The filters are symmetric, so iterate over the tap vector,
     * programming each index, and then iterate backwards, repeating the
     * process. */
    int addr;
    for(addr=0; addr < num_unique_coeffs; addr++) {
        write_ad9361_reg(base+0, addr);
        write_ad9361_reg(base+1, (coeffs[addr]) & 0xff);
        write_ad9361_reg(base+2, (coeffs[addr] >> 8) & 0xff);
        write_ad9361_reg(base+5, 0xfe);
        write_ad9361_reg(base+4, 0x00);
        write_ad9361_reg(base+4, 0x00);
    }

    for(addr=0; addr < num_unique_coeffs; addr++) {
        write_ad9361_reg(base+0, addr+num_unique_coeffs);
        write_ad9361_reg(base+1, (coeffs[num_unique_coeffs-1-addr]) & 0xff);
        write_ad9361_reg(base+2, (coeffs[num_unique_coeffs-1-addr] >> 8) & 0xff);
        write_ad9361_reg(base+5, 0xfe);
        write_ad9361_reg(base+4, 0x00);
        write_ad9361_reg(base+4, 0x00);
    }

    /* Disable the filter clock. */
    write_ad9361_reg(base+5, 0xf8);
}

/* Program the RX FIR Filter. */
void setup_rx_fir(int total_num_taps) {
    int num_taps = total_num_taps / 2;
    uint16_t coeffs[num_taps];
    int i;
    for(i = 0; i < num_taps; i++) {
        coeffs[num_taps - 1 - i] = default_128tap_coeffs[63 - i];
    }

    program_fir_filter(RX_TYPE, total_num_taps, coeffs);
}

/* Program the TX FIR Filter. */
void setup_tx_fir(int total_num_taps) {
    int num_taps = total_num_taps / 2;
    uint16_t coeffs[num_taps];
    int i;
    for(i = 0; i < num_taps; i++) {
        coeffs[num_taps - 1 - i] = default_128tap_coeffs[63 - i];
    }

    program_fir_filter(TX_TYPE, total_num_taps, coeffs);
}

/***********************************************************************
 * Calibration functions
 ***********************************************************************/

/* Calibrate and lock the BBPLL.
 *
 * This function should be called anytime the BBPLL is tuned. */
void calibrate_lock_bbpll() {
    write_ad9361_reg(0x03F, 0x05); // Start the BBPLL calibration
    write_ad9361_reg(0x03F, 0x01); // Clear the 'start' bit

    /* Increase BBPLL KV and phase margin. */
    write_ad9361_reg(0x04c, 0x86);
    write_ad9361_reg(0x04d, 0x01);
    write_ad9361_reg(0x04d, 0x05);

    /* Wait for BBPLL lock. */
    int count = 0;
    while(!(read_ad9361_reg(0x05e) & 0x80)) {
        if(count > 1000) {
            post_err_msg("BBPLL not locked");
            break;
        }

        count++;
        ad9361_msleep(2);
    }
}

/* Calibrate the synthesizer charge pumps.
 *
 * Technically, this calibration only needs to be done once, at device
 * initialization. */
void calibrate_synth_charge_pumps() {
    /* If this function ever gets called, and the ENSM isn't already in the
     * ALERT state, then something has gone horribly wrong. */
    if((read_ad9361_reg(0x017) & 0x0F) != 5) {
        post_err_msg("Catalina not in ALERT during cal");
    }

    /* Calibrate the RX synthesizer charge pump. */
    int count = 0;
    write_ad9361_reg(0x23d, 0x04);
    while(!(read_ad9361_reg(0x244) & 0x80)) {
        if(count > 5) {
            post_err_msg("RX charge pump cal failure");
            break;
        }

        count++;
        ad9361_msleep(1);
    }
    write_ad9361_reg(0x23d, 0x00);

    /* Calibrate the TX synthesizer charge pump. */
    count = 0;
    write_ad9361_reg(0x27d, 0x04);
    while(!(read_ad9361_reg(0x284) & 0x80)) {
        if(count > 5) {
            post_err_msg("TX charge pump cal failure");
            break;
        }

        count++;
        ad9361_msleep(1);
    }
    write_ad9361_reg(0x27d, 0x00);
}

/* Calibrate the analog BB RX filter.
 *
 * Note that the filter calibration depends heavily on the baseband
 * bandwidth, so this must be re-done after any change to the RX sample
 * rate. */
double calibrate_baseband_rx_analog_filter() {
    /* For filter tuning, baseband BW is half the complex BW, and must be
     * between 28e6 and 0.2e6. */
    double bbbw = _baseband_bw / 2.0;
    if(bbbw > 28e6) {
        bbbw = 28e6;
    } else if (bbbw < 0.20e6) {
        bbbw = 0.20e6;
    }

    double rxtune_clk = ((1.4 * bbbw * 2 *
            DOUBLE_PI) / DOUBLE_LN_2);

    _rx_bbf_tunediv = AD9361_MIN(511, AD9361_CEIL_INT(_bbpll_freq / rxtune_clk));

    reg_bbftune_config = (reg_bbftune_config & 0xFE) \
                         | ((_rx_bbf_tunediv >> 8) & 0x0001);

    double bbbw_mhz = bbbw / 1e6;

    double temp = ((bbbw_mhz - AD9361_FLOOR_INT(bbbw_mhz)) * 1000) / 7.8125;
    uint8_t bbbw_khz = (uint8_t) AD9361_MIN(127, (AD9361_FLOOR_INT(temp + 0.5)));

    /* Set corner frequencies and dividers. */
    write_ad9361_reg(0x1fb, (uint8_t)(bbbw_mhz));
    write_ad9361_reg(0x1fc, bbbw_khz);
    write_ad9361_reg(0x1f8, (_rx_bbf_tunediv & 0x00FF));
    write_ad9361_reg(0x1f9, reg_bbftune_config);

    /* RX Mix Voltage settings - only change with apps engineer help. */
    write_ad9361_reg(0x1d5, 0x3f);
    write_ad9361_reg(0x1c0, 0x03);

    /* Enable RX1 & RX2 filter tuners. */
    write_ad9361_reg(0x1e2, 0x02);
    write_ad9361_reg(0x1e3, 0x02);

    /* Run the calibration! */
    int count = 0;
    write_ad9361_reg(0x016, 0x80);
    while(read_ad9361_reg(0x016) & 0x80) {
        if(count > 100) {
            post_err_msg("RX baseband filter cal FAILURE");
            break;
        }

        count++;
        ad9361_msleep(1);
    }

    /* Disable RX1 & RX2 filter tuners. */
    write_ad9361_reg(0x1e2, 0x03);
    write_ad9361_reg(0x1e3, 0x03);

    return bbbw;
}

/* Calibrate the analog BB TX filter.
 *
 * Note that the filter calibration depends heavily on the baseband
 * bandwidth, so this must be re-done after any change to the TX sample
 * rate. */
double calibrate_baseband_tx_analog_filter() {
    /* For filter tuning, baseband BW is half the complex BW, and must be
     * between 28e6 and 0.2e6. */
    double bbbw = _baseband_bw / 2.0;
    if(bbbw > 20e6) {
        bbbw = 20e6;
    } else if (bbbw < 0.625e6) {
        bbbw = 0.625e6;
    }

    double txtune_clk = ((1.6 * bbbw * 2 *
            DOUBLE_PI) / DOUBLE_LN_2);

    uint16_t txbbfdiv = AD9361_MIN(511, (AD9361_CEIL_INT(_bbpll_freq / txtune_clk)));

    reg_bbftune_mode = (reg_bbftune_mode & 0xFE) \
                         | ((txbbfdiv >> 8) & 0x0001);

    /* Program the divider values. */
    write_ad9361_reg(0x0d6, (txbbfdiv & 0x00FF));
    write_ad9361_reg(0x0d7, reg_bbftune_mode);

    /* Enable the filter tuner. */
    write_ad9361_reg(0x0ca, 0x22);

    /* Calibrate! */
    int count = 0;
    write_ad9361_reg(0x016, 0x40);
    while(read_ad9361_reg(0x016) & 0x40) {
        if(count > 100) {
            post_err_msg("TX baseband filter cal FAILURE");
            break;
        }

        count++;
        ad9361_msleep(1);
    }

    /* Disable the filter tuner. */
    write_ad9361_reg(0x0ca, 0x26);

    return bbbw;
}

/* Calibrate the secondary TX filter.
 *
 * This filter also depends on the TX sample rate, so if a rate change is
 * made, the previous calibration will no longer be valid. */
void calibrate_secondary_tx_filter() {
    /* For filter tuning, baseband BW is half the complex BW, and must be
     * between 20e6 and 0.53e6. */
    double bbbw = _baseband_bw / 2.0;
    if(bbbw > 20e6) {
        bbbw = 20e6;
    } else if (bbbw < 0.53e6) {
        bbbw = 0.53e6;
    }

    double bbbw_mhz = bbbw / 1e6;

    /* Start with a resistor value of 100 Ohms. */
    int res = 100;

    /* Calculate target corner frequency. */
    double corner_freq = 5 * bbbw_mhz * 2 * DOUBLE_PI;

    /* Iterate through RC values to determine correct combination. */
    int cap = 0;
    int i;
    for(i = 0; i <= 3; i++) {
        cap = (AD9361_FLOOR_INT(0.5 + (( 1 / ((corner_freq * res) * 1e6)) * 1e12))) - 12;

        if(cap <= 63) {
            break;
        }

        res = res * 2;
    }
    if(cap > 63) {
        cap = 63;
    }

    uint8_t reg0d0, reg0d1, reg0d2;

    /* Translate baseband bandwidths to register settings. */
    if((bbbw_mhz * 2) <= 9) {
        reg0d0 = 0x59;
    } else if(((bbbw_mhz * 2) > 9) && ((bbbw_mhz * 2) <= 24)) {
        reg0d0 = 0x56;
    } else if((bbbw_mhz * 2) > 24) {
        reg0d0 = 0x57;
    } else {
        post_err_msg("Cal2ndTxFil: INVALID_CODE_PATH bad bbbw_mhz");
        reg0d0 = 0x00;
    }

    /* Translate resistor values to register settings. */
    if(res == 100) {
        reg0d1 = 0x0c;
    } else if(res == 200) {
        reg0d1 = 0x04;
    } else if(res == 400) {
        reg0d1 = 0x03;
    } else if(res == 800) {
        reg0d1 = 0x01;
    } else {
        reg0d1 = 0x0c;
    }

    reg0d2 = cap;

    /* Program the above-calculated values. Sweet. */
    write_ad9361_reg(0x0d2, reg0d2);
    write_ad9361_reg(0x0d1, reg0d1);
    write_ad9361_reg(0x0d0, reg0d0);
}

/* Calibrate the RX TIAs.
 *
 * Note that the values in the TIA register, after calibration, vary with
 * the RX gain settings. */
void calibrate_rx_TIAs() {

    uint8_t reg1eb = read_ad9361_reg(0x1eb) & 0x3F;
    uint8_t reg1ec = read_ad9361_reg(0x1ec) & 0x7F;
    uint8_t reg1e6 = read_ad9361_reg(0x1e6) & 0x07;
    uint8_t reg1db = 0x00;
    uint8_t reg1dc = 0x00;
    uint8_t reg1dd = 0x00;
    uint8_t reg1de = 0x00;
    uint8_t reg1df = 0x00;

    /* For calibration, baseband BW is half the complex BW, and must be
     * between 28e6 and 0.2e6. */
    double bbbw = _baseband_bw / 2.0;
    if(bbbw > 20e6) {
        bbbw = 20e6;
    } else if (bbbw < 0.20e6) {
        bbbw = 0.20e6;
    }
    double ceil_bbbw_mhz = AD9361_CEIL_INT(bbbw / 1e6);

    /* Do some crazy resistor and capacitor math. */
    int Cbbf = (reg1eb * 160) + (reg1ec * 10) + 140;
    int R2346 = 18300 * (reg1e6 & 0x07);
    double CTIA_fF = (Cbbf * R2346 * 0.56) / 3500;

    /* Translate baseband BW to register settings. */
    if(ceil_bbbw_mhz <= 3) {
        reg1db = 0xe0;
    } else if((ceil_bbbw_mhz > 3) && (ceil_bbbw_mhz <= 10)) {
        reg1db = 0x60;
    } else if(ceil_bbbw_mhz > 10) {
        reg1db = 0x20;
    } else {
        post_err_msg("CalRxTias: INVALID_CODE_PATH bad bbbw_mhz");
    }

    if(CTIA_fF > 2920) {
        reg1dc = 0x40;
        reg1de = 0x40;

        uint8_t temp = (uint8_t) AD9361_MIN(127, (AD9361_FLOOR_INT(0.5 + ((CTIA_fF - 400.0) / 320.0))));
        reg1dd = temp;
        reg1df = temp;
    } else {
        uint8_t temp = (uint8_t) AD9361_FLOOR_INT(0.5 + ((CTIA_fF - 400.0) / 40.0)) + 0x40;
        reg1dc = temp;
        reg1de = temp;
        reg1dd = 0;
        reg1df = 0;
    }

    /* w00t. Settings calculated. Program them and roll out. */
    write_ad9361_reg(0x1db, reg1db);
    write_ad9361_reg(0x1dd, reg1dd);
    write_ad9361_reg(0x1df, reg1df);
    write_ad9361_reg(0x1dc, reg1dc);
    write_ad9361_reg(0x1de, reg1de);
}

/* Setup the Catalina ADC.
 *
 * There are 40 registers that control the ADC's operation, most of the
 * values of which must be derived mathematically, dependent on the current
 * setting of the BBPLL. Note that the order of calculation is critical, as
 * some of the 40 registers depend on the values in others. */
void setup_adc() {
    double bbbw_mhz = (((_bbpll_freq / 1e6) / _rx_bbf_tunediv) * DOUBLE_LN_2) \
                  / (1.4 * 2 * DOUBLE_PI);

    /* For calibration, baseband BW is half the complex BW, and must be
     * between 28e6 and 0.2e6. */
    if(bbbw_mhz > 28) {
        bbbw_mhz = 28;
    } else if (bbbw_mhz < 0.20) {
        bbbw_mhz = 0.20;
    }

    uint8_t rxbbf_c3_msb = read_ad9361_reg(0x1eb) & 0x3F;
    uint8_t rxbbf_c3_lsb = read_ad9361_reg(0x1ec) & 0x7F;
    uint8_t rxbbf_r2346 = read_ad9361_reg(0x1e6) & 0x07;

    double fsadc = _adcclock_freq / 1e6;

    /* Sort out the RC time constant for our baseband bandwidth... */
    double rc_timeconst = 0.0;
    if(bbbw_mhz < 18) {
        rc_timeconst = (1 / ((1.4 * 2 * DOUBLE_PI) \
                            * (18300 * rxbbf_r2346)
                            * ((160e-15 * rxbbf_c3_msb)
                                + (10e-15 * rxbbf_c3_lsb) + 140e-15)
                            * (bbbw_mhz * 1e6)));
    } else {
        rc_timeconst = (1 / ((1.4 * 2 * DOUBLE_PI) \
                            * (18300 * rxbbf_r2346)
                            * ((160e-15 * rxbbf_c3_msb)
                                + (10e-15 * rxbbf_c3_lsb) + 140e-15)
                            * (bbbw_mhz * 1e6) * (1 + (0.01 * (bbbw_mhz - 18)))));
    }

    double scale_res = ad9361_sqrt(1 / rc_timeconst);
    double scale_cap = ad9361_sqrt(1 / rc_timeconst);

    double scale_snr = (_adcclock_freq < 80e6) ? 1.0 : 1.584893192;
    double maxsnr = 640 / 160;

    /* Calculate the values for all 40 settings registers.
     *
     * DO NOT TOUCH THIS UNLESS YOU KNOW EXACTLY WHAT YOU ARE DOING. kthx.*/
    uint8_t data[40];
    data[0] = 0;    data[1] = 0; data[2] = 0; data[3] = 0x24;
    data[4] = 0x24; data[5] = 0; data[6] = 0;
    data[7] = (uint8_t) AD9361_MIN(124, (AD9361_FLOOR_INT(-0.5
                    + (80.0 * scale_snr * scale_res
                    * AD9361_MIN(1.0, ad9361_sqrt(maxsnr * fsadc / 640.0))))));
    double data007 = data[7];
    data[8] = (uint8_t) AD9361_MIN(255, (AD9361_FLOOR_INT(0.5
                    + ((20.0 * (640.0 / fsadc) * ((data007 / 80.0))
                    / (scale_res * scale_cap))))));
    data[10] = (uint8_t) AD9361_MIN(127, (AD9361_FLOOR_INT(-0.5 + (77.0 * scale_res
                    * AD9361_MIN(1.0, ad9361_sqrt(maxsnr * fsadc / 640.0))))));
    double data010 = data[10];
    data[9] = (uint8_t) AD9361_MIN(127, (AD9361_FLOOR_INT(0.8 * data010)));
    data[11] = (uint8_t) AD9361_MIN(255, (AD9361_FLOOR_INT(0.5
                    + (20.0 * (640.0 / fsadc) * ((data010 / 77.0)
                    / (scale_res * scale_cap))))));
    data[12] = (uint8_t) AD9361_MIN(127, (AD9361_FLOOR_INT(-0.5
                    + (80.0 * scale_res * AD9361_MIN(1.0,
                    ad9361_sqrt(maxsnr * fsadc / 640.0))))));
    double data012 = data[12];
    data[13] = (uint8_t) AD9361_MIN(255, (AD9361_FLOOR_INT(-1.5
                    + (20.0 * (640.0 / fsadc) * ((data012 / 80.0)
                    / (scale_res * scale_cap))))));
    data[14] = 21 * (uint8_t)(AD9361_FLOOR_INT(0.1 * 640.0 / fsadc));
    data[15] = (uint8_t) AD9361_MIN(127, (1.025 * data007));
    double data015 = data[15];
    data[16] = (uint8_t) AD9361_MIN(127, (AD9361_FLOOR_INT((data015
                    * (0.98 + (0.02 * AD9361_MAX(1.0,
                    (640.0 / fsadc) / maxsnr)))))));
    data[17] = data[15];
    data[18] = (uint8_t) AD9361_MIN(127, (0.975 * (data010)));
    double data018 = data[18];
    data[19] = (uint8_t) AD9361_MIN(127, (AD9361_FLOOR_INT((data018
                    * (0.98 + (0.02 * AD9361_MAX(1.0,
                    (640.0 / fsadc) / maxsnr)))))));
    data[20] = data[18];
    data[21] = (uint8_t) AD9361_MIN(127, (0.975 * data012));
    double data021 = data[21];
    data[22] = (uint8_t) AD9361_MIN(127, (AD9361_FLOOR_INT((data021
                    * (0.98 + (0.02 * AD9361_MAX(1.0,
                    (640.0 / fsadc) / maxsnr)))))));
    data[23] = data[21];
    data[24] = 0x2e;
    data[25] = (uint8_t)(AD9361_FLOOR_INT(128.0 + AD9361_MIN(63.0,
                    63.0 * (fsadc / 640.0))));
    data[26] = (uint8_t)(AD9361_FLOOR_INT(AD9361_MIN(63.0, 63.0 * (fsadc / 640.0)
                    * (0.92 + (0.08 * (640.0 / fsadc))))));
    data[27] = (uint8_t)(AD9361_FLOOR_INT(AD9361_MIN(63.0,
                    32.0 * ad9361_sqrt(fsadc / 640.0))));
    data[28] = (uint8_t)(AD9361_FLOOR_INT(128.0 + AD9361_MIN(63.0,
                    63.0 * (fsadc / 640.0))));
    data[29] = (uint8_t)(AD9361_FLOOR_INT(AD9361_MIN(63.0,
                    63.0 * (fsadc / 640.0)
                    * (0.92 + (0.08 * (640.0 / fsadc))))));
    data[30] = (uint8_t)(AD9361_FLOOR_INT(AD9361_MIN(63.0,
                    32.0 * ad9361_sqrt(fsadc / 640.0))));
    data[31] = (uint8_t)(AD9361_FLOOR_INT(128.0 + AD9361_MIN(63.0,
                    63.0 * (fsadc / 640.0))));
    data[32] = (uint8_t)(AD9361_FLOOR_INT(AD9361_MIN(63.0,
                    63.0 * (fsadc / 640.0) * (0.92
                    + (0.08 * (640.0 / fsadc))))));
    data[33] = (uint8_t)(AD9361_FLOOR_INT(AD9361_MIN(63.0,
                    63.0 * ad9361_sqrt(fsadc / 640.0))));
    data[34] = (uint8_t) AD9361_MIN(127, (AD9361_FLOOR_INT(64.0
                    * ad9361_sqrt(fsadc / 640.0))));
    data[35] = 0x40;
    data[36] = 0x40;
    data[37] = 0x2c;
    data[38] = 0x00;
    data[39] = 0x00;

    /* Program the registers! */
    int i;
    for(i=0; i<40; i++) {
        write_ad9361_reg(0x200+i, data[i]);
    }

}

/* Calibrate the baseband DC offset.
 *
 * Note that this function is called from within the TX quadrature
 * calibration function! */
void calibrate_baseband_dc_offset() {
    write_ad9361_reg(0x193, 0x3f); // Calibration settings
    write_ad9361_reg(0x190, 0x0f); // Set tracking coefficient
    //write_ad9361_reg(0x190, /*0x0f*//*0xDF*/0x80*1 | 0x40*1 | (16+8/*+4*/)); // Set tracking coefficient: don't *4 counter, do decim /4, increased gain shift
    write_ad9361_reg(0x194, 0x01); // More calibration settings

    /* Start that calibration, baby. */
    int count = 0;
    write_ad9361_reg(0x016, 0x01);
    while(read_ad9361_reg(0x016) & 0x01) {
        if(count > 100) {
            post_err_msg("Baseband DC Offset Calibration Failure");
            break;
        }

        count++;
        ad9361_msleep(5);
    }
}

/* Calibrate the RF DC offset.
 *
 * Note that this function is called from within the TX quadrature
 * calibration function. */
void calibrate_rf_dc_offset() {
    /* Some settings are frequency-dependent. */
    if(_rx_freq < 4e9) {
        write_ad9361_reg(0x186, 0x32); // RF DC Offset count
        write_ad9361_reg(0x187, 0x24);
        write_ad9361_reg(0x188, 0x05);
    } else {
        write_ad9361_reg(0x186, 0x28); // RF DC Offset count
        write_ad9361_reg(0x187, 0x34);
        write_ad9361_reg(0x188, 0x06);
    }

    write_ad9361_reg(0x185, 0x20); // RF DC Offset wait count
    write_ad9361_reg(0x18b, 0x83);
    write_ad9361_reg(0x189, 0x30);

    /* Run the calibration! */
    int count = 0;
    write_ad9361_reg(0x016, 0x02);
    while(read_ad9361_reg(0x016) & 0x02) {
        if(count > 100) {
            post_err_msg("RF DC Offset Calibration Failure");
            break;
        }

        count++;
        ad9361_msleep(50);
    }
}

/* Start the RX quadrature calibration.
 *
 * Note that we are using Catalina's 'tracking' feature for RX quadrature
 * calibration, so once it starts it continues to free-run during operation.
 * It should be re-run for large frequency changes. */
void calibrate_rx_quadrature(void) {
    /* Configure RX Quadrature calibration settings. */
    write_ad9361_reg(0x168, 0x03); // Set tone level for cal
    write_ad9361_reg(0x16e, 0x25); // RX Gain index to use for cal
    write_ad9361_reg(0x16a, 0x75); // Set Kexp phase
    write_ad9361_reg(0x16b, 0x15); // Set Kexp amplitude
    write_ad9361_reg(0x169, 0xcf); // Continuous tracking mode
    write_ad9361_reg(0x18b, 0xad);
}

/* TX quadtrature calibration routine.
 *
 * The TX quadrature needs to be done twice, once for each TX chain, with
 * only one register change in between. Thus, this function enacts the
 * calibrations, and it is called from calibrate_tx_quadrature. */
void tx_quadrature_cal_routine(void) {

    /* This is a weird process, but here is how it works:
     * 1) Read the calibrated NCO frequency bits out of 0A3.
     * 2) Write the two bits to the RX NCO freq part of 0A0.
     * 3) Re-read 0A3 to get bits [5:0] because maybe they changed?
     * 4) Update only the TX NCO freq bits in 0A3.
     * 5) Profit (I hope). */
    uint8_t reg0a3 = read_ad9361_reg(0x0a3);
    uint8_t nco_freq = (reg0a3 & 0xC0);
    write_ad9361_reg(0x0a0, 0x15 | (nco_freq >> 1));
    reg0a3 = read_ad9361_reg(0x0a3);
    write_ad9361_reg(0x0a3, (reg0a3 & 0x3F) | nco_freq);

    /* It is possible to reach a configuration that won't operate correctly,
     * where the two test tones used for quadrature calibration are outside
     * of the RX BBF, and therefore don't make it to the ADC. We will check
     * for that scenario here. */
    double max_cal_freq = (((_baseband_bw * _tfir_factor) * ((nco_freq >> 6) + 1)) / 32) * 2;
    double bbbw = _baseband_bw / 2.0; // bbbw represents the one-sided BW
    if(bbbw > 28e6) {
        bbbw = 28e6;
    } else if (bbbw < 0.20e6) {
        bbbw = 0.20e6;
    }
    if (max_cal_freq > bbbw )
        post_err_msg("max_cal_freq > bbbw");
 
    write_ad9361_reg(0x0a1, 0x7B); // Set tracking coefficient
    write_ad9361_reg(0x0a9, 0xff); // Cal count
    write_ad9361_reg(0x0a2, 0x7f); // Cal Kexp
    write_ad9361_reg(0x0a5, 0x01); // Cal magnitude threshold VVVV
    write_ad9361_reg(0x0a6, 0x01);

    /* The gain table index used for calibration must be adjusted for the
     * mid-table to get a TIA index = 1 and LPF index = 0. */
    if((_rx_freq >= 1300e6) && (_rx_freq < 4000e6)) {
        write_ad9361_reg(0x0aa, 0x22); // Cal gain table index
    } else {
        write_ad9361_reg(0x0aa, 0x25); // Cal gain table index
    }

    write_ad9361_reg(0x0a4, 0xf0); // Cal setting conut
    write_ad9361_reg(0x0ae, 0x00); // Cal LPF gain index (split mode)

    /* First, calibrate the baseband DC offset. */
    calibrate_baseband_dc_offset();

    /* Second, calibrate the RF DC offset. */
    calibrate_rf_dc_offset();

    /* Now, calibrate the TX quadrature! */
    int count = 0;
    write_ad9361_reg(0x016, 0x10);
    while(read_ad9361_reg(0x016) & 0x10) {
        if(count > 100) {
            post_err_msg("TX Quadrature Calibration Failure");
            break;
        }

        count++;
        ad9361_msleep(10);
    }
}

/* Run the TX quadrature calibration.
 *
 * Note that from within this function we are also triggering the baseband
 * and RF DC calibrations. */
void calibrate_tx_quadrature(void) {
    /* Make sure we are, in fact, in the ALERT state. If not, something is
     * terribly wrong in the driver execution flow. */
    if((read_ad9361_reg(0x017) & 0x0F) != 5) {
        post_err_msg("TX Quad Cal started, but not in ALERT");
    }

    /* Turn off free-running and continuous calibrations. Note that this
     * will get turned back on at the end of the RX calibration routine. */
    write_ad9361_reg(0x169, 0xc0);

    /* This calibration must be done in a certain order, and for both TX_A
     * and TX_B, separately. Store the original setting so that we can
     * restore it later. */
    uint8_t orig_reg_inputsel = reg_inputsel;

    /***********************************************************************
     * TX1/2-A Calibration
     **********************************************************************/
    reg_inputsel = reg_inputsel & 0xBF;
    write_ad9361_reg(0x004, reg_inputsel);

    tx_quadrature_cal_routine();

    /***********************************************************************
     * TX1/2-B Calibration
     **********************************************************************/
    reg_inputsel = reg_inputsel | 0x40;
    write_ad9361_reg(0x004, reg_inputsel);

    tx_quadrature_cal_routine();

    /***********************************************************************
     * fin
     **********************************************************************/
    reg_inputsel = orig_reg_inputsel;
    write_ad9361_reg(0x004, orig_reg_inputsel);
}


/***********************************************************************
 * Other Misc Setup Functions
 ***********************************************************************/

/* Program the mixer gain table.
 *
 * Note that this table is fixed for all frequency settings. */
void program_mixer_gm_subtable() {
    uint8_t gain[] = {0x78, 0x74, 0x70, 0x6C, 0x68, 0x64, 0x60, 0x5C, 0x58,
                      0x54, 0x50, 0x4C, 0x48, 0x30, 0x18, 0x00};
    uint8_t gm[] = {0x00, 0x0D, 0x15, 0x1B, 0x21, 0x25, 0x29, 0x2C, 0x2F,
                    0x31, 0x33, 0x34, 0x35, 0x3A, 0x3D, 0x3E};

    /* Start the clock. */
    write_ad9361_reg(0x13f, 0x02);

    /* Program the GM Sub-table. */
    int i;
    for(i = 15; i >= 0; i--) {
        write_ad9361_reg(0x138, i);
        write_ad9361_reg(0x139, gain[(15 - i)]);
        write_ad9361_reg(0x13A, 0x00);
        write_ad9361_reg(0x13B, gm[(15 - i)]);
        write_ad9361_reg(0x13F, 0x06);
        write_ad9361_reg(0x13C, 0x00);
        write_ad9361_reg(0x13C, 0x00);
    }

    /* Clear write bit and stop clock. */
    write_ad9361_reg(0x13f, 0x02);
    write_ad9361_reg(0x13C, 0x00);
    write_ad9361_reg(0x13C, 0x00);
    write_ad9361_reg(0x13f, 0x00);
}

/* Program the gain table.
 *
 * There are three different gain tables for different frequency ranges! */
void program_gain_table() {

    /* Figure out which gain table we should be using for our current
     * frequency band. */
    uint8_t (*gain_table)[5] = NULL;
    uint8_t new_gain_table;
    if(_rx_freq  < 1300e6) {
        gain_table = gain_table_sub_1300mhz;
        new_gain_table = 1;
    } else if(_rx_freq < 4e9) {
        gain_table = gain_table_1300mhz_to_4000mhz;
        new_gain_table = 2;
    } else if(_rx_freq <= 6e9) {
        gain_table = gain_table_4000mhz_to_6000mhz;
        new_gain_table = 3;
    } else {
        post_err_msg("Wrong _rx_freq value");
        new_gain_table = 1;
    }

    /* Only re-program the gain table if there has been a band change. */
    if(_curr_gain_table == new_gain_table) {
        return;
    } else {
        _curr_gain_table = new_gain_table;
    }

    /* Okay, we have to program a new gain table. Sucks, brah. Start the
     * gain table clock. */
    write_ad9361_reg(0x137, 0x1A);

    /* IT'S PROGRAMMING TIME. */
    uint8_t index = 0;
    for(; index < 77; index++) {
        write_ad9361_reg(0x130, index);
        write_ad9361_reg(0x131, gain_table[index][1]);
        write_ad9361_reg(0x132, gain_table[index][2]);
        write_ad9361_reg(0x133, gain_table[index][3]);
        write_ad9361_reg(0x137, 0x1E);
        write_ad9361_reg(0x134, 0x00);
        write_ad9361_reg(0x134, 0x00);
    }

    /* Everything above the 77th index is zero. */
    for(; index < 91; index++) {
        write_ad9361_reg(0x130, index);
        write_ad9361_reg(0x131, 0x00);
        write_ad9361_reg(0x132, 0x00);
        write_ad9361_reg(0x133, 0x00);
        write_ad9361_reg(0x137, 0x1E);
        write_ad9361_reg(0x134, 0x00);
        write_ad9361_reg(0x134, 0x00);
    }

    /* Clear the write bit and stop the gain clock. */
    write_ad9361_reg(0x137, 0x1A);
    write_ad9361_reg(0x134, 0x00);
    write_ad9361_reg(0x134, 0x00);
    write_ad9361_reg(0x137, 0x00);
}

/* Setup gain control registers.
 *
 * This really only needs to be done once, at initialization. */
void setup_gain_control() {
    write_ad9361_reg(0x0FA, 0xE0); // Gain Control Mode Select
    write_ad9361_reg(0x0FB, 0x08); // Table, Digital Gain, Man Gain Ctrl
    write_ad9361_reg(0x0FC, 0x23); // Incr Step Size, ADC Overrange Size
    write_ad9361_reg(0x0FD, 0x4C); // Max Full/LMT Gain Table Index
    write_ad9361_reg(0x0FE, 0x44); // Decr Step Size, Peak Overload Time
    write_ad9361_reg(0x100, 0x6F); // Max Digital Gain
    write_ad9361_reg(0x104, 0x2F); // ADC Small Overload Threshold
    write_ad9361_reg(0x105, 0x3A); // ADC Large Overload Threshold
    write_ad9361_reg(0x107, 0x31); // Large LMT Overload Threshold
    write_ad9361_reg(0x108, 0x39); // Small LMT Overload Threshold
    write_ad9361_reg(0x109, 0x23); // Rx1 Full/LMT Gain Index
    write_ad9361_reg(0x10A, 0x58); // Rx1 LPF Gain Index
    write_ad9361_reg(0x10B, 0x00); // Rx1 Digital Gain Index
    write_ad9361_reg(0x10C, 0x23); // Rx2 Full/LMT Gain Index
    write_ad9361_reg(0x10D, 0x18); // Rx2 LPF Gain Index
    write_ad9361_reg(0x10E, 0x00); // Rx2 Digital Gain Index
    write_ad9361_reg(0x114, 0x30); // Low Power Threshold
    write_ad9361_reg(0x11A, 0x27); // Initial LMT Gain Limit
    write_ad9361_reg(0x081, 0x00); // Tx Symbol Gain Control
}

/* Setup the RX or TX synthesizers.
 *
 * This setup depends on a fixed look-up table, which is stored in an
 * included header file. The table is indexed based on the passed VCO rate.
 */
void setup_synth(int which, double vcorate) {
    /* The vcorates in the vco_index array represent lower boundaries for
     * rates. Once we find a match, we use that index to look-up the rest of
     * the register values in the LUT. */
    int vcoindex = 0;
    int i;
    for(i = 0; i < 53; i++) {
        vcoindex = i;
        if(vcorate > vco_index[i]) {
            break;
        }
    }

    if (vcoindex > 53)
        post_err_msg("vcoindex > 53");

    /* Parse the values out of the LUT based on our calculated index... */
    uint8_t vco_output_level = synth_cal_lut[vcoindex][0];
    uint8_t vco_varactor = synth_cal_lut[vcoindex][1];
    uint8_t vco_bias_ref = synth_cal_lut[vcoindex][2];
    uint8_t vco_bias_tcf = synth_cal_lut[vcoindex][3];
    uint8_t vco_cal_offset = synth_cal_lut[vcoindex][4];
    uint8_t vco_varactor_ref = synth_cal_lut[vcoindex][5];
    uint8_t charge_pump_curr = synth_cal_lut[vcoindex][6];
    uint8_t loop_filter_c2 = synth_cal_lut[vcoindex][7];
    uint8_t loop_filter_c1 = synth_cal_lut[vcoindex][8];
    uint8_t loop_filter_r1 = synth_cal_lut[vcoindex][9];
    uint8_t loop_filter_c3 = synth_cal_lut[vcoindex][10];
    uint8_t loop_filter_r3 = synth_cal_lut[vcoindex][11];

    /* ... annnd program! */
    if(which == RX_TYPE) {
        write_ad9361_reg(0x23a, 0x40 | vco_output_level);
        write_ad9361_reg(0x239, 0xC0 | vco_varactor);
        write_ad9361_reg(0x242, vco_bias_ref | (vco_bias_tcf << 3));
        write_ad9361_reg(0x238, (vco_cal_offset << 3));
        write_ad9361_reg(0x245, 0x00);
        write_ad9361_reg(0x251, vco_varactor_ref);
        write_ad9361_reg(0x250, 0x70);
        write_ad9361_reg(0x23b, 0x80 | charge_pump_curr);
        write_ad9361_reg(0x23e, loop_filter_c1 | (loop_filter_c2 << 4));
        write_ad9361_reg(0x23f, loop_filter_c3 | (loop_filter_r1 << 4));
        write_ad9361_reg(0x240, loop_filter_r3);
    } else if(which == TX_TYPE) {
        write_ad9361_reg(0x27a, 0x40 | vco_output_level);
        write_ad9361_reg(0x279, 0xC0 | vco_varactor);
        write_ad9361_reg(0x282, vco_bias_ref | (vco_bias_tcf << 3));
        write_ad9361_reg(0x278, (vco_cal_offset << 3));
        write_ad9361_reg(0x285, 0x00);
        write_ad9361_reg(0x291, vco_varactor_ref);
        write_ad9361_reg(0x290, 0x70);
        write_ad9361_reg(0x27b, 0x80 | charge_pump_curr);
        write_ad9361_reg(0x27e, loop_filter_c1 | (loop_filter_c2 << 4));
        write_ad9361_reg(0x27f, loop_filter_c3 | (loop_filter_r1 << 4));
        write_ad9361_reg(0x280, loop_filter_r3);
    } else {
        post_err_msg("[setup_synth] INVALID_CODE_PATH");
    }
}


/* Tune the baseband VCO.
 *
 * This clock signal is what gets fed to the ADCs and DACs. This function is
 * not exported outside of this file, and is invoked based on the rate
 * fed to the public set_clock_rate function. */
double tune_bbvco(const double rate) {
    msg("[tune_bbvco] rate=%.10f", rate);
    
    /* Let's not re-tune to the same frequency over and over... */
    if(freq_is_nearly_equal(rate, _req_coreclk)) {
        return _adcclock_freq;
    }

    _req_coreclk = rate;

    const double fref = 40e6;
    const int modulus = 2088960;
    const double vcomax = 1430e6;
    const double vcomin = 672e6;
    double vcorate;
    int vcodiv;
    
    /* Iterate over VCO dividers until appropriate divider is found. */
    int i = 1;
    for(; i <= 6; i++) {
        vcodiv = 1 << i;
        vcorate = rate * vcodiv;
        
        if(vcorate >= vcomin && vcorate <= vcomax) break;
    }
    if(i == 7) 
        post_err_msg("[tune_bbvco] wrong vcorate");
    
    msg("[tune_bbvco] vcodiv=%d vcorate=%.10f", vcodiv, vcorate);
    
    /* Fo = Fref * (Nint + Nfrac / mod) */
    int nint = vcorate / fref;
    msg("[tune_bbvco] (nint)=%.10f", (vcorate / fref));
    int nfrac = lround(((vcorate / fref) - (double)nint) * (double)modulus);
    msg("[tune_bbvco] (nfrac)=%.10f", (((vcorate / fref) - (double)nint) * (double)modulus));
    msg("[tune_bbvco] nint=%d nfrac=%d", nint, nfrac);
    double actual_vcorate = fref * ((double)nint + ((double)nfrac / (double)modulus));
    
    /* Scale CP current according to VCO rate */
    const double icp_baseline = 150e-6;
    const double freq_baseline = 1280e6;
    double icp = icp_baseline * (actual_vcorate / freq_baseline);
    int icp_reg = (icp / 25e-6) - 1;

    write_ad9361_reg(0x045, 0x00);            // REFCLK / 1 to BBPLL
    write_ad9361_reg(0x046, icp_reg & 0x3F);  // CP current
    write_ad9361_reg(0x048, 0xe8);            // BBPLL loop filters
    write_ad9361_reg(0x049, 0x5b);            // BBPLL loop filters
    write_ad9361_reg(0x04a, 0x35);            // BBPLL loop filters

    write_ad9361_reg(0x04b, 0xe0);
    write_ad9361_reg(0x04e, 0x10);            // Max accuracy

    write_ad9361_reg(0x043, nfrac & 0xFF);         // Nfrac[7:0]
    write_ad9361_reg(0x042, (nfrac >> 8) & 0xFF);  // Nfrac[15:8]
    write_ad9361_reg(0x041, (nfrac >> 16) & 0xFF); // Nfrac[23:16]
    write_ad9361_reg(0x044, nint);                 // Nint

    calibrate_lock_bbpll();

    reg_bbpll = (reg_bbpll & 0xF8) | i;

    _bbpll_freq = actual_vcorate;
    _adcclock_freq = (actual_vcorate / vcodiv);

    return _adcclock_freq;
}

/* This function re-programs all of the gains in the system.
 *
 * Because the gain values match to different gain indices based on the
 * current operating band, this function can be called to update all gain
 * settings to the appropriate index after a re-tune. */
void program_gains() {
    set_gain(RX_TYPE,1, _rx1_gain);
    set_gain(RX_TYPE,2, _rx2_gain);
    set_gain(TX_TYPE,1, _tx1_gain);
    set_gain(TX_TYPE,2, _tx2_gain);
}

/* This is the internal tune function, not available for a host call.
 *
 * Calculate the VCO settings for the requested frquency, and then either
 * tune the RX or TX VCO. */
double tune_helper(int which, const double value) {

    /* The RFPLL runs from 6 GHz - 12 GHz */
    const double fref = 80e6;
    const int modulus = 8388593;
    const double vcomax = 12e9;
    const double vcomin = 6e9;
    double vcorate;
    int vcodiv;

    /* Iterate over VCO dividers until appropriate divider is found. */
    int i;
    for(i = 0; i <= 6; i++) {
        vcodiv = 2 << i;
        vcorate = value * vcodiv;
        if(vcorate >= vcomin && vcorate <= vcomax) break;
    }
    if(i == 7) 
        post_err_msg("RFVCO can't find valid VCO rate!");

    int nint = vcorate / fref;
    int nfrac = ((vcorate / fref) - nint) * modulus;

    double actual_vcorate = fref * (nint + (double)(nfrac)/modulus);
    double actual_lo = actual_vcorate / vcodiv;

    // UHD_VAR(actual_lo); // TODO: 

    if(which == RX_TYPE) {

        _req_rx_freq = value;

        /* Set band-specific settings. */
        if(value < AD9361_RX_BAND_EDGE0) {
            reg_inputsel = (reg_inputsel & 0xC0) | 0x30;
        } else if((value >= AD9361_RX_BAND_EDGE0) && (value < AD9361_RX_BAND_EDGE1)) {
            reg_inputsel = (reg_inputsel & 0xC0) | 0x0C;
        } else if((value >= AD9361_RX_BAND_EDGE1) && (value <= 6e9)) {
            reg_inputsel = (reg_inputsel & 0xC0) | 0x03;
        } else {
            post_err_msg("[tune_helper] INVALID_CODE_PATH");
        }

        write_ad9361_reg(0x004, reg_inputsel);

        /* Store vcodiv setting. */
        reg_vcodivs = (reg_vcodivs & 0xF0) | (i & 0x0F);

        /* Setup the synthesizer. */
        setup_synth(RX_TYPE, actual_vcorate);

        /* Tune!!!! */
        write_ad9361_reg(0x233, nfrac & 0xFF);
        write_ad9361_reg(0x234, (nfrac >> 8) & 0xFF);
        write_ad9361_reg(0x235, (nfrac >> 16) & 0xFF);
        write_ad9361_reg(0x232, (nint >> 8) & 0xFF);
        write_ad9361_reg(0x231, nint & 0xFF);
        write_ad9361_reg(0x005, reg_vcodivs);

        /* Lock the PLL! */
        ad9361_msleep(2);
        if((read_ad9361_reg(0x247) & 0x02) == 0) {
            post_err_msg("RX PLL NOT LOCKED");
        }

        _rx_freq = actual_lo;

        return actual_lo;

    } else {

        _req_tx_freq = value;

        /* Set band-specific settings. */
        if(value < AD9361_TX_BAND_EDGE) {
            reg_inputsel = reg_inputsel | 0x40;
        } else if((value >= AD9361_TX_BAND_EDGE) && (value <= 6e9)) {
            reg_inputsel = reg_inputsel & 0xBF;
        } else {
            post_err_msg("[tune_helper] INVALID_CODE_PATH");
        }

        write_ad9361_reg(0x004, reg_inputsel);

        /* Store vcodiv setting. */
        reg_vcodivs = (reg_vcodivs & 0x0F) | ((i & 0x0F) << 4);

        /* Setup the synthesizer. */
        setup_synth(TX_TYPE, actual_vcorate);

        /* Tune it, homey. */
        write_ad9361_reg(0x273, nfrac & 0xFF);
        write_ad9361_reg(0x274, (nfrac >> 8) & 0xFF);
        write_ad9361_reg(0x275, (nfrac >> 16) & 0xFF);
        write_ad9361_reg(0x272, (nint >> 8) & 0xFF);
        write_ad9361_reg(0x271, nint & 0xFF);
        write_ad9361_reg(0x005, reg_vcodivs);

        /* Lock the PLL! */
        ad9361_msleep(2);
        if((read_ad9361_reg(0x287) & 0x02) == 0) {
            post_err_msg("TX PLL NOT LOCKED");
        }

        _tx_freq = actual_lo;

        return actual_lo;
    }
}

/* Configure the various clock / sample rates in the RX and TX chains.
 *
 * Functionally, this function configures Catalina's RX and TX rates. For
 * a requested TX & RX rate, it sets the interpolation & decimation filters,
 * and tunes the VCO that feeds the ADCs and DACs. 
 */
double setup_rates(const double rate) {

    /* If we make it into this function, then we are tuning to a new rate.
     * Store the new rate. */
    _req_clock_rate = rate;

    /* Set the decimation and interpolation values in the RX and TX chains.
     * This also switches filters in / out. Note that all transmitters and
     * receivers have to be turned on for the calibration portion of
     * bring-up, and then they will be switched out to reflect the actual
     * user-requested antenna selections. */
    int divfactor = 0;
    _tfir_factor = 0;
    if(rate < 0.33e6) {
        // RX1 + RX2 enabled, 3, 2, 2, 4
        reg_rxfilt = B8( 11101111 ) ;

        // TX1 + TX2 enabled, 3, 2, 2, 4
        reg_txfilt = B8( 11101111 ) ;

        divfactor = 48;
        _tfir_factor = 2;
    } else if(rate < 0.66e6) {
        // RX1 + RX2 enabled, 2, 2, 2, 4
        reg_rxfilt = B8( 11011111 ) ;

        // TX1 + TX2 enabled, 2, 2, 2, 4
        reg_txfilt = B8( 11011111 ) ;

        divfactor = 32;
        _tfir_factor = 2;
    } else if(rate <= 20e6) {
        // RX1 + RX2 enabled, 2, 2, 2, 2
        reg_rxfilt = B8( 11011110 ) ;

        // TX1 + TX2 enabled, 2, 2, 2, 2
        reg_txfilt = B8( 11011110 ) ;

        divfactor = 16;
        _tfir_factor = 2;
    } else if((rate > 20e6) && (rate < 23e6)) {
        // RX1 + RX2 enabled, 3, 2, 2, 2
        reg_rxfilt = B8( 11101110 ) ;

        // TX1 + TX2 enabled, 3, 1, 2, 2
        reg_txfilt = B8( 11100110 ) ;

        divfactor = 24;
        _tfir_factor = 2;
    } else if((rate >= 23e6) && (rate < 41e6)) {
        // RX1 + RX2 enabled, 2, 2, 2, 2
        reg_rxfilt = B8( 11011110 ) ;

        // TX1 + TX2 enabled, 1, 2, 2, 2
        reg_txfilt = B8( 11001110 ) ;

        divfactor = 16;
        _tfir_factor = 2;
    } else if((rate >= 41e6) && (rate <= 56e6)) {
        // RX1 + RX2 enabled, 3, 1, 2, 2
        reg_rxfilt = B8( 11100110 ) ;

        // TX1 + TX2 enabled, 3, 1, 1, 2
        reg_txfilt = B8( 11100010 ) ;

        divfactor = 12;
        _tfir_factor = 2;
    } else if((rate > 56e6) && (rate <= 61.44e6)) {
        // RX1 + RX2 enabled, 3, 1, 1, 2
        reg_rxfilt = B8( 11100010 ) ;

        // TX1 + TX2 enabled, 3, 1, 1, 1
        reg_txfilt = B8( 11100001 ) ;

        divfactor = 6;
        _tfir_factor = 1;
    } else {
        // should never get in here
        post_err_msg("[setup_rates] INVALID_CODE_PATH");
    }
    
    msg("[setup_rates] divfactor=%d", divfactor);

    /* Tune the BBPLL to get the ADC and DAC clocks. */
    const double adcclk = tune_bbvco(rate * divfactor);
    double dacclk = adcclk;

    /* The DAC clock must be <= 336e6, and is either the ADC clock or 1/2 the
     * ADC clock.*/
    if(adcclk > 336e6) {
        /* Make the DAC clock = ADC/2, and bypass the TXFIR. */
        reg_bbpll = reg_bbpll | 0x08;
        dacclk = adcclk / 2.0;
    } else {
        reg_bbpll = reg_bbpll & 0xF7;
    }

    /* Set the dividers / interpolators in Catalina. */
    write_ad9361_reg(0x002, reg_txfilt);
    write_ad9361_reg(0x003, reg_rxfilt);
    write_ad9361_reg(0x004, reg_inputsel);
    write_ad9361_reg(0x00A, reg_bbpll);
    
    msg("[setup_rates] adcclk=%f", adcclk);
    _baseband_bw = (adcclk / divfactor);
    
    /* Setup the RX and TX FIR filters. Scale the number of taps based on
     * the clock speed. */
    const int max_tx_taps = 16 * AD9361_MIN((int)((dacclk / rate) + 0.5), \
            AD9361_MIN(4 * (1 << _tfir_factor), 8));
    const int max_rx_taps = AD9361_MIN((16 * (int)(adcclk / rate)), 128);

    const int num_tx_taps = get_num_taps(max_tx_taps);
    const int num_rx_taps = get_num_taps(max_rx_taps);

    setup_tx_fir(num_tx_taps);
    setup_rx_fir(num_rx_taps);

    return _baseband_bw;
}

/***********************************************************************
 * Publicly exported functions to host calls
 **********************************************************************/
void init_ad9361(void) {

    /* Initialize shadow registers. */
    reg_vcodivs = 0x00;
    reg_inputsel = 0x30;
    reg_rxfilt = 0x00;
    reg_txfilt = 0x00;
    reg_bbpll = 0x02;
    reg_bbftune_config = 0x1e;
    reg_bbftune_mode = 0x1e;

    /* Initialize private VRQ fields. */
    _rx_freq = 0.0;
    _tx_freq = 0.0;
    _req_rx_freq = 0.0;
    _req_tx_freq = 0.0;
    _baseband_bw = 0.0;
    _req_clock_rate = 0.0;
    _req_coreclk = 0.0;
    _bbpll_freq = 0.0;
    _adcclock_freq = 0.0;
    _rx_bbf_tunediv = 0;
    _curr_gain_table = 0;
    _rx1_gain = 0;
    _rx2_gain = 0;
    _tx1_gain = 0;
    _tx2_gain = 0;

    /* Reset the device. */
    write_ad9361_reg(0x000,0x01);
    write_ad9361_reg(0x000,0x00);
    ad9361_msleep(20);

    /* There is not a WAT big enough for this. */
    write_ad9361_reg(0x3df, 0x01);

    write_ad9361_reg(0x2a6, 0x0e); // Enable master bias
    write_ad9361_reg(0x2a8, 0x0e); // Set bandgap trim

    /* Set RFPLL ref clock scale to REFCLK * 2 */
    write_ad9361_reg(0x2ab, 0x07);
    write_ad9361_reg(0x2ac, 0xff);

    /* Enable clocks. */
    if (AD9361_CLOCKING_MODE == 0)
    {
        write_ad9361_reg(0x009, 0x17);
    }
    if (AD9361_CLOCKING_MODE == 1)
    {
        write_ad9361_reg(0x009, 0x07);
        write_ad9361_reg(0x292, 0x08);
        write_ad9361_reg(0x293, 0x80);
        write_ad9361_reg(0x294, 0x00);
        write_ad9361_reg(0x295, 0x14);
    }
    ad9361_msleep(20);

    /* Tune the BBPLL, write TX and RX FIRS. */
    setup_rates(50e6);

    /* Setup data ports (FDD dual port DDR CMOS):
     *      FDD dual port DDR CMOS no swap.
     *      Force TX on one port, RX on the other. */
    write_ad9361_reg(0x010, 0xc8);
    write_ad9361_reg(0x011, 0x00);
    write_ad9361_reg(0x012, 0x02);

    /* Data delay for TX and RX data clocks */
    write_ad9361_reg(0x006, 0x0F);
    write_ad9361_reg(0x007, 0x0F);

    /* Setup AuxDAC */
    write_ad9361_reg(0x018, 0x00); // AuxDAC1 Word[9:2]
    write_ad9361_reg(0x019, 0x00); // AuxDAC2 Word[9:2]
    write_ad9361_reg(0x01A, 0x00); // AuxDAC1 Config and Word[1:0]
    write_ad9361_reg(0x01B, 0x00); // AuxDAC2 Config and Word[1:0]
    write_ad9361_reg(0x023, 0xFF); // AuxDAC Manaul/Auto Control
    write_ad9361_reg(0x026, 0x00); // AuxDAC Manual Select Bit/GPO Manual Select
    write_ad9361_reg(0x030, 0x00); // AuxDAC1 Rx Delay
    write_ad9361_reg(0x031, 0x00); // AuxDAC1 Tx Delay
    write_ad9361_reg(0x032, 0x00); // AuxDAC2 Rx Delay
    write_ad9361_reg(0x033, 0x00); // AuxDAC2 Tx Delay

    /* Setup AuxADC */
    write_ad9361_reg(0x00B, 0x00); // Temp Sensor Setup (Offset)
    write_ad9361_reg(0x00C, 0x00); // Temp Sensor Setup (Temp Window)
    write_ad9361_reg(0x00D, 0x03); // Temp Sensor Setup (Periodic Measure)
    write_ad9361_reg(0x00F, 0x04); // Temp Sensor Setup (Decimation)
    write_ad9361_reg(0x01C, 0x10); // AuxADC Setup (Clock Div)
    write_ad9361_reg(0x01D, 0x01); // AuxADC Setup (Decimation/Enable)

    /* Setup control outputs. */
    write_ad9361_reg(0x035, 0x07);
    write_ad9361_reg(0x036, 0xFF);

    /* Setup GPO */
    write_ad9361_reg(0x03a, 0x27); //set delay register
    write_ad9361_reg(0x020, 0x00); // GPO Auto Enable Setup in RX and TX
    write_ad9361_reg(0x027, 0x03); // GPO Manual and GPO auto value in ALERT
    write_ad9361_reg(0x028, 0x00); // GPO_0 RX Delay
    write_ad9361_reg(0x029, 0x00); // GPO_1 RX Delay
    write_ad9361_reg(0x02A, 0x00); // GPO_2 RX Delay
    write_ad9361_reg(0x02B, 0x00); // GPO_3 RX Delay
    write_ad9361_reg(0x02C, 0x00); // GPO_0 TX Delay
    write_ad9361_reg(0x02D, 0x00); // GPO_1 TX Delay
    write_ad9361_reg(0x02E, 0x00); // GPO_2 TX Delay
    write_ad9361_reg(0x02F, 0x00); // GPO_3 TX Delay

    write_ad9361_reg(0x261, 0x00); // RX LO power
    write_ad9361_reg(0x2a1, 0x00); // TX LO power
    write_ad9361_reg(0x248, 0x0b); // en RX VCO LDO
    write_ad9361_reg(0x288, 0x0b); // en TX VCO LDO
    write_ad9361_reg(0x246, 0x02); // pd RX cal Tcf
    write_ad9361_reg(0x286, 0x02); // pd TX cal Tcf
    write_ad9361_reg(0x249, 0x8e); // rx vco cal length
    write_ad9361_reg(0x289, 0x8e); // rx vco cal length
    write_ad9361_reg(0x23b, 0x80); // set RX MSB?, FIXME 0x89 magic cp
    write_ad9361_reg(0x27b, 0x80); // "" TX //FIXME 0x88 see above
    write_ad9361_reg(0x243, 0x0d); // set rx prescaler bias
    write_ad9361_reg(0x283, 0x0d); // "" TX

    write_ad9361_reg(0x23d, 0x00); // Clear half VCO cal clock setting
    write_ad9361_reg(0x27d, 0x00); // Clear half VCO cal clock setting

    /* The order of the following process is EXTREMELY important. If the
     * below functions are modified at all, device initialization and
     * calibration might be broken in the process! */

    write_ad9361_reg(0x015, 0x04); // dual synth mode, synth en ctrl en
    write_ad9361_reg(0x014, 0x05); // use SPI for TXNRX ctrl, to ALERT, TX on
    write_ad9361_reg(0x013, 0x01); // enable ENSM
    ad9361_msleep(1);

    calibrate_synth_charge_pumps();

    tune_helper(RX_TYPE, 800e6);
    tune_helper(TX_TYPE, 850e6);

    program_mixer_gm_subtable();
    program_gain_table();
    setup_gain_control();

    calibrate_baseband_rx_analog_filter();
    calibrate_baseband_tx_analog_filter();
    calibrate_rx_TIAs();
    calibrate_secondary_tx_filter();

    setup_adc(); 

    calibrate_tx_quadrature();
    calibrate_rx_quadrature();

    write_ad9361_reg(0x012, 0x02); // cals done, set PPORT config
    write_ad9361_reg(0x013, 0x01); // Set ENSM FDD bit
    write_ad9361_reg(0x015, 0x04); // dual synth mode, synth en ctrl en

    /* Default TX attentuation to 10dB on both TX1 and TX2 */
    write_ad9361_reg(0x073, 0x00);
    write_ad9361_reg(0x074, 0x00);
    write_ad9361_reg(0x075, 0x00);
    write_ad9361_reg(0x076, 0x00);

    /* Setup RSSI Measurements */
    write_ad9361_reg(0x150, 0x0E); // RSSI Measurement Duration 0, 1
    write_ad9361_reg(0x151, 0x00); // RSSI Measurement Duration 2, 3
    write_ad9361_reg(0x152, 0xFF); // RSSI Weighted Multiplier 0
    write_ad9361_reg(0x153, 0x00); // RSSI Weighted Multiplier 1
    write_ad9361_reg(0x154, 0x00); // RSSI Weighted Multiplier 2
    write_ad9361_reg(0x155, 0x00); // RSSI Weighted Multiplier 3
    write_ad9361_reg(0x156, 0x00); // RSSI Delay
    write_ad9361_reg(0x157, 0x00); // RSSI Wait
    write_ad9361_reg(0x158, 0x0D); // RSSI Mode Select
    write_ad9361_reg(0x15C, 0x67); // Power Measurement Duration

    /* Turn on the default RX & TX chains. */
    set_active_chains(true, false, false, false);

    /* Set TXers & RXers on (only works in FDD mode) */
    write_ad9361_reg(0x014, 0x21);
}


/* This function sets the RX / TX rate between Catalina and the FPGA, and
 * thus determines the interpolation / decimation required in the FPGA to
 * achieve the user's requested rate.
 *
 * This is the only clock setting function that is exposed to the outside. */
double set_clock_rate(const double req_rate) {
    if(req_rate > 61.44e6) {
        post_err_msg("Requested master clock rate outside range");
    }
    
    msg("[set_clock_rate] req_rate=%.10f", req_rate);
    
    /* UHD has a habit of requesting the same rate like four times when it
     * starts up. This prevents that, and any bugs in user code that request
     * the same rate over and over. */
    if(freq_is_nearly_equal(req_rate, _req_clock_rate)) {
        return _baseband_bw;
    }
    
    /* We must be in the SLEEP / WAIT state to do this. If we aren't already
     * there, transition the ENSM to State 0. */
    uint8_t current_state = read_ad9361_reg(0x017) & 0x0F;
    switch(current_state) {
        case 0x05:
            /* We are in the ALERT state. */
            write_ad9361_reg(0x014, 0x21);
            ad9361_msleep(5);
            write_ad9361_reg(0x014, 0x00);
            break;

        case 0x0A:
            /* We are in the FDD state. */
            write_ad9361_reg(0x014, 0x00);
            break;

        default:
            post_err_msg("[set_clock_rate:1] AD9361 in unknown state");
            break;
    };

    /* Store the current chain / antenna selections so that we can restore
     * them at the end of this routine; all chains will be enabled from
     * within setup_rates for calibration purposes. */
    uint8_t orig_tx_chains = reg_txfilt & 0xC0;
    uint8_t orig_rx_chains = reg_rxfilt & 0xC0;

    /* Call into the clock configuration / settings function. This is where
     * all the hard work gets done. */
    double rate = setup_rates(req_rate);
    
    msg("[set_clock_rate] rate=%.10f", rate);

    /* Transition to the ALERT state and calibrate everything. */
    write_ad9361_reg(0x015, 0x04); //dual synth mode, synth en ctrl en
    write_ad9361_reg(0x014, 0x05); //use SPI for TXNRX ctrl, to ALERT, TX on
    write_ad9361_reg(0x013, 0x01); //enable ENSM
    ad9361_msleep(1);

    calibrate_synth_charge_pumps();

    tune_helper(RX_TYPE, _rx_freq);
    tune_helper(TX_TYPE, _tx_freq);

    program_mixer_gm_subtable();
    program_gain_table();
    setup_gain_control();
    program_gains();

    calibrate_baseband_rx_analog_filter();
    calibrate_baseband_tx_analog_filter();
    calibrate_rx_TIAs();
    calibrate_secondary_tx_filter();

    setup_adc();

    calibrate_tx_quadrature();
    calibrate_rx_quadrature();

    write_ad9361_reg(0x012, 0x02); // cals done, set PPORT config
    write_ad9361_reg(0x013, 0x01); // Set ENSM FDD bit
    write_ad9361_reg(0x015, 0x04); // dual synth mode, synth en ctrl en

    /* End the function in the same state as the entry state. */
    switch(current_state) {
        case 0x05:
            /* We are already in ALERT. */
            break;

        case 0x0A:
            /* Transition back to FDD, and restore the original antenna
             * / chain selections. */
            reg_txfilt = (reg_txfilt & 0x3F) | orig_tx_chains;
            reg_rxfilt = (reg_rxfilt & 0x3F) | orig_rx_chains;

            write_ad9361_reg(0x002, reg_txfilt);
            write_ad9361_reg(0x003, reg_rxfilt);
            write_ad9361_reg(0x014, 0x21);
            break;

        default:
            post_err_msg("[set_clock_rate:2] AD9361 in unknown state");
            break;
    };

    return rate;
}


/* Set which of the four TX / RX chains provided by Catalina are active.
 *
 * Catalina provides two sets of chains, Side A and Side B. Each side
 * provides one TX antenna, and one RX antenna. The B200 maintains the USRP
 * standard of providing one antenna connection that is both TX & RX, and
 * one that is RX-only - for each chain. Thus, the possible antenna and
 * chain selections are:
 *
 *  B200 Antenna    Catalina Side       Catalina Chain
 *  -------------------------------------------------------------------
 *  TX / RX1        Side A              TX1 (when switched to TX)
 *  TX / RX1        Side A              RX1 (when switched to RX)
 *  RX1             Side A              RX1
 *
 *  TX / RX2        Side B              TX2 (when switched to TX)
 *  TX / RX2        Side B              RX2 (when switched to RX)
 *  RX2             Side B              RX2
 */
void set_active_chains(bool tx1, bool tx2, bool rx1, bool rx2) {
    /* Clear out the current active chain settings. */
    reg_txfilt = reg_txfilt & 0x3F;
    reg_rxfilt = reg_rxfilt & 0x3F;

    /* Turn on the different chains based on the passed parameters. */
    if(tx1) { reg_txfilt = reg_txfilt | 0x40; }
    if(tx2) { reg_txfilt = reg_txfilt | 0x80; }
    if(rx1) { reg_rxfilt = reg_rxfilt | 0x40; }
    if(rx2) { reg_rxfilt = reg_rxfilt | 0x80; }

    /* Turn on / off the chains. */
    write_ad9361_reg(0x002, reg_txfilt);
    write_ad9361_reg(0x003, reg_rxfilt);
}

/* Tune the RX or TX frequency.
 *
 * This is the publicly-accessible tune function. It makes sure the tune
 * isn't a redundant request, and if not, passes it on to the class's
 * internal tune function.
 *
 * After tuning, it runs any appropriate calibrations. */
double tune(int which, const double value) {

    if(which == RX_TYPE) {
        if(freq_is_nearly_equal(value, _req_rx_freq)) {
            return _rx_freq;
        }

    } else if(which == TX_TYPE) {
        if(freq_is_nearly_equal(value, _req_tx_freq)) {
            return _tx_freq;
        }

    } else {
        post_err_msg("[tune] INVALID_CODE_PATH");
    }
    
    /* If we aren't already in the ALERT state, we will need to return to
     * the FDD state after tuning. */
    int not_in_alert = 0;
    if((read_ad9361_reg(0x017) & 0x0F) != 5) {
        /* Force the device into the ALERT state. */
        not_in_alert = 1;
        write_ad9361_reg(0x014, 0x01);
    }

    /* Tune the RF VCO! */
    double tune_freq = tune_helper(which, value);

    /* Run any necessary calibrations / setups */
    if(which == RX_TYPE) {
        program_gain_table();
    }

    /* Update the gain settings. */
    program_gains();

    /* Run the calibration algorithms. */
    calibrate_tx_quadrature();
    calibrate_rx_quadrature();

    /* If we were in the FDD state, return it now. */
    if(not_in_alert) {
        write_ad9361_reg(0x014, 0x21);
    }

    return tune_freq;
}

/* Set the gain of RX1, RX2, TX1, or TX2.
 *
 * Note that the 'value' passed to this function is the actual gain value,
 * _not_ the gain index. This is the opposite of the eval software's GUI!
 * Also note that the RX chains are done in terms of gain, and the TX chains
 * are done in terms of attenuation. */
double set_gain(int which, int n, const double value) {

    if(which == RX_TYPE) {
        /* Indexing the gain tables requires an offset from the requested
         * amount of total gain in dB:
         *      < 1300MHz: dB + 5
         *      >= 1300MHz and < 4000MHz: dB + 3
         *      >= 4000MHz and <= 6000MHz: dB + 14
         */
        int gain_offset = 0;
        if(_rx_freq < 1300e6) {
            gain_offset = 5;
        } else if(_rx_freq < 4000e6) {
            gain_offset = 3;
        } else {
            gain_offset = 14;
        }

        int gain_index = value + gain_offset;

        /* Clip the gain values to the proper min/max gain values. */
        if(gain_index > 76) gain_index = 76;
        if(gain_index < 0) gain_index = 0;

        if(n == 1) {
            _rx1_gain = value;
            write_ad9361_reg(0x109, gain_index);
        } else {
            _rx2_gain = value;
            write_ad9361_reg(0x10c, gain_index);
        }

        return gain_index - gain_offset;
    } else {
        /* Setting the below bits causes a change in the TX attenuation word
         * to immediately take effect. */
        write_ad9361_reg(0x077, 0x40);
        write_ad9361_reg(0x07c, 0x40);

        /* Each gain step is -0.25dB. Calculate the attenuation necessary
         * for the requested gain, convert it into gain steps, then write
         * the attenuation word. Max gain (so zero attenuation) is 89.75. */
        double atten = AD9361_MAX_GAIN - value;
        int attenreg = atten * 4;
        if(n == 1) {
            _tx1_gain = value;
            write_ad9361_reg(0x073, attenreg & 0xFF);
            write_ad9361_reg(0x074, (attenreg >> 8) & 0x01);
        } else {
            _tx2_gain = value;
            write_ad9361_reg(0x075, attenreg & 0xFF);
            write_ad9361_reg(0x076, (attenreg >> 8) & 0x01);
        }
        return AD9361_MAX_GAIN - ((double)(attenreg)/ 4);
    }
}

/* This function is responsible to dispatch the vendor request call
 * to the proper handler
 */
void ad9361_dispatch(const char* vrb, char* vrb_out) {
    memcpy(vrb_out, vrb, AD9361_DISPATCH_PACKET_SIZE);  // Copy request to response memory
    tmp_req_buffer = vrb_out;                           // Set this to enable 'post_err_msg'
    
    //////////////////////////////////////////////
    
    double ret_val = 0.0;
    int mask = 0;
    
    const ad9361_transaction_t *request = (const ad9361_transaction_t *)vrb;
    ad9361_transaction_t *response = (ad9361_transaction_t *)vrb_out;
    response->error_msg[0] = '\0';  // Ensure error is cleared
    
    //msg("[ad9361_dispatch] action=%d", request->action);
    
    switch (request->action) {
        case AD9361_ACTION_ECHO:
            break; // nothing to do
        case AD9361_ACTION_INIT:
            init_ad9361();
            break;
        case AD9361_ACTION_SET_RX1_GAIN:
            ret_val = set_gain(RX_TYPE,1,double_unpack(request->value.gain));
            double_pack(ret_val, response->value.gain);
            break;
        case AD9361_ACTION_SET_TX1_GAIN:
            ret_val = set_gain(TX_TYPE,1,double_unpack(request->value.gain));
            double_pack(ret_val, response->value.gain);
            break;
        case AD9361_ACTION_SET_RX2_GAIN:
            ret_val = set_gain(RX_TYPE,2,double_unpack(request->value.gain));
            double_pack(ret_val, response->value.gain);
            break;
        case AD9361_ACTION_SET_TX2_GAIN:
            ret_val = set_gain(TX_TYPE,2,double_unpack(request->value.gain));
            double_pack(ret_val, response->value.gain);
            break;
        case AD9361_ACTION_SET_RX_FREQ:
            ret_val = tune(RX_TYPE, double_unpack(request->value.freq));
            double_pack(ret_val, response->value.freq);
            break;
        case AD9361_ACTION_SET_TX_FREQ:
            ret_val = tune(TX_TYPE, double_unpack(request->value.freq));
            double_pack(ret_val, response->value.freq);
            break;
        case AD9361_ACTION_SET_CODEC_LOOP:
            data_port_loopback(request->value.codec_loop != 0);
            break;
        case AD9361_ACTION_SET_CLOCK_RATE:
            ret_val = set_clock_rate(double_unpack(request->value.rate));
            double_pack(ret_val, response->value.rate);
            break;
        case AD9361_ACTION_SET_ACTIVE_CHAINS:
            mask = request->value.enable_mask;
            set_active_chains(mask & 1, mask & 2, mask & 4, mask & 8);
            break;
        default:
            post_err_msg("[ad9361_dispatch] NOT IMPLEMENTED");
            break;
    }
}