/* * USRP - Universal Software Radio Peripheral * * Copyright (C) 2003,2004 Free Software Foundation, Inc. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Boston, MA 02110-1301 USA */ #include "usrp_common.h" #include "usrp_commands.h" #include "fpga.h" #include "usrp_gpif_inline.h" #include "timer.h" #include "i2c.h" #include "isr.h" #include "usb_common.h" #include "fx2utils.h" #include "usrp_globals.h" #include "usrp_i2c_addr.h" #include #include "spi.h" #include "eeprom_io.h" #include "usb_descriptors.h" /* * offsets into boot eeprom for configuration values */ #define HW_REV_OFFSET 5 #define SERIAL_NO_OFFSET 248 #define SERIAL_NO_LEN 8 #define bRequestType SETUPDAT[0] #define bRequest SETUPDAT[1] #define wValueL SETUPDAT[2] #define wValueH SETUPDAT[3] #define wIndexL SETUPDAT[4] #define wIndexH SETUPDAT[5] #define wLengthL SETUPDAT[6] #define wLengthH SETUPDAT[7] unsigned char g_tx_enable = 0; unsigned char g_rx_enable = 0; unsigned char g_rx_overrun = 0; unsigned char g_tx_underrun = 0; /* * the host side fpga loader code pushes an MD5 hash of the bitstream * into hash1. */ #define USRP_HASH_SIZE 16 xdata at USRP_HASH_SLOT_1_ADDR unsigned char hash1[USRP_HASH_SIZE]; static void get_ep0_data (void) { EP0BCL = 0; // arm EP0 for OUT xfer. This sets the busy bit while (EP0CS & bmEPBUSY) // wait for busy to clear ; } /* * Handle our "Vendor Extension" commands on endpoint 0. * If we handle this one, return non-zero. */ unsigned char app_vendor_cmd (void) { if (bRequestType == VRT_VENDOR_IN){ ///////////////////////////////// // handle the IN requests ///////////////////////////////// switch (bRequest){ case VRQ_GET_STATUS: switch (wIndexL){ case GS_TX_UNDERRUN: EP0BUF[0] = g_tx_underrun; g_tx_underrun = 0; EP0BCH = 0; EP0BCL = 1; break; case GS_RX_OVERRUN: EP0BUF[0] = g_rx_overrun; g_rx_overrun = 0; EP0BCH = 0; EP0BCL = 1; break; default: return 0; } break; case VRQ_I2C_READ: if (!i2c_read (wValueL, EP0BUF, wLengthL)) return 0; EP0BCH = 0; EP0BCL = wLengthL; break; case VRQ_SPI_READ: if (!spi_read (wValueH, wValueL, wIndexH, wIndexL, EP0BUF, wLengthL)) return 0; EP0BCH = 0; EP0BCL = wLengthL; break; case VRQ_SPI_TRANSACT: if (!spi_transact (wValueH, wValueL, wIndexH, wIndexL, wLengthH, EP0BUF, wLengthL)) return 0; EP0BCH = 0; EP0BCL = wLengthL; break; default: return 0; } } else if (bRequestType == VRT_VENDOR_OUT){ ///////////////////////////////// // handle the OUT requests ///////////////////////////////// switch (bRequest){ case VRQ_SET_LED: switch (wIndexL){ case 0: set_led_0 (wValueL); break; case 1: set_led_1 (wValueL); break; default: return 0; } break; case VRQ_FPGA_LOAD: switch (wIndexL){ // sub-command case FL_BEGIN: return fpga_load_begin (); case FL_XFER: get_ep0_data (); return fpga_load_xfer (EP0BUF, EP0BCL); case FL_END: return fpga_load_end (); default: return 0; } break; case VRQ_FPGA_SET_RESET: fpga_set_reset (wValueL); break; case VRQ_FPGA_SET_TX_ENABLE: fpga_set_tx_enable (wValueL); break; case VRQ_FPGA_SET_RX_ENABLE: fpga_set_rx_enable (wValueL); break; case VRQ_FPGA_SET_TX_RESET: fpga_set_tx_reset (wValueL); break; case VRQ_FPGA_SET_RX_RESET: fpga_set_rx_reset (wValueL); break; case VRQ_I2C_WRITE: get_ep0_data (); if (!i2c_write (wValueL, EP0BUF, EP0BCL)) return 0; break; case VRQ_SPI_WRITE: get_ep0_data (); if (!spi_write (wValueH, wValueL, wIndexH, wIndexL, EP0BUF, EP0BCL)) return 0; break; default: return 0; } } else return 0; // invalid bRequestType return 1; } static void main_loop (void) { setup_flowstate_common (); while (1){ if (usb_setup_packet_avail ()) usb_handle_setup_packet (); if (GPIFTRIG & bmGPIF_IDLE){ // OK, GPIF is idle. Let's try to give it some work. // First check for underruns and overruns if (UC_BOARD_HAS_FPGA && (USRP_PA & (bmPA_TX_UNDERRUN | bmPA_RX_OVERRUN))){ // record the under/over run if (USRP_PA & bmPA_TX_UNDERRUN) g_tx_underrun = 1; if (USRP_PA & bmPA_RX_OVERRUN) g_rx_overrun = 1; // tell the FPGA to clear the flags fpga_clear_flags (); } // Next see if there are any "OUT" packets waiting for our attention, // and if so, if there's room in the FPGA's FIFO for them. if (g_tx_enable && !(EP24FIFOFLGS & 0x02)){ // USB end point fifo is not empty... if (fpga_has_room_for_packet ()){ // ... and FPGA has room for packet GPIFTCB1 = 0x01; SYNCDELAY; GPIFTCB0 = 0x00; SYNCDELAY; setup_flowstate_write (); SYNCDELAY; GPIFTRIG = bmGPIF_EP2_START | bmGPIF_WRITE; // start the xfer SYNCDELAY; while (!(GPIFTRIG & bmGPIF_IDLE)){ // wait for the transaction to complete } } } // See if there are any requests for "IN" packets, and if so // whether the FPGA's got any packets for us. if (g_rx_enable && !(EP6CS & bmEPFULL)){ // USB end point fifo is not full... if (fpga_has_packet_avail ()){ // ... and FPGA has packet available GPIFTCB1 = 0x01; SYNCDELAY; GPIFTCB0 = 0x00; SYNCDELAY; setup_flowstate_read (); SYNCDELAY; GPIFTRIG = bmGPIF_EP6_START | bmGPIF_READ; // start the xfer SYNCDELAY; while (!(GPIFTRIG & bmGPIF_IDLE)){ // wait for the transaction to complete } SYNCDELAY; INPKTEND = 6; // tell USB we filled buffer (6 is our endpoint num) } } } } } /* * called at 100 Hz from timer2 interrupt * * Toggle led 0 */ void isr_tick (void) interrupt { static unsigned char count = 1; if (--count == 0){ count = 50; USRP_LED_REG ^= bmLED0; } clear_timer_irq (); } /* * Read h/w rev code and serial number out of boot eeprom and * patch the usb descriptors with the values. */ void patch_usb_descriptors(void) { static xdata unsigned char hw_rev; static xdata unsigned char serial_no[8]; unsigned char i; eeprom_read(I2C_ADDR_BOOT, HW_REV_OFFSET, &hw_rev, 1); // LSB of device id usb_desc_hw_rev_binary_patch_location_0[0] = hw_rev; usb_desc_hw_rev_binary_patch_location_1[0] = hw_rev; usb_desc_hw_rev_ascii_patch_location_0[0] = hw_rev + '0'; // FIXME if we get > 9 eeprom_read(I2C_ADDR_BOOT, SERIAL_NO_OFFSET, serial_no, SERIAL_NO_LEN); for (i = 0; i < SERIAL_NO_LEN; i++){ unsigned char ch = serial_no[i]; if (ch == 0xff) // make unprogrammed EEPROM default to '0' ch = '0'; usb_desc_serial_number_ascii[i << 1] = ch; } } void main (void) { #if 0 g_rx_enable = 0; // FIXME (work around initialization bug) g_tx_enable = 0; g_rx_overrun = 0; g_tx_underrun = 0; #endif memset (hash1, 0, USRP_HASH_SIZE); // zero fpga bitstream hash. This forces reload init_usrp (); init_gpif (); // if (UC_START_WITH_GSTATE_OUTPUT_ENABLED) IFCONFIG |= bmGSTATE; // no conflict, start with it on set_led_0 (0); set_led_1 (0); EA = 0; // disable all interrupts patch_usb_descriptors(); setup_autovectors (); usb_install_handlers (); hook_timer_tick ((unsigned short) isr_tick); EIEX4 = 1; // disable INT4 FIXME EA = 1; // global interrupt enable fx2_renumerate (); // simulates disconnect / reconnect main_loop (); }