// $Header: /devl/xcs/repo/env/Databases/CAEInterfaces/verunilibs/data/unisims/RAMB16_S1_S2.v,v 1.10 2005/03/14 22:54:41 wloo Exp $ /////////////////////////////////////////////////////////////////////////////// // Copyright (c) 1995/2005 Xilinx, Inc. // All Right Reserved. /////////////////////////////////////////////////////////////////////////////// // ____ ____ // / /\/ / // /___/ \ / Vendor : Xilinx // \ \ \/ Version : 8.1i (I.13) // \ \ Description : Xilinx Functional Simulation Library Component // / / 16K-Bit Data and 2K-Bit Parity Dual Port Block RAM // /___/ /\ Filename : RAMB16_S1_S2.v // \ \ / \ Timestamp : Thu Mar 10 16:43:35 PST 2005 // \___\/\___\ // // Revision: // 03/23/04 - Initial version. // End Revision `ifdef legacy_model `timescale 1 ps / 1 ps module RAMB16_S1_S2 (DOA, DOB, ADDRA, ADDRB, CLKA, CLKB, DIA, DIB, ENA, ENB, SSRA, SSRB, WEA, WEB); parameter INIT_A = 1'h0; parameter INIT_B = 2'h0; parameter SRVAL_A = 1'h0; parameter SRVAL_B = 2'h0; parameter WRITE_MODE_A = "WRITE_FIRST"; parameter WRITE_MODE_B = "WRITE_FIRST"; parameter SIM_COLLISION_CHECK = "ALL"; localparam SETUP_ALL = 1000; localparam SETUP_READ_FIRST = 3000; parameter INIT_00 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_01 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_02 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_03 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_04 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_05 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_06 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_07 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_08 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_09 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_0A = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_0B = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_0C = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_0D = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_0E = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_0F = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_10 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_11 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_12 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_13 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_14 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_15 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_16 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_17 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_18 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_19 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_1A = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_1B = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_1C = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_1D = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_1E = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_1F = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_20 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_21 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_22 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_23 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_24 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_25 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_26 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_27 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_28 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_29 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_2A = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_2B = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_2C = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_2D = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_2E = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_2F = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_30 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_31 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_32 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_33 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_34 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_35 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_36 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_37 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_38 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_39 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_3A = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_3B = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_3C = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_3D = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_3E = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_3F = 256'h0000000000000000000000000000000000000000000000000000000000000000; output [0:0] DOA; reg [0:0] doa_out; wire doa_out0; input [13:0] ADDRA; input [0:0] DIA; input ENA, CLKA, WEA, SSRA; output [1:0] DOB; reg [1:0] dob_out; wire dob_out0, dob_out1; input [12:0] ADDRB; input [1:0] DIB; input ENB, CLKB, WEB, SSRB; reg [18431:0] mem; reg [8:0] count; reg [1:0] wr_mode_a, wr_mode_b; reg [5:0] dmi, dbi; reg [5:0] pmi, pbi; wire [13:0] addra_int; reg [13:0] addra_reg; wire [0:0] dia_int; wire ena_int, clka_int, wea_int, ssra_int; reg ena_reg, wea_reg, ssra_reg; wire [12:0] addrb_int; reg [12:0] addrb_reg; wire [1:0] dib_int; wire enb_int, clkb_int, web_int, ssrb_int; reg display_flag; reg enb_reg, web_reg, ssrb_reg; time time_clka, time_clkb; time time_clka_clkb; time time_clkb_clka; reg setup_all_a_b; reg setup_all_b_a; reg setup_zero; reg setup_rf_a_b; reg setup_rf_b_a; reg [1:0] data_collision, data_collision_a_b, data_collision_b_a; reg memory_collision, memory_collision_a_b, memory_collision_b_a; reg address_collision, address_collision_a_b, address_collision_b_a; reg change_clka; reg change_clkb; wire [14:0] data_addra_int; wire [14:0] data_addra_reg; wire [14:0] data_addrb_int; wire [14:0] data_addrb_reg; wire [15:0] parity_addra_int; wire [15:0] parity_addra_reg; wire [15:0] parity_addrb_int; wire [15:0] parity_addrb_reg; tri0 GSR = glbl.GSR; always @(GSR) if (GSR) begin assign doa_out = INIT_A[0:0]; assign dob_out = INIT_B[1:0]; end else begin deassign doa_out; deassign dob_out; end buf b_doa_out0 (doa_out0, doa_out[0]); buf b_dob_out0 (dob_out0, dob_out[0]); buf b_dob_out1 (dob_out1, dob_out[1]); buf b_doa0 (DOA[0], doa_out0); buf b_dob0 (DOB[0], dob_out0); buf b_dob1 (DOB[1], dob_out1); buf b_addra_0 (addra_int[0], ADDRA[0]); buf b_addra_1 (addra_int[1], ADDRA[1]); buf b_addra_2 (addra_int[2], ADDRA[2]); buf b_addra_3 (addra_int[3], ADDRA[3]); buf b_addra_4 (addra_int[4], ADDRA[4]); buf b_addra_5 (addra_int[5], ADDRA[5]); buf b_addra_6 (addra_int[6], ADDRA[6]); buf b_addra_7 (addra_int[7], ADDRA[7]); buf b_addra_8 (addra_int[8], ADDRA[8]); buf b_addra_9 (addra_int[9], ADDRA[9]); buf b_addra_10 (addra_int[10], ADDRA[10]); buf b_addra_11 (addra_int[11], ADDRA[11]); buf b_addra_12 (addra_int[12], ADDRA[12]); buf b_addra_13 (addra_int[13], ADDRA[13]); buf b_dia_0 (dia_int[0], DIA[0]); buf b_ena (ena_int, ENA); buf b_clka (clka_int, CLKA); buf b_ssra (ssra_int, SSRA); buf b_wea (wea_int, WEA); buf b_addrb_0 (addrb_int[0], ADDRB[0]); buf b_addrb_1 (addrb_int[1], ADDRB[1]); buf b_addrb_2 (addrb_int[2], ADDRB[2]); buf b_addrb_3 (addrb_int[3], ADDRB[3]); buf b_addrb_4 (addrb_int[4], ADDRB[4]); buf b_addrb_5 (addrb_int[5], ADDRB[5]); buf b_addrb_6 (addrb_int[6], ADDRB[6]); buf b_addrb_7 (addrb_int[7], ADDRB[7]); buf b_addrb_8 (addrb_int[8], ADDRB[8]); buf b_addrb_9 (addrb_int[9], ADDRB[9]); buf b_addrb_10 (addrb_int[10], ADDRB[10]); buf b_addrb_11 (addrb_int[11], ADDRB[11]); buf b_addrb_12 (addrb_int[12], ADDRB[12]); buf b_dib_0 (dib_int[0], DIB[0]); buf b_dib_1 (dib_int[1], DIB[1]); buf b_enb (enb_int, ENB); buf b_clkb (clkb_int, CLKB); buf b_ssrb (ssrb_int, SSRB); buf b_web (web_int, WEB); initial begin for (count = 0; count < 256; count = count + 1) begin mem[count] <= INIT_00[count]; mem[256 * 1 + count] <= INIT_01[count]; mem[256 * 2 + count] <= INIT_02[count]; mem[256 * 3 + count] <= INIT_03[count]; mem[256 * 4 + count] <= INIT_04[count]; mem[256 * 5 + count] <= INIT_05[count]; mem[256 * 6 + count] <= INIT_06[count]; mem[256 * 7 + count] <= INIT_07[count]; mem[256 * 8 + count] <= INIT_08[count]; mem[256 * 9 + count] <= INIT_09[count]; mem[256 * 10 + count] <= INIT_0A[count]; mem[256 * 11 + count] <= INIT_0B[count]; mem[256 * 12 + count] <= INIT_0C[count]; mem[256 * 13 + count] <= INIT_0D[count]; mem[256 * 14 + count] <= INIT_0E[count]; mem[256 * 15 + count] <= INIT_0F[count]; mem[256 * 16 + count] <= INIT_10[count]; mem[256 * 17 + count] <= INIT_11[count]; mem[256 * 18 + count] <= INIT_12[count]; mem[256 * 19 + count] <= INIT_13[count]; mem[256 * 20 + count] <= INIT_14[count]; mem[256 * 21 + count] <= INIT_15[count]; mem[256 * 22 + count] <= INIT_16[count]; mem[256 * 23 + count] <= INIT_17[count]; mem[256 * 24 + count] <= INIT_18[count]; mem[256 * 25 + count] <= INIT_19[count]; mem[256 * 26 + count] <= INIT_1A[count]; mem[256 * 27 + count] <= INIT_1B[count]; mem[256 * 28 + count] <= INIT_1C[count]; mem[256 * 29 + count] <= INIT_1D[count]; mem[256 * 30 + count] <= INIT_1E[count]; mem[256 * 31 + count] <= INIT_1F[count]; mem[256 * 32 + count] <= INIT_20[count]; mem[256 * 33 + count] <= INIT_21[count]; mem[256 * 34 + count] <= INIT_22[count]; mem[256 * 35 + count] <= INIT_23[count]; mem[256 * 36 + count] <= INIT_24[count]; mem[256 * 37 + count] <= INIT_25[count]; mem[256 * 38 + count] <= INIT_26[count]; mem[256 * 39 + count] <= INIT_27[count]; mem[256 * 40 + count] <= INIT_28[count]; mem[256 * 41 + count] <= INIT_29[count]; mem[256 * 42 + count] <= INIT_2A[count]; mem[256 * 43 + count] <= INIT_2B[count]; mem[256 * 44 + count] <= INIT_2C[count]; mem[256 * 45 + count] <= INIT_2D[count]; mem[256 * 46 + count] <= INIT_2E[count]; mem[256 * 47 + count] <= INIT_2F[count]; mem[256 * 48 + count] <= INIT_30[count]; mem[256 * 49 + count] <= INIT_31[count]; mem[256 * 50 + count] <= INIT_32[count]; mem[256 * 51 + count] <= INIT_33[count]; mem[256 * 52 + count] <= INIT_34[count]; mem[256 * 53 + count] <= INIT_35[count]; mem[256 * 54 + count] <= INIT_36[count]; mem[256 * 55 + count] <= INIT_37[count]; mem[256 * 56 + count] <= INIT_38[count]; mem[256 * 57 + count] <= INIT_39[count]; mem[256 * 58 + count] <= INIT_3A[count]; mem[256 * 59 + count] <= INIT_3B[count]; mem[256 * 60 + count] <= INIT_3C[count]; mem[256 * 61 + count] <= INIT_3D[count]; mem[256 * 62 + count] <= INIT_3E[count]; mem[256 * 63 + count] <= INIT_3F[count]; end address_collision <= 0; address_collision_a_b <= 0; address_collision_b_a <= 0; change_clka <= 0; change_clkb <= 0; data_collision <= 0; data_collision_a_b <= 0; data_collision_b_a <= 0; memory_collision <= 0; memory_collision_a_b <= 0; memory_collision_b_a <= 0; setup_all_a_b <= 0; setup_all_b_a <= 0; setup_zero <= 0; setup_rf_a_b <= 0; setup_rf_b_a <= 0; end assign data_addra_int = addra_int * 1; assign data_addra_reg = addra_reg * 1; assign data_addrb_int = addrb_int * 2; assign data_addrb_reg = addrb_reg * 2; initial begin display_flag = 1; case (SIM_COLLISION_CHECK) "NONE" : begin assign setup_all_a_b = 1'b0; assign setup_all_b_a = 1'b0; assign setup_zero = 1'b0; assign setup_rf_a_b = 1'b0; assign setup_rf_b_a = 1'b0; assign display_flag = 0; end "WARNING_ONLY" : begin assign data_collision = 2'b00; assign data_collision_a_b = 2'b00; assign data_collision_b_a = 2'b00; assign memory_collision = 1'b0; assign memory_collision_a_b = 1'b0; assign memory_collision_b_a = 1'b0; end "GENERATE_X_ONLY" : begin assign display_flag = 0; end "ALL" : ; default : begin $display("Attribute Syntax Error : The Attribute SIM_COLLISION_CHECK on RAMB16_S1_S2 instance %m is set to %s. Legal values for this attribute are ALL, NONE, WARNING_ONLY or GENERATE_X_ONLY.", SIM_COLLISION_CHECK); $finish; end endcase // case(SIM_COLLISION_CHECK) end // initial begin always @(posedge clka_int) begin time_clka = $time; #0 time_clkb_clka = time_clka - time_clkb; change_clka = ~change_clka; end always @(posedge clkb_int) begin time_clkb = $time; #0 time_clka_clkb = time_clkb - time_clka; change_clkb = ~change_clkb; end always @(change_clkb) begin if ((0 < time_clka_clkb) && (time_clka_clkb < SETUP_ALL)) setup_all_a_b = 1; if ((0 < time_clka_clkb) && (time_clka_clkb < SETUP_READ_FIRST)) setup_rf_a_b = 1; end always @(change_clka) begin if ((0 < time_clkb_clka) && (time_clkb_clka < SETUP_ALL)) setup_all_b_a = 1; if ((0 < time_clkb_clka) && (time_clkb_clka < SETUP_READ_FIRST)) setup_rf_b_a = 1; end always @(change_clkb or change_clka) begin if ((time_clkb_clka == 0) && (time_clka_clkb == 0)) setup_zero = 1; end always @(posedge setup_zero) begin if ((ena_int == 1) && (wea_int == 1) && (enb_int == 1) && (web_int == 1) && (data_addra_int[14:1] == data_addrb_int[14:1])) memory_collision <= 1; end always @(posedge setup_all_a_b or posedge setup_rf_a_b) begin if ((ena_reg == 1) && (wea_reg == 1) && (enb_int == 1) && (web_int == 1) && (data_addra_reg[14:1] == data_addrb_int[14:1])) memory_collision_a_b <= 1; end always @(posedge setup_all_b_a or posedge setup_rf_b_a) begin if ((ena_int == 1) && (wea_int == 1) && (enb_reg == 1) && (web_reg == 1) && (data_addra_int[14:1] == data_addrb_reg[14:1])) memory_collision_b_a <= 1; end always @(posedge setup_all_a_b) begin if (data_addra_reg[14:1] == data_addrb_int[14:1]) begin if ((ena_reg == 1) && (enb_int == 1)) begin case ({wr_mode_a, wr_mode_b, wea_reg, web_int}) 6'b000011 : begin data_collision_a_b <= 2'b11; display_wa_wb; end 6'b000111 : begin data_collision_a_b <= 2'b11; display_wa_wb; end 6'b001011 : begin data_collision_a_b <= 2'b10; display_wa_wb; end // 6'b010011 : begin data_collision_a_b <= 2'b00; display_wa_wb; end // 6'b010111 : begin data_collision_a_b <= 2'b00; display_wa_wb; end // 6'b011011 : begin data_collision_a_b <= 2'b00; display_wa_wb; end 6'b100011 : begin data_collision_a_b <= 2'b01; display_wa_wb; end 6'b100111 : begin data_collision_a_b <= 2'b01; display_wa_wb; end 6'b101011 : begin display_wa_wb; end 6'b000001 : begin data_collision_a_b <= 2'b10; display_ra_wb; end // 6'b000101 : begin data_collision_a_b <= 2'b00; display_ra_wb; end 6'b001001 : begin data_collision_a_b <= 2'b10; display_ra_wb; end 6'b010001 : begin data_collision_a_b <= 2'b10; display_ra_wb; end // 6'b010101 : begin data_collision_a_b <= 2'b00; display_ra_wb; end 6'b011001 : begin data_collision_a_b <= 2'b10; display_ra_wb; end 6'b100001 : begin data_collision_a_b <= 2'b10; display_ra_wb; end // 6'b100101 : begin data_collision_a_b <= 2'b00; display_ra_wb; end 6'b101001 : begin data_collision_a_b <= 2'b10; display_ra_wb; end 6'b000010 : begin data_collision_a_b <= 2'b01; display_wa_rb; end 6'b000110 : begin data_collision_a_b <= 2'b01; display_wa_rb; end 6'b001010 : begin data_collision_a_b <= 2'b01; display_wa_rb; end // 6'b010010 : begin data_collision_a_b <= 2'b00; display_wa_rb; end // 6'b010110 : begin data_collision_a_b <= 2'b00; display_wa_rb; end // 6'b011010 : begin data_collision_a_b <= 2'b00; display_wa_rb; end 6'b100010 : begin data_collision_a_b <= 2'b01; display_wa_rb; end 6'b100110 : begin data_collision_a_b <= 2'b01; display_wa_rb; end 6'b101010 : begin data_collision_a_b <= 2'b01; display_wa_rb; end endcase end end setup_all_a_b <= 0; end always @(posedge setup_all_b_a) begin if (data_addra_int[14:1] == data_addrb_reg[14:1]) begin if ((ena_int == 1) && (enb_reg == 1)) begin case ({wr_mode_a, wr_mode_b, wea_int, web_reg}) 6'b000011 : begin data_collision_b_a <= 2'b11; display_wa_wb; end // 6'b000111 : begin data_collision_b_a <= 2'b00; display_wa_wb; end 6'b001011 : begin data_collision_b_a <= 2'b10; display_wa_wb; end 6'b010011 : begin data_collision_b_a <= 2'b11; display_wa_wb; end // 6'b010111 : begin data_collision_b_a <= 2'b00; display_wa_wb; end 6'b011011 : begin data_collision_b_a <= 2'b10; display_wa_wb; end 6'b100011 : begin data_collision_b_a <= 2'b01; display_wa_wb; end 6'b100111 : begin data_collision_b_a <= 2'b01; display_wa_wb; end 6'b101011 : begin display_wa_wb; end 6'b000001 : begin data_collision_b_a <= 2'b10; display_ra_wb; end 6'b000101 : begin data_collision_b_a <= 2'b10; display_ra_wb; end 6'b001001 : begin data_collision_b_a <= 2'b10; display_ra_wb; end 6'b010001 : begin data_collision_b_a <= 2'b10; display_ra_wb; end 6'b010101 : begin data_collision_b_a <= 2'b10; display_ra_wb; end 6'b011001 : begin data_collision_b_a <= 2'b10; display_ra_wb; end 6'b100001 : begin data_collision_b_a <= 2'b10; display_ra_wb; end 6'b100101 : begin data_collision_b_a <= 2'b10; display_ra_wb; end 6'b101001 : begin data_collision_b_a <= 2'b10; display_ra_wb; end 6'b000010 : begin data_collision_b_a <= 2'b01; display_wa_rb; end 6'b000110 : begin data_collision_b_a <= 2'b01; display_wa_rb; end 6'b001010 : begin data_collision_b_a <= 2'b01; display_wa_rb; end // 6'b010010 : begin data_collision_b_a <= 2'b00; display_wa_rb; end // 6'b010110 : begin data_collision_b_a <= 2'b00; display_wa_rb; end // 6'b011010 : begin data_collision_b_a <= 2'b00; display_wa_rb; end 6'b100010 : begin data_collision_b_a <= 2'b01; display_wa_rb; end 6'b100110 : begin data_collision_b_a <= 2'b01; display_wa_rb; end 6'b101010 : begin data_collision_b_a <= 2'b01; display_wa_rb; end endcase end end setup_all_b_a <= 0; end always @(posedge setup_zero) begin if (data_addra_int[14:1] == data_addrb_int[14:1]) begin if ((ena_int == 1) && (enb_int == 1)) begin case ({wr_mode_a, wr_mode_b, wea_int, web_int}) 6'b000011 : begin data_collision <= 2'b11; display_wa_wb; end 6'b000111 : begin data_collision <= 2'b11; display_wa_wb; end 6'b001011 : begin data_collision <= 2'b10; display_wa_wb; end 6'b010011 : begin data_collision <= 2'b11; display_wa_wb; end 6'b010111 : begin data_collision <= 2'b11; display_wa_wb; end 6'b011011 : begin data_collision <= 2'b10; display_wa_wb; end 6'b100011 : begin data_collision <= 2'b01; display_wa_wb; end 6'b100111 : begin data_collision <= 2'b01; display_wa_wb; end 6'b101011 : begin display_wa_wb; end 6'b000001 : begin data_collision <= 2'b10; display_ra_wb; end // 6'b000101 : begin data_collision <= 2'b00; display_ra_wb; end 6'b001001 : begin data_collision <= 2'b10; display_ra_wb; end 6'b010001 : begin data_collision <= 2'b10; display_ra_wb; end // 6'b010101 : begin data_collision <= 2'b00; display_ra_wb; end 6'b011001 : begin data_collision <= 2'b10; display_ra_wb; end 6'b100001 : begin data_collision <= 2'b10; display_ra_wb; end // 6'b100101 : begin data_collision <= 2'b00; display_ra_wb; end 6'b101001 : begin data_collision <= 2'b10; display_ra_wb; end 6'b000010 : begin data_collision <= 2'b01; display_wa_rb; end 6'b000110 : begin data_collision <= 2'b01; display_wa_rb; end 6'b001010 : begin data_collision <= 2'b01; display_wa_rb; end // 6'b010010 : begin data_collision <= 2'b00; display_wa_rb; end // 6'b010110 : begin data_collision <= 2'b00; display_wa_rb; end // 6'b011010 : begin data_collision <= 2'b00; display_wa_rb; end 6'b100010 : begin data_collision <= 2'b01; display_wa_rb; end 6'b100110 : begin data_collision <= 2'b01; display_wa_rb; end 6'b101010 : begin data_collision <= 2'b01; display_wa_rb; end endcase end end setup_zero <= 0; end task display_ra_wb; begin if (display_flag) $display("Memory Collision Error on RAMB16_S1_S2:%m at simulation time %.3f ns\nA read was performed on address %h (hex) of Port A while a write was requested to the same address on Port B. The write will be successful however the read value on Port A is unknown until the next CLKA cycle.", $time/1000.0, addra_int); end endtask task display_wa_rb; begin if (display_flag) $display("Memory Collision Error on RAMB16_S1_S2:%m at simulation time %.3f ns\nA read was performed on address %h (hex) of Port B while a write was requested to the same address on Port A. The write will be successful however the read value on Port B is unknown until the next CLKB cycle.", $time/1000.0, addrb_int); end endtask task display_wa_wb; begin if (display_flag) $display("Memory Collision Error on RAMB16_S1_S2:%m at simulation time %.3f ns\nA write was requested to the same address simultaneously at both Port A and Port B of the RAM. The contents written to the RAM at address location %h (hex) of Port A and address location %h (hex) of Port B are unknown.", $time/1000.0, addra_int, addrb_int); end endtask always @(posedge setup_rf_a_b) begin if (data_addra_reg[14:1] == data_addrb_int[14:1]) begin if ((ena_reg == 1) && (enb_int == 1)) begin case ({wr_mode_a, wr_mode_b, wea_reg, web_int}) // 6'b000011 : begin data_collision_a_b <= 2'b00; display_wa_wb; end // 6'b000111 : begin data_collision_a_b <= 2'b00; display_wa_wb; end // 6'b001011 : begin data_collision_a_b <= 2'b00; display_wa_wb; end 6'b010011 : begin data_collision_a_b <= 2'b11; display_wa_wb; end 6'b010111 : begin data_collision_a_b <= 2'b11; display_wa_wb; end 6'b011011 : begin data_collision_a_b <= 2'b10; display_wa_wb; end // 6'b100011 : begin data_collision_a_b <= 2'b00; display_wa_wb; end // 6'b100111 : begin data_collision_a_b <= 2'b00; display_wa_wb; end // 6'b101011 : begin data_collision_a_b <= 2'b00; display_wa_wb; end // 6'b000001 : begin data_collision_a_b <= 2'b00; display_ra_wb; end // 6'b000101 : begin data_collision_a_b <= 2'b00; display_ra_wb; end // 6'b001001 : begin data_collision_a_b <= 2'b00; display_ra_wb; end // 6'b010001 : begin data_collision_a_b <= 2'b00; display_ra_wb; end // 6'b010101 : begin data_collision_a_b <= 2'b00; display_ra_wb; end // 6'b011001 : begin data_collision_a_b <= 2'b00; display_ra_wb; end // 6'b100001 : begin data_collision_a_b <= 2'b00; display_ra_wb; end // 6'b100101 : begin data_collision_a_b <= 2'b00; display_ra_wb; end // 6'b101001 : begin data_collision_a_b <= 2'b00; display_ra_wb; end // 6'b000010 : begin data_collision_a_b <= 2'b00; display_wa_rb; end // 6'b000110 : begin data_collision_a_b <= 2'b00; display_wa_rb; end // 6'b001010 : begin data_collision_a_b <= 2'b00; display_wa_rb; end 6'b010010 : begin data_collision_a_b <= 2'b01; display_wa_rb; end 6'b010110 : begin data_collision_a_b <= 2'b01; display_wa_rb; end 6'b011010 : begin data_collision_a_b <= 2'b01; display_wa_rb; end // 6'b100010 : begin data_collision_a_b <= 2'b00; display_wa_rb; end // 6'b100110 : begin data_collision_a_b <= 2'b00; display_wa_rb; end // 6'b101010 : begin data_collision_a_b <= 2'b00; display_wa_rb; end endcase end end setup_rf_a_b <= 0; end always @(posedge setup_rf_b_a) begin if (data_addra_int[14:1] == data_addrb_reg[14:1]) begin if ((ena_int == 1) && (enb_reg == 1)) begin case ({wr_mode_a, wr_mode_b, wea_int, web_reg}) // 6'b000011 : begin data_collision_b_a <= 2'b00; display_wa_wb; end 6'b000111 : begin data_collision_b_a <= 2'b11; display_wa_wb; end // 6'b001011 : begin data_collision_b_a <= 2'b00; display_wa_wb; end // 6'b010011 : begin data_collision_b_a <= 2'b00; display_wa_wb; end 6'b010111 : begin data_collision_b_a <= 2'b11; display_wa_wb; end // 6'b011011 : begin data_collision_b_a <= 2'b00; display_wa_wb; end // 6'b100011 : begin data_collision_b_a <= 2'b00; display_wa_wb; end 6'b100111 : begin data_collision_b_a <= 2'b01; display_wa_wb; end // 6'b101011 : begin data_collision_b_a <= 2'b00; display_wa_wb; end // 6'b000001 : begin data_collision_b_a <= 2'b00; display_ra_wb; end 6'b000101 : begin data_collision_b_a <= 2'b10; display_ra_wb; end // 6'b001001 : begin data_collision_b_a <= 2'b00; display_ra_wb; end // 6'b010001 : begin data_collision_b_a <= 2'b00; display_ra_wb; end 6'b010101 : begin data_collision_b_a <= 2'b10; display_ra_wb; end // 6'b011001 : begin data_collision_b_a <= 2'b00; display_ra_wb; end // 6'b100001 : begin data_collision_b_a <= 2'b00; display_ra_wb; end 6'b100101 : begin data_collision_b_a <= 2'b10; display_ra_wb; end // 6'b101001 : begin data_collision_b_a <= 2'b00; display_ra_wb; end // 6'b000010 : begin data_collision_b_a <= 2'b00; display_wa_rb; end // 6'b000110 : begin data_collision_b_a <= 2'b00; display_wa_rb; end // 6'b001010 : begin data_collision_b_a <= 2'b00; display_wa_rb; end // 6'b010010 : begin data_collision_b_a <= 2'b00; display_wa_rb; end // 6'b010110 : begin data_collision_b_a <= 2'b00; display_wa_rb; end // 6'b011010 : begin data_collision_b_a <= 2'b00; display_wa_rb; end // 6'b100010 : begin data_collision_b_a <= 2'b00; display_wa_rb; end // 6'b100110 : begin data_collision_b_a <= 2'b00; display_wa_rb; end // 6'b101010 : begin data_collision_b_a <= 2'b00; display_wa_rb; end endcase end end setup_rf_b_a <= 0; end always @(posedge clka_int) begin addra_reg <= addra_int; ena_reg <= ena_int; ssra_reg <= ssra_int; wea_reg <= wea_int; end always @(posedge clkb_int) begin addrb_reg <= addrb_int; enb_reg <= enb_int; ssrb_reg <= ssrb_int; web_reg <= web_int; end // Data always @(posedge memory_collision) begin for (dmi = 0; dmi < 1; dmi = dmi + 1) begin mem[data_addra_int + dmi] <= 1'bX; end memory_collision <= 0; end always @(posedge memory_collision_a_b) begin for (dmi = 0; dmi < 1; dmi = dmi + 1) begin mem[data_addra_reg + dmi] <= 1'bX; end memory_collision_a_b <= 0; end always @(posedge memory_collision_b_a) begin for (dmi = 0; dmi < 1; dmi = dmi + 1) begin mem[data_addra_int + dmi] <= 1'bX; end memory_collision_b_a <= 0; end always @(posedge data_collision[1]) begin if (ssra_int == 0) begin doa_out <= 1'bX; end data_collision[1] <= 0; end always @(posedge data_collision[0]) begin if (ssrb_int == 0) begin for (dbi = 0; dbi < 1; dbi = dbi + 1) begin dob_out[data_addra_int[0 : 0] + dbi] <= 1'bX; end end data_collision[0] <= 0; end always @(posedge data_collision_a_b[1]) begin if (ssra_reg == 0) begin doa_out <= 1'bX; end data_collision_a_b[1] <= 0; end always @(posedge data_collision_a_b[0]) begin if (ssrb_int == 0) begin for (dbi = 0; dbi < 1; dbi = dbi + 1) begin dob_out[data_addra_reg[0 : 0] + dbi] <= 1'bX; end end data_collision_a_b[0] <= 0; end always @(posedge data_collision_b_a[1]) begin if (ssra_int == 0) begin doa_out <= 1'bX; end data_collision_b_a[1] <= 0; end always @(posedge data_collision_b_a[0]) begin if (ssrb_reg == 0) begin for (dbi = 0; dbi < 1; dbi = dbi + 1) begin dob_out[data_addra_int[0 : 0] + dbi] <= 1'bX; end end data_collision_b_a[0] <= 0; end initial begin case (WRITE_MODE_A) "WRITE_FIRST" : wr_mode_a <= 2'b00; "READ_FIRST" : wr_mode_a <= 2'b01; "NO_CHANGE" : wr_mode_a <= 2'b10; default : begin $display("Attribute Syntax Error : The Attribute WRITE_MODE_A on RAMB16_S1_S2 instance %m is set to %s. Legal values for this attribute are WRITE_FIRST, READ_FIRST or NO_CHANGE.", WRITE_MODE_A); $finish; end endcase end initial begin case (WRITE_MODE_B) "WRITE_FIRST" : wr_mode_b <= 2'b00; "READ_FIRST" : wr_mode_b <= 2'b01; "NO_CHANGE" : wr_mode_b <= 2'b10; default : begin $display("Attribute Syntax Error : The Attribute WRITE_MODE_B on RAMB16_S1_S2 instance %m is set to %s. Legal values for this attribute are WRITE_FIRST, READ_FIRST or NO_CHANGE.", WRITE_MODE_B); $finish; end endcase end // Port A always @(posedge clka_int) begin if (ena_int == 1'b1) begin if (ssra_int == 1'b1) begin doa_out[0] <= SRVAL_A[0]; end else begin if (wea_int == 1'b1) begin if (wr_mode_a == 2'b00) begin doa_out <= dia_int; end else if (wr_mode_a == 2'b01) begin doa_out[0] <= mem[data_addra_int + 0]; end end else begin doa_out[0] <= mem[data_addra_int + 0]; end end end end always @(posedge clka_int) begin if (ena_int == 1'b1 && wea_int == 1'b1) begin mem[data_addra_int + 0] <= dia_int[0]; end end // Port B always @(posedge clkb_int) begin if (enb_int == 1'b1) begin if (ssrb_int == 1'b1) begin dob_out[0] <= SRVAL_B[0]; dob_out[1] <= SRVAL_B[1]; end else begin if (web_int == 1'b1) begin if (wr_mode_b == 2'b00) begin dob_out <= dib_int; end else if (wr_mode_b == 2'b01) begin dob_out[0] <= mem[data_addrb_int + 0]; dob_out[1] <= mem[data_addrb_int + 1]; end end else begin dob_out[0] <= mem[data_addrb_int + 0]; dob_out[1] <= mem[data_addrb_int + 1]; end end end end always @(posedge clkb_int) begin if (enb_int == 1'b1 && web_int == 1'b1) begin mem[data_addrb_int + 0] <= dib_int[0]; mem[data_addrb_int + 1] <= dib_int[1]; end end specify (CLKA *> DOA) = (100, 100); (CLKB *> DOB) = (100, 100); endspecify endmodule `else // $Header: /devl/xcs/repo/env/Databases/CAEInterfaces/verunilibs/data/unisims/RAMB16_S1_S2.v,v 1.10 2005/03/14 22:54:41 wloo Exp $ /////////////////////////////////////////////////////////////////////////////// // Copyright (c) 1995/2005 Xilinx, Inc. // All Right Reserved. /////////////////////////////////////////////////////////////////////////////// // ____ ____ // / /\/ / // /___/ \ / Vendor : Xilinx // \ \ \/ Version : 8.1i (I.13) // \ \ Description : Xilinx Timing Simulation Library Component // / / 16K-Bit Data and 2K-Bit Parity Dual Port Block RAM // /___/ /\ Filename : RAMB16_S1_S2.v // \ \ / \ Timestamp : Thu Mar 10 16:44:01 PST 2005 // \___\/\___\ // // Revision: // 03/23/04 - Initial version. // 03/10/05 - Initialized outputs. // End Revision `timescale 1 ps/1 ps module RAMB16_S1_S2 (DOA, DOB, ADDRA, ADDRB, CLKA, CLKB, DIA, DIB, ENA, ENB, SSRA, SSRB, WEA, WEB); parameter INIT_A = 1'h0; parameter INIT_B = 2'h0; parameter SRVAL_A = 1'h0; parameter SRVAL_B = 2'h0; parameter WRITE_MODE_A = "WRITE_FIRST"; parameter WRITE_MODE_B = "WRITE_FIRST"; parameter SIM_COLLISION_CHECK = "ALL"; localparam SETUP_ALL = 1000; localparam SETUP_READ_FIRST = 3000; parameter INIT_00 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_01 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_02 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_03 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_04 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_05 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_06 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_07 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_08 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_09 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_0A = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_0B = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_0C = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_0D = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_0E = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_0F = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_10 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_11 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_12 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_13 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_14 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_15 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_16 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_17 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_18 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_19 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_1A = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_1B = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_1C = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_1D = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_1E = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_1F = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_20 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_21 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_22 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_23 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_24 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_25 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_26 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_27 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_28 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_29 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_2A = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_2B = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_2C = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_2D = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_2E = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_2F = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_30 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_31 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_32 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_33 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_34 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_35 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_36 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_37 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_38 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_39 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_3A = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_3B = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_3C = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_3D = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_3E = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_3F = 256'h0000000000000000000000000000000000000000000000000000000000000000; output [0:0] DOA; output [1:0] DOB; input [13:0] ADDRA; input [0:0] DIA; input ENA, CLKA, WEA, SSRA; input [12:0] ADDRB; input [1:0] DIB; input ENB, CLKB, WEB, SSRB; reg [0:0] doa_out = INIT_A[0:0]; reg [1:0] dob_out = INIT_B[1:0]; reg [1:0] mem [8191:0]; reg [8:0] count, countp; reg [1:0] wr_mode_a, wr_mode_b; reg [5:0] dmi, dbi; reg [5:0] pmi, pbi; wire [13:0] addra_int; reg [13:0] addra_reg; wire [0:0] dia_int; wire ena_int, clka_int, wea_int, ssra_int; reg ena_reg, wea_reg, ssra_reg; wire [12:0] addrb_int; reg [12:0] addrb_reg; wire [1:0] dib_int; wire enb_int, clkb_int, web_int, ssrb_int; reg display_flag, output_flag; reg enb_reg, web_reg, ssrb_reg; time time_clka, time_clkb; time time_clka_clkb; time time_clkb_clka; reg setup_all_a_b; reg setup_all_b_a; reg setup_zero; reg setup_rf_a_b; reg setup_rf_b_a; reg [1:0] data_collision, data_collision_a_b, data_collision_b_a; reg memory_collision, memory_collision_a_b, memory_collision_b_a; reg change_clka; reg change_clkb; wire [14:0] data_addra_int; wire [14:0] data_addra_reg; wire [14:0] data_addrb_int; wire [14:0] data_addrb_reg; wire dia_enable = ena_int && wea_int; wire dib_enable = enb_int && web_int; tri0 GSR = glbl.GSR; wire gsr_int; buf b_gsr (gsr_int, GSR); buf b_doa [0:0] (DOA, doa_out); buf b_addra [13:0] (addra_int, ADDRA); buf b_dia [0:0] (dia_int, DIA); buf b_ena (ena_int, ENA); buf b_clka (clka_int, CLKA); buf b_ssra (ssra_int, SSRA); buf b_wea (wea_int, WEA); buf b_dob [1:0] (DOB, dob_out); buf b_addrb [12:0] (addrb_int, ADDRB); buf b_dib [1:0] (dib_int, DIB); buf b_enb (enb_int, ENB); buf b_clkb (clkb_int, CLKB); buf b_ssrb (ssrb_int, SSRB); buf b_web (web_int, WEB); always @(gsr_int) if (gsr_int) begin assign {doa_out} = INIT_A; assign {dob_out} = INIT_B; end else begin deassign doa_out; deassign dob_out; end initial begin for (count = 0; count < 128; count = count + 1) begin mem[count] = INIT_00[(count * 2) +: 2]; mem[128 * 1 + count] = INIT_01[(count * 2) +: 2]; mem[128 * 2 + count] = INIT_02[(count * 2) +: 2]; mem[128 * 3 + count] = INIT_03[(count * 2) +: 2]; mem[128 * 4 + count] = INIT_04[(count * 2) +: 2]; mem[128 * 5 + count] = INIT_05[(count * 2) +: 2]; mem[128 * 6 + count] = INIT_06[(count * 2) +: 2]; mem[128 * 7 + count] = INIT_07[(count * 2) +: 2]; mem[128 * 8 + count] = INIT_08[(count * 2) +: 2]; mem[128 * 9 + count] = INIT_09[(count * 2) +: 2]; mem[128 * 10 + count] = INIT_0A[(count * 2) +: 2]; mem[128 * 11 + count] = INIT_0B[(count * 2) +: 2]; mem[128 * 12 + count] = INIT_0C[(count * 2) +: 2]; mem[128 * 13 + count] = INIT_0D[(count * 2) +: 2]; mem[128 * 14 + count] = INIT_0E[(count * 2) +: 2]; mem[128 * 15 + count] = INIT_0F[(count * 2) +: 2]; mem[128 * 16 + count] = INIT_10[(count * 2) +: 2]; mem[128 * 17 + count] = INIT_11[(count * 2) +: 2]; mem[128 * 18 + count] = INIT_12[(count * 2) +: 2]; mem[128 * 19 + count] = INIT_13[(count * 2) +: 2]; mem[128 * 20 + count] = INIT_14[(count * 2) +: 2]; mem[128 * 21 + count] = INIT_15[(count * 2) +: 2]; mem[128 * 22 + count] = INIT_16[(count * 2) +: 2]; mem[128 * 23 + count] = INIT_17[(count * 2) +: 2]; mem[128 * 24 + count] = INIT_18[(count * 2) +: 2]; mem[128 * 25 + count] = INIT_19[(count * 2) +: 2]; mem[128 * 26 + count] = INIT_1A[(count * 2) +: 2]; mem[128 * 27 + count] = INIT_1B[(count * 2) +: 2]; mem[128 * 28 + count] = INIT_1C[(count * 2) +: 2]; mem[128 * 29 + count] = INIT_1D[(count * 2) +: 2]; mem[128 * 30 + count] = INIT_1E[(count * 2) +: 2]; mem[128 * 31 + count] = INIT_1F[(count * 2) +: 2]; mem[128 * 32 + count] = INIT_20[(count * 2) +: 2]; mem[128 * 33 + count] = INIT_21[(count * 2) +: 2]; mem[128 * 34 + count] = INIT_22[(count * 2) +: 2]; mem[128 * 35 + count] = INIT_23[(count * 2) +: 2]; mem[128 * 36 + count] = INIT_24[(count * 2) +: 2]; mem[128 * 37 + count] = INIT_25[(count * 2) +: 2]; mem[128 * 38 + count] = INIT_26[(count * 2) +: 2]; mem[128 * 39 + count] = INIT_27[(count * 2) +: 2]; mem[128 * 40 + count] = INIT_28[(count * 2) +: 2]; mem[128 * 41 + count] = INIT_29[(count * 2) +: 2]; mem[128 * 42 + count] = INIT_2A[(count * 2) +: 2]; mem[128 * 43 + count] = INIT_2B[(count * 2) +: 2]; mem[128 * 44 + count] = INIT_2C[(count * 2) +: 2]; mem[128 * 45 + count] = INIT_2D[(count * 2) +: 2]; mem[128 * 46 + count] = INIT_2E[(count * 2) +: 2]; mem[128 * 47 + count] = INIT_2F[(count * 2) +: 2]; mem[128 * 48 + count] = INIT_30[(count * 2) +: 2]; mem[128 * 49 + count] = INIT_31[(count * 2) +: 2]; mem[128 * 50 + count] = INIT_32[(count * 2) +: 2]; mem[128 * 51 + count] = INIT_33[(count * 2) +: 2]; mem[128 * 52 + count] = INIT_34[(count * 2) +: 2]; mem[128 * 53 + count] = INIT_35[(count * 2) +: 2]; mem[128 * 54 + count] = INIT_36[(count * 2) +: 2]; mem[128 * 55 + count] = INIT_37[(count * 2) +: 2]; mem[128 * 56 + count] = INIT_38[(count * 2) +: 2]; mem[128 * 57 + count] = INIT_39[(count * 2) +: 2]; mem[128 * 58 + count] = INIT_3A[(count * 2) +: 2]; mem[128 * 59 + count] = INIT_3B[(count * 2) +: 2]; mem[128 * 60 + count] = INIT_3C[(count * 2) +: 2]; mem[128 * 61 + count] = INIT_3D[(count * 2) +: 2]; mem[128 * 62 + count] = INIT_3E[(count * 2) +: 2]; mem[128 * 63 + count] = INIT_3F[(count * 2) +: 2]; end change_clka <= 0; change_clkb <= 0; data_collision <= 0; data_collision_a_b <= 0; data_collision_b_a <= 0; memory_collision <= 0; memory_collision_a_b <= 0; memory_collision_b_a <= 0; setup_all_a_b <= 0; setup_all_b_a <= 0; setup_zero <= 0; setup_rf_a_b <= 0; setup_rf_b_a <= 0; end assign data_addra_int = addra_int * 1; assign data_addra_reg = addra_reg * 1; assign data_addrb_int = addrb_int * 2; assign data_addrb_reg = addrb_reg * 2; initial begin display_flag = 1; output_flag = 1; case (SIM_COLLISION_CHECK) "NONE" : begin output_flag = 0; display_flag = 0; end "WARNING_ONLY" : output_flag = 0; "GENERATE_ONLY" : display_flag = 0; "ALL" : ; default : begin $display("Attribute Syntax Error : The Attribute SIM_COLLISION_CHECK on RAMB16_S1_S2 instance %m is set to %s. Legal values for this attribute are ALL, NONE, WARNING_ONLY or GENERATE_ONLY.", SIM_COLLISION_CHECK); $finish; end endcase // case(SIM_COLLISION_CHECK) end // initial begin always @(posedge clka_int) begin if ((output_flag || display_flag)) begin time_clka = $time; #0 time_clkb_clka = time_clka - time_clkb; change_clka = ~change_clka; end end always @(posedge clkb_int) begin if ((output_flag || display_flag)) begin time_clkb = $time; #0 time_clka_clkb = time_clkb - time_clka; change_clkb = ~change_clkb; end end always @(change_clkb) begin if ((0 < time_clka_clkb) && (time_clka_clkb < SETUP_ALL)) setup_all_a_b = 1; if ((0 < time_clka_clkb) && (time_clka_clkb < SETUP_READ_FIRST)) setup_rf_a_b = 1; end always @(change_clka) begin if ((0 < time_clkb_clka) && (time_clkb_clka < SETUP_ALL)) setup_all_b_a = 1; if ((0 < time_clkb_clka) && (time_clkb_clka < SETUP_READ_FIRST)) setup_rf_b_a = 1; end always @(change_clkb or change_clka) begin if ((time_clkb_clka == 0) && (time_clka_clkb == 0)) setup_zero = 1; end always @(posedge setup_zero) begin if ((ena_int == 1) && (wea_int == 1) && (enb_int == 1) && (web_int == 1) && (data_addra_int[14:1] == data_addrb_int[14:1])) memory_collision <= 1; end always @(posedge setup_all_a_b or posedge setup_rf_a_b) begin if ((ena_reg == 1) && (wea_reg == 1) && (enb_int == 1) && (web_int == 1) && (data_addra_reg[14:1] == data_addrb_int[14:1])) memory_collision_a_b <= 1; end always @(posedge setup_all_b_a or posedge setup_rf_b_a) begin if ((ena_int == 1) && (wea_int == 1) && (enb_reg == 1) && (web_reg == 1) && (data_addra_int[14:1] == data_addrb_reg[14:1])) memory_collision_b_a <= 1; end always @(posedge setup_all_a_b) begin if (data_addra_reg[14:1] == data_addrb_int[14:1]) begin if ((ena_reg == 1) && (enb_int == 1)) begin case ({wr_mode_a, wr_mode_b, wea_reg, web_int}) 6'b000011 : begin data_collision_a_b <= 2'b11; display_wa_wb; end 6'b000111 : begin data_collision_a_b <= 2'b11; display_wa_wb; end 6'b001011 : begin data_collision_a_b <= 2'b10; display_wa_wb; end // 6'b010011 : begin data_collision_a_b <= 2'b00; display_wa_wb; end // 6'b010111 : begin data_collision_a_b <= 2'b00; display_wa_wb; end // 6'b011011 : begin data_collision_a_b <= 2'b00; display_wa_wb; end 6'b100011 : begin data_collision_a_b <= 2'b01; display_wa_wb; end 6'b100111 : begin data_collision_a_b <= 2'b01; display_wa_wb; end 6'b101011 : begin display_wa_wb; end 6'b000001 : begin data_collision_a_b <= 2'b10; display_ra_wb; end // 6'b000101 : begin data_collision_a_b <= 2'b00; display_ra_wb; end 6'b001001 : begin data_collision_a_b <= 2'b10; display_ra_wb; end 6'b010001 : begin data_collision_a_b <= 2'b10; display_ra_wb; end // 6'b010101 : begin data_collision_a_b <= 2'b00; display_ra_wb; end 6'b011001 : begin data_collision_a_b <= 2'b10; display_ra_wb; end 6'b100001 : begin data_collision_a_b <= 2'b10; display_ra_wb; end // 6'b100101 : begin data_collision_a_b <= 2'b00; display_ra_wb; end 6'b101001 : begin data_collision_a_b <= 2'b10; display_ra_wb; end 6'b000010 : begin data_collision_a_b <= 2'b01; display_wa_rb; end 6'b000110 : begin data_collision_a_b <= 2'b01; display_wa_rb; end 6'b001010 : begin data_collision_a_b <= 2'b01; display_wa_rb; end // 6'b010010 : begin data_collision_a_b <= 2'b00; display_wa_rb; end // 6'b010110 : begin data_collision_a_b <= 2'b00; display_wa_rb; end // 6'b011010 : begin data_collision_a_b <= 2'b00; display_wa_rb; end 6'b100010 : begin data_collision_a_b <= 2'b01; display_wa_rb; end 6'b100110 : begin data_collision_a_b <= 2'b01; display_wa_rb; end 6'b101010 : begin data_collision_a_b <= 2'b01; display_wa_rb; end endcase end end setup_all_a_b <= 0; end always @(posedge setup_all_b_a) begin if (data_addra_int[14:1] == data_addrb_reg[14:1]) begin if ((ena_int == 1) && (enb_reg == 1)) begin case ({wr_mode_a, wr_mode_b, wea_int, web_reg}) 6'b000011 : begin data_collision_b_a <= 2'b11; display_wa_wb; end // 6'b000111 : begin data_collision_b_a <= 2'b00; display_wa_wb; end 6'b001011 : begin data_collision_b_a <= 2'b10; display_wa_wb; end 6'b010011 : begin data_collision_b_a <= 2'b11; display_wa_wb; end // 6'b010111 : begin data_collision_b_a <= 2'b00; display_wa_wb; end 6'b011011 : begin data_collision_b_a <= 2'b10; display_wa_wb; end 6'b100011 : begin data_collision_b_a <= 2'b01; display_wa_wb; end 6'b100111 : begin data_collision_b_a <= 2'b01; display_wa_wb; end 6'b101011 : begin display_wa_wb; end 6'b000001 : begin data_collision_b_a <= 2'b10; display_ra_wb; end 6'b000101 : begin data_collision_b_a <= 2'b10; display_ra_wb; end 6'b001001 : begin data_collision_b_a <= 2'b10; display_ra_wb; end 6'b010001 : begin data_collision_b_a <= 2'b10; display_ra_wb; end 6'b010101 : begin data_collision_b_a <= 2'b10; display_ra_wb; end 6'b011001 : begin data_collision_b_a <= 2'b10; display_ra_wb; end 6'b100001 : begin data_collision_b_a <= 2'b10; display_ra_wb; end 6'b100101 : begin data_collision_b_a <= 2'b10; display_ra_wb; end 6'b101001 : begin data_collision_b_a <= 2'b10; display_ra_wb; end 6'b000010 : begin data_collision_b_a <= 2'b01; display_wa_rb; end 6'b000110 : begin data_collision_b_a <= 2'b01; display_wa_rb; end 6'b001010 : begin data_collision_b_a <= 2'b01; display_wa_rb; end // 6'b010010 : begin data_collision_b_a <= 2'b00; display_wa_rb; end // 6'b010110 : begin data_collision_b_a <= 2'b00; display_wa_rb; end // 6'b011010 : begin data_collision_b_a <= 2'b00; display_wa_rb; end 6'b100010 : begin data_collision_b_a <= 2'b01; display_wa_rb; end 6'b100110 : begin data_collision_b_a <= 2'b01; display_wa_rb; end 6'b101010 : begin data_collision_b_a <= 2'b01; display_wa_rb; end endcase end end setup_all_b_a <= 0; end always @(posedge setup_zero) begin if (data_addra_int[14:1] == data_addrb_int[14:1]) begin if ((ena_int == 1) && (enb_int == 1)) begin case ({wr_mode_a, wr_mode_b, wea_int, web_int}) 6'b000011 : begin data_collision <= 2'b11; display_wa_wb; end 6'b000111 : begin data_collision <= 2'b11; display_wa_wb; end 6'b001011 : begin data_collision <= 2'b10; display_wa_wb; end 6'b010011 : begin data_collision <= 2'b11; display_wa_wb; end 6'b010111 : begin data_collision <= 2'b11; display_wa_wb; end 6'b011011 : begin data_collision <= 2'b10; display_wa_wb; end 6'b100011 : begin data_collision <= 2'b01; display_wa_wb; end 6'b100111 : begin data_collision <= 2'b01; display_wa_wb; end 6'b101011 : begin display_wa_wb; end 6'b000001 : begin data_collision <= 2'b10; display_ra_wb; end // 6'b000101 : begin data_collision <= 2'b00; display_ra_wb; end 6'b001001 : begin data_collision <= 2'b10; display_ra_wb; end 6'b010001 : begin data_collision <= 2'b10; display_ra_wb; end // 6'b010101 : begin data_collision <= 2'b00; display_ra_wb; end 6'b011001 : begin data_collision <= 2'b10; display_ra_wb; end 6'b100001 : begin data_collision <= 2'b10; display_ra_wb; end // 6'b100101 : begin data_collision <= 2'b00; display_ra_wb; end 6'b101001 : begin data_collision <= 2'b10; display_ra_wb; end 6'b000010 : begin data_collision <= 2'b01; display_wa_rb; end 6'b000110 : begin data_collision <= 2'b01; display_wa_rb; end 6'b001010 : begin data_collision <= 2'b01; display_wa_rb; end // 6'b010010 : begin data_collision <= 2'b00; display_wa_rb; end // 6'b010110 : begin data_collision <= 2'b00; display_wa_rb; end // 6'b011010 : begin data_collision <= 2'b00; display_wa_rb; end 6'b100010 : begin data_collision <= 2'b01; display_wa_rb; end 6'b100110 : begin data_collision <= 2'b01; display_wa_rb; end 6'b101010 : begin data_collision <= 2'b01; display_wa_rb; end endcase end end setup_zero <= 0; end task display_ra_wb; begin if (display_flag) $display("Memory Collision Error on RAMB16_S1_S2:%m at simulation time %.3f ns\nA read was performed on address %h (hex) of Port A while a write was requested to the same address on Port B. The write will be successful however the read value on Port A is unknown until the next CLKA cycle.", $time/1000.0, addra_int); end endtask task display_wa_rb; begin if (display_flag) $display("Memory Collision Error on RAMB16_S1_S2:%m at simulation time %.3f ns\nA read was performed on address %h (hex) of Port B while a write was requested to the same address on Port A. The write will be successful however the read value on Port B is unknown until the next CLKB cycle.", $time/1000.0, addrb_int); end endtask task display_wa_wb; begin if (display_flag) $display("Memory Collision Error on RAMB16_S1_S2:%m at simulation time %.3f ns\nA write was requested to the same address simultaneously at both Port A and Port B of the RAM. The contents written to the RAM at address location %h (hex) of Port A and address location %h (hex) of Port B are unknown.", $time/1000.0, addra_int, addrb_int); end endtask always @(posedge setup_rf_a_b) begin if (data_addra_reg[14:1] == data_addrb_int[14:1]) begin if ((ena_reg == 1) && (enb_int == 1)) begin case ({wr_mode_a, wr_mode_b, wea_reg, web_int}) // 6'b000011 : begin data_collision_a_b <= 2'b00; display_wa_wb; end // 6'b000111 : begin data_collision_a_b <= 2'b00; display_wa_wb; end // 6'b001011 : begin data_collision_a_b <= 2'b00; display_wa_wb; end 6'b010011 : begin data_collision_a_b <= 2'b11; display_wa_wb; end 6'b010111 : begin data_collision_a_b <= 2'b11; display_wa_wb; end 6'b011011 : begin data_collision_a_b <= 2'b10; display_wa_wb; end // 6'b100011 : begin data_collision_a_b <= 2'b00; display_wa_wb; end // 6'b100111 : begin data_collision_a_b <= 2'b00; display_wa_wb; end // 6'b101011 : begin data_collision_a_b <= 2'b00; display_wa_wb; end // 6'b000001 : begin data_collision_a_b <= 2'b00; display_ra_wb; end // 6'b000101 : begin data_collision_a_b <= 2'b00; display_ra_wb; end // 6'b001001 : begin data_collision_a_b <= 2'b00; display_ra_wb; end // 6'b010001 : begin data_collision_a_b <= 2'b00; display_ra_wb; end // 6'b010101 : begin data_collision_a_b <= 2'b00; display_ra_wb; end // 6'b011001 : begin data_collision_a_b <= 2'b00; display_ra_wb; end // 6'b100001 : begin data_collision_a_b <= 2'b00; display_ra_wb; end // 6'b100101 : begin data_collision_a_b <= 2'b00; display_ra_wb; end // 6'b101001 : begin data_collision_a_b <= 2'b00; display_ra_wb; end // 6'b000010 : begin data_collision_a_b <= 2'b00; display_wa_rb; end // 6'b000110 : begin data_collision_a_b <= 2'b00; display_wa_rb; end // 6'b001010 : begin data_collision_a_b <= 2'b00; display_wa_rb; end 6'b010010 : begin data_collision_a_b <= 2'b01; display_wa_rb; end 6'b010110 : begin data_collision_a_b <= 2'b01; display_wa_rb; end 6'b011010 : begin data_collision_a_b <= 2'b01; display_wa_rb; end // 6'b100010 : begin data_collision_a_b <= 2'b00; display_wa_rb; end // 6'b100110 : begin data_collision_a_b <= 2'b00; display_wa_rb; end // 6'b101010 : begin data_collision_a_b <= 2'b00; display_wa_rb; end endcase end end setup_rf_a_b <= 0; end always @(posedge setup_rf_b_a) begin if (data_addra_int[14:1] == data_addrb_reg[14:1]) begin if ((ena_int == 1) && (enb_reg == 1)) begin case ({wr_mode_a, wr_mode_b, wea_int, web_reg}) // 6'b000011 : begin data_collision_b_a <= 2'b00; display_wa_wb; end 6'b000111 : begin data_collision_b_a <= 2'b11; display_wa_wb; end // 6'b001011 : begin data_collision_b_a <= 2'b00; display_wa_wb; end // 6'b010011 : begin data_collision_b_a <= 2'b00; display_wa_wb; end 6'b010111 : begin data_collision_b_a <= 2'b11; display_wa_wb; end // 6'b011011 : begin data_collision_b_a <= 2'b00; display_wa_wb; end // 6'b100011 : begin data_collision_b_a <= 2'b00; display_wa_wb; end 6'b100111 : begin data_collision_b_a <= 2'b01; display_wa_wb; end // 6'b101011 : begin data_collision_b_a <= 2'b00; display_wa_wb; end // 6'b000001 : begin data_collision_b_a <= 2'b00; display_ra_wb; end 6'b000101 : begin data_collision_b_a <= 2'b10; display_ra_wb; end // 6'b001001 : begin data_collision_b_a <= 2'b00; display_ra_wb; end // 6'b010001 : begin data_collision_b_a <= 2'b00; display_ra_wb; end 6'b010101 : begin data_collision_b_a <= 2'b10; display_ra_wb; end // 6'b011001 : begin data_collision_b_a <= 2'b00; display_ra_wb; end // 6'b100001 : begin data_collision_b_a <= 2'b00; display_ra_wb; end 6'b100101 : begin data_collision_b_a <= 2'b10; display_ra_wb; end // 6'b101001 : begin data_collision_b_a <= 2'b00; display_ra_wb; end // 6'b000010 : begin data_collision_b_a <= 2'b00; display_wa_rb; end // 6'b000110 : begin data_collision_b_a <= 2'b00; display_wa_rb; end // 6'b001010 : begin data_collision_b_a <= 2'b00; display_wa_rb; end // 6'b010010 : begin data_collision_b_a <= 2'b00; display_wa_rb; end // 6'b010110 : begin data_collision_b_a <= 2'b00; display_wa_rb; end // 6'b011010 : begin data_collision_b_a <= 2'b00; display_wa_rb; end // 6'b100010 : begin data_collision_b_a <= 2'b00; display_wa_rb; end // 6'b100110 : begin data_collision_b_a <= 2'b00; display_wa_rb; end // 6'b101010 : begin data_collision_b_a <= 2'b00; display_wa_rb; end endcase end end setup_rf_b_a <= 0; end always @(posedge clka_int) begin if ((output_flag || display_flag)) begin addra_reg <= addra_int; ena_reg <= ena_int; ssra_reg <= ssra_int; wea_reg <= wea_int; end end always @(posedge clkb_int) begin if ((output_flag || display_flag)) begin addrb_reg <= addrb_int; enb_reg <= enb_int; ssrb_reg <= ssrb_int; web_reg <= web_int; end end // Data always @(posedge memory_collision) begin if ((output_flag || display_flag)) begin mem[addra_int[13:1]][addra_int[0:0] * 1 +: 1] <= 1'bx; memory_collision <= 0; end end always @(posedge memory_collision_a_b) begin if ((output_flag || display_flag)) begin mem[addra_reg[13:1]][addra_reg[0:0] * 1 +: 1] <= 1'bx; memory_collision_a_b <= 0; end end always @(posedge memory_collision_b_a) begin if ((output_flag || display_flag)) begin mem[addra_int[13:1]][addra_int[0:0] * 1 +: 1] <= 1'bx; memory_collision_b_a <= 0; end end always @(posedge data_collision[1]) begin if (ssra_int == 0 && output_flag) begin doa_out <= #100 1'bX; end data_collision[1] <= 0; end always @(posedge data_collision[0]) begin if (ssrb_int == 0 && output_flag) begin dob_out[addra_int[0:0] * 1 +: 1] <= #100 1'bX; end data_collision[0] <= 0; end always @(posedge data_collision_a_b[1]) begin if (ssra_reg == 0 && output_flag) begin doa_out <= #100 1'bX; end data_collision_a_b[1] <= 0; end always @(posedge data_collision_a_b[0]) begin if (ssrb_int == 0 && output_flag) begin dob_out[addra_reg[0:0] * 1 +: 1] <= #100 1'bX; end data_collision_a_b[0] <= 0; end always @(posedge data_collision_b_a[1]) begin if (ssra_int == 0 && output_flag) begin doa_out <= #100 1'bX; end data_collision_b_a[1] <= 0; end always @(posedge data_collision_b_a[0]) begin if (ssrb_reg == 0 && output_flag) begin dob_out[addra_int[0:0] * 1 +: 1] <= #100 1'bX; end data_collision_b_a[0] <= 0; end initial begin case (WRITE_MODE_A) "WRITE_FIRST" : wr_mode_a <= 2'b00; "READ_FIRST" : wr_mode_a <= 2'b01; "NO_CHANGE" : wr_mode_a <= 2'b10; default : begin $display("Attribute Syntax Error : The Attribute WRITE_MODE_A on RAMB16_S1_S2 instance %m is set to %s. Legal values for this attribute are WRITE_FIRST, READ_FIRST or NO_CHANGE.", WRITE_MODE_A); $finish; end endcase end initial begin case (WRITE_MODE_B) "WRITE_FIRST" : wr_mode_b <= 2'b00; "READ_FIRST" : wr_mode_b <= 2'b01; "NO_CHANGE" : wr_mode_b <= 2'b10; default : begin $display("Attribute Syntax Error : The Attribute WRITE_MODE_B on RAMB16_S1_S2 instance %m is set to %s. Legal values for this attribute are WRITE_FIRST, READ_FIRST or NO_CHANGE.", WRITE_MODE_B); $finish; end endcase end // Port A always @(posedge clka_int) begin if (ena_int == 1'b1) begin if (ssra_int == 1'b1) begin {doa_out} <= #100 SRVAL_A; end else begin if (wea_int == 1'b1) begin if (wr_mode_a == 2'b00) begin doa_out <= #100 dia_int; end else if (wr_mode_a == 2'b01) begin doa_out <= #100 mem[addra_int[13:1]][addra_int[0:0] * 1 +: 1]; end end else begin doa_out <= #100 mem[addra_int[13:1]][addra_int[0:0] * 1 +: 1]; end end // memory if (wea_int == 1'b1) begin mem[addra_int[13:1]][addra_int[0:0] * 1 +: 1] <= dia_int; end end end // Port B always @(posedge clkb_int) begin if (enb_int == 1'b1) begin if (ssrb_int == 1'b1) begin {dob_out} <= #100 SRVAL_B; end else begin if (web_int == 1'b1) begin if (wr_mode_b == 2'b00) begin dob_out <= #100 dib_int; end else if (wr_mode_b == 2'b01) begin dob_out <= #100 mem[addrb_int]; end end else begin dob_out <= #100 mem[addrb_int]; end end // memory if (web_int == 1'b1) begin mem[addrb_int] <= dib_int; end end end endmodule `endif