From b0ad2ec29f3a1bd5f2980ed1f905dac50f87c21a Mon Sep 17 00:00:00 2001 From: Ashish Chaudhari Date: Tue, 6 Oct 2015 12:47:14 -0700 Subject: adf435x: Refactored ADF435X control code - Removed adf435x_common and replaced with a real encapsulated interface - Looks similar to the MAX287X code - Updated all DB classes to use the new common code --- host/lib/usrp/common/adf435x.hpp | 330 +++++++++++++++++++++++++++++++++++++++ 1 file changed, 330 insertions(+) create mode 100644 host/lib/usrp/common/adf435x.hpp (limited to 'host/lib/usrp/common/adf435x.hpp') diff --git a/host/lib/usrp/common/adf435x.hpp b/host/lib/usrp/common/adf435x.hpp new file mode 100644 index 000000000..16557b514 --- /dev/null +++ b/host/lib/usrp/common/adf435x.hpp @@ -0,0 +1,330 @@ +// +// Copyright 2015 Ettus Research LLC +// +// This program is free software: you can redistribute it and/or modify +// it under the terms of the GNU General Public License as published by +// the Free Software Foundation, either version 3 of the License, or +// (at your option) any later version. +// +// This program is distributed in the hope that it will be useful, +// but WITHOUT ANY WARRANTY; without even the implied warranty of +// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +// GNU General Public License for more details. +// +// You should have received a copy of the GNU General Public License +// along with this program. If not, see . +// + +#ifndef INCLUDED_ADF435X_HPP +#define INCLUDED_ADF435X_HPP + +#include +#include +#include +#include +#include +#include +#include +#include +#include "adf4350_regs.hpp" +#include "adf4351_regs.hpp" + +class adf435x_iface +{ +public: + typedef boost::shared_ptr sptr; + typedef boost::function)> write_fn_t; + + static sptr make_adf4350(write_fn_t write); + static sptr make_adf4351(write_fn_t write); + + virtual ~adf435x_iface() = 0; + + enum prescaler_t { PRESCALER_4_5, PRESCALER_8_9 }; + + enum feedback_sel_t { FB_SEL_FUNDAMENTAL, FB_SEL_DIVIDED }; + + enum output_power_t { OUTPUT_POWER_M4DBM, OUTPUT_POWER_M1DBM, OUTPUT_POWER_2DBM, OUTPUT_POWER_5DBM }; + + virtual void set_reference_freq(double fref) = 0; + + virtual void set_prescaler(prescaler_t prescaler) = 0; + + virtual void set_feedback_select(feedback_sel_t fb_sel) = 0; + + virtual void set_output_power(output_power_t power) = 0; + + virtual uhd::range_t get_int_range() = 0; + + virtual double set_frequency(double target_freq, bool int_n_mode, bool flush = false) = 0; + + virtual void commit(void) = 0; +}; + +template +class adf435x_impl : public adf435x_iface +{ +public: + adf435x_impl(write_fn_t write_fn) : + _write_fn(write_fn), + _regs(), + _fb_after_divider(false), + _reference_freq(0.0), + _N_min(-1) + {} + + virtual ~adf435x_impl() {}; + + void set_reference_freq(double fref) + { + _reference_freq = fref; + } + + void set_feedback_select(feedback_sel_t fb_sel) + { + _fb_after_divider = (fb_sel == FB_SEL_DIVIDED); + } + + void set_prescaler(prescaler_t prescaler) + { + if (prescaler == PRESCALER_8_9) { + _regs.prescaler = adf435x_regs_t::PRESCALER_8_9; + _N_min = 75; + } else { + _regs.prescaler = adf435x_regs_t::PRESCALER_4_5; + _N_min = 23; + } + } + + void set_output_power(output_power_t power) + { + switch (power) { + case OUTPUT_POWER_M4DBM: _regs.output_power = adf435x_regs_t::OUTPUT_POWER_M4DBM; break; + case OUTPUT_POWER_M1DBM: _regs.output_power = adf435x_regs_t::OUTPUT_POWER_M1DBM; break; + case OUTPUT_POWER_2DBM: _regs.output_power = adf435x_regs_t::OUTPUT_POWER_2DBM; break; + case OUTPUT_POWER_5DBM: _regs.output_power = adf435x_regs_t::OUTPUT_POWER_5DBM; break; + default: UHD_THROW_INVALID_CODE_PATH(); + } + } + + uhd::range_t get_int_range() + { + if (_N_min < 0) throw uhd::runtime_error("set_prescaler must be called before get_int_range"); + return uhd::range_t(_N_min, 4095); + } + + double set_frequency(double target_freq, bool int_n_mode, bool flush = false) + { + static const double REF_DOUBLER_THRESH_FREQ = 12.5e6; + static const double PFD_FREQ_MAX = 25.0e6; + static const double BAND_SEL_FREQ_MAX = 100e3; + static const double VCO_FREQ_MIN = 2.2e9; + static const double VCO_FREQ_MAX = 4.4e9; + + //Default invalid value for actual_freq + double actual_freq = 0; + + uhd::range_t rf_divider_range = _get_rfdiv_range(); + uhd::range_t int_range = get_int_range(); + + double pfd_freq = 0; + boost::uint16_t R = 0, BS = 0, N = 0, FRAC = 0, MOD = 0; + boost::uint16_t RFdiv = static_cast(rf_divider_range.start()); + bool D = false, T = false; + + //Reference doubler for 50% duty cycle + D = (_reference_freq <= REF_DOUBLER_THRESH_FREQ); + + //increase RF divider until acceptable VCO frequency + double vco_freq = target_freq; + while (vco_freq < VCO_FREQ_MIN && RFdiv < static_cast(rf_divider_range.stop())) { + vco_freq *= 2; + RFdiv *= 2; + } + + /* + * The goal here is to loop though possible R dividers, + * band select clock dividers, N (int) dividers, and FRAC + * (frac) dividers. + * + * Calculate the N and F dividers for each set of values. + * The loop exits when it meets all of the constraints. + * The resulting loop values are loaded into the registers. + * + * from pg.21 + * + * f_pfd = f_ref*(1+D)/(R*(1+T)) + * f_vco = (N + (FRAC/MOD))*f_pfd + * N = f_vco/f_pfd - FRAC/MOD = f_vco*((R*(T+1))/(f_ref*(1+D))) - FRAC/MOD + * f_actual = f_vco/RFdiv) + */ + double feedback_freq = _fb_after_divider ? target_freq : vco_freq; + + for(R = 1; R <= 1023; R+=1){ + //PFD input frequency = f_ref/R ... ignoring Reference doubler/divide-by-2 (D & T) + pfd_freq = _reference_freq*(D?2:1)/(R*(T?2:1)); + + //keep the PFD frequency at or below 25MHz (Loop Filter Bandwidth) + if (pfd_freq > PFD_FREQ_MAX) continue; + + //First, ignore fractional part of tuning + N = boost::uint16_t(std::floor(feedback_freq/pfd_freq)); + + //keep N > minimum int divider requirement + if (N < static_cast(int_range.start())) continue; + + for(BS=1; BS <= 255; BS+=1){ + //keep the band select frequency at or below band_sel_freq_max + //constraint on band select clock + if (pfd_freq/BS > BAND_SEL_FREQ_MAX) continue; + goto done_loop; + } + } done_loop: + + //Fractional-N calculation + MOD = 4095; //max fractional accuracy + FRAC = static_cast(boost::math::round((feedback_freq/pfd_freq - N)*MOD)); + if (int_n_mode) { + if (FRAC > (MOD / 2)) { //Round integer such that actual freq is closest to target + N++; + } + FRAC = 0; + } + + //Reference divide-by-2 for 50% duty cycle + // if R even, move one divide by 2 to to regs.reference_divide_by_2 + if(R % 2 == 0) { + T = true; + R /= 2; + } + + //Typical phase resync time documented in data sheet pg.24 + static const double PHASE_RESYNC_TIME = 400e-6; + + //If feedback after divider, then compensation for the divider is pulled into the INT value + int rf_div_compensation = _fb_after_divider ? 1 : RFdiv; + + //Compute the actual frequency in terms of _reference_freq, N, FRAC, MOD, D, R and T. + actual_freq = ( + double((N + (double(FRAC)/double(MOD))) * + (_reference_freq*(D?2:1)/(R*(T?2:1)))) + ) / rf_div_compensation; + + _regs.frac_12_bit = FRAC; + _regs.int_16_bit = N; + _regs.mod_12_bit = MOD; + _regs.clock_divider_12_bit = std::max(1, boost::uint16_t(std::ceil(PHASE_RESYNC_TIME*pfd_freq/MOD))); + _regs.feedback_select = _fb_after_divider ? + adf435x_regs_t::FEEDBACK_SELECT_DIVIDED : + adf435x_regs_t::FEEDBACK_SELECT_FUNDAMENTAL; + _regs.clock_div_mode = _fb_after_divider ? + adf435x_regs_t::CLOCK_DIV_MODE_RESYNC_ENABLE : + adf435x_regs_t::CLOCK_DIV_MODE_FAST_LOCK; + _regs.r_counter_10_bit = R; + _regs.reference_divide_by_2 = T ? + adf435x_regs_t::REFERENCE_DIVIDE_BY_2_ENABLED : + adf435x_regs_t::REFERENCE_DIVIDE_BY_2_DISABLED; + _regs.reference_doubler = D ? + adf435x_regs_t::REFERENCE_DOUBLER_ENABLED : + adf435x_regs_t::REFERENCE_DOUBLER_DISABLED; + _regs.band_select_clock_div = boost::uint8_t(BS); + _regs.rf_divider_select = static_cast(_get_rfdiv_setting(RFdiv)); + _regs.ldf = int_n_mode ? + adf435x_regs_t::LDF_INT_N : + adf435x_regs_t::LDF_FRAC_N; + + std::string tuning_str = (int_n_mode) ? "Integer-N" : "Fractional"; + UHD_LOGV(often) + << boost::format("ADF 435X Frequencies (MHz): REQUESTED=%0.9f, ACTUAL=%0.9f" + ) % (target_freq/1e6) % (actual_freq/1e6) << std::endl + << boost::format("ADF 435X Intermediates (MHz): Feedback=%0.2f, VCO=%0.2f, PFD=%0.2f, BAND=%0.2f, REF=%0.2f" + ) % (feedback_freq/1e6) % (vco_freq/1e6) % (pfd_freq/1e6) % (pfd_freq/BS/1e6) % (_reference_freq/1e6) << std::endl + << boost::format("ADF 435X Tuning: %s") % tuning_str.c_str() << std::endl + << boost::format("ADF 435X Settings: R=%d, BS=%d, N=%d, FRAC=%d, MOD=%d, T=%d, D=%d, RFdiv=%d" + ) % R % BS % N % FRAC % MOD % T % D % RFdiv << std::endl; + + UHD_ASSERT_THROW((_regs.frac_12_bit & ((boost::uint16_t)~0xFFF)) == 0); + UHD_ASSERT_THROW((_regs.mod_12_bit & ((boost::uint16_t)~0xFFF)) == 0); + UHD_ASSERT_THROW((_regs.clock_divider_12_bit & ((boost::uint16_t)~0xFFF)) == 0); + UHD_ASSERT_THROW((_regs.r_counter_10_bit & ((boost::uint16_t)~0x3FF)) == 0); + + UHD_ASSERT_THROW(vco_freq >= VCO_FREQ_MIN and vco_freq <= VCO_FREQ_MAX); + UHD_ASSERT_THROW(RFdiv >= static_cast(rf_divider_range.start())); + UHD_ASSERT_THROW(RFdiv <= static_cast(rf_divider_range.stop())); + UHD_ASSERT_THROW(_regs.int_16_bit >= static_cast(int_range.start())); + UHD_ASSERT_THROW(_regs.int_16_bit <= static_cast(int_range.stop())); + + if (flush) commit(); + return actual_freq; + } + + void commit() + { + //reset counters + _regs.counter_reset = adf435x_regs_t::COUNTER_RESET_ENABLED; + std::vector regs; + regs.push_back(_regs.get_reg(boost::uint32_t(2))); + _write_fn(regs); + _regs.counter_reset = adf435x_regs_t::COUNTER_RESET_DISABLED; + + //write the registers + //correct power-up sequence to write registers (5, 4, 3, 2, 1, 0) + regs.clear(); + for (int addr = 5; addr >= 0; addr--) { + regs.push_back(_regs.get_reg(boost::uint32_t(addr))); + } + _write_fn(regs); + } + +protected: + uhd::range_t _get_rfdiv_range(); + int _get_rfdiv_setting(boost::uint16_t div); + + write_fn_t _write_fn; + adf435x_regs_t _regs; + double _fb_after_divider; + double _reference_freq; + int _N_min; +}; + +template <> +inline uhd::range_t adf435x_impl::_get_rfdiv_range() +{ + return uhd::range_t(1, 16); +} + +template <> +inline uhd::range_t adf435x_impl::_get_rfdiv_range() +{ + return uhd::range_t(1, 64); +} + +template <> +inline int adf435x_impl::_get_rfdiv_setting(boost::uint16_t div) +{ + switch (div) { + case 1: return int(adf4350_regs_t::RF_DIVIDER_SELECT_DIV1); + case 2: return int(adf4350_regs_t::RF_DIVIDER_SELECT_DIV2); + case 4: return int(adf4350_regs_t::RF_DIVIDER_SELECT_DIV4); + case 8: return int(adf4350_regs_t::RF_DIVIDER_SELECT_DIV8); + case 16: return int(adf4350_regs_t::RF_DIVIDER_SELECT_DIV16); + default: UHD_THROW_INVALID_CODE_PATH(); + } +} + +template <> +inline int adf435x_impl::_get_rfdiv_setting(boost::uint16_t div) +{ + switch (div) { + case 1: return int(adf4351_regs_t::RF_DIVIDER_SELECT_DIV1); + case 2: return int(adf4351_regs_t::RF_DIVIDER_SELECT_DIV2); + case 4: return int(adf4351_regs_t::RF_DIVIDER_SELECT_DIV4); + case 8: return int(adf4351_regs_t::RF_DIVIDER_SELECT_DIV8); + case 16: return int(adf4351_regs_t::RF_DIVIDER_SELECT_DIV16); + case 32: return int(adf4351_regs_t::RF_DIVIDER_SELECT_DIV32); + case 64: return int(adf4351_regs_t::RF_DIVIDER_SELECT_DIV64); + default: UHD_THROW_INVALID_CODE_PATH(); + } +} + +#endif // INCLUDED_ADF435X_HPP -- cgit v1.2.3