From bf986d32632199917dc811f00465ecf409c64a76 Mon Sep 17 00:00:00 2001 From: Martin Braun Date: Mon, 29 Jul 2019 14:06:39 -0700 Subject: rfnoc: Add DUC block controller --- host/include/uhd/rfnoc/CMakeLists.txt | 1 + host/include/uhd/rfnoc/defaults.hpp | 1 + host/include/uhd/rfnoc/duc_block_control.hpp | 123 +++++++ host/lib/rfnoc/CMakeLists.txt | 1 + host/lib/rfnoc/duc_block_control.cpp | 524 +++++++++++++++++++++++++++ host/tests/CMakeLists.txt | 1 + host/tests/rfnoc_blocks_test.cpp | 156 +++++++- host/tests/rfnoc_graph_mock_nodes.hpp | 16 +- 8 files changed, 820 insertions(+), 3 deletions(-) create mode 100644 host/include/uhd/rfnoc/duc_block_control.hpp create mode 100644 host/lib/rfnoc/duc_block_control.cpp diff --git a/host/include/uhd/rfnoc/CMakeLists.txt b/host/include/uhd/rfnoc/CMakeLists.txt index f5cb4006b..d65332dac 100644 --- a/host/include/uhd/rfnoc/CMakeLists.txt +++ b/host/include/uhd/rfnoc/CMakeLists.txt @@ -36,6 +36,7 @@ if(ENABLE_RFNOC) tick_node_ctrl.hpp # Block controllers ddc_block_control.hpp + duc_block_control.hpp ddc_block_ctrl.hpp dma_fifo_block_ctrl.hpp duc_block_ctrl.hpp diff --git a/host/include/uhd/rfnoc/defaults.hpp b/host/include/uhd/rfnoc/defaults.hpp index 99ac9791f..008847091 100644 --- a/host/include/uhd/rfnoc/defaults.hpp +++ b/host/include/uhd/rfnoc/defaults.hpp @@ -15,6 +15,7 @@ namespace uhd { namespace rfnoc { static const std::string CLOCK_KEY_GRAPH("__graph__"); static const std::string PROP_KEY_DECIM("decim"); +static const std::string PROP_KEY_INTERP("interp"); static const std::string PROP_KEY_SAMP_RATE("samp_rate"); static const std::string PROP_KEY_SCALING("scaling"); static const std::string PROP_KEY_TYPE("type"); diff --git a/host/include/uhd/rfnoc/duc_block_control.hpp b/host/include/uhd/rfnoc/duc_block_control.hpp new file mode 100644 index 000000000..8b0325515 --- /dev/null +++ b/host/include/uhd/rfnoc/duc_block_control.hpp @@ -0,0 +1,123 @@ +// +// Copyright 2019 Ettus Research, a National Instruments Brand +// +// SPDX-License-Identifier: GPL-3.0-or-later +// + +#ifndef INCLUDED_LIBUHD_DUC_BLOCK_CONTROL_HPP +#define INCLUDED_LIBUHD_DUC_BLOCK_CONTROL_HPP + +#include +#include +#include +#include +#include + +namespace uhd { namespace rfnoc { + +/*! DUC Block Control Class + * + * The DUC Block is a multi-channel digital upconverter (DUC) with built-in + * frequency shift. The number of channels as well as the maximum interpolation + * is configurable in the FPGA, the block controller will read out registers to + * identify the capabilities of this block. + * + * This block has two user properties per channel: + * - `freq`: The frequency shift at the input. Note: A convenience method + * set_freq() is provided to set this property. It also takes care of the + * command time, which set_property() does not, and thus should be preferred. + * - `interp`: The interpolation value + */ +class UHD_API duc_block_control : public noc_block_base +{ +public: + RFNOC_DECLARE_BLOCK(duc_block_control) + + static const uint16_t MAJOR_COMPAT; + static const uint16_t MINOR_COMPAT; + // Readback addresses + static const uint32_t RB_COMPAT_NUM; + static const uint32_t RB_NUM_HB; + static const uint32_t RB_CIC_MAX_INTERP; + // Write addresses + static const uint32_t SR_N_ADDR; + static const uint32_t SR_M_ADDR; + static const uint32_t SR_CONFIG_ADDR; + static const uint32_t SR_FREQ_ADDR; + static const uint32_t SR_SCALE_IQ_ADDR; + static const uint32_t SR_INTERP_ADDR; + + /*! Set the DDS frequency + * + * This block will shift the signal at the input by this frequency before + * decimation. The frequency is given in Hz, it is not a relative frequency + * to the input sampling rate. + * + * Note: When the rate is modified, the frequency is kept constant. Because + * the FPGA internally uses a relative phase increment, changing the input + * sampling rate will trigger a property propagation to recalculate the + * phase increment based off of this value. + * + * This function will coerce the frequency to a valid value, and return the + * coerced value. + * + * \param freq The frequency shift in Hz + * \param chan The channel to which this change shall be applied + * \param time When to apply the new frequency + * \returns The coerced, actual current frequency of the DDS + */ + virtual double set_freq(const double freq, + const size_t chan, + const boost::optional time = boost::none) = 0; + + /*! Return the current DDS frequency + * + * \returns The current frequency of the DDS + */ + virtual double get_freq(const size_t chan) const = 0; + + /*! Return the range of frequencies that \p chan can be set to. + * + * \return The range of frequencies that the DUC can shift the input by + */ + virtual uhd::freq_range_t get_frequency_range(const size_t chan) const = 0; + + /*! Return the sampling rate at this block's input + * + * \param chan The channel for which the rate is being queried + * \returns the sampling rate at this block's input + */ + virtual double get_input_rate(const size_t chan) const = 0; + + /*! Return the sampling rate at this block's output + * + * This is equivalent to calling get_input_rate() multiplied by the interpolation + * + * \param chan The channel for which the rate is being queried + * \returns the sampling rate at this block's input + */ + virtual double get_output_rate(const size_t chan) const = 0; + + /*! Return a range of valid input rates, based on the current output rate + * + * Note the return value is only valid as long as the output rate does not + * change. + */ + virtual uhd::meta_range_t get_input_rates(const size_t chan) const = 0; + + /*! Attempt to set the input rate of this block + * + * This will set the interpolation such that the output rate is untouched, and + * that the output rate divided by the new interpolation is as close as + * possible to the requested \p rate. + * + * \param rate The requested rate + * \param chan The channel for which the rate is being queried + * \returns the coerced sampling rate at this block's output + */ + virtual double set_input_rate(const double rate, const size_t chan) = 0; +}; + +}} // namespace uhd::rfnoc + +#endif /* INCLUDED_LIBUHD_DUC_BLOCK_CONTROL_HPP */ diff --git a/host/lib/rfnoc/CMakeLists.txt b/host/lib/rfnoc/CMakeLists.txt index 963458fe6..a88507dcd 100644 --- a/host/lib/rfnoc/CMakeLists.txt +++ b/host/lib/rfnoc/CMakeLists.txt @@ -58,6 +58,7 @@ LIBUHD_APPEND_SOURCES( # Default block control classes: ${CMAKE_CURRENT_SOURCE_DIR}/block_control.cpp ${CMAKE_CURRENT_SOURCE_DIR}/ddc_block_control.cpp + ${CMAKE_CURRENT_SOURCE_DIR}/duc_block_control.cpp ${CMAKE_CURRENT_SOURCE_DIR}/ddc_block_ctrl_impl.cpp ${CMAKE_CURRENT_SOURCE_DIR}/duc_block_ctrl_impl.cpp ${CMAKE_CURRENT_SOURCE_DIR}/fir_block_ctrl_impl.cpp diff --git a/host/lib/rfnoc/duc_block_control.cpp b/host/lib/rfnoc/duc_block_control.cpp new file mode 100644 index 000000000..0d10aee69 --- /dev/null +++ b/host/lib/rfnoc/duc_block_control.cpp @@ -0,0 +1,524 @@ +// +// Copyright 2019 Ettus Research, a National Instruments Brand +// +// SPDX-License-Identifier: GPL-3.0-or-later +// + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +namespace { + +constexpr double DEFAULT_SCALING = 1.0; +constexpr int DEFAULT_INTERP = 1; +constexpr double DEFAULT_FREQ = 0.0; +const uhd::rfnoc::io_type_t DEFAULT_TYPE = uhd::rfnoc::IO_TYPE_SC16; + +//! Space (in bytes) between register banks per channel +constexpr uint32_t REG_CHAN_OFFSET = 2048; + +} // namespace + +using namespace uhd::rfnoc; + +const uint16_t duc_block_control::MINOR_COMPAT = 0; +const uint16_t duc_block_control::MAJOR_COMPAT = 0; + +const uint32_t duc_block_control::RB_COMPAT_NUM = 0; // read this first +const uint32_t duc_block_control::RB_NUM_HB = 8; +const uint32_t duc_block_control::RB_CIC_MAX_INTERP = 16; + +const uint32_t duc_block_control::SR_N_ADDR = 128 * 8; +const uint32_t duc_block_control::SR_M_ADDR = 129 * 8; +const uint32_t duc_block_control::SR_CONFIG_ADDR = 130 * 8; +const uint32_t duc_block_control::SR_INTERP_ADDR = 131 * 8; +const uint32_t duc_block_control::SR_FREQ_ADDR = 132 * 8; +const uint32_t duc_block_control::SR_SCALE_IQ_ADDR = 133 * 8; + +class duc_block_control_impl : public duc_block_control +{ +public: + RFNOC_BLOCK_CONSTRUCTOR(duc_block_control) + , _fpga_compat(regs().peek32(RB_COMPAT_NUM)), + _num_halfbands(regs().peek32(RB_NUM_HB)), + _cic_max_interp(regs().peek32(RB_CIC_MAX_INTERP)), + _residual_scaling(get_num_input_ports(), DEFAULT_SCALING) + { + UHD_ASSERT_THROW(get_num_input_ports() == get_num_output_ports()); + UHD_ASSERT_THROW(_cic_max_interp > 0 && _cic_max_interp <= 0xFF); + uhd::assert_fpga_compat(MAJOR_COMPAT, + MINOR_COMPAT, + _fpga_compat, + get_unique_id(), + get_unique_id(), + false /* Let it slide if minors mismatch */ + ); + RFNOC_LOG_DEBUG("Loading DUC with " << _num_halfbands + << " halfbands and " + "max CIC interpolation " + << _cic_max_interp); + // Load list of valid interpolation values + std::set interps{1}; // 1 is always a valid interpolation + for (size_t hb = 0; hb < _num_halfbands; hb++) { + for (size_t cic_interp = 1; cic_interp <= _cic_max_interp; cic_interp++) { + interps.insert((1 << hb) * cic_interp); + } + } + for (size_t interp : interps) { + _valid_interps.push_back(uhd::range_t(double(interp))); + } + + // Initialize properties. It is very important to first reserve the + // space, because we use push_back() further down, and properties must + // not change their base address after registration and resolver + // creation. + _samp_rate_in.reserve(get_num_ports()); + _samp_rate_out.reserve(get_num_ports()); + _scaling_in.reserve(get_num_ports()); + _scaling_out.reserve(get_num_ports()); + _interp.reserve(get_num_ports()); + _freq.reserve(get_num_ports()); + _type_in.reserve(get_num_ports()); + _type_out.reserve(get_num_ports()); + for (size_t chan = 0; chan < get_num_ports(); chan++) { + _register_props(chan); + } + register_issue_stream_cmd(); + } + + double set_freq(const double freq, + const size_t chan, + const boost::optional time) + { + // Store the current command time so we can restore it later + auto prev_cmd_time = get_command_time(chan); + if (time) { + set_command_time(time.get(), chan); + } + // This will trigger property propagation: + set_property("freq", freq, chan); + set_command_time(prev_cmd_time, chan); + return get_freq(chan); + } + + double get_freq(const size_t chan) const + { + return _freq.at(chan).get(); + } + + uhd::freq_range_t get_frequency_range(const size_t chan) const + { + const double input_rate = + _samp_rate_in.at(chan).is_valid() ? _samp_rate_in.at(chan).get() : 1.0; + // TODO add steps + return uhd::freq_range_t(-input_rate / 2, input_rate / 2); + } + + double get_input_rate(const size_t chan) const + { + return _samp_rate_in.at(chan).is_valid() ? _samp_rate_in.at(chan).get() : 1.0; + } + + double get_output_rate(const size_t chan) const + { + return _samp_rate_out.at(chan).is_valid() ? _samp_rate_out.at(chan).get() : 1.0; + } + + uhd::meta_range_t get_input_rates(const size_t chan) const + { + uhd::meta_range_t result; + if (!_samp_rate_out.at(chan).is_valid()) { + result.push_back(uhd::range_t(1.0)); + return result; + } + const double output_rate = _samp_rate_out.at(chan).get(); + // The interpolations are stored in order (from smallest to biggest), so + // iterate in reverse order so we can add rates from smallest to biggest + for (auto it = _valid_interps.rbegin(); it != _valid_interps.rend(); ++it) { + result.push_back(uhd::range_t(output_rate / it->start())); + } + return result; + } + + double set_input_rate(const double rate, const size_t chan) + { + if (_samp_rate_out.at(chan).is_valid()) { + const int coerced_interp = coerce_interp(get_output_rate(chan) / rate); + set_property("interp", coerced_interp, chan); + } else { + RFNOC_LOG_DEBUG( + "Property samp_rate@" + << chan + << " is not valid, attempting to set input rate via the edge property."); + set_property("samp_rate", rate, {res_source_info::INPUT_EDGE, chan}); + } + return _samp_rate_in.at(chan).get(); + } + +private: + //! Shorthand for num ports, since num input ports always equals num output ports + inline size_t get_num_ports() + { + return get_num_input_ports(); + } + + inline uint32_t get_addr(const uint32_t base_addr, const size_t chan) + { + return base_addr + REG_CHAN_OFFSET * chan; + } + + /************************************************************************** + * Initialization + *************************************************************************/ + void _register_props(const size_t chan) + { + // Create actual properties and store them + _samp_rate_in.push_back( + property_t(PROP_KEY_SAMP_RATE, {res_source_info::INPUT_EDGE, chan})); + _samp_rate_out.push_back( + property_t(PROP_KEY_SAMP_RATE, {res_source_info::OUTPUT_EDGE, chan})); + _scaling_in.push_back( + property_t(PROP_KEY_SCALING, {res_source_info::INPUT_EDGE, chan})); + _scaling_out.push_back( + property_t(PROP_KEY_SCALING, {res_source_info::OUTPUT_EDGE, chan})); + _interp.push_back(property_t( + PROP_KEY_INTERP, DEFAULT_INTERP, {res_source_info::USER, chan})); + _freq.push_back(property_t( + PROP_KEY_FREQ, DEFAULT_FREQ, {res_source_info::USER, chan})); + _type_in.emplace_back(property_t( + PROP_KEY_TYPE, IO_TYPE_SC16, {res_source_info::INPUT_EDGE, chan})); + _type_out.emplace_back(property_t( + PROP_KEY_TYPE, IO_TYPE_SC16, {res_source_info::OUTPUT_EDGE, chan})); + UHD_ASSERT_THROW(_samp_rate_in.size() == chan + 1); + UHD_ASSERT_THROW(_samp_rate_out.size() == chan + 1); + UHD_ASSERT_THROW(_scaling_in.size() == chan + 1); + UHD_ASSERT_THROW(_scaling_out.size() == chan + 1); + UHD_ASSERT_THROW(_interp.size() == chan + 1); + UHD_ASSERT_THROW(_freq.size() == chan + 1); + UHD_ASSERT_THROW(_type_in.size() == chan + 1); + UHD_ASSERT_THROW(_type_out.size() == chan + 1); + + // give us some shorthands for the rest of this function + property_t* samp_rate_in = &_samp_rate_in.back(); + property_t* samp_rate_out = &_samp_rate_out.back(); + property_t* scaling_in = &_scaling_in.back(); + property_t* scaling_out = &_scaling_out.back(); + property_t* interp = &_interp.back(); + property_t* freq = &_freq.back(); + property_t* type_in = &_type_in.back(); + property_t* type_out = &_type_out.back(); + + // register them + register_property(samp_rate_in); + register_property(samp_rate_out); + register_property(scaling_in); + register_property(scaling_out); + register_property(interp); + register_property(freq); + register_property(type_in); + register_property(type_out); + + /********************************************************************** + * Add resolvers + *********************************************************************/ + // Resolver for _interp: this gets executed when the user directly + // modifies interp. the desired behaviour is to coerce it first, then + // keep the output rate constant, and re-calculate the input rate. + add_property_resolver({interp, scaling_in}, + {interp, samp_rate_out, samp_rate_in, scaling_in}, + [this, + chan, + &interp = *interp, + &samp_rate_out = *samp_rate_out, + &samp_rate_in = *samp_rate_in, + &scaling_in = *scaling_in, + &scaling_out = *scaling_out]() { + RFNOC_LOG_TRACE("Calling resolver for `interp'@" << chan); + interp = coerce_interp(double(interp.get())); + // The following function will also update _residual_scaling + if (interp.is_dirty()) { + set_interp(interp.get(), chan); + } + if (samp_rate_out.is_valid()) { + samp_rate_in = samp_rate_out.get() / interp.get(); + } else if (samp_rate_in.is_valid()) { + samp_rate_out = samp_rate_in.get() * interp.get(); + } + // The scaling is independent of the actual rates + if (scaling_out.is_valid()) { + scaling_in = scaling_out.get() * _residual_scaling.at(chan); + } + }); + // Resolver for _freq: this gets executed when the user directly + // modifies _freq. + add_property_resolver({freq}, + {freq}, + [this, chan, &samp_rate_out = *samp_rate_out, &freq = *freq]() { + RFNOC_LOG_TRACE("Calling resolver for `freq'@" << chan); + if (samp_rate_out.is_valid()) { + const double new_freq = + _set_freq(freq.get(), samp_rate_out.get(), chan); + // If the frequency we just set is sufficiently close to the old + // frequency, don't bother updating the property in software + if (!uhd::math::frequencies_are_equal(new_freq, freq.get())) { + freq = new_freq; + } + } else { + RFNOC_LOG_DEBUG("Not setting frequency until sampling rate is set."); + } + }); + // Resolver for the input rate: we try and match interp so that the + // output rate is not modified. if interp needs to be coerced, only then + // the output rate is modified. + // Note this might also affect the frequency (if the output rate is + // modified). + add_property_resolver({samp_rate_in}, + {interp, samp_rate_out}, + [this, + chan, + &interp = *interp, + &samp_rate_out = *samp_rate_out, + &samp_rate_in = *samp_rate_in]() { + RFNOC_LOG_TRACE("Calling resolver for `samp_rate_in'@" << chan); + if (samp_rate_in.is_valid()) { + RFNOC_LOG_TRACE("New samp_rate_in is " << samp_rate_in.get()); + // If interp is changed, that will take care of scaling + if (samp_rate_out.is_valid()) { + interp = coerce_interp(samp_rate_out.get() / samp_rate_in.get()); + } + samp_rate_out = samp_rate_in.get() * interp.get(); + RFNOC_LOG_TRACE("New samp_rate_out is " << samp_rate_out.get()); + } + }); + // Resolver for the output rate: like the previous one, but flipped. + add_property_resolver({samp_rate_out}, + {interp, samp_rate_in, freq}, + [this, + chan, + &interp = *interp, + &freq = *freq, + &samp_rate_out = *samp_rate_out, + &samp_rate_in = *samp_rate_in]() { + RFNOC_LOG_TRACE("Calling resolver for `samp_rate_out'@" << chan); + if (samp_rate_out.is_valid()) { + // If interp is changed, that will take care of scaling + if (samp_rate_in.is_valid()) { + interp = + coerce_interp(int(samp_rate_out.get() / samp_rate_in.get())); + } + samp_rate_in = samp_rate_out.get() / interp.get(); + // We now need to force the resolver for freq to run so it can + // update its phase increment + freq.force_dirty(); + } + }); + // Resolver for the output rate: like the previous one, but flipped. + add_property_resolver({scaling_out}, + {scaling_in}, + [this, + chan, + &interp = *interp, + &samp_rate_out = *samp_rate_out, + &samp_rate_in = *samp_rate_in, + &scaling_in = *scaling_in, + &scaling_out = *scaling_out]() { + RFNOC_LOG_TRACE("Calling resolver for `scaling_out'@" << chan); + // If any of these are dirty, the interp resolver will kick in + // and calculate the scaling itself, so we don't do it here to + // avoid conflict. + if (!interp.is_dirty() && !samp_rate_in.is_dirty() + && !samp_rate_out.is_dirty() && scaling_out.is_valid()) { + scaling_in = scaling_out.get() * _residual_scaling.at(chan); + } + }); + // Resolvers for type: These are constants + add_property_resolver({type_in}, {type_in}, [& type_in = *type_in]() { + type_in.set(IO_TYPE_SC16); + }); + add_property_resolver({type_out}, {type_out}, [& type_out = *type_out]() { + type_out.set(IO_TYPE_SC16); + }); + } + + void register_issue_stream_cmd() + { + register_action_handler(ACTION_KEY_STREAM_CMD, + [this](const res_source_info& src, action_info::sptr action) { + stream_cmd_action_info::sptr stream_cmd_action = + std::dynamic_pointer_cast(action); + if (!stream_cmd_action) { + throw uhd::runtime_error( + "Received stream_cmd of invalid action type!"); + } + issue_stream_cmd_action_handler(src, stream_cmd_action); + }); + } + + void issue_stream_cmd_action_handler( + const res_source_info& src, stream_cmd_action_info::sptr stream_cmd_action) + { + res_source_info dst_edge{res_source_info::invert_edge(src.type), src.instance}; + const size_t chan = src.instance; + uhd::stream_cmd_t::stream_mode_t stream_mode = + stream_cmd_action->stream_cmd.stream_mode; + RFNOC_LOG_TRACE("Received stream command: " << char(stream_mode) << " to " + << src.to_string() + << ", id==" << stream_cmd_action->id); + auto new_action = stream_cmd_action_info::make(stream_mode); + new_action->stream_cmd = stream_cmd_action->stream_cmd; + if (stream_mode == uhd::stream_cmd_t::STREAM_MODE_NUM_SAMPS_AND_DONE + || stream_mode == uhd::stream_cmd_t::STREAM_MODE_NUM_SAMPS_AND_MORE) { + if (src.type == res_source_info::INPUT_EDGE) { + new_action->stream_cmd.num_samps *= _interp.at(chan).get(); + } else { + new_action->stream_cmd.num_samps /= _interp.at(chan).get(); + } + RFNOC_LOG_TRACE("Forwarding num_samps stream command, new value is " + << new_action->stream_cmd.num_samps); + } else { + RFNOC_LOG_TRACE("Forwarding continuous stream command...") + } + + post_action(dst_edge, new_action); + } + + /************************************************************************** + * FPGA communication (register IO) + *************************************************************************/ + /*! Update the interpolation value + * + * \param interp The new interpolation value. + * \throws uhd::assertion_error if interp is not valid. + */ + void set_interp(int interp, const size_t chan) + { + RFNOC_LOG_TRACE("Set interp to " << interp); + // Step 1: Calculate number of halfbands + uint32_t hb_enable = 0; + uint32_t cic_interp = interp; + while ((cic_interp % 2 == 0) and hb_enable < _num_halfbands) { + hb_enable++; + cic_interp /= 2; + } + // Step 2: Make sure we can handle the rest with the CIC + UHD_ASSERT_THROW(hb_enable <= _num_halfbands); + UHD_ASSERT_THROW(cic_interp > 0 and cic_interp <= _cic_max_interp); + const uint32_t interp_word = (hb_enable << 8) | cic_interp; + regs().poke32(get_addr(SR_INTERP_ADDR, chan), interp_word); + + // Rate change = M/N, where N = 1 + regs().poke32(get_addr(SR_M_ADDR, chan), interp); + // FIXME: + // - TwinRX had some issues with N == 1 + regs().poke32(get_addr(SR_N_ADDR, chan), 1); + + if (cic_interp > 1 and hb_enable == 0) { + RFNOC_LOG_WARNING( + "The requested interpolation is odd; the user should expect passband " + "CIC rolloff.\n" + "Select an even interpolation to ensure that a halfband filter is " + "enabled.\n"); + } + + // DDS gain: + constexpr double DDS_GAIN = 2.0; + // Calculate algorithmic gain of CIC for a given interpolation. + // For Ettus CIC R=interp, M=1, N=4. Gain = (R * M) ^ (N - 1) + const double cic_gain = std::pow(double(cic_interp * 1), /*N*/ 4 - 1); + // The Ettus CIC also tries its best to compensate for the gain by + // shifting the CIC output. This reduces the gain by a factor of + // 2**ceil(log2(cic_gain)) + const double total_gain = + DDS_GAIN * cic_gain / std::pow(2, uhd::math::ceil_log2(cic_gain)); + update_scaling(total_gain, chan); + } + + //! Update scaling based on the current gain + // + // Calculates the closest fixpoint value that this block can correct for in + // hardware (fixpoint). The residual gain is written to _residual_scaling. + void update_scaling(const double dsp_gain, const size_t chan) + { + constexpr double FIXPOINT_SCALING = 1 << 15; + const double compensation_factor = 1. / dsp_gain; + // Convert to fixpoint + const double target_factor = FIXPOINT_SCALING * compensation_factor; + const int32_t actual_factor = boost::math::iround(target_factor); + // Write DUC with scaling correction for CIC and DDS that maximizes + // dynamic range + regs().poke32(get_addr(SR_SCALE_IQ_ADDR, chan), actual_factor); + + // Calculate the error introduced by using fixedpoint representation for + // the scaler, can be corrected in host later. + _residual_scaling[chan] = dsp_gain * double(actual_factor) / FIXPOINT_SCALING; + } + + /*! Return the closest possible interpolation value to the one requested + */ + int coerce_interp(const double requested_interp) const + { + UHD_ASSERT_THROW(requested_interp >= 0); + return static_cast(_valid_interps.clip(requested_interp, true)); + } + + //! Set the DDS frequency shift the signal to \p requested_freq + double _set_freq( + const double requested_freq, const double input_rate, const size_t chan) + { + double actual_freq; + int32_t freq_word; + std::tie(actual_freq, freq_word) = + get_freq_and_freq_word(requested_freq, input_rate); + regs().poke32( + get_addr(SR_FREQ_ADDR, chan), uint32_t(freq_word), get_command_time(chan)); + return actual_freq; + } + + /************************************************************************** + * Attributes + *************************************************************************/ + //! Block compat number + const uint32_t _fpga_compat; + //! Number of halfbands + const size_t _num_halfbands; + //! Max CIC interpolation + const size_t _cic_max_interp; + + //! List of valid interpolation values + uhd::meta_range_t _valid_interps; + + //! Cache the current residual scaling + std::vector _residual_scaling; + + //! Properties for type_in (one per port) + std::vector> _type_in; + //! Properties for type_out (one per port) + std::vector> _type_out; + //! Properties for samp_rate_in (one per port) + std::vector> _samp_rate_in; + //! Properties for samp_rate_out (one per port) + std::vector> _samp_rate_out; + //! Properties for scaling_in (one per port) + std::vector> _scaling_in; + //! Properties for scaling_out (one per port) + std::vector> _scaling_out; + //! Properties for interp (one per port) + std::vector> _interp; + //! Properties for freq (one per port) + std::vector> _freq; +}; + +UHD_RFNOC_BLOCK_REGISTER_DIRECT( + duc_block_control, 0xD0C00000, "DUC", CLOCK_KEY_GRAPH, "bus_clk") diff --git a/host/tests/CMakeLists.txt b/host/tests/CMakeLists.txt index 0df2d810c..9bc267e10 100644 --- a/host/tests/CMakeLists.txt +++ b/host/tests/CMakeLists.txt @@ -258,6 +258,7 @@ UHD_ADD_NONAPI_TEST( ${CMAKE_SOURCE_DIR}/lib/utils/compat_check.cpp ${CMAKE_SOURCE_DIR}/lib/utils/system_time.cpp ${CMAKE_SOURCE_DIR}/lib/rfnoc/ddc_block_control.cpp + ${CMAKE_SOURCE_DIR}/lib/rfnoc/duc_block_control.cpp ${CMAKE_SOURCE_DIR}/lib/rfnoc/null_block_control.cpp ${CMAKE_SOURCE_DIR}/lib/rfnoc/register_iface_holder.cpp ${CMAKE_SOURCE_DIR}/lib/usrp/cores/dsp_core_utils.cpp diff --git a/host/tests/rfnoc_blocks_test.cpp b/host/tests/rfnoc_blocks_test.cpp index c5c22f4cc..528405439 100644 --- a/host/tests/rfnoc_blocks_test.cpp +++ b/host/tests/rfnoc_blocks_test.cpp @@ -4,15 +4,16 @@ // SPDX-License-Identifier: GPL-3.0-or-later // -#include "rfnoc_mock_reg_iface.hpp" #include "rfnoc_graph_mock_nodes.hpp" +#include "rfnoc_mock_reg_iface.hpp" #include #include #include +#include #include #include -#include #include +#include #include #include #include @@ -51,6 +52,7 @@ noc_block_base::make_args_ptr make_make_args(noc_id_t noc_id, MOCK_REGISTER(null_block_control) MOCK_REGISTER(ddc_block_control) +MOCK_REGISTER(duc_block_control) BOOST_AUTO_TEST_CASE(test_null_block) { @@ -237,3 +239,153 @@ BOOST_AUTO_TEST_CASE(test_ddc_block) BOOST_CHECK_EQUAL(test_ddc->get_mtu({res_source_info::OUTPUT_EDGE, 0}), NEW_MTU / 2); } +BOOST_AUTO_TEST_CASE(test_duc_block) +{ + node_accessor_t node_accessor{}; + constexpr uint32_t num_hb = 2; + constexpr uint32_t max_cic = 128; + constexpr size_t num_chans = 4; + constexpr noc_id_t mock_noc_id = 0x7E57D0C0; + constexpr int TEST_INTERP = 20; // 2 halfbands, CIC==5 + + auto duc_make_args = make_make_args(mock_noc_id, "0/DUC#0", num_chans, num_chans); + duc_make_args->args = uhd::device_addr_t(); + auto duc_reg_iface = + std::dynamic_pointer_cast(duc_make_args->reg_iface); + duc_reg_iface->read_memory[duc_block_control::RB_COMPAT_NUM] = + (duc_block_control::MAJOR_COMPAT << 16) | duc_block_control::MINOR_COMPAT; + duc_reg_iface->read_memory[duc_block_control::RB_NUM_HB] = num_hb; + duc_reg_iface->read_memory[duc_block_control::RB_CIC_MAX_INTERP] = max_cic; + auto test_duc = duc_block_control_make(std::move(duc_make_args)); + + node_accessor.init_props(test_duc.get()); + UHD_LOG_DEBUG("TEST", "Init done."); + test_duc->set_property("interp", TEST_INTERP, 0); + + BOOST_REQUIRE(duc_reg_iface->write_memory.count(duc_block_control::SR_INTERP_ADDR)); + BOOST_CHECK_EQUAL( + duc_reg_iface->write_memory.at(duc_block_control::SR_INTERP_ADDR), 2 << 8 | 5); + BOOST_CHECK_EQUAL(test_duc->get_mtu({res_source_info::INPUT_EDGE, 0}), DEFAULT_MTU); + + // Now plop it in a graph + detail::graph_t graph{}; + detail::graph_t::graph_edge_t edge_info; + edge_info.src_port = 0; + edge_info.dst_port = 0; + edge_info.property_propagation_active = true; + edge_info.edge = detail::graph_t::graph_edge_t::DYNAMIC; + + mock_terminator_t mock_source_term(1, {ACTION_KEY_STREAM_CMD}); + mock_terminator_t mock_sink_term(1, {ACTION_KEY_STREAM_CMD}); + + UHD_LOG_INFO("TEST", "Priming mock source node props"); + mock_source_term.set_edge_property( + "type", "sc16", {res_source_info::OUTPUT_EDGE, 0}); + mock_source_term.set_edge_property( + "scaling", 1.0, {res_source_info::OUTPUT_EDGE, 0}); + mock_source_term.set_edge_property( + "samp_rate", 1.0, {res_source_info::OUTPUT_EDGE, 0}); + UHD_LOG_INFO("TEST", "Priming mock sink node props"); + mock_sink_term.set_edge_property( + "type", "sc16", {res_source_info::INPUT_EDGE, 0}); + mock_sink_term.set_edge_property( + "scaling", 1.0, {res_source_info::INPUT_EDGE, 0}); + mock_sink_term.set_edge_property( + "samp_rate", 1.0, {res_source_info::INPUT_EDGE, 0}); + + UHD_LOG_INFO("TEST", "Creating graph..."); + graph.connect(&mock_source_term, test_duc.get(), edge_info); + graph.connect(test_duc.get(), &mock_sink_term, edge_info); + UHD_LOG_INFO("TEST", "Committing graph..."); + graph.commit(); + UHD_LOG_INFO("TEST", "Commit complete."); + // We need to set the interpation again, because the rates will screw it + // change it w.r.t. to the previous setting + test_duc->set_property("interp", TEST_INTERP, 0); + BOOST_CHECK_EQUAL(test_duc->get_property("interp", 0), TEST_INTERP); + BOOST_CHECK(mock_source_term.get_edge_property( + "samp_rate", {res_source_info::OUTPUT_EDGE, 0}) + * TEST_INTERP + == mock_sink_term.get_edge_property( + "samp_rate", {res_source_info::INPUT_EDGE, 0})); + const double initial_input_scaling = mock_source_term.get_edge_property( + "scaling", {res_source_info::OUTPUT_EDGE, 0}); + const double initial_output_scaling = mock_sink_term.get_edge_property( + "scaling", {res_source_info::INPUT_EDGE, 0}); + // Our chosen interpolation value will cause some scaling issues, so + // this value needs to be off from 1.0 + BOOST_CHECK(initial_input_scaling != 1.0); + BOOST_CHECK(initial_output_scaling == 1.0); + + // The DUC will not let us set the scaling on its input, so the following + // call to set property should have no effect + mock_source_term.set_edge_property( + "scaling", 42.0, {res_source_info::OUTPUT_EDGE, 0}); + BOOST_CHECK(initial_input_scaling + == mock_source_term.get_edge_property( + "scaling", {res_source_info::OUTPUT_EDGE, 0})); + BOOST_CHECK(initial_output_scaling + == mock_sink_term.get_edge_property( + "scaling", {res_source_info::INPUT_EDGE, 0})); + // However, if we change the scaling on the DUC's output, that will + // propagate to its input + UHD_LOG_INFO("TEST", "Testing doubling the output scaling..."); + mock_sink_term.set_edge_property( + "scaling", 2.0, {res_source_info::INPUT_EDGE, 0}); + const double doubled_input_scaling = mock_source_term.get_edge_property( + "scaling", {res_source_info::OUTPUT_EDGE, 0}); + BOOST_CHECK_EQUAL(doubled_input_scaling, 2 * initial_input_scaling); + + UHD_LOG_INFO("TEST", "Setting freq to 1/8 of input rate"); + constexpr double TEST_FREQ = 1.0 / 8; + test_duc->set_property("freq", TEST_FREQ, 0); + const uint32_t freq_word_1 = + duc_reg_iface->write_memory.at(duc_block_control::SR_FREQ_ADDR); + BOOST_REQUIRE(freq_word_1 != 0); + UHD_LOG_INFO("TEST", "Doubling input rate (to 2.0)"); + // Now this should change the freq word, but not the absolute frequency + mock_sink_term.set_edge_property("samp_rate", + 2 + * mock_sink_term.get_edge_property( + "samp_rate", {res_source_info::INPUT_EDGE, 0}), + {res_source_info::INPUT_EDGE, 0}); + const double freq_word_2 = + duc_reg_iface->write_memory.at(duc_block_control::SR_FREQ_ADDR); + // The frequency word is the phase increment, which will halve. We skirt + // around fixpoint/floating point accuracy issues by using CLOSE. + BOOST_CHECK_CLOSE(double(freq_word_1) / double(freq_word_2), 2.0, 1e-6); + + // Reset the interpolation + test_duc->set_property("interp", TEST_INTERP, 0); + BOOST_REQUIRE_EQUAL(test_duc->get_property("interp", 0), TEST_INTERP); + UHD_LOG_INFO("TEST", "DUC: Testing action forwarding"); + auto new_stream_cmd_action = + stream_cmd_action_info::make(uhd::stream_cmd_t::STREAM_MODE_NUM_SAMPS_AND_DONE); + new_stream_cmd_action->stream_cmd.num_samps = 1000; + node_accessor.post_action( + &mock_sink_term, {res_source_info::INPUT_EDGE, 0}, new_stream_cmd_action); + BOOST_REQUIRE(!mock_source_term.received_actions.empty()); + auto stream_cmd_recv_by_src = std::dynamic_pointer_cast( + mock_source_term.received_actions.back()); + BOOST_CHECK(stream_cmd_recv_by_src); + BOOST_CHECK_EQUAL(stream_cmd_recv_by_src->stream_cmd.num_samps, 1000 / TEST_INTERP); + auto new_stream_cmd_action2 = + stream_cmd_action_info::make(uhd::stream_cmd_t::STREAM_MODE_START_CONTINUOUS); + node_accessor.post_action( + &mock_sink_term, {res_source_info::INPUT_EDGE, 0}, new_stream_cmd_action2); + BOOST_REQUIRE(!mock_source_term.received_actions.empty()); + auto stream_cmd_recv_by_src2 = std::dynamic_pointer_cast( + mock_source_term.received_actions.back()); + BOOST_CHECK_EQUAL(stream_cmd_recv_by_src2->stream_cmd.stream_mode, + uhd::stream_cmd_t::STREAM_MODE_START_CONTINUOUS); + auto new_stream_cmd_action3 = + stream_cmd_action_info::make(uhd::stream_cmd_t::STREAM_MODE_NUM_SAMPS_AND_DONE); + new_stream_cmd_action3->stream_cmd.num_samps = 100; + node_accessor.post_action( + &mock_source_term, {res_source_info::OUTPUT_EDGE, 0}, new_stream_cmd_action3); + BOOST_REQUIRE(!mock_sink_term.received_actions.empty()); + auto stream_cmd_recv_by_src3 = std::dynamic_pointer_cast( + mock_sink_term.received_actions.back()); + BOOST_CHECK(stream_cmd_recv_by_src3); + BOOST_CHECK_EQUAL(stream_cmd_recv_by_src3->stream_cmd.num_samps, 100 * TEST_INTERP); +} diff --git a/host/tests/rfnoc_graph_mock_nodes.hpp b/host/tests/rfnoc_graph_mock_nodes.hpp index 63e8bc534..c28256b67 100644 --- a/host/tests/rfnoc_graph_mock_nodes.hpp +++ b/host/tests/rfnoc_graph_mock_nodes.hpp @@ -11,6 +11,7 @@ #include #include #include +#include using namespace uhd::rfnoc; @@ -358,11 +359,22 @@ class mock_terminator_t : public node_t public: static size_t counter; - mock_terminator_t(const size_t num_ports) + mock_terminator_t( + const size_t num_ports, const std::vector expected_actions = {}) : _num_ports(num_ports), _term_count(counter++) { set_prop_forwarding_policy(forwarding_policy_t::DROP); set_action_forwarding_policy(forwarding_policy_t::DROP); + for (const auto& action_key : expected_actions) { + RFNOC_LOG_DEBUG("Adding action handler for key " << action_key); + register_action_handler( + action_key, [this](const res_source_info& src, action_info::sptr action) { + RFNOC_LOG_INFO( + "Received action: key=" << action->key << ", id=" << action->id + << ", src edge=" << src.to_string()); + received_actions.push_back(action); + }); + } } std::string get_unique_id() const @@ -405,6 +417,8 @@ public: return get_property(id, edge_info); } + std::list received_actions; + private: const size_t _num_ports; const size_t _term_count; -- cgit v1.2.3