| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Note: This commit changes nothing to the way the image builder is being
called. One can still run
rfnoc_image_builder [...]
as before. The difference is in the Python guts:
Where previously one had to do
import rfnoc
now the incantation becomes:
from uhd import imgbuilder
(Note that the submodule uhd.rfnoc already exists for wrapping the RFNoC
API into Python, hence the renaming from rfnoc to imgbuilder).
This is done for a variety of reasons:
- Now, there is only one and exactly one Python module for UHD that
contains all the things, as opposed to before where there were two.
- The rfnoc and uhd modules were installed in different ways (setuptools
vs. CMake); that is now harmonized. This also removes a lot of CMake
plumbing.
- It is not common to import the rfnoc module for anyone other than
rfnoc_image_builder
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The blocks that are neither OOT, nor core blocks (like the DDC/DUC,
etc.) require additional info to find their appropriate Makefile.srcs
files. We don't include them in every build, to avoid building IP for
the FFT, FIR, and other blocks when they're not needed. However, those
blocks are in-tree, and don't follow the same directory structure as
out-of-tree modules, either.
We therefore allow the YAML files for those blocks (which are shipped
with UHD) to contain a path hint to their appropriate Makefile.srcs. The
image builder uses those paths to amend the `make` command
appropriately.
|
|
|
|
|
| |
For easier maintenance, some constants like paths and maps were moved to
the top of the Python file.
|
|
|
|
|
|
| |
The -I option was broken in multiple ways:
- Multiple -I options would only keep the last one
- The call to make did not actually append RFNOC_OOT_MAKEFILE_SRCS
|
| |
|
|
|
|
|
|
|
| |
- The -I switch now allows pointing to an OOT
- The image core file may now contain keys 'device' and
'default_target', which the image builder can use as default values.
Command line switches --device and --target are still honoured.
|
|
|
|
|
|
| |
The ports in the fpga need to be ordered to make correct
connections in verilog. This also keeps generated verilog
constant across runs.
|
|
|
|
|
|
| |
THIS_PORTID was calculating the block port ID via the number of SEPs
in the design, but it should be smaller when not all SEPs have a ctrl
port. This commit fixes that calculation.
|
|
|
|
|
|
|
| |
This commit removes all files and parts of files that are used by
proto-RFNoC only.
uhd: Fix include CMakeLists.txt, add missing files
|
|
The builder has two major jobs:
* generate an image core file which reflects the FPGA image
configuration given by the user
* invoke Xilinx toolchain to actually build the FPGA image
For this purpose it needs to know where to find the FPGA source tree.
This tree can be give by the -F option.
The code that represents the user configurable part of the image is
written to a file called <device>_rfnoc_sandbox.v. To generate the file
these configuration files are needed:
* io_signatures.yml: A file describing the known IO signatures. This file
is global for all devices and contains the superset
of all signatures (not all signatures are used by all
devices). It resides in usrp3/top/ of the tree given
by -F.
* bsp.yml: A file describing interfaces of a specific device such as AXIS
transport interfaces or IO ports as well as device specific
settings. It resides in usrp3/top/<device> of the tree given by -F.
* <image>.yml: a file provided by the user with freely chosen name.
It describes which elements the image should contain
(RFNoC blocks, streaming endpoints, IO ports) and how
to connect them. The file also contains image setting
such as the CHDR width to be used.
The script uses mako templates to generate the sandbox file. Before the
template engine is invoked sanity checks are executed to ensure the
configuration is synthactic correct. The script also build up structures
to ease Verilog code generation in the template engine. The engine should
not invoke more Python than echoing variables or iterating of lists or
dictionaries. This eases debugging as errors in the template engine are
hard to track and difficult to read for the user.
All Python code is placed in a package called rfnoc. The templates used
by the builder are also part of this package. image_builder.py contains
a method called build_image which is the main entry point for the builder.
It can also be utilized by other Python programs. To align with the
existing uhd_image_builder there is also a wrapper in bin called
rfnoc_image_builder which expects similar commands as the uhd_image_builder.
For debugging purpuse the script can be invoked from host/utils using
$ PYTHONPATH=. python bin/rfnoc_image_builder <options>
When installed using cmake/make/make install the builder installs to
${CMAKE_INSTALL_PREFIX}bin and can be invoked without specifying a
PYTHONPATH.
One can also install the package using pip from host/utils
$ pip install .
Image config generation can also be done from GNU Radio Companion
files. The required GRC files are merged into gr-ettus.
Example usage:
$ rfnoc_image_builder -F ~/src/fpgadev -d x310 \
-r path/to/x310_rfnoc_image_core.grc \
-b path/to/gr-ettus/grc
Co-Authored-By: Alex Williams <alex.williams@ni.com>
Co-Authored-By: Sugandha Gupta <sugandha.gupta@ettus.com>
Co-Authored-By: Martin Braun <martin.braun@ettus.com>
|