| Commit message (Collapse) | Author | Age | Files | Lines |
... | |
|
|
|
|
| |
Add mock flow control to the packet handler benchmark to make it a
better comparison to streamer_benchmark.
|
| |
|
|
|
|
|
|
|
| |
Now link instances must have the ability to report the corresponding
physical adapter that is used for the local side of the link. This
information can be used to help identify when multiple links share
the same adapter.
|
|
|
|
|
| |
node_t::set_properties() is a convenience function that lets you set
multiple properties at once from a device_addr_t.
|
| |
|
|
|
|
|
|
| |
Add an async message queue that aggregates errors from multiple sources.
Errors can come from the strs packets originating from the stream
endpoint or from the radio block through control packets to the host.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This introduces the concept of a resolution context, because the
property propagation algorithm needs to behave differently when called
during an initialization step (e.g. when the graph is committed), or
when the user changes a property on one of the nodes after it was
committed.
The algorithm is modified as follows:
- When called during an initialization step, then all nodes get resolved
at least once. If nodes added new properties, then all nodes get
touched again until the max number of iterations is reached.
- When called because a node modified one of its properties, then that
node is always resolved first. From there, all other nodes are
resolved in topological order. However, the algorithm immediately
terminates as soon as there are no more dirty nodes.
- When called because a node modified one of its properties, but the
graph is currently not in a committed state, then that node will do
a local property resolution.
|
|
|
|
|
|
|
|
| |
Remove UHD call to elevate thread priority to realtime from utils, and
add warning in documentation of set_thread_priority function. Setting
all threads to the same realtime priority can cause the threads to not
share access to the network interface fairly, which adversely affects
operation of the worker threads in UHD.
|
|
|
|
|
|
|
| |
Up until now, these unit tests were bypassing the factory, and directly
linking against the relevant block factories. This can cause linker
issues, but it also doesn't test code paths. This change makes the unit
tests look more like the actual usage.
|
|
|
|
|
|
|
|
|
|
|
| |
This introduces the concept of an async message validator, an optional
callback for functions to check if an async message has a valid payload.
After validation, the async message is ack'd. Then, the async message
handler is executed.
This makes sure that an async message is ack'd as soon as possible,
rather than after the async message handling, which can itself have all
sorts of communication going on to the device.
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
MTUs are now tracked through the framework for all childs of
noc_block_base. Every edge gets an 'mtu' property. MTU can be set and
get either through the prop API, or through new API calls (get_mtu(),
set_mtu()). It is also possible to create custom properties that depend
on the MTU by asking for a reference to the MTU property, and then
adding that to the input list of a property resolver.
The radio_control_impl includes a change in this commit where it sets
the spp based on the MTU.
Blocks can also set an MTU forwarding policy. The DDC block includes a
change in this commit that sets a forwarding policy of ONE_TO_ONE,
meaning that the MTU on an input edge is forwarded to the corresponding
output edge (but not the other edges, as with the tick rate).
|
|
|
|
|
|
|
|
| |
Sending actions to self is useful because calling post_action() from
within an action handler will not actually trigger the action. Instead,
it will defer delivery of the action. Allowing sending actions to self
will allow to add another action, in deterministic order, and the
execution of another action handler.
|
|
|
|
|
|
| |
This can be used to set arbitrary key/value pairs on the action object.
Easier to use than serialization, but doesn't require custom types,
either.
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
- Add device ID constants (e.g., E310 == 0xE310, X300 == 0xA300). These
are stored in the device FPGA, and can be used for decisions later
- Blocks can be specific to a device. For example, x300_radio_control
can only work on an X300 series device.
- Because blocks can be device-specific, all radio blocks can now share
a common Noc-ID (0x12AD1000).
- The registry and factory functions are modified to acommodate for
this.
- The motherboard access is now also factored into the same registry
macro.
|
|
|
|
|
|
|
|
|
| |
- Combine scaling and samp_rate resolvers
- Prioritize decim when user has set it for DDC:
When samp_rate_in changes, either the samp_rate_out or the decim
values may change to accommodate it. If decim has been set by the
user (which can be determined by the valid flag), prefer changing
samp_rate_out over decim.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
transports:
Transports build on I/O service and implements flow control and
sequence number checking.
The rx streamer subclass extends the streamer implementation to connect
it to the rfnoc graph. It receives configuration values from property
propagation and configures the streamer accordingly. It also implements
the issue_stream_cmd rx_streamer API method.
Add implementation of rx streamer creation and method to connect it to
an rfnoc block.
rfnoc_graph: Cache more connection info, clarify contract
Summary of changes:
- rfnoc_graph stores more information about static connections at the
beginning. Some search algorithms are replaced by simpler lookups.
- The contract for connect() was clarified. It is required to call
connect, even for static connections.
|
|
|
|
| |
Implement uhd::rfnoc::rfnoc_graph::enumerate_*_connections()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
During registration, blocks must now specify which clock they are using
for the timebase (i.e., for timed commands) and for the ctrlport (this
is used to determine the length of sleeps and polls). For example, the
X300 provides bus_clk and radio_clk; typically, the former is used for
the control port, and the latter for the timebase clock.
Another virtual clock is called "__graph__", and it means the clock is
derived from property propagation via the graph.
The actual clocks are provided by the mb_iface. It has two new API
calls: get_timebase_clock() and get_ctrlport_clock(), which take an
argument as to which clock exactly is requested. On block
initialization, those clock_iface objects are copied into the block
controller.
The get_tick_rate() API call for blocks now exclusively checks the
timebase clock_iface, and will no longer cache the current tick rate in
a separate _tick_rate member variable. Block controllers can't manually
modify the clock_iface, unless they also have access to the
mb_controller (like the radio block), and that mb_controller has
provided said access.
This commit also adds the clock selection API changes to the DDC block,
the Null block, and the default block.
|
|
|
|
|
|
|
|
| |
On destruction, the rfnoc_graph will call shutdown() on all blocks. This
allows a safe de-initialization of blocks independent of the lifetime of
the noc_block_base::sptr.
Also adds the shutdown feature to null_block_control.
|
| |
|
|
|
|
|
| |
These args come from the framework, e.g., because the UHD session was
launched with them.
|
| |
|
|
|
|
|
|
|
|
|
| |
The mb_controller is an interface to hardware-specific functions of the
motherboard. The API works in two ways:
- The user can request access to it, and thus interact directly with the
motherboard
- RFNoC blocks can request access to it, if they need to interact with
the motherboard themselves.
|
| |
|
|
|
|
| |
- Add peek64() and poke64() convenience calls
|
|
|
|
|
|
|
|
|
|
|
| |
All noc_block_base derivatives are now plugged into the tick rate
system. Connected nodes can only have one tick rate among them. This
implies there is also only ever one tick rate per block.
set_tick_rate() is a protected API call which can be called by blocks
such as radio blocks to actually set a tick rate. Other blocks would
only ever read the tick rate, which is handled by the get_tick_rate()
API call.
|
|
|
|
|
|
|
| |
When a node has multiple properties that depend on each other (and
possible have circular dependencies), the previous version of property
propagation would not correctly resolve properties that got flagged
dirty during the execution of other resolvers.
|
|
|
|
|
|
| |
- Moved chdr_packet and chdr_types from rfnoc/chdr to rfnoc and updated
all references
- Moved non-CHDR definitions to rfnoc_common.hpp
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The inline_io_service connects transports to links without any
worker threads. Send operations go directly to the link, and recv
will perform the I/O as part of the get_recv_buffer() call.
The inline_io_service also supports muxed links natively. The receive
mux is entirely inline. There is no separate thread for the
inline_io_service, and that continues here. A queue is created for
each client of the mux, and packets are processed as they come in. If
a packet is to go up to a different client, the packet is queued up
for later. When that client attempts to recv(), the queue is checked
first, and the attempts to receive from the link happen ONLY if no
packet was found.
Also add mock transport to test I/O service APIs. Tests I/O service
construction and some basic packet transmision. One case will also
uses a single link that is shared between the send and recv transports.
That link is muxed between two compatible but different transports.
|
|
|
|
| |
Add test for transports using mock transports
|
| |
|
|
|
|
|
|
|
|
| |
A small modification to rfnoc::action_info makes it polymorphic, and
instead of serializing data structures into a string, this allows
creating custom action objects and identifying them via RTTI. The stream
command action object is a good example for how to use this, so all the
usages of stream command action objects were converted to this scheme.
|
|
|
|
|
|
| |
- Add support for new backend iface with max_async_msgs and mtu
moved to after the noc ID
- Fixed offsets for block info registers
|
|
|
|
|
|
|
| |
Previously, it was 0/FFT_1. The counter was separated by an underscore.
Now, we separate by a # symbol to allow for underscores in block names.
This means 'FIR_Filter' is now a valid blockname.
|
|
|
|
|
|
|
|
|
|
| |
- Adding client_zero class, which gathers information about our device
form the global registers on port 0 of the RFNoC backend registers.
- adding unit tests to exercise client_zero
- mock_reg_iface class: adding fake register_iface so we can run
unit tests in software only
Co-authored-by: Martin Braun <martin.braun@ettus.com>
|
|
|
|
| |
This is a continuation of a76ce96c.
|
|
|
|
|
|
|
|
| |
- Added action_info class
- Allow to send actions from node to node
- Allow to post actions into nodes
- Allow to set default forwarding policies
- Added unit tests
|
|
|
|
|
|
|
| |
- Moved packet interface code from public to private include
- Split packet interface into two files: payload paring and packet iface
- Added support for all CHDR packet types
- Added more test cases to unit test
|
|
|
|
|
|
|
|
|
|
|
|
| |
- Adds a detail::graph_t class, which handles the propagation
- Adds methods to node_t to aid with propagation
- Adds unit tests
- Adds dynamic property forwarding:
Nodes are now able to forward properties they don't know about by
providing a forwarding policy. A good example is the FIFO block which
simply forwards most properties verbatim.
- node: Temporarily disabling consistency check at init
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Adds the following classes:
- uhd::rfnoc::node_t, the base class for RFNoC nodes
- uhd::rfnoc::node_accessor_t, a class to access private properties
- uhd::rfnoc::res_source_info, a struct that identifies where properties
come from
- uhd::rfnoc::property_t, and property_base_t (its parent)
- uhd::rfnoc::prop_accessor_t, a class to access properties
Add always dirty property (dirtifier).
Also adds unit tests for properties.
|
| |
|
|
|
|
|
|
|
| |
uhd::get_system_time() is currently only used in USRP1 code, and it
turns out that our "optimized", platform-dependent implementation still
is a little slower than straight-up chrono. We therefore remove all the
special cases, and replace them with a single, standard solution.
|
|
|
|
|
|
|
|
| |
The difference between the _chdr converters and the _item32_ converters
is that the former do not require item32 boundaries, they do not require
endianness swapping, and they don't use IQ swapping either.
This is possible because the FPGA will do byte-swapping.
|
|
|
|
|
| |
This is the inverse to std::to_string(), and we can overload it with
UHD-internal types.
|
|
|
|
|
|
|
|
|
| |
This removes the following symbols:
- otw_type_t
- clock_config_t
- Any functions that use those symbols
- Non-standard args from examples (e.g., --total-time is deprecated in
favour of --duration)
|
|
|
|
|
|
|
|
|
|
|
| |
Usually, devtest is run via make (or ninja), and will use the correct
Python interpreter. When running directly on the command line, it is
important to pick the right Python interpreter so it will work with the
Python API.
Here, we change the default interpreter from Python 2 to 3, because
that's the more common version, and will be the only option for upcoming
UHD 4.0 anyway.
|
|
|
|
|
|
|
| |
This will now allow calls like this:
uhd::dict<k, v> d = /* ... */;
auto m = static_cast<std::map<k, v>>(d);
|
| |
|
|
|
|
|
|
|
| |
This is a portable version of POSIX's isatty(). Windows has its own
version, called _isatty(). UHD thus gains its own, portable version.
The underscores aren't beautiful, but they're necessary so we can
distinguish the POSIX version from the UHD version.
|