| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
| |
The atomic item size for the FFT block is always equal to the length of
the FFT, multiplied by bytes-per-sample (4). For now, this is all the
FFT block supports.
|
|
|
|
|
|
|
|
|
| |
- Add ability to get current record position.
- Add ability to get current play position.
- Track space in play command FIFO and throw uhd::op_failed error when
command requested would overflow the command FIFO.
Signed-off-by: michael-west <michael.west@ettus.com>
|
|
|
|
|
|
|
| |
- Add action handlers to the replay block to store TX and RX events.
- Adds two new APIs: get_{record,play}_async_metadata() to read back
async info.
- Add unit tests.
|
| |
|
| |
|
| |
|
|
|
|
|
|
|
|
|
| |
This is useful for unit testing certain code which operates the DDR
registers, in particular code which performs a read-modify-write
operation on that register.
Conceivably we could add more registers here, but I'm just doing one
at a time.
|
|
|
|
|
| |
This allows viewing or, conceivably, customizing the tuning table that
ZBX uses, depending on the particular needs of the end user.
|
|
|
|
|
| |
Move x4xx_radio_mock_reg_iface_t and x400_radio_fixture from radio
block test into own file to reuse it more easily in the future.
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
An RFNoC block (like the radio) might require a minimal number of
items in each clock cycle, e.g. the radio has to process
SPC (samples per cycle). Because data in RFNoC is transmitted and
processed in packets, we have to make sure the items inside these
packets are a multiple of the items processed in each cycle.
This commit adds an atomic item size properties which is set by
the radio and adapted by the streamers. The streamers adapt the
SPP property of the radio block controller depending on the MTU
value. This might lead to an SPP value which does not align with
the SPC value of the radio block, hence we add a property resolver
for the atomic item size.
|
| |
|
|
|
|
|
|
|
|
|
| |
This tests the following graph: DDC -> Replay -> DDC, where the initial
and final blocks are the same (i.e., a loop). This could be useful for
generating and capturing data with the same replay block while testing
a block.
Note that this test will fail if the edge consistency checks are buggy.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
These two values where being mixed up in the code. To summarize:
- The MTU is the max CHDR packet size, including header & timestamp.
- The max payload is the total number of bytes regular payload plus
metadata that can be fit into into a CHDR packet. It is strictly
smaller than the MTU. For example, for 64-bit CHDR widths, if
a timestamp is desired, the max payload is 16 bytes smaller than
the MTU.
The other issue was that we were using a magic constant (DEFAULT_SPP)
which was causing conflicts with MTUs and max payloads.
This constant was harmful in multiple ways:
- The explanatory comment was incorrect (it stated it would cap packets
to 1500 bytes, which it didn't)
- It imposed random, hardcoded values that interfered with an 'spp
discovery', i.e., the ability to derive a good spp value from MTUs
- The current value capped packet sizes to 8000 bytes CHDR packets, even
when we wanted to use bigger ones
This patch changes the following:
- noc_block_base now has improved docs for MTU, and additional APIs
(get_max_payload_size(), get_chdr_hdr_len()) which return the
current payload size given MTU and CHDR width, and the CHDR header
length.
- The internally used graph nodes for TX and RX streamers also get
equipped with the same new two API calls.
- The radio, siggen, and replay block all where doing different
calculations for their spp/ipp values. Now, they all use the max
payload value to calculate spp/ipp. Unit tests where adapted
accordingly. Usage of DEFAULT_SPP was removed.
- The replay block used a hardcoded 16 bytes for header lengths, which
was replaced by get_chdr_hdr_len()
- The TX and RX streamers where discarding the MTU value and using the
max payload size as the MTU, which then propagated throughout the
graph. Now, both values are stored and can be used where appropriate.
|
| |
|
| |
|
|
|
|
|
|
|
| |
The previous commit fixed a bug in the DUC, where get_frequency_range()
reported incorrect values. The DDC did not have this bug, but we port
the updates to the unit tests and the documentation from the DUC to the
DDC for consistency's sake.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The tuning range of the DUC depends on the output sample rate (which is
larger), but it was using the input sample rate. This was causing a bug
where for Tx, the DSP tuning range was limited when using multi_usrp API,
and thus would not allow to DSP-tune beyond the current sampling rate.
In this patch, we also re-use the existing calculation of the sampling
rate, and harmonize that code between duc_block_control and
ddc_block_control.
Consider the following Python REPL code:
>>> import uhd
>>> U = uhd.usrp.MultiUSRP('type=x300')
>>> U.set_rx_rate(10e6)
>>> U.set_tx_rate(10e6)
>>> # Creating a streaming is required, or the input rate will not be
>>> # set:
>>> S = U.get_tx_stream(uhd.usrp.StreamArgs("fc32", "sc16"))
>>> treq = uhd.types.TuneRequest(1e9)
>>> treq.rf_freq = 1e9
>>> treq.dsp_freq = 50e6
>>> treq.dsp_freq_policy = uhd.types.TuneRequestPolicy.manual
>>> treq.rf_freq_policy = uhd.types.TuneRequestPolicy.manual
>>> tres = U.set_rx_freq(treq, 0)
>>> print(str(tres))
Tune Result:
Target RF Freq: 1000.000000 (MHz)
Actual RF Freq: 1000.000000 (MHz)
Target DSP Freq: 50.000000 (MHz)
Actual DSP Freq: 5.000000 (MHz)
>>> # Note the last two lines: The *target* DSP freq was already clipped
>>> # to 5 MHz. These lines show 50.0 MHz when this patch is applied.
This bugfix is accompanied some related changes:
- The unit test is amended to verify the behaviour
- The API documentation is amended with details on its behaviour
|
|
|
|
|
|
|
|
|
| |
`std::abs` is only a templated function, when dealing with complex
numbers. For real values, it is an overload. There is no
documented standard way to use `std::abs<double>()` for real-valued
arguments. We therefore remove all usages of `std::abs<>()` and
replace them with `std::abs()` where they were taking a real-valued
argument.
|
|
|
|
|
|
|
|
| |
- Missing override
- Superfluous 'this' lambda capture
- Register state in zbx_cpld_ctrl was being initialized too late (this
is actually a bug depending on compiler version)
- Remove lots of unused fields from experts
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Co-authored-by: Lars Amsel <lars.amsel@ni.com>
Co-authored-by: Michael Auchter <michael.auchter@ni.com>
Co-authored-by: Martin Braun <martin.braun@ettus.com>
Co-authored-by: Paul Butler <paul.butler@ni.com>
Co-authored-by: Cristina Fuentes <cristina.fuentes-curiel@ni.com>
Co-authored-by: Humberto Jimenez <humberto.jimenez@ni.com>
Co-authored-by: Virendra Kakade <virendra.kakade@ni.com>
Co-authored-by: Lane Kolbly <lane.kolbly@ni.com>
Co-authored-by: Max Köhler <max.koehler@ni.com>
Co-authored-by: Andrew Lynch <andrew.lynch@ni.com>
Co-authored-by: Grant Meyerhoff <grant.meyerhoff@ni.com>
Co-authored-by: Ciro Nishiguchi <ciro.nishiguchi@ni.com>
Co-authored-by: Thomas Vogel <thomas.vogel@ni.com>
|
|
|
|
| |
This fixes some clang warnings.
|
|
|
|
|
|
|
|
|
| |
The checks from the new clang-tidy file are applied to the source tree
using:
$ find . -name "*.cpp" | sort -u | xargs \
--max-procs 8 --max-args 1 clang-tidy --format-style=file \
--fix -p /path/to/compile_commands.json
|
|
|
|
|
|
| |
Increases the supported memory sizes in software to 2^32 and beyond.
Signed-off-by: mattprost <matt.prost@ni.com>
|
|
|
|
|
|
| |
M_PI may not exist if _USE_MATH_DEFINES isn't defined before the
first include of math.h or cmath on Windows. This changes avoids the
issue all together by defining our own PI.
|
| |
|
|
|
|
| |
Signed-off-by: mattprost <matt.prost@ni.com>
|
| |
|
| |
|
|
|
|
| |
Signed-off-by: mattprost <matt.prost@ni.com>
|
| |
|
| |
|
| |
|
| |
|
|
|
|
| |
This commit adds a unit test for the split stream RFNoC block.
|
| |
|
| |
|
|
This separates the rfnoc block tests into files for each specific block.
This was done to improve the readability of these files and declutter
the tests directory.
Signed-off-by: mattprost <matt.prost@ni.com>
|