| Commit message (Collapse) | Author | Age | Files | Lines |
... | |
|
|
|
|
| |
This API lets blocks decide if their current topology is OK for them,
and make decisions based on their topology.
|
| |
|
|
|
|
|
|
|
|
|
| |
The mb_controller is an interface to hardware-specific functions of the
motherboard. The API works in two ways:
- The user can request access to it, and thus interact directly with the
motherboard
- RFNoC blocks can request access to it, if they need to interact with
the motherboard themselves.
|
|
|
|
|
| |
The management looks at the transport endianness from the packet
factory to determine if the byte_swapper in the FPGA needs to be enabled
|
| |
|
| |
|
|
|
|
|
| |
- Fleshed out mb_iface
- Managers currently only export ctrl APIs. Data APIs TBD
|
|
|
|
|
|
| |
- chdr_ctrl_endpoint can manage multiple dest EPIDs
- Moved from both_xports_t to a special defs in rfnoc_common
- Changed data-structures where appropriate
|
|
|
|
|
|
| |
- Moved chdr_packet and chdr_types from rfnoc/chdr to rfnoc and updated
all references
- Moved non-CHDR definitions to rfnoc_common.hpp
|
| |
|
|
|
|
| |
This contains both_links_t
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The inline_io_service connects transports to links without any
worker threads. Send operations go directly to the link, and recv
will perform the I/O as part of the get_recv_buffer() call.
The inline_io_service also supports muxed links natively. The receive
mux is entirely inline. There is no separate thread for the
inline_io_service, and that continues here. A queue is created for
each client of the mux, and packets are processed as they come in. If
a packet is to go up to a different client, the packet is queued up
for later. When that client attempts to recv(), the queue is checked
first, and the attempts to receive from the link happen ONLY if no
packet was found.
Also add mock transport to test I/O service APIs. Tests I/O service
construction and some basic packet transmision. One case will also
uses a single link that is shared between the send and recv transports.
That link is muxed between two compatible but different transports.
|
|
|
|
|
|
|
|
|
|
|
| |
Split the transport into three layers to allow for greater flexibility
in scheduling algorithms. The io_service will make queues on behalf of
the transport and take responsibility for scheduling data transfers
through the links.
The transport layer is the explicit handler for flow control. This
enables the possibility of a scheduling layer in between, so flow
control may be offloaded on the same thread as the link.
|
|
|
|
|
|
|
|
|
|
| |
New interface aimed to replace zero_copy_if for new code, including new
RFNoC development and redesign of streamer objects.
Generic implementation of send and receive transport interfaces to allow
reuse by various transport types. Derived classes implement
transport-specific functions that are invoked by the base classes
through CRTP.
|
|
|
|
|
| |
The inteface provides a mechanism for users of clocks to query
information such as the running status or rate
|
|
|
|
|
|
| |
- Add support for new backend iface with max_async_msgs and mtu
moved to after the noc ID
- Fixed offsets for block info registers
|
|
|
|
|
|
|
|
| |
This structure represents information about a graph edge. Required by
detail::graph and rfnoc_graph.
graph_edge_t::to_string() will now provide a textual representation of
the edge.
|
|
|
|
|
| |
All USRP device impls that are RFNoC devices will need to derive from
this (instead of device3).
|
|
|
|
|
|
| |
- noc_block_base now has a ctor defined
- The registry stores factory functions to the individual Noc-Block
implementations
|
|
|
|
|
|
|
|
|
|
| |
- Adding client_zero class, which gathers information about our device
form the global registers on port 0 of the RFNoC backend registers.
- adding unit tests to exercise client_zero
- mock_reg_iface class: adding fake register_iface so we can run
unit tests in software only
Co-authored-by: Martin Braun <martin.braun@ettus.com>
|
|
|
|
|
|
|
|
| |
- Added new register_iface class that translates high-level
peek/poke calls into CHDR control payloads
- Added new chdr_ctrl_endpoint class that emulates a control
stream endpoint in SW. It can create and handle multiple
register interfaces
|
|
|
|
|
|
|
|
| |
- Added action_info class
- Allow to send actions from node to node
- Allow to post actions into nodes
- Allow to set default forwarding policies
- Added unit tests
|
|
|
|
|
|
|
| |
- The management portal is the interface for the framework
to allow discovering the data topology, setup routes between
stream endpoints and configure streamers
- Use a zero_copy_if and the mgmt_paylod to send/recv packets
|
|
|
|
|
|
|
| |
- Moved packet interface code from public to private include
- Split packet interface into two files: payload paring and packet iface
- Added support for all CHDR packet types
- Added more test cases to unit test
|
|
|
|
|
|
|
|
|
|
|
|
| |
- Adds a detail::graph_t class, which handles the propagation
- Adds methods to node_t to aid with propagation
- Adds unit tests
- Adds dynamic property forwarding:
Nodes are now able to forward properties they don't know about by
providing a forwarding policy. A good example is the FIFO block which
simply forwards most properties verbatim.
- node: Temporarily disabling consistency check at init
|
|
|
|
|
| |
This is a storage for the noc_block_base derivatives. It supports
finding blocks.
|
|
|
|
|
| |
Its purpose is to provide a device-agnostic back-channel interface into
the device guts for all rfnoc_graph devices.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Adds the following classes:
- uhd::rfnoc::node_t, the base class for RFNoC nodes
- uhd::rfnoc::node_accessor_t, a class to access private properties
- uhd::rfnoc::res_source_info, a struct that identifies where properties
come from
- uhd::rfnoc::property_t, and property_base_t (its parent)
- uhd::rfnoc::prop_accessor_t, a class to access properties
Add always dirty property (dirtifier).
Also adds unit tests for properties.
|
| |
|
|
|
|
|
|
| |
Benchmarks show that using C++ chrono features beats
uhd::get_system_time(), and the latter is simply not appropriate unless
a uhd::time_spec_t is required.
|
| |
|
|
|
|
|
| |
The new signature uses tuple as the return value, instead of passing in
output variables as references (C-style).
|
| |
|
| |
|
|
|
|
|
|
|
| |
This is a portable version of POSIX's isatty(). Windows has its own
version, called _isatty(). UHD thus gains its own, portable version.
The underscores aren't beautiful, but they're necessary so we can
distinguish the POSIX version from the UHD version.
|
|
|
|
|
|
|
|
|
|
| |
This requires noc_shell compat number 6.0. It will allow sending as many
command packets, but no more, than there is space.
Updated FPGA images for devices:
- X310/X300
- N300/N310/N320
- E310/E320
|
| |
|
|
|
|
| |
Boost moved this around in version 1.58.
|
|
|
|
|
| |
- Split tuning log into 3 lines
- Remove duplicated MAX287X
|
| |
|
| |
|
| |
|
| |
|
|
|
|
|
| |
- adds a new mode to the adf435x driver which provides general spur performance
improvements
|
| |
|
| |
|
| |
|
| |
|
|
|
|
|
| |
This removes all version hacks that were required for Boost versions
1.53 through 1.58 (since we now require 1.58).
|
|
|
|
|
| |
dpdk_zero_copy.hpp was referenced in multiple places using relative
paths. Let's throw it in uhdlib for easy access.
|