| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
| |
The previously added APIs for getting/setting power reference levels was
missing an option to read back the currently available power levels
(minimum and maximum power levels).
This adds getters for TX and RX power ranges to multi_usrp and
radio_control. The power API is thus now more similar to the gain API,
which always had getters for gain ranges.
|
|
|
|
|
|
|
|
|
|
|
| |
- Added rfnoc_graph method to disconnect a connection.
- Added rfnoc_graph method to disconnect a streamer.
- Added rfnoc_graph method to disconnect a port on a streamer.
- Added disconnect callback to rfnoc_rx_streamer and rfnoc_tx_streamer.
- Registered disconnect callback functions to streamers returned by
get_rx_streamer and get_tx_streamer methods.
Signed-off-by: michael-west <michael.west@ettus.com>
|
|
|
|
|
|
|
|
|
|
| |
- Added method to disconnect an edge
- Added method to remove a node
- Fixed algorithm to check edges during connect. Previous code was
checking some edges twice and allowing duplicate edges to be created
for existing edges.
Signed-off-by: michael-west <michael.west@ettus.com>
|
|
|
|
|
|
|
|
|
|
|
|
| |
Transports were not disconnecting their links from the I/O service upon
destruction, leaving behind inaccessible send and recv links used by
nothing. This led to I/O errors after creating several transports.
Added callbacks to transports to automatically disconnect their links
from the I/O service when the transport is destroyed. Updated all
callers to supply a disconnect callback.
Signed-off-by: michael-west <michael.west@ettus.com>
|
|
|
|
|
|
|
|
|
|
| |
This commit exposes uhdlib/rfnoc/chdr_types.hpp in the public includes.
Additionally, it takes some types from uhdlib/rfnoc/rfnoc_common.hpp and
exposes them publicly in uhd/rfnoc/rfnoc_types.hpp.
Finally, one constant is moved from uhdlib/rfnoc/rfnoc_common.hpp to
uhd/rfnoc/constants.hpp
Signed-off-by: robot-rover <sam.obrien@ni.com>
|
|
|
|
|
|
|
|
|
| |
It would be confusing to have two classes named chdr_packet. As it makes
more sense to name the new public chdr parser class chdr_packet, the
internal uhd::rfnoc::chdr::chdr_packet class is being renamed to
chdr_packet_writer to better represent its functionality.
Signed-off-by: Samuel O'Brien <sam.obrien@ni.com>
|
|
|
|
|
| |
Support management payloads on busses over 64 bits
Automatically set CHDR width for mpmd_link_if_ctrl_udp
|
|
|
|
|
| |
radio_control doesn't implement any discoverable_features in
particular, but this gives it the API to do so.
|
|
|
|
|
|
|
|
| |
The various implementations for the reference power APIs are always the
same, assuming the existence of a pwr_cal_mgr object. We therefore store
references to power cal managers in radio_control_impl, which radios can
choose to populate. The APIs then don't have to be reimplemented in the
various radio classes, unless they want to for whatever reason.
|
|
|
|
|
|
|
|
| |
This allows asking the radio for the keys it uses to read/write its
calibration data.
By querying radio_control::get_{rx,tx}_power_ref_keys(), the return
values can be used to access uhd::usrp::cal::database::read_cal_data().
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This adds the following API calls:
- multi_usrp::has_{rx,tx}_power_reference()
- multi_usrp::set_{rx,tx}_power_reference()
- multi_usrp::get_{rx,tx}_power_reference()
- radio_control::has_{rx,tx}_power_reference()
- radio_control::set_{rx,tx}_power_reference()
- radio_control::get_{rx,tx}_power_reference()
It also adds a manual page explaining the philosophy of the API.
Note that this does not actually add this feature to any device
implementation. Calling the new API calls will thus result in
`uhd::not_implemented_error` exceptions being thrown. This commit is to
lock down the API and ABI.
|
| |
|
|
|
|
|
| |
Pragma once is the more modern version of include guards, eliminating
any potential problems with mistyping include guards. Let's use those.
|
|
|
|
|
|
|
|
| |
Allows RFNoC blocks to perform register peeks and pokes on blocks with
multiple channels without having to worry about handling register address
translation every time.
Signed-off-by: mattprost <matt.prost@ni.com>
|
|
|
|
|
| |
Note: template_lvbitx.{cpp,hpp} need to be excluded from the list of
files that clang-format gets applied against.
|
|
|
|
| |
Make all arguments const, in line with how other static methods are declared.
|
|
|
|
|
| |
This removes a comment that refers to Boost smart pointers, which were
removed in UHD.
|
|
|
|
| |
This helps a little with debugging (for breakpoints).
|
|
|
|
|
| |
- Move the SPI addresses out of radio_control_impl
- Fix the GPIO address spaces for N310/N300
|
|
|
|
|
|
|
|
|
|
|
|
| |
In the existing graph, when the shutdown was simply a release. However,
any outstanding actions would trigger warnings (because released graphs
aren't supposed to still have actions being passed around), which would
sometimes be visible at the end of an application.
This is a safer solution than simply releasing, because it explicitly
sets a shutdown flag that all graph-affecting functions (property
propagation and action handling) respect. Once the flag is set, the
graph can no longer be booted up again.
|
|
|
|
|
|
| |
Add a new method to io_service::send_io to check whether the destination
is ready for data, to make it possible to poll send_io rather than block
waiting for flow control credits.
|
|
|
|
|
|
|
|
| |
SEPs on the FPGA can only occupy multiples of the CHDR width in their
FIFOs, unlike SW, where buffers are stored in RAM and can be aligned
anyhow. Therefore, we align the counting of bytes for FC purpose and
count multiples of CHDR width instead of the true number of bytes per
packet.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
- Implement I/O service detach link methods
- The I/O service manager instantiates new I/O services or connects
links to existing I/O services based on options provided by the user
in stream_args.
- Add a streamer ID parameter to methods to create transports so that
the I/O service manager can group transports appropriately when using
offload threads.
- Change X300 and MPMD to use I/O service manager to connect links to
I/O services.
- There is now a single I/O service manager per rfnoc_graph (and it is
also stored in the graph)
- The I/O service manager now also knows the device args for the
rfnoc_graph it was created with, and can make decisions based upon
those (e.g, use a specific I/O service for DPDK, share cores between
streamers, etc.)
- The I/O Service Manager does not get any decision logic with this
commit, though
- The MB ifaces for mpmd and x300 now access this global I/O service
manager
- Add configuration of link parameters with overrides
Co-Authored-By: Martin Braun <martin.braun@ettus.com>
Co-Authored-By: Aaron Rossetto <aaron.rossetto@ni.com>
|
|
|
|
|
|
|
| |
Make transports safe to use with an offload thread by ensuring that the
callbacks and the API methods can execute concurrently. Also, ensure
that the transports release their I/O service clients prior to allowing
their other member variables be destroyed.
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This removes the following Boost constructs:
- boost::shared_ptr, boost::weak_ptr
- boost::enable_shared_from_this
- boost::static_pointer_cast, boost::dynamic_pointer_cast
The appropriate includes were also removed. All C++11 versions of these
require #include <memory>.
Note that the stdlib and Boost versions have the exact same syntax, they
only differ in the namespace (boost vs. std). The modifications were all
done using sed, with the exception of boost::scoped_ptr, which was
replaced by std::unique_ptr.
References to boost::smart_ptr were also removed.
boost::intrusive_ptr is not removed in this commit, since it does not
have a 1:1 mapping to a C++11 construct.
|
|
|
|
|
|
|
| |
This commit removes all files and parts of files that are used by
proto-RFNoC only.
uhd: Fix include CMakeLists.txt, add missing files
|
|
|
|
|
| |
By calling radio_control::enable_rx_timestamps(false, chan), the radio
will not add timestamps to outgoing packets.
|
|
|
|
|
|
|
|
|
| |
Change transports to reserve the number of frame buffers they actually
need from the I/O service. Previously some I/O service clients reserved
0 buffers since they shared frame buffers with other clients, as we know
the two clients do not use the links simultaneously. This is possible
with the inline_io_service but not with a multithreaded I/O service
which queues buffer for clients before they are requested.
|
|
|
|
|
|
|
| |
Move the configuration logic for stream endpoints to static methods of
the chdr data transports. This separates those interactions from the
main transport code, simplifying both. It also makes it easier to use
the transports with mock link objects.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This adds a separate version of multi_usrp for RFNoC devices. It is
compatible with RFNoC devices only, and prefers C++ APIs over property
tree usage. The factory of multi_usrp is modified such that it picks the
correct version, users of multi_usrp don't care about this change.
This also introduces some API changes:
- Removing redundant GPIO functions. Now all GPIO control, setting, and
readback is done with uint32_t's.
- Adding getter/setter for GPIO source. This was done to simplify the
other GPIO settings, as the source for each pin is not always a
binary. The CTRL mode, for example, can either be ATR or GPIO.
However, the source can be controlled by various radios or "PS" or
some other source.
- Removing the mask from the RFNoC radio controllers' set_gpio_attr().
- Adding state caching to gpio_atr_3000, and a getter for it. Whenever
an attribute is set, that value is cached, and can now be retreieved.
- Remove low-level register API. Since UHD 3.10, there is no USRP that
implements that API.
Modifying the filter API in the following ways:
- Splitting filter API getter/setter/list into separate RX and TX
functions
- Adding channel numbers as an argument
- The filter name will no longer be a property tree path, but rather a
filter name. For RFNoC devices, this will take the form
`BLOCK_ID:FILTER_NAME`. For non-RFNoC devices, this will just be the
filter name (e.g. `HB_1`)
- Removing search mask from listing function. Users can do their own
searching
Co-Authored-By: Martin Braun <martin.braun@ettus.com>
|
|
|
|
|
|
|
| |
- Burst ACKs are already handled by the TX streamer, but the radio now
also sends an action upstream on reception of a burst ACK
- Late commands were only acquitted by an 'L', now an action gets sent
downstream and is handled in the rx streamer
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This modifies the overrun handling such that the RX streamer does not
restart the radios until the packets that were buffered prior to the
overrun are read by the user.
When an RX streamer receives an overrun, it will run the following
algorithm:
1. Stop all upstream producers.
2. Set an internal flag in the streamer that indicates that the
producers have stopped due to an overrun.
3. Continue servicing calls to recv until it runs out of packets in the
host buffer (packets that can be read from the transport using a 0
timeout).
4. Once the packets are exhausted, return an overrun error from recv.
The radio, if it was in continuous streaming mode before the overrun,
includes a flag in its initial action whether or not to restart
streaming.
5. If the radio requested a restart, the streamer submits a restart
request action upstream. This action will be received by the radio.
The radio will then check the current time, and send a stream command
action back downstream.
6. The RX streamer receives the stream command action, and uses it to
send another stream command to all upstream producers. This way, all
upstream producers receive a start command for the same time.
|
|
|
|
|
|
|
| |
Since the mb_iface allocates local device IDs, also have it track
the associated adapter IDs and provide a facility to retrieve them.
Incorporate the adapter IDs in the user API to select the adapter
for streamers.
|
|
|
|
|
|
| |
When issuing a timed command, if there is no room in the command FIFO
and there is a timed command queue'd up, wait for a long time before
timing out.
|
| |
|
|
|
|
| |
Now the user can choose which transport is used in connect() calls.
|
|
|
|
|
|
| |
Add an async message queue that aggregates errors from multiple sources.
Errors can come from the strs packets originating from the stream
endpoint or from the radio block through control packets to the host.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Because the initialization state of SEPs is a graph-wide property,
link_stream_managers and mgmt_portals cannot rely on their private
members to determine if they can reset an SEP. Move the call to
init SEPs into the epid_allocator, and have it call into a
mgmt_portal to gain access to the SEP.
Thus, link_stream_managers only request that an epid_allocator
ensure an SEP is numbered and initialized, and they provide a path
to communicate with the SEP. The epid_allocator will ensure init
only happens once, so a stream currently running on another
link_stream_manager does not get interrupted. This could happen,
for example, if the OSTRM went to one device, and the ISTRM came
from another. In general, EPIDs should only be assigned once.
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Change data transports to use the mgmt_portal from the
link_stream_manager. The initialization state of a device's EPIDs
needs to be shared amongst all the SEP users. Otherwise, an RX
transport may attempt to do a full reset of the SEP while TX is
streaming (for example).
TODO: The code contained here is not sufficient to handle multiple
links that can access the same SEPs, as those would have different
link_stream_managers, and thus, different mgmt_portal instances and
views of the SEP state.
|
|
|
|
|
| |
The convenience call that flushed all the blocks would throw during
timeout. Now, it returns a bool whether or not the flush was successful.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This introduces the concept of a resolution context, because the
property propagation algorithm needs to behave differently when called
during an initialization step (e.g. when the graph is committed), or
when the user changes a property on one of the nodes after it was
committed.
The algorithm is modified as follows:
- When called during an initialization step, then all nodes get resolved
at least once. If nodes added new properties, then all nodes get
touched again until the max number of iterations is reached.
- When called because a node modified one of its properties, then that
node is always resolved first. From there, all other nodes are
resolved in topological order. However, the algorithm immediately
terminates as soon as there are no more dirty nodes.
- When called because a node modified one of its properties, but the
graph is currently not in a committed state, then that node will do
a local property resolution.
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Property propagation and action handling depend on the release state,
but they are lengthy operations. It is therefore imperative to not
change the release/commit state during those methods.
This commit changes the following:
- Change the release state counter from an atomic to a non-atomic
variable
- Instead, use a mutex to lock the release state counter, and use the
same mutex for locking access to the property propagation and action
handling
The rfnoc_graph now tries to release the graph before shutting down
blocks to make sure they don't get destroyed while those algorithms are
still running.
|
|
|
|
|
| |
This adds a method to the radio to check if an async message is valid,
which can be used to ack async messages immediately.
|
|
|
|
|
| |
This is a helper method for property resolution, where set_rate() is not
appropriate.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
In order to enable overrun handling through the action API, a few new
features are implemented:
- The RX streamer can now accept stream command actions. The streamer
will interpret stream command actions as a request to send stream
commands upstream to all producers.
- A new action type is defined ('restart request') which is understood
by the radio and streamer, and is a handshake between producers and
consumers. In this case, it will ask the radio to send a stream
command itself.
When an RX streamer receives an overrun, it will now run the following
algorithm:
1. Stop all upstream producers (this was already in the code before this
commit).
2. If no restart is required, Wait for the radios to have space in the
downstream blocks.
The radio, if it was in continuous streaming mode before the overrun,
includes a flag in its initial action whether or not to restart the
streaming. Also, it will wait for the stop stream command from the
streamer. When it receives that, it will initiate a restart request
handshake.
3. The streamer submits a restart request action upstream. This action
will be received by the radio.
The radio will then check the current time, and send a stream command
action back downstream.
4. The RX streamer receives the stream command action, and uses it to
send another stream command to all upstream producers. This way, all
upstream producers receive a start command for the same time.
|
|
|
|
|
|
|
|
| |
Sending actions to self is useful because calling post_action() from
within an action handler will not actually trigger the action. Instead,
it will defer delivery of the action. Allowing sending actions to self
will allow to add another action, in deterministic order, and the
execution of another action handler.
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
- Add device ID constants (e.g., E310 == 0xE310, X300 == 0xA300). These
are stored in the device FPGA, and can be used for decisions later
- Blocks can be specific to a device. For example, x300_radio_control
can only work on an X300 series device.
- Because blocks can be device-specific, all radio blocks can now share
a common Noc-ID (0x12AD1000).
- The registry and factory functions are modified to acommodate for
this.
- The motherboard access is now also factored into the same registry
macro.
|