aboutsummaryrefslogtreecommitdiffstats
path: root/host
diff options
context:
space:
mode:
Diffstat (limited to 'host')
-rw-r--r--host/CMakeLists.txt12
-rw-r--r--host/cmake/Modules/NSIS.template.in6
-rw-r--r--host/docs/CMakeLists.txt114
-rw-r--r--host/docs/Doxyfile.in684
-rw-r--r--host/docs/Ettus_Logo.pngbin0 -> 4291 bytes
-rw-r--r--host/docs/build.dox186
-rw-r--r--host/docs/build.rst228
-rw-r--r--host/docs/calibration.dox70
-rw-r--r--host/docs/calibration.rst70
-rw-r--r--host/docs/coding.dox38
-rw-r--r--host/docs/coding.rst30
-rw-r--r--host/docs/dboards.dox405
-rw-r--r--host/docs/dboards.rst425
-rw-r--r--host/docs/general.dox225
-rw-r--r--host/docs/general.rst242
-rw-r--r--host/docs/gpio_api.dox119
-rw-r--r--host/docs/gpio_api.rst129
-rw-r--r--host/docs/gpsdo.dox81
-rw-r--r--host/docs/gpsdo.rst4
-rw-r--r--host/docs/gpsdo_b2x0.dox73
-rw-r--r--host/docs/gpsdo_b2x0.rst79
-rw-r--r--host/docs/gpsdo_x3x0.dox76
-rw-r--r--host/docs/gpsdo_x3x0.rst82
-rw-r--r--host/docs/identification.dox112
-rw-r--r--host/docs/identification.rst2
-rw-r--r--host/docs/images.dox114
-rw-r--r--host/docs/images.rst126
-rw-r--r--host/docs/index.rst68
-rw-r--r--host/docs/mainpage.dox66
-rw-r--r--host/docs/ni_rio_kernel.dox142
-rw-r--r--host/docs/octoclock.dox126
-rw-r--r--host/docs/octoclock_firmware_burner.145
-rw-r--r--host/docs/stream.dox56
-rw-r--r--host/docs/stream.rst59
-rw-r--r--host/docs/sync.dox197
-rw-r--r--host/docs/sync.rst197
-rw-r--r--host/docs/transport.dox160
-rw-r--r--host/docs/transport.rst165
-rw-r--r--host/docs/uhd_find_devices.130
-rw-r--r--host/docs/uhd_images_downloader.12
-rw-r--r--host/docs/uhd_usrp_probe.16
-rw-r--r--host/docs/usrp1.dox95
-rw-r--r--host/docs/usrp1.rst2
-rw-r--r--host/docs/usrp2.dox424
-rw-r--r--host/docs/usrp2.rst5
-rw-r--r--host/docs/usrp_b100.dox96
-rw-r--r--host/docs/usrp_b100.rst107
-rw-r--r--host/docs/usrp_b200.dox167
-rw-r--r--host/docs/usrp_b200.rst152
-rw-r--r--host/docs/usrp_e1x0.dox136
-rw-r--r--host/docs/usrp_e1x0.rst156
-rw-r--r--host/docs/usrp_n2xx_simple_net_burner.16
-rw-r--r--host/docs/usrp_x3x0.dox627
-rw-r--r--host/docs/usrp_x3x0.rst747
-rw-r--r--host/docs/usrp_x3x0_config.dox277
-rw-r--r--host/docs/usrp_x3x0_config.rst319
-rw-r--r--host/docs/usrp_x3xx_fpga_burner.12
-rw-r--r--host/examples/CMakeLists.txt6
-rw-r--r--host/examples/benchmark_rate.cpp2
-rw-r--r--host/examples/test_clock_synch.cpp165
-rw-r--r--host/examples/test_dboard_coercion.cpp2
-rw-r--r--host/examples/transport_hammer.cpp2
-rw-r--r--host/include/uhd/CMakeLists.txt6
-rw-r--r--host/include/uhd/device.hpp32
-rw-r--r--host/include/uhd/usrp_clock/CMakeLists.txt23
-rw-r--r--host/include/uhd/usrp_clock/multi_usrp_clock.hpp105
-rw-r--r--host/include/uhd/usrp_clock/octoclock_eeprom.hpp61
-rw-r--r--host/lib/CMakeLists.txt3
-rw-r--r--host/lib/device.cpp39
-rw-r--r--host/lib/usrp/b100/b100_impl.cpp5
-rw-r--r--host/lib/usrp/b200/CMakeLists.txt1
-rw-r--r--host/lib/usrp/b200/b200_cores.cpp83
-rw-r--r--host/lib/usrp/b200/b200_cores.hpp66
-rw-r--r--host/lib/usrp/b200/b200_iface.hpp3
-rw-r--r--host/lib/usrp/b200/b200_impl.cpp20
-rw-r--r--host/lib/usrp/b200/b200_impl.hpp7
-rw-r--r--host/lib/usrp/b200/b200_regs.hpp2
-rw-r--r--host/lib/usrp/common/CMakeLists.txt9
-rw-r--r--host/lib/usrp/common/ad9361_client.cpp56
-rw-r--r--host/lib/usrp/common/ad9361_ctrl.cpp204
-rw-r--r--host/lib/usrp/common/ad9361_ctrl.hpp79
-rw-r--r--host/lib/usrp/common/ad9361_driver/ad9361_client.h59
-rw-r--r--host/lib/usrp/common/ad9361_driver/ad9361_device.h53
-rw-r--r--host/lib/usrp/common/ad9361_driver/ad9361_dispatch.h24
-rw-r--r--host/lib/usrp/common/ad9361_driver/ad9361_filter_taps.h71
-rw-r--r--host/lib/usrp/common/ad9361_driver/ad9361_gain_tables.h95
-rw-r--r--host/lib/usrp/common/ad9361_driver/ad9361_impl.c1999
-rw-r--r--host/lib/usrp/common/ad9361_driver/ad9361_platform.h64
-rw-r--r--host/lib/usrp/common/ad9361_driver/ad9361_synth_lut.h135
-rw-r--r--host/lib/usrp/common/ad9361_driver/ad9361_transaction.h (renamed from host/lib/usrp/common/ad9361_transaction.h)44
-rw-r--r--host/lib/usrp/common/ad9361_platform_uhd.cpp86
-rw-r--r--host/lib/usrp/common/adf4001_ctrl.cpp2
-rw-r--r--host/lib/usrp/common/adf4001_ctrl.hpp5
-rw-r--r--host/lib/usrp/e100/e100_impl.cpp5
-rw-r--r--host/lib/usrp/multi_usrp.cpp2
-rw-r--r--host/lib/usrp/usrp1/usrp1_impl.cpp5
-rw-r--r--host/lib/usrp/usrp2/usrp2_impl.cpp5
-rw-r--r--host/lib/usrp/x300/x300_impl.cpp3
-rw-r--r--host/lib/usrp_clock/CMakeLists.txt26
-rw-r--r--host/lib/usrp_clock/multi_usrp_clock.cpp93
-rw-r--r--host/lib/usrp_clock/octoclock/CMakeLists.txt33
-rw-r--r--host/lib/usrp_clock/octoclock/common.h149
-rw-r--r--host/lib/usrp_clock/octoclock/octoclock_eeprom.cpp184
-rw-r--r--host/lib/usrp_clock/octoclock/octoclock_impl.cpp436
-rw-r--r--host/lib/usrp_clock/octoclock/octoclock_impl.hpp80
-rw-r--r--host/lib/usrp_clock/octoclock/octoclock_uart.cpp162
-rw-r--r--host/lib/usrp_clock/octoclock/octoclock_uart.hpp57
-rw-r--r--host/utils/CMakeLists.txt21
-rw-r--r--host/utils/fx2_init_eeprom.cpp6
-rw-r--r--host/utils/ihexcvt.cpp250
-rw-r--r--host/utils/ihexcvt.hpp22
-rw-r--r--host/utils/octoclock_burn_eeprom.cpp95
-rw-r--r--host/utils/octoclock_firmware_burner.cpp351
-rw-r--r--host/utils/uhd_usrp_probe.cpp5
-rw-r--r--host/utils/usrp_burn_db_eeprom.cpp2
-rw-r--r--host/utils/usrp_burn_mb_eeprom.cpp57
-rw-r--r--host/utils/usrp_n2xx_simple_net_burner.cpp116
-rw-r--r--host/utils/usrp_x3xx_fpga_burner.cpp6
118 files changed, 10269 insertions, 3889 deletions
diff --git a/host/CMakeLists.txt b/host/CMakeLists.txt
index ba16ce894..82bcbb30a 100644
--- a/host/CMakeLists.txt
+++ b/host/CMakeLists.txt
@@ -210,8 +210,8 @@ UHD_INSTALL(FILES
# Images download directory for utils/uhd_images_downloader.py
########################################################################
-SET(UHD_IMAGES_MD5SUM "68f8d472a4c9de881d450691fa7222cf")
-SET(UHD_IMAGES_DOWNLOAD_SRC "http://files.ettus.com/binaries/maint_images/archive/uhd-images_003.007.002-rc1.zip")
+SET(UHD_IMAGES_MD5SUM "cdd115f1cb71b73e916a4b36463cdc58")
+SET(UHD_IMAGES_DOWNLOAD_SRC "http://files.ettus.com/binaries/master_images/archive/uhd-images_003.007.002-48-g403e539d.zip")
########################################################################
# Register top level components
@@ -226,16 +226,16 @@ LIBUHD_REGISTER_COMPONENT("Tests" ENABLE_TESTS ON "ENABLE_LIBUHD" OFF)
########################################################################
ADD_SUBDIRECTORY(docs)
+IF(ENABLE_LIBUHD)
+ ADD_SUBDIRECTORY(lib)
+ENDIF(ENABLE_LIBUHD)
+
ADD_SUBDIRECTORY(include)
IF(ENABLE_EXAMPLES)
ADD_SUBDIRECTORY(examples)
ENDIF(ENABLE_EXAMPLES)
-IF(ENABLE_LIBUHD)
- ADD_SUBDIRECTORY(lib)
-ENDIF(ENABLE_LIBUHD)
-
IF(ENABLE_TESTS)
ADD_SUBDIRECTORY(tests)
ENDIF(ENABLE_TESTS)
diff --git a/host/cmake/Modules/NSIS.template.in b/host/cmake/Modules/NSIS.template.in
index 2caafa964..6e3c4af20 100644
--- a/host/cmake/Modules/NSIS.template.in
+++ b/host/cmake/Modules/NSIS.template.in
@@ -696,8 +696,7 @@ Section "-Core installation"
CreateShortCut "$SMPROGRAMS\$STARTMENU_FOLDER\USRP2 Card Burner.lnk" "$INSTDIR\lib\uhd\utils\usrp2_card_burner_gui.py" "" "" "" SW_SHOWMINIMIZED
CreateShortcut "$SMPROGRAMS\$STARTMENU_FOLDER\USRP-N2XX Net Burner.lnk" "$INSTDIR\lib\uhd\utils\usrp_n2xx_net_burner_gui.py" "" "" "" SW_SHOWMINIMIZED
CreateShortcut "$SMPROGRAMS\$STARTMENU_FOLDER\UHD Images Downloader.lnk" "$INSTDIR\lib\uhd\utils\uhd_images_downloader.py"
- CreateShortcut "$SMPROGRAMS\$STARTMENU_FOLDER\Application Manual.lnk" "$INSTDIR\share\doc\uhd\manual\html\index.html"
- CreateShortcut "$SMPROGRAMS\$STARTMENU_FOLDER\API Documentation.lnk" "$INSTDIR\share\doc\uhd\doxygen\html\classes.html"
+ CreateShortcut "$SMPROGRAMS\$STARTMENU_FOLDER\UHD Documentation.lnk" "$INSTDIR\share\doc\uhd\doxygen\html\index.html"
;Read a value from an InstallOptions INI file
!insertmacro MUI_INSTALLOPTIONS_READ $DO_NOT_ADD_TO_PATH "NSIS.InstallOptions.ini" "Field 2" "State"
@@ -874,8 +873,7 @@ Section "Uninstall"
Delete "$SMPROGRAMS\$MUI_TEMP\USRP2 Card Burner.lnk"
Delete "$SMPROGRAMS\$MUI_TEMP\USRP-N2XX Net Burner.lnk"
Delete "$SMPROGRAMS\$MUI_TEMP\UHD Images Downloader.lnk"
- Delete "$SMPROGRAMS\$MUI_TEMP\Application Manual.lnk"
- Delete "$SMPROGRAMS\$MUI_TEMP\API Documentation.lnk"
+ Delete "$SMPROGRAMS\$MUI_TEMP\UHD Documentation.lnk"
@CPACK_NSIS_DELETE_ICONS_EXTRA@
;Delete empty start menu parent diretories
diff --git a/host/docs/CMakeLists.txt b/host/docs/CMakeLists.txt
index 1ee0f1ade..84ed88281 100644
--- a/host/docs/CMakeLists.txt
+++ b/host/docs/CMakeLists.txt
@@ -18,96 +18,57 @@
########################################################################
# List of manual sources
########################################################################
-SET(manual_sources
- index.rst
- identification.rst
- build.rst
- calibration.rst
- coding.rst
- dboards.rst
- gpio_api.rst
- gpsdo.rst
- gpsdo_b2x0.rst
- gpsdo_x3x0.rst
- general.rst
- images.rst
- stream.rst
- sync.rst
- transport.rst
- usrp1.rst
- usrp2.rst
- usrp_b100.rst
- usrp_b200.rst
- usrp_e1x0.rst
- usrp_x3x0.rst
- usrp_x3x0_config.rst
-)
########################################################################
-# Setup Manual
+# Setup general Doxygen variables
########################################################################
-MESSAGE(STATUS "")
-FIND_PACKAGE(Docutils)
-
-LIBUHD_REGISTER_COMPONENT("Manual" ENABLE_MANUAL ON "DOCUTILS_FOUND" OFF)
+FIND_PACKAGE(Doxygen)
+SET(ENABLE_MANUAL_OR_DOXYGEN false)
-IF(UHDHOST_PKG)
- SET(PKG_DOC_DIR share/doc/uhd-host)
-ENDIF(UHDHOST_PKG)
+########################################################################
+# Setup Manual (using Doxygen)
+########################################################################
+MESSAGE(STATUS "")
+LIBUHD_REGISTER_COMPONENT("Manual" ENABLE_MANUAL ON "DOXYGEN_FOUND" OFF)
IF(ENABLE_MANUAL)
- #setup rst2html options
- SET(stylesheet ${CMAKE_CURRENT_SOURCE_DIR}/style.css)
- SET(rst2html_options
- --stylesheet=${stylesheet}
- --no-toc-backlinks --date --time
- )
-
- #create generation rule for each source
- FOREACH(rstfile ${manual_sources})
- #set input and output file names
- SET(rstfile ${CMAKE_CURRENT_SOURCE_DIR}/${rstfile})
- GET_FILENAME_COMPONENT(rstfile_we ${rstfile} NAME_WE)
- SET(htmlfile ${CMAKE_CURRENT_BINARY_DIR}/${rstfile_we}.html)
-
- #make the html file depend on the rst file
- ADD_CUSTOM_COMMAND(
- OUTPUT ${htmlfile} DEPENDS ${rstfile} ${stylesheet}
- COMMAND ${RST2HTML_EXECUTABLE} ${rstfile} ${htmlfile} ${rst2html_options}
- COMMENT "Generating ${htmlfile}"
- )
-
- #make the manual target depend on the html file
- LIST(APPEND manual_html_files ${htmlfile})
- UHD_INSTALL(FILES ${htmlfile} DESTINATION ${PKG_DOC_DIR}/manual/html COMPONENT manual)
- ENDFOREACH(rstfile ${manual_sources})
-
- #make the html manual a build-time dependency
- ADD_CUSTOM_TARGET(manual_html ALL DEPENDS ${manual_html_files})
- UHD_INSTALL(FILES ${manual_sources} DESTINATION ${PKG_DOC_DIR}/manual/rst COMPONENT manual)
-
- #resources for html manual
- ADD_CUSTOM_COMMAND(
- TARGET manual_html POST_BUILD
- COMMAND ${CMAKE_COMMAND} -E copy_directory ${CMAKE_CURRENT_SOURCE_DIR}/res ${CMAKE_CURRENT_BINARY_DIR}/res
- )
- UHD_INSTALL(DIRECTORY ${CMAKE_CURRENT_BINARY_DIR}/res DESTINATION ${PKG_DOC_DIR}/manual/html COMPONENT manual)
-
+ SET(ENABLE_MANUAL_OR_DOXYGEN true)
+ FILE(GLOB manual_sources "*.dox")
+ SET(DOXYGEN_DEPENDENCIES ${manual_sources})
+ SET(DOXYGEN_INPUT_DIRS ${CMAKE_SOURCE_DIR}/docs)
+ SET(DOXYGEN_DEP_COMPONENT "manual")
ENDIF(ENABLE_MANUAL)
########################################################################
-# Setup Doxygen
+# Setup API documentation (using Doxygen)
########################################################################
MESSAGE(STATUS "")
-FIND_PACKAGE(Doxygen)
-
-LIBUHD_REGISTER_COMPONENT("Doxygen" ENABLE_DOXYGEN ON "DOXYGEN_FOUND" OFF)
+LIBUHD_REGISTER_COMPONENT("API/Doxygen" ENABLE_DOXYGEN ON "DOXYGEN_FOUND" OFF)
+OPTION(ENABLE_DOXYGEN_FULL "Use Doxygen to document the entire source tree (not just API)" OFF)
IF(LIBUHDDEV_PKG)
SET(PKG_DOC_DIR share/doc/libuhd-dev)
ENDIF(LIBUHDDEV_PKG)
IF(ENABLE_DOXYGEN)
+ SET(ENABLE_MANUAL_OR_DOXYGEN true)
+ #make doxygen directory depend on the header files
+ FILE(GLOB_RECURSE header_files ${CMAKE_SOURCE_DIR}/include/*.hpp)
+ SET(DOXYGEN_DEPENDENCIES ${DOXYGEN_DEPENDENCIES} ${header_files})
+ IF(ENABLE_DOXYGEN_FULL)
+ SET(DOXYGEN_INPUT_DIRS "${DOXYGEN_INPUT_DIRS} ${CMAKE_SOURCE_DIR}/include ${CMAKE_SOURCE_DIR}/lib")
+ ELSE(ENABLE_DOXYGEN_FULL)
+ SET(DOXYGEN_INPUT_DIRS "${DOXYGEN_INPUT_DIRS} ${CMAKE_SOURCE_DIR}/include")
+ ENDIF(ENABLE_DOXYGEN_FULL)
+
+ SET(DOXYGEN_DEP_COMPONENT "doxygen")
+ENDIF(ENABLE_DOXYGEN)
+
+########################################################################
+# Run Doxygen (on code and/or manual, depending on CMake flags)
+########################################################################
+MESSAGE(STATUS "")
+IF(ENABLE_MANUAL_OR_DOXYGEN)
#generate the doxygen configuration file
SET(CMAKE_CURRENT_BINARY_DIR_DOXYGEN ${CMAKE_CURRENT_BINARY_DIR}/doxygen)
CONFIGURE_FILE(
@@ -118,21 +79,22 @@ IF(ENABLE_DOXYGEN)
#make doxygen directory depend on the header files
FILE(GLOB_RECURSE header_files ${CMAKE_SOURCE_DIR}/include/*.hpp)
ADD_CUSTOM_COMMAND(
- OUTPUT ${CMAKE_CURRENT_BINARY_DIR_DOXYGEN} DEPENDS ${header_files}
+ OUTPUT ${CMAKE_CURRENT_BINARY_DIR_DOXYGEN} DEPENDS ${DOXYGEN_DEPENDENCIES}
COMMAND ${DOXYGEN_EXECUTABLE} ${CMAKE_CURRENT_BINARY_DIR}/Doxyfile
COMMENT "Generating documentation with doxygen"
)
#make the doxygen generation a built-time dependency
ADD_CUSTOM_TARGET(doxygen_docs ALL DEPENDS ${CMAKE_CURRENT_BINARY_DIR_DOXYGEN})
- UHD_INSTALL(DIRECTORY ${CMAKE_CURRENT_BINARY_DIR_DOXYGEN} DESTINATION ${PKG_DOC_DIR} COMPONENT doxygen)
-ENDIF(ENABLE_DOXYGEN)
+ UHD_INSTALL(DIRECTORY ${CMAKE_CURRENT_BINARY_DIR_DOXYGEN} DESTINATION ${PKG_DOC_DIR} COMPONENT ${DOXYGEN_DEP_COMPONENT})
+ENDIF(ENABLE_MANUAL_OR_DOXYGEN)
########################################################################
# List of man page sources
########################################################################
SET(man_page_sources
+ octoclock_firmware_burner.1
uhd_cal_rx_iq_balance.1
uhd_cal_tx_dc_offset.1
uhd_cal_tx_iq_balance.1
diff --git a/host/docs/Doxyfile.in b/host/docs/Doxyfile.in
index 7395516b5..d48e50fc4 100644
--- a/host/docs/Doxyfile.in
+++ b/host/docs/Doxyfile.in
@@ -1,14 +1,16 @@
-# Doxyfile 1.6.1
+# Doxyfile 1.8.4
# This file describes the settings to be used by the documentation system
-# doxygen (www.doxygen.org) for a project
+# doxygen (www.doxygen.org) for a project.
#
-# All text after a hash (#) is considered a comment and will be ignored
+# All text after a double hash (##) is considered a comment and is placed
+# in front of the TAG it is preceding .
+# All text after a hash (#) is considered a comment and will be ignored.
# The format is:
# TAG = value [value, ...]
# For lists items can also be appended using:
# TAG += value [value, ...]
-# Values that contain spaces should be placed between quotes (" ")
+# Values that contain spaces should be placed between quotes (" ").
#---------------------------------------------------------------------------
# Project related configuration options
@@ -22,16 +24,30 @@
DOXYFILE_ENCODING = UTF-8
-# The PROJECT_NAME tag is a single word (or a sequence of words surrounded
-# by quotes) that should identify the project.
+# The PROJECT_NAME tag is a single word (or sequence of words) that should
+# identify the project. Note that if you do not use Doxywizard you need
+# to put quotes around the project name if it contains spaces.
-PROJECT_NAME = @CPACK_PACKAGE_NAME@
+PROJECT_NAME = "USRP Hardware Driver and USRP Manual"
# The PROJECT_NUMBER tag can be used to enter a project or revision number.
# This could be handy for archiving the generated documentation or
# if some version control system is used.
-PROJECT_NUMBER = @CPACK_PACKAGE_VERSION@
+PROJECT_NUMBER = "Version: @CPACK_PACKAGE_VERSION@"
+
+# Using the PROJECT_BRIEF tag one can provide an optional one line description
+# for a project that appears at the top of each page and should give viewer
+# a quick idea about the purpose of the project. Keep the description short.
+
+PROJECT_BRIEF = "UHD and USRP Manual"
+
+# With the PROJECT_LOGO tag one can specify an logo or icon that is
+# included in the documentation. The maximum height of the logo should not
+# exceed 55 pixels and the maximum width should not exceed 200 pixels.
+# Doxygen will copy the logo to the output directory.
+
+PROJECT_LOGO = @CMAKE_SOURCE_DIR@/docs/Ettus_Logo.png
# The OUTPUT_DIRECTORY tag is used to specify the (relative or absolute)
# base path where the generated documentation will be put.
@@ -56,9 +72,9 @@ CREATE_SUBDIRS = NO
# Afrikaans, Arabic, Brazilian, Catalan, Chinese, Chinese-Traditional,
# Croatian, Czech, Danish, Dutch, Esperanto, Farsi, Finnish, French, German,
# Greek, Hungarian, Italian, Japanese, Japanese-en (Japanese with English
-# messages), Korean, Korean-en, Lithuanian, Norwegian, Macedonian, Persian,
-# Polish, Portuguese, Romanian, Russian, Serbian, Serbian-Cyrilic, Slovak,
-# Slovene, Spanish, Swedish, Ukrainian, and Vietnamese.
+# messages), Korean, Korean-en, Latvian, Lithuanian, Norwegian, Macedonian,
+# Persian, Polish, Portuguese, Romanian, Russian, Serbian, Serbian-Cyrillic,
+# Slovak, Slovene, Spanish, Swedish, Ukrainian, and Vietnamese.
OUTPUT_LANGUAGE = English
@@ -112,7 +128,9 @@ FULL_PATH_NAMES = YES
# only done if one of the specified strings matches the left-hand part of
# the path. The tag can be used to show relative paths in the file list.
# If left blank the directory from which doxygen is run is used as the
-# path to strip.
+# path to strip. Note that you specify absolute paths here, but also
+# relative paths, which will be relative from the directory where doxygen is
+# started.
STRIP_FROM_PATH = @CMAKE_SOURCE_DIR@
@@ -123,10 +141,10 @@ STRIP_FROM_PATH = @CMAKE_SOURCE_DIR@
# definition is used. Otherwise one should specify the include paths that
# are normally passed to the compiler using the -I flag.
-STRIP_FROM_INC_PATH =
+STRIP_FROM_INC_PATH = @CMAKE_SOURCE_DIR@/include
# If the SHORT_NAMES tag is set to YES, doxygen will generate much shorter
-# (but less readable) file names. This can be useful is your file systems
+# (but less readable) file names. This can be useful if your file system
# doesn't support long names like on DOS, Mac, or CD-ROM.
SHORT_NAMES = NO
@@ -181,6 +199,13 @@ TAB_SIZE = 8
ALIASES =
+# This tag can be used to specify a number of word-keyword mappings (TCL only).
+# A mapping has the form "name=value". For example adding
+# "class=itcl::class" will allow you to use the command class in the
+# itcl::class meaning.
+
+TCL_SUBST =
+
# Set the OPTIMIZE_OUTPUT_FOR_C tag to YES if your project consists of C
# sources only. Doxygen will then generate output that is more tailored for C.
# For instance, some of the names that are used will be different. The list
@@ -207,22 +232,40 @@ OPTIMIZE_FOR_FORTRAN = NO
OPTIMIZE_OUTPUT_VHDL = NO
-# Doxygen selects the parser to use depending on the extension of the files it parses.
-# With this tag you can assign which parser to use for a given extension.
-# Doxygen has a built-in mapping, but you can override or extend it using this tag.
-# The format is ext=language, where ext is a file extension, and language is one of
-# the parsers supported by doxygen: IDL, Java, Javascript, C#, C, C++, D, PHP,
-# Objective-C, Python, Fortran, VHDL, C, C++. For instance to make doxygen treat
-# .inc files as Fortran files (default is PHP), and .f files as C (default is Fortran),
-# use: inc=Fortran f=C. Note that for custom extensions you also need to set FILE_PATTERNS otherwise the files are not read by doxygen.
+# Doxygen selects the parser to use depending on the extension of the files it
+# parses. With this tag you can assign which parser to use for a given
+# extension. Doxygen has a built-in mapping, but you can override or extend it
+# using this tag. The format is ext=language, where ext is a file extension,
+# and language is one of the parsers supported by doxygen: IDL, Java,
+# Javascript, CSharp, C, C++, D, PHP, Objective-C, Python, Fortran, VHDL, C,
+# C++. For instance to make doxygen treat .inc files as Fortran files (default
+# is PHP), and .f files as C (default is Fortran), use: inc=Fortran f=C. Note
+# that for custom extensions you also need to set FILE_PATTERNS otherwise the
+# files are not read by doxygen.
EXTENSION_MAPPING =
+# If MARKDOWN_SUPPORT is enabled (the default) then doxygen pre-processes all
+# comments according to the Markdown format, which allows for more readable
+# documentation. See http://daringfireball.net/projects/markdown/ for details.
+# The output of markdown processing is further processed by doxygen, so you
+# can mix doxygen, HTML, and XML commands with Markdown formatting.
+# Disable only in case of backward compatibilities issues.
+
+MARKDOWN_SUPPORT = YES
+
+# When enabled doxygen tries to link words that correspond to documented
+# classes, or namespaces to their corresponding documentation. Such a link can
+# be prevented in individual cases by by putting a % sign in front of the word
+# or globally by setting AUTOLINK_SUPPORT to NO.
+
+AUTOLINK_SUPPORT = YES
+
# If you use STL classes (i.e. std::string, std::vector, etc.) but do not want
# to include (a tag file for) the STL sources as input, then you should
# set this tag to YES in order to let doxygen match functions declarations and
# definitions whose arguments contain STL classes (e.g. func(std::string); v.s.
-# func(std::string) {}). This also make the inheritance and collaboration
+# func(std::string) {}). This also makes the inheritance and collaboration
# diagrams that involve STL classes more complete and accurate.
BUILTIN_STL_SUPPORT = YES
@@ -238,10 +281,10 @@ CPP_CLI_SUPPORT = NO
SIP_SUPPORT = NO
-# For Microsoft's IDL there are propget and propput attributes to indicate getter
-# and setter methods for a property. Setting this option to YES (the default)
-# will make doxygen to replace the get and set methods by a property in the
-# documentation. This will only work if the methods are indeed getting or
+# For Microsoft's IDL there are propget and propput attributes to indicate
+# getter and setter methods for a property. Setting this option to YES (the
+# default) will make doxygen replace the get and set methods by a property in
+# the documentation. This will only work if the methods are indeed getting or
# setting a simple type. If this is not the case, or you want to show the
# methods anyway, you should set this option to NO.
@@ -262,6 +305,22 @@ DISTRIBUTE_GROUP_DOC = NO
SUBGROUPING = YES
+# When the INLINE_GROUPED_CLASSES tag is set to YES, classes, structs and
+# unions are shown inside the group in which they are included (e.g. using
+# @ingroup) instead of on a separate page (for HTML and Man pages) or
+# section (for LaTeX and RTF).
+
+INLINE_GROUPED_CLASSES = NO
+
+# When the INLINE_SIMPLE_STRUCTS tag is set to YES, structs, classes, and
+# unions with only public data fields or simple typedef fields will be shown
+# inline in the documentation of the scope in which they are defined (i.e. file,
+# namespace, or group documentation), provided this scope is documented. If set
+# to NO (the default), structs, classes, and unions are shown on a separate
+# page (for HTML and Man pages) or section (for LaTeX and RTF).
+
+INLINE_SIMPLE_STRUCTS = NO
+
# When TYPEDEF_HIDES_STRUCT is enabled, a typedef of a struct, union, or enum
# is documented as struct, union, or enum with the name of the typedef. So
# typedef struct TypeS {} TypeT, will appear in the documentation as a struct
@@ -272,21 +331,16 @@ SUBGROUPING = YES
TYPEDEF_HIDES_STRUCT = NO
-# The SYMBOL_CACHE_SIZE determines the size of the internal cache use to
-# determine which symbols to keep in memory and which to flush to disk.
-# When the cache is full, less often used symbols will be written to disk.
-# For small to medium size projects (<1000 input files) the default value is
-# probably good enough. For larger projects a too small cache size can cause
-# doxygen to be busy swapping symbols to and from disk most of the time
-# causing a significant performance penality.
-# If the system has enough physical memory increasing the cache will improve the
-# performance by keeping more symbols in memory. Note that the value works on
-# a logarithmic scale so increasing the size by one will rougly double the
-# memory usage. The cache size is given by this formula:
-# 2^(16+SYMBOL_CACHE_SIZE). The valid range is 0..9, the default is 0,
-# corresponding to a cache size of 2^16 = 65536 symbols
-
-SYMBOL_CACHE_SIZE = 0
+# The size of the symbol lookup cache can be set using LOOKUP_CACHE_SIZE. This
+# cache is used to resolve symbols given their name and scope. Since this can
+# be an expensive process and often the same symbol appear multiple times in
+# the code, doxygen keeps a cache of pre-resolved symbols. If the cache is too
+# small doxygen will become slower. If the cache is too large, memory is wasted.
+# The cache size is given by this formula: 2^(16+LOOKUP_CACHE_SIZE). The valid
+# range is 0..9, the default is 0, corresponding to a cache size of 2^16 = 65536
+# symbols.
+
+LOOKUP_CACHE_SIZE = 0
#---------------------------------------------------------------------------
# Build related configuration options
@@ -295,7 +349,7 @@ SYMBOL_CACHE_SIZE = 0
# If the EXTRACT_ALL tag is set to YES doxygen will assume all entities in
# documentation are documented, even if no documentation was available.
# Private class members and static file members will be hidden unless
-# the EXTRACT_PRIVATE and EXTRACT_STATIC tags are set to YES
+# the EXTRACT_PRIVATE respectively EXTRACT_STATIC tags are set to YES
EXTRACT_ALL = YES
@@ -304,6 +358,11 @@ EXTRACT_ALL = YES
EXTRACT_PRIVATE = NO
+# If the EXTRACT_PACKAGE tag is set to YES all members with package or internal
+# scope will be included in the documentation.
+
+EXTRACT_PACKAGE = NO
+
# If the EXTRACT_STATIC tag is set to YES all static members of a file
# will be included in the documentation.
@@ -326,7 +385,7 @@ EXTRACT_LOCAL_METHODS = NO
# extracted and appear in the documentation as a namespace called
# 'anonymous_namespace{file}', where file will be replaced with the base
# name of the file that contains the anonymous namespace. By default
-# anonymous namespace are hidden.
+# anonymous namespaces are hidden.
EXTRACT_ANON_NSPACES = NO
@@ -386,6 +445,12 @@ HIDE_SCOPE_NAMES = NO
SHOW_INCLUDE_FILES = YES
+# If the FORCE_LOCAL_INCLUDES tag is set to YES then Doxygen
+# will list include files with double quotes in the documentation
+# rather than with sharp brackets.
+
+FORCE_LOCAL_INCLUDES = NO
+
# If the INLINE_INFO tag is set to YES (the default) then a tag [inline]
# is inserted in the documentation for inline members.
@@ -405,7 +470,13 @@ SORT_MEMBER_DOCS = YES
SORT_BRIEF_DOCS = NO
-# If the SORT_MEMBERS_CTORS_1ST tag is set to YES then doxygen will sort the (brief and detailed) documentation of class members so that constructors and destructors are listed first. If set to NO (the default) the constructors will appear in the respective orders defined by SORT_MEMBER_DOCS and SORT_BRIEF_DOCS. This tag will be ignored for brief docs if SORT_BRIEF_DOCS is set to NO and ignored for detailed docs if SORT_MEMBER_DOCS is set to NO.
+# If the SORT_MEMBERS_CTORS_1ST tag is set to YES then doxygen
+# will sort the (brief and detailed) documentation of class members so that
+# constructors and destructors are listed first. If set to NO (the default)
+# the constructors will appear in the respective orders defined by
+# SORT_MEMBER_DOCS and SORT_BRIEF_DOCS.
+# This tag will be ignored for brief docs if SORT_BRIEF_DOCS is set to NO
+# and ignored for detailed docs if SORT_MEMBER_DOCS is set to NO.
SORT_MEMBERS_CTORS_1ST = NO
@@ -425,6 +496,15 @@ SORT_GROUP_NAMES = NO
SORT_BY_SCOPE_NAME = NO
+# If the STRICT_PROTO_MATCHING option is enabled and doxygen fails to
+# do proper type resolution of all parameters of a function it will reject a
+# match between the prototype and the implementation of a member function even
+# if there is only one candidate or it is obvious which candidate to choose
+# by doing a simple string match. By disabling STRICT_PROTO_MATCHING doxygen
+# will still accept a match between prototype and implementation in such cases.
+
+STRICT_PROTO_MATCHING = NO
+
# The GENERATE_TODOLIST tag can be used to enable (YES) or
# disable (NO) the todo list. This list is created by putting \todo
# commands in the documentation.
@@ -450,15 +530,16 @@ GENERATE_BUGLIST = YES
GENERATE_DEPRECATEDLIST= YES
# The ENABLED_SECTIONS tag can be used to enable conditional
-# documentation sections, marked by \if sectionname ... \endif.
+# documentation sections, marked by \if section-label ... \endif
+# and \cond section-label ... \endcond blocks.
ENABLED_SECTIONS =
# The MAX_INITIALIZER_LINES tag determines the maximum number of lines
-# the initial value of a variable or define consists of for it to appear in
+# the initial value of a variable or macro consists of for it to appear in
# the documentation. If the initializer consists of more lines than specified
# here it will be hidden. Use a value of 0 to hide initializers completely.
-# The appearance of the initializer of individual variables and defines in the
+# The appearance of the initializer of individual variables and macros in the
# documentation can be controlled using \showinitializer or \hideinitializer
# command in the documentation regardless of this setting.
@@ -470,12 +551,6 @@ MAX_INITIALIZER_LINES = 30
SHOW_USED_FILES = YES
-# If the sources in your project are distributed over multiple directories
-# then setting the SHOW_DIRECTORIES tag to YES will show the directory hierarchy
-# in the documentation. The default is NO.
-
-SHOW_DIRECTORIES = NO
-
# Set the SHOW_FILES tag to NO to disable the generation of the Files page.
# This will remove the Files entry from the Quick Index and from the
# Folder Tree View (if specified). The default is YES.
@@ -499,15 +574,26 @@ SHOW_NAMESPACES = YES
FILE_VERSION_FILTER =
-# The LAYOUT_FILE tag can be used to specify a layout file which will be parsed by
-# doxygen. The layout file controls the global structure of the generated output files
-# in an output format independent way. The create the layout file that represents
-# doxygen's defaults, run doxygen with the -l option. You can optionally specify a
-# file name after the option, if omitted DoxygenLayout.xml will be used as the name
-# of the layout file.
+# The LAYOUT_FILE tag can be used to specify a layout file which will be parsed
+# by doxygen. The layout file controls the global structure of the generated
+# output files in an output format independent way. To create the layout file
+# that represents doxygen's defaults, run doxygen with the -l option.
+# You can optionally specify a file name after the option, if omitted
+# DoxygenLayout.xml will be used as the name of the layout file.
LAYOUT_FILE =
+# The CITE_BIB_FILES tag can be used to specify one or more bib files
+# containing the references data. This must be a list of .bib files. The
+# .bib extension is automatically appended if omitted. Using this command
+# requires the bibtex tool to be installed. See also
+# http://en.wikipedia.org/wiki/BibTeX for more info. For LaTeX the style
+# of the bibliography can be controlled using LATEX_BIB_STYLE. To use this
+# feature you need bibtex and perl available in the search path. Do not use
+# file names with spaces, bibtex cannot handle them.
+
+CITE_BIB_FILES =
+
#---------------------------------------------------------------------------
# configuration options related to warning and progress messages
#---------------------------------------------------------------------------
@@ -536,7 +622,7 @@ WARN_IF_UNDOCUMENTED = YES
WARN_IF_DOC_ERROR = YES
-# This WARN_NO_PARAMDOC option can be abled to get warnings for
+# The WARN_NO_PARAMDOC option can be enabled to get warnings for
# functions that are documented, but have no documentation for their parameters
# or return value. If set to NO (the default) doxygen will only warn about
# wrong or incomplete parameter documentation, but not about the absence of
@@ -568,7 +654,7 @@ WARN_LOGFILE =
# directories like "/usr/src/myproject". Separate the files or directories
# with spaces.
-INPUT = @CMAKE_SOURCE_DIR@/include
+INPUT = @DOXYGEN_INPUT_DIRS@
# This tag can be used to specify the character encoding of the source files
# that doxygen parses. Internally doxygen uses the UTF-8 encoding, which is
@@ -582,10 +668,11 @@ INPUT_ENCODING = UTF-8
# FILE_PATTERNS tag to specify one or more wildcard pattern (like *.cpp
# and *.h) to filter out the source-files in the directories. If left
# blank the following patterns are tested:
-# *.c *.cc *.cxx *.cpp *.c++ *.java *.ii *.ixx *.ipp *.i++ *.inl *.h *.hh *.hxx
-# *.hpp *.h++ *.idl *.odl *.cs *.php *.php3 *.inc *.m *.mm *.py *.f90
+# *.c *.cc *.cxx *.cpp *.c++ *.d *.java *.ii *.ixx *.ipp *.i++ *.inl *.h *.hh
+# *.hxx *.hpp *.h++ *.idl *.odl *.cs *.php *.php3 *.inc *.m *.mm *.dox *.py
+# *.f90 *.f *.for *.vhd *.vhdl
-FILE_PATTERNS = *.hpp
+FILE_PATTERNS = *.hpp *.dox *.h
# The RECURSIVE tag can be used to turn specify whether or not subdirectories
# should be searched for input files as well. Possible values are YES and NO.
@@ -593,14 +680,16 @@ FILE_PATTERNS = *.hpp
RECURSIVE = YES
-# The EXCLUDE tag can be used to specify files and/or directories that should
+# The EXCLUDE tag can be used to specify files and/or directories that should be
# excluded from the INPUT source files. This way you can easily exclude a
# subdirectory from a directory tree whose root is specified with the INPUT tag.
+# Note that relative paths are relative to the directory from which doxygen is
+# run.
EXCLUDE =
-# The EXCLUDE_SYMLINKS tag can be used select whether or not files or
-# directories that are symbolic links (a Unix filesystem feature) are excluded
+# The EXCLUDE_SYMLINKS tag can be used to select whether or not files or
+# directories that are symbolic links (a Unix file system feature) are excluded
# from the input.
EXCLUDE_SYMLINKS = NO
@@ -645,7 +734,7 @@ EXAMPLE_RECURSIVE = NO
# directories that contain image that are included in the documentation (see
# the \image command).
-IMAGE_PATH =
+IMAGE_PATH = @CMAKE_SOURCE_DIR@/docs/res
# The INPUT_FILTER tag can be used to specify a program that doxygen should
# invoke to filter for each input file. Doxygen will invoke the filter program
@@ -653,8 +742,10 @@ IMAGE_PATH =
# is the value of the INPUT_FILTER tag, and <input-file> is the name of an
# input file. Doxygen will then use the output that the filter program writes
# to standard output.
-# If FILTER_PATTERNS is specified, this tag will be
-# ignored.
+# If FILTER_PATTERNS is specified, this tag will be ignored.
+# Note that the filter must not add or remove lines; it is applied before the
+# code is scanned, but not when the output code is generated. If lines are added
+# or removed, the anchors will not be placed correctly.
INPUT_FILTER =
@@ -664,8 +755,8 @@ INPUT_FILTER =
# filter if there is a match.
# The filters are a list of the form:
# pattern=filter (like *.cpp=my_cpp_filter). See INPUT_FILTER for further
-# info on how filters are used. If FILTER_PATTERNS is empty, INPUT_FILTER
-# is applied to all files.
+# info on how filters are used. If FILTER_PATTERNS is empty or if
+# non of the patterns match the file name, INPUT_FILTER is applied.
FILTER_PATTERNS =
@@ -675,6 +766,21 @@ FILTER_PATTERNS =
FILTER_SOURCE_FILES = NO
+# The FILTER_SOURCE_PATTERNS tag can be used to specify source filters per file
+# pattern. A pattern will override the setting for FILTER_PATTERN (if any)
+# and it is also possible to disable source filtering for a specific pattern
+# using *.ext= (so without naming a filter). This option only has effect when
+# FILTER_SOURCE_FILES is enabled.
+
+FILTER_SOURCE_PATTERNS =
+
+# If the USE_MD_FILE_AS_MAINPAGE tag refers to the name of a markdown file that
+# is part of the input, its contents will be placed on the main page
+# (index.html). This can be useful if you have a project on for instance GitHub
+# and want reuse the introduction page also for the doxygen output.
+
+USE_MDFILE_AS_MAINPAGE =
+
#---------------------------------------------------------------------------
# configuration options related to source browsing
#---------------------------------------------------------------------------
@@ -693,7 +799,7 @@ INLINE_SOURCES = NO
# Setting the STRIP_CODE_COMMENTS tag to YES (the default) will instruct
# doxygen to hide any special comment blocks from generated source code
-# fragments. Normal C and C++ comments will always remain visible.
+# fragments. Normal C, C++ and Fortran comments will always remain visible.
STRIP_CODE_COMMENTS = YES
@@ -777,7 +883,14 @@ HTML_FILE_EXTENSION = .html
# The HTML_HEADER tag can be used to specify a personal HTML header for
# each generated HTML page. If it is left blank doxygen will generate a
-# standard header.
+# standard header. Note that when using a custom header you are responsible
+# for the proper inclusion of any scripts and style sheets that doxygen
+# needs, which is dependent on the configuration options used.
+# It is advised to generate a default header using "doxygen -w html
+# header.html footer.html stylesheet.css YourConfigFile" and then modify
+# that header. Note that the header is subject to change so you typically
+# have to redo this when upgrading to a newer version of doxygen or when
+# changing the value of configuration settings such as GENERATE_TREEVIEW!
HTML_HEADER =
@@ -789,27 +902,80 @@ HTML_FOOTER =
# The HTML_STYLESHEET tag can be used to specify a user-defined cascading
# style sheet that is used by each HTML page. It can be used to
-# fine-tune the look of the HTML output. If the tag is left blank doxygen
-# will generate a default style sheet. Note that doxygen will try to copy
-# the style sheet file to the HTML output directory, so don't put your own
-# stylesheet in the HTML output directory as well, or it will be erased!
+# fine-tune the look of the HTML output. If left blank doxygen will
+# generate a default style sheet. Note that it is recommended to use
+# HTML_EXTRA_STYLESHEET instead of this one, as it is more robust and this
+# tag will in the future become obsolete.
HTML_STYLESHEET =
-# If the HTML_ALIGN_MEMBERS tag is set to YES, the members of classes,
-# files or namespaces will be aligned in HTML using tables. If set to
-# NO a bullet list will be used.
+# The HTML_EXTRA_STYLESHEET tag can be used to specify an additional
+# user-defined cascading style sheet that is included after the standard
+# style sheets created by doxygen. Using this option one can overrule
+# certain style aspects. This is preferred over using HTML_STYLESHEET
+# since it does not replace the standard style sheet and is therefor more
+# robust against future updates. Doxygen will copy the style sheet file to
+# the output directory.
+
+HTML_EXTRA_STYLESHEET =
+
+# The HTML_EXTRA_FILES tag can be used to specify one or more extra images or
+# other source files which should be copied to the HTML output directory. Note
+# that these files will be copied to the base HTML output directory. Use the
+# $relpath^ marker in the HTML_HEADER and/or HTML_FOOTER files to load these
+# files. In the HTML_STYLESHEET file, use the file name only. Also note that
+# the files will be copied as-is; there are no commands or markers available.
+
+HTML_EXTRA_FILES =
+
+# The HTML_COLORSTYLE_HUE tag controls the color of the HTML output.
+# Doxygen will adjust the colors in the style sheet and background images
+# according to this color. Hue is specified as an angle on a colorwheel,
+# see http://en.wikipedia.org/wiki/Hue for more information.
+# For instance the value 0 represents red, 60 is yellow, 120 is green,
+# 180 is cyan, 240 is blue, 300 purple, and 360 is red again.
+# The allowed range is 0 to 359.
+
+HTML_COLORSTYLE_HUE = 92
+
+# The HTML_COLORSTYLE_SAT tag controls the purity (or saturation) of
+# the colors in the HTML output. For a value of 0 the output will use
+# grayscales only. A value of 255 will produce the most vivid colors.
+
+HTML_COLORSTYLE_SAT = 31
+
+# The HTML_COLORSTYLE_GAMMA tag controls the gamma correction applied to
+# the luminance component of the colors in the HTML output. Values below
+# 100 gradually make the output lighter, whereas values above 100 make
+# the output darker. The value divided by 100 is the actual gamma applied,
+# so 80 represents a gamma of 0.8, The value 220 represents a gamma of 2.2,
+# and 100 does not change the gamma.
-HTML_ALIGN_MEMBERS = YES
+HTML_COLORSTYLE_GAMMA = 65
+
+# If the HTML_TIMESTAMP tag is set to YES then the footer of each generated HTML
+# page will contain the date and time when the page was generated. Setting
+# this to NO can help when comparing the output of multiple runs.
+
+HTML_TIMESTAMP = YES
# If the HTML_DYNAMIC_SECTIONS tag is set to YES then the generated HTML
# documentation will contain sections that can be hidden and shown after the
-# page has loaded. For this to work a browser that supports
-# JavaScript and DHTML is required (for instance Mozilla 1.0+, Firefox
-# Netscape 6.0+, Internet explorer 5.0+, Konqueror, or Safari).
+# page has loaded.
HTML_DYNAMIC_SECTIONS = NO
+# With HTML_INDEX_NUM_ENTRIES one can control the preferred number of
+# entries shown in the various tree structured indices initially; the user
+# can expand and collapse entries dynamically later on. Doxygen will expand
+# the tree to such a level that at most the specified number of entries are
+# visible (unless a fully collapsed tree already exceeds this amount).
+# So setting the number of entries 1 will produce a full collapsed tree by
+# default. 0 is a special value representing an infinite number of entries
+# and will result in a full expanded tree by default.
+
+HTML_INDEX_NUM_ENTRIES = 100
+
# If the GENERATE_DOCSET tag is set to YES, additional index files
# will be generated that can be used as input for Apple's Xcode 3
# integrated development environment, introduced with OSX 10.5 (Leopard).
@@ -818,7 +984,8 @@ HTML_DYNAMIC_SECTIONS = NO
# directory and running "make install" will install the docset in
# ~/Library/Developer/Shared/Documentation/DocSets so that Xcode will find
# it at startup.
-# See http://developer.apple.com/tools/creatingdocsetswithdoxygen.html for more information.
+# See http://developer.apple.com/tools/creatingdocsetswithdoxygen.html
+# for more information.
GENERATE_DOCSET = NO
@@ -836,6 +1003,16 @@ DOCSET_FEEDNAME = "Doxygen generated docs"
DOCSET_BUNDLE_ID = org.doxygen.Project
+# When GENERATE_PUBLISHER_ID tag specifies a string that should uniquely
+# identify the documentation publisher. This should be a reverse domain-name
+# style string, e.g. com.mycompany.MyDocSet.documentation.
+
+DOCSET_PUBLISHER_ID = org.doxygen.Publisher
+
+# The GENERATE_PUBLISHER_NAME tag identifies the documentation publisher.
+
+DOCSET_PUBLISHER_NAME = Publisher
+
# If the GENERATE_HTMLHELP tag is set to YES, additional index files
# will be generated that can be used as input for tools like the
# Microsoft HTML help workshop to generate a compiled HTML help file (.chm)
@@ -880,10 +1057,10 @@ BINARY_TOC = NO
TOC_EXPAND = NO
-# If the GENERATE_QHP tag is set to YES and both QHP_NAMESPACE and QHP_VIRTUAL_FOLDER
-# are set, an additional index file will be generated that can be used as input for
-# Qt's qhelpgenerator to generate a Qt Compressed Help (.qch) of the generated
-# HTML documentation.
+# If the GENERATE_QHP tag is set to YES and both QHP_NAMESPACE and
+# QHP_VIRTUAL_FOLDER are set, an additional index file will be generated
+# that can be used as input for Qt's qhelpgenerator to generate a
+# Qt Compressed Help (.qch) of the generated HTML documentation.
GENERATE_QHP = NO
@@ -905,20 +1082,24 @@ QHP_NAMESPACE =
QHP_VIRTUAL_FOLDER = doc
-# If QHP_CUST_FILTER_NAME is set, it specifies the name of a custom filter to add.
-# For more information please see
+# If QHP_CUST_FILTER_NAME is set, it specifies the name of a custom filter to
+# add. For more information please see
# http://doc.trolltech.com/qthelpproject.html#custom-filters
QHP_CUST_FILTER_NAME =
-# The QHP_CUST_FILT_ATTRS tag specifies the list of the attributes of the custom filter to add.For more information please see
-# <a href="http://doc.trolltech.com/qthelpproject.html#custom-filters">Qt Help Project / Custom Filters</a>.
+# The QHP_CUST_FILT_ATTRS tag specifies the list of the attributes of the
+# custom filter to add. For more information please see
+# <a href="http://doc.trolltech.com/qthelpproject.html#custom-filters">
+# Qt Help Project / Custom Filters</a>.
QHP_CUST_FILTER_ATTRS =
-# The QHP_SECT_FILTER_ATTRS tag specifies the list of the attributes this project's
+# The QHP_SECT_FILTER_ATTRS tag specifies the list of the attributes this
+# project's
# filter section matches.
-# <a href="http://doc.trolltech.com/qthelpproject.html#filter-attributes">Qt Help Project / Filter Attributes</a>.
+# <a href="http://doc.trolltech.com/qthelpproject.html#filter-attributes">
+# Qt Help Project / Filter Attributes</a>.
QHP_SECT_FILTER_ATTRS =
@@ -929,16 +1110,30 @@ QHP_SECT_FILTER_ATTRS =
QHG_LOCATION =
-# The DISABLE_INDEX tag can be used to turn on/off the condensed index at
-# top of each HTML page. The value NO (the default) enables the index and
-# the value YES disables it.
+# If the GENERATE_ECLIPSEHELP tag is set to YES, additional index files
+# will be generated, which together with the HTML files, form an Eclipse help
+# plugin. To install this plugin and make it available under the help contents
+# menu in Eclipse, the contents of the directory containing the HTML and XML
+# files needs to be copied into the plugins directory of eclipse. The name of
+# the directory within the plugins directory should be the same as
+# the ECLIPSE_DOC_ID value. After copying Eclipse needs to be restarted before
+# the help appears.
-DISABLE_INDEX = NO
+GENERATE_ECLIPSEHELP = NO
-# This tag can be used to set the number of enum values (range [1..20])
-# that doxygen will group on one line in the generated HTML documentation.
+# A unique identifier for the eclipse help plugin. When installing the plugin
+# the directory name containing the HTML and XML files should also have
+# this name.
-ENUM_VALUES_PER_LINE = 4
+ECLIPSE_DOC_ID = org.doxygen.Project
+
+# The DISABLE_INDEX tag can be used to turn on/off the condensed index (tabs)
+# at top of each HTML page. The value NO (the default) enables the index and
+# the value YES disables it. Since the tabs have the same information as the
+# navigation tree you can set this option to NO if you already set
+# GENERATE_TREEVIEW to YES.
+
+DISABLE_INDEX = YES
# The GENERATE_TREEVIEW tag is used to specify whether a tree-like index
# structure should be generated to display hierarchical information.
@@ -947,13 +1142,17 @@ ENUM_VALUES_PER_LINE = 4
# is generated for HTML Help). For this to work a browser that supports
# JavaScript, DHTML, CSS and frames is required (i.e. any modern browser).
# Windows users are probably better off using the HTML help feature.
+# Since the tree basically has the same information as the tab index you
+# could consider to set DISABLE_INDEX to NO when enabling this option.
-GENERATE_TREEVIEW = NO
+GENERATE_TREEVIEW = YES
-# By enabling USE_INLINE_TREES, doxygen will generate the Groups, Directories,
-# and Class Hierarchy pages using a tree view instead of an ordered list.
+# The ENUM_VALUES_PER_LINE tag can be used to set the number of enum values
+# (range [0,1..20]) that doxygen will group on one line in the generated HTML
+# documentation. Note that a value of 0 will completely suppress the enum
+# values from appearing in the overview section.
-USE_INLINE_TREES = NO
+ENUM_VALUES_PER_LINE = 4
# If the treeview is enabled (see GENERATE_TREEVIEW) then this tag can be
# used to set the initial width (in pixels) of the frame in which the tree
@@ -961,6 +1160,11 @@ USE_INLINE_TREES = NO
TREEVIEW_WIDTH = 250
+# When the EXT_LINKS_IN_WINDOW option is set to YES doxygen will open
+# links to external symbols imported via tag files in a separate window.
+
+EXT_LINKS_IN_WINDOW = NO
+
# Use this tag to change the font size of Latex formulas included
# as images in the HTML documentation. The default is 10. Note that
# when you change the font size after a successful doxygen run you need
@@ -969,13 +1173,112 @@ TREEVIEW_WIDTH = 250
FORMULA_FONTSIZE = 10
-# When the SEARCHENGINE tag is enable doxygen will generate a search box for the HTML output. The underlying search engine uses javascript
-# and DHTML and should work on any modern browser. Note that when using HTML help (GENERATE_HTMLHELP) or Qt help (GENERATE_QHP)
-# there is already a search function so this one should typically
-# be disabled.
+# Use the FORMULA_TRANPARENT tag to determine whether or not the images
+# generated for formulas are transparent PNGs. Transparent PNGs are
+# not supported properly for IE 6.0, but are supported on all modern browsers.
+# Note that when changing this option you need to delete any form_*.png files
+# in the HTML output before the changes have effect.
+
+FORMULA_TRANSPARENT = YES
+
+# Enable the USE_MATHJAX option to render LaTeX formulas using MathJax
+# (see http://www.mathjax.org) which uses client side Javascript for the
+# rendering instead of using prerendered bitmaps. Use this if you do not
+# have LaTeX installed or if you want to formulas look prettier in the HTML
+# output. When enabled you may also need to install MathJax separately and
+# configure the path to it using the MATHJAX_RELPATH option.
+
+USE_MATHJAX = NO
+
+# When MathJax is enabled you can set the default output format to be used for
+# the MathJax output. Supported types are HTML-CSS, NativeMML (i.e. MathML) and
+# SVG. The default value is HTML-CSS, which is slower, but has the best
+# compatibility.
+
+MATHJAX_FORMAT = HTML-CSS
+
+# When MathJax is enabled you need to specify the location relative to the
+# HTML output directory using the MATHJAX_RELPATH option. The destination
+# directory should contain the MathJax.js script. For instance, if the mathjax
+# directory is located at the same level as the HTML output directory, then
+# MATHJAX_RELPATH should be ../mathjax. The default value points to
+# the MathJax Content Delivery Network so you can quickly see the result without
+# installing MathJax.
+# However, it is strongly recommended to install a local
+# copy of MathJax from http://www.mathjax.org before deployment.
+
+MATHJAX_RELPATH = http://cdn.mathjax.org/mathjax/latest
+
+# The MATHJAX_EXTENSIONS tag can be used to specify one or MathJax extension
+# names that should be enabled during MathJax rendering.
+
+MATHJAX_EXTENSIONS =
+
+# The MATHJAX_CODEFILE tag can be used to specify a file with javascript
+# pieces of code that will be used on startup of the MathJax code.
+
+MATHJAX_CODEFILE =
+
+# When the SEARCHENGINE tag is enabled doxygen will generate a search box
+# for the HTML output. The underlying search engine uses javascript
+# and DHTML and should work on any modern browser. Note that when using
+# HTML help (GENERATE_HTMLHELP), Qt help (GENERATE_QHP), or docsets
+# (GENERATE_DOCSET) there is already a search function so this one should
+# typically be disabled. For large projects the javascript based search engine
+# can be slow, then enabling SERVER_BASED_SEARCH may provide a better solution.
SEARCHENGINE = YES
+# When the SERVER_BASED_SEARCH tag is enabled the search engine will be
+# implemented using a web server instead of a web client using Javascript.
+# There are two flavours of web server based search depending on the
+# EXTERNAL_SEARCH setting. When disabled, doxygen will generate a PHP script for
+# searching and an index file used by the script. When EXTERNAL_SEARCH is
+# enabled the indexing and searching needs to be provided by external tools.
+# See the manual for details.
+
+SERVER_BASED_SEARCH = NO
+
+# When EXTERNAL_SEARCH is enabled doxygen will no longer generate the PHP
+# script for searching. Instead the search results are written to an XML file
+# which needs to be processed by an external indexer. Doxygen will invoke an
+# external search engine pointed to by the SEARCHENGINE_URL option to obtain
+# the search results. Doxygen ships with an example indexer (doxyindexer) and
+# search engine (doxysearch.cgi) which are based on the open source search
+# engine library Xapian. See the manual for configuration details.
+
+EXTERNAL_SEARCH = NO
+
+# The SEARCHENGINE_URL should point to a search engine hosted by a web server
+# which will returned the search results when EXTERNAL_SEARCH is enabled.
+# Doxygen ships with an example search engine (doxysearch) which is based on
+# the open source search engine library Xapian. See the manual for configuration
+# details.
+
+SEARCHENGINE_URL =
+
+# When SERVER_BASED_SEARCH and EXTERNAL_SEARCH are both enabled the unindexed
+# search data is written to a file for indexing by an external tool. With the
+# SEARCHDATA_FILE tag the name of this file can be specified.
+
+SEARCHDATA_FILE = searchdata.xml
+
+# When SERVER_BASED_SEARCH AND EXTERNAL_SEARCH are both enabled the
+# EXTERNAL_SEARCH_ID tag can be used as an identifier for the project. This is
+# useful in combination with EXTRA_SEARCH_MAPPINGS to search through multiple
+# projects and redirect the results back to the right project.
+
+EXTERNAL_SEARCH_ID =
+
+# The EXTRA_SEARCH_MAPPINGS tag can be used to enable searching through doxygen
+# projects other than the one defined by this configuration file, but that are
+# all added to the same external search index. Each project needs to have a
+# unique id set via EXTERNAL_SEARCH_ID. The search mapping then maps the id
+# of to a relative location where the documentation can be found.
+# The format is: EXTRA_SEARCH_MAPPINGS = id1=loc1 id2=loc2 ...
+
+EXTRA_SEARCH_MAPPINGS =
+
#---------------------------------------------------------------------------
# configuration options related to the LaTeX output
#---------------------------------------------------------------------------
@@ -993,6 +1296,9 @@ LATEX_OUTPUT = latex
# The LATEX_CMD_NAME tag can be used to specify the LaTeX command name to be
# invoked. If left blank `latex' will be used as the default command name.
+# Note that when enabling USE_PDFLATEX this option is only used for
+# generating bitmaps for formulas in the HTML output, but not in the
+# Makefile that is written to the output directory.
LATEX_CMD_NAME = latex
@@ -1009,8 +1315,8 @@ MAKEINDEX_CMD_NAME = makeindex
COMPACT_LATEX = NO
# The PAPER_TYPE tag can be used to set the paper type that is used
-# by the printer. Possible values are: a4, a4wide, letter, legal and
-# executive. If left blank a4wide will be used.
+# by the printer. Possible values are: a4, letter, legal and
+# executive. If left blank a4 will be used.
PAPER_TYPE = a4wide
@@ -1026,6 +1332,20 @@ EXTRA_PACKAGES =
LATEX_HEADER =
+# The LATEX_FOOTER tag can be used to specify a personal LaTeX footer for
+# the generated latex document. The footer should contain everything after
+# the last chapter. If it is left blank doxygen will generate a
+# standard footer. Notice: only use this tag if you know what you are doing!
+
+LATEX_FOOTER =
+
+# The LATEX_EXTRA_FILES tag can be used to specify one or more extra images
+# or other source files which should be copied to the LaTeX output directory.
+# Note that the files will be copied as-is; there are no commands or markers
+# available.
+
+LATEX_EXTRA_FILES =
+
# If the PDF_HYPERLINKS tag is set to YES, the LaTeX that is generated
# is prepared for conversion to pdf (using ps2pdf). The pdf file will
# contain links (just like the HTML output) instead of page references
@@ -1052,10 +1372,19 @@ LATEX_BATCHMODE = NO
LATEX_HIDE_INDICES = NO
-# If LATEX_SOURCE_CODE is set to YES then doxygen will include source code with syntax highlighting in the LaTeX output. Note that which sources are shown also depends on other settings such as SOURCE_BROWSER.
+# If LATEX_SOURCE_CODE is set to YES then doxygen will include
+# source code with syntax highlighting in the LaTeX output.
+# Note that which sources are shown also depends on other settings
+# such as SOURCE_BROWSER.
LATEX_SOURCE_CODE = NO
+# The LATEX_BIB_STYLE tag can be used to specify the style to use for the
+# bibliography, e.g. plainnat, or ieeetr. The default style is "plain". See
+# http://en.wikipedia.org/wiki/BibTeX for more info.
+
+LATEX_BIB_STYLE = plain
+
#---------------------------------------------------------------------------
# configuration options related to the RTF output
#---------------------------------------------------------------------------
@@ -1087,7 +1416,7 @@ COMPACT_RTF = NO
RTF_HYPERLINKS = NO
-# Load stylesheet definitions from file. Syntax is similar to doxygen's
+# Load style sheet definitions from file. Syntax is similar to doxygen's
# config file, i.e. a series of assignments. You only have to provide
# replacements, missing definitions are set to their default value.
@@ -1162,6 +1491,21 @@ XML_DTD =
XML_PROGRAMLISTING = YES
#---------------------------------------------------------------------------
+# configuration options related to the DOCBOOK output
+#---------------------------------------------------------------------------
+
+# If the GENERATE_DOCBOOK tag is set to YES Doxygen will generate DOCBOOK files
+# that can be used to generate PDF.
+
+GENERATE_DOCBOOK = NO
+
+# The DOCBOOK_OUTPUT tag is used to specify where the DOCBOOK pages will be put.
+# If a relative path is entered the value of OUTPUT_DIRECTORY will be put in
+# front of it. If left blank docbook will be used as the default path.
+
+DOCBOOK_OUTPUT = docbook
+
+#---------------------------------------------------------------------------
# configuration options for the AutoGen Definitions output
#---------------------------------------------------------------------------
@@ -1232,7 +1576,7 @@ MACRO_EXPANSION = YES
EXPAND_ONLY_PREDEF = NO
# If the SEARCH_INCLUDES tag is set to YES (the default) the includes files
-# in the INCLUDE_PATH (see below) will be search if a #include is found.
+# pointed to by INCLUDE_PATH will be searched when a #include is found.
SEARCH_INCLUDES = YES
@@ -1262,15 +1606,15 @@ PREDEFINED =
# If the MACRO_EXPANSION and EXPAND_ONLY_PREDEF tags are set to YES then
# this tag can be used to specify a list of macro names that should be expanded.
# The macro definition that is found in the sources will be used.
-# Use the PREDEFINED tag if you want to use a different macro definition.
+# Use the PREDEFINED tag if you want to use a different macro definition that
+# overrules the definition found in the source code.
EXPAND_AS_DEFINED =
# If the SKIP_FUNCTION_MACROS tag is set to YES (the default) then
-# doxygen's preprocessor will remove all function-like macros that are alone
-# on a line, have an all uppercase name, and do not end with a semicolon. Such
-# function macros are typically used for boiler-plate code, and will confuse
-# the parser if not removed.
+# doxygen's preprocessor will remove all references to function-like macros
+# that are alone on a line, have an all uppercase name, and do not end with a
+# semicolon, because these will confuse the parser if not removed.
SKIP_FUNCTION_MACROS = YES
@@ -1278,22 +1622,18 @@ SKIP_FUNCTION_MACROS = YES
# Configuration::additions related to external references
#---------------------------------------------------------------------------
-# The TAGFILES option can be used to specify one or more tagfiles.
-# Optionally an initial location of the external documentation
-# can be added for each tagfile. The format of a tag file without
-# this location is as follows:
+# The TAGFILES option can be used to specify one or more tagfiles. For each
+# tag file the location of the external documentation should be added. The
+# format of a tag file without this location is as follows:
#
# TAGFILES = file1 file2 ...
# Adding location for the tag files is done as follows:
#
# TAGFILES = file1=loc1 "file2 = loc2" ...
-# where "loc1" and "loc2" can be relative or absolute paths or
-# URLs. If a location is present for each tag, the installdox tool
-# does not have to be run to correct the links.
-# Note that each tag file must have a unique name
-# (where the name does NOT include the path)
-# If a tag file is not located in the directory in which doxygen
-# is run, you must also specify the path to the tagfile here.
+# where "loc1" and "loc2" can be relative or absolute paths
+# or URLs. Note that each tag file must have a unique name (where the name does
+# NOT include the path). If a tag file is not located in the directory in which
+# doxygen is run, you must also specify the path to the tagfile here.
TAGFILES =
@@ -1314,6 +1654,12 @@ ALLEXTERNALS = NO
EXTERNAL_GROUPS = YES
+# If the EXTERNAL_PAGES tag is set to YES all external pages will be listed
+# in the related pages index. If set to NO, only the current project's
+# pages will be listed.
+
+EXTERNAL_PAGES = YES
+
# The PERL_PATH should be the absolute path and name of the perl script
# interpreter (i.e. the result of `which perl').
@@ -1326,9 +1672,8 @@ PERL_PATH = /usr/bin/perl
# If the CLASS_DIAGRAMS tag is set to YES (the default) Doxygen will
# generate a inheritance diagram (in HTML, RTF and LaTeX) for classes with base
# or super classes. Setting the tag to NO turns the diagrams off. Note that
-# this option is superseded by the HAVE_DOT option below. This is only a
-# fallback. It is recommended to install and use dot, since it yields more
-# powerful graphs.
+# this option also works with HAVE_DOT disabled, but it is recommended to
+# install and use dot, since it yields more powerful graphs.
CLASS_DIAGRAMS = YES
@@ -1354,33 +1699,38 @@ HIDE_UNDOC_RELATIONS = YES
HAVE_DOT = NO
-# By default doxygen will write a font called FreeSans.ttf to the output
-# directory and reference it in all dot files that doxygen generates. This
-# font does not include all possible unicode characters however, so when you need
-# these (or just want a differently looking font) you can specify the font name
-# using DOT_FONTNAME. You need need to make sure dot is able to find the font,
-# which can be done by putting it in a standard location or by setting the
-# DOTFONTPATH environment variable or by setting DOT_FONTPATH to the directory
-# containing the font.
+# The DOT_NUM_THREADS specifies the number of dot invocations doxygen is
+# allowed to run in parallel. When set to 0 (the default) doxygen will
+# base this on the number of processors available in the system. You can set it
+# explicitly to a value larger than 0 to get control over the balance
+# between CPU load and processing speed.
+
+DOT_NUM_THREADS = 0
+
+# By default doxygen will use the Helvetica font for all dot files that
+# doxygen generates. When you want a differently looking font you can specify
+# the font name using DOT_FONTNAME. You need to make sure dot is able to find
+# the font, which can be done by putting it in a standard location or by setting
+# the DOTFONTPATH environment variable or by setting DOT_FONTPATH to the
+# directory containing the font.
-DOT_FONTNAME = FreeSans
+DOT_FONTNAME =
# The DOT_FONTSIZE tag can be used to set the size of the font of dot graphs.
# The default size is 10pt.
DOT_FONTSIZE = 10
-# By default doxygen will tell dot to use the output directory to look for the
-# FreeSans.ttf font (which doxygen will put there itself). If you specify a
-# different font using DOT_FONTNAME you can set the path where dot
-# can find it using this tag.
+# By default doxygen will tell dot to use the Helvetica font.
+# If you specify a different font using DOT_FONTNAME you can use DOT_FONTPATH to
+# set the path where dot can find it.
DOT_FONTPATH =
# If the CLASS_GRAPH and HAVE_DOT tags are set to YES then doxygen
# will generate a graph for each documented class showing the direct and
# indirect inheritance relations. Setting this tag to YES will force the
-# the CLASS_DIAGRAMS tag to NO.
+# CLASS_DIAGRAMS tag to NO.
CLASS_GRAPH = YES
@@ -1402,6 +1752,15 @@ GROUP_GRAPHS = YES
UML_LOOK = NO
+# If the UML_LOOK tag is enabled, the fields and methods are shown inside
+# the class node. If there are many fields or methods and many nodes the
+# graph may become too big to be useful. The UML_LIMIT_NUM_FIELDS
+# threshold limits the number of items for each type to make the size more
+# manageable. Set this to 0 for no limit. Note that the threshold may be
+# exceeded by 50% before the limit is enforced.
+
+UML_LIMIT_NUM_FIELDS = 10
+
# If set to YES, the inheritance and collaboration graphs will show the
# relations between templates and their instances.
@@ -1438,11 +1797,11 @@ CALL_GRAPH = NO
CALLER_GRAPH = NO
# If the GRAPHICAL_HIERARCHY and HAVE_DOT tags are set to YES then doxygen
-# will graphical hierarchy of all classes instead of a textual one.
+# will generate a graphical hierarchy of all classes instead of a textual one.
GRAPHICAL_HIERARCHY = YES
-# If the DIRECTORY_GRAPH, SHOW_DIRECTORIES and HAVE_DOT tags are set to YES
+# If the DIRECTORY_GRAPH and HAVE_DOT tags are set to YES
# then doxygen will show the dependencies a directory has on other directories
# in a graphical way. The dependency relations are determined by the #include
# relations between the files in the directories.
@@ -1450,11 +1809,22 @@ GRAPHICAL_HIERARCHY = YES
DIRECTORY_GRAPH = YES
# The DOT_IMAGE_FORMAT tag can be used to set the image format of the images
-# generated by dot. Possible values are png, jpg, or gif
-# If left blank png will be used.
+# generated by dot. Possible values are svg, png, jpg, or gif.
+# If left blank png will be used. If you choose svg you need to set
+# HTML_FILE_EXTENSION to xhtml in order to make the SVG files
+# visible in IE 9+ (other browsers do not have this requirement).
DOT_IMAGE_FORMAT = png
+# If DOT_IMAGE_FORMAT is set to svg, then this option can be set to YES to
+# enable generation of interactive SVG images that allow zooming and panning.
+# Note that this requires a modern browser other than Internet Explorer.
+# Tested and working are Firefox, Chrome, Safari, and Opera. For IE 9+ you
+# need to set HTML_FILE_EXTENSION to xhtml in order to make the SVG files
+# visible. Older versions of IE do not have SVG support.
+
+INTERACTIVE_SVG = NO
+
# The tag DOT_PATH can be used to specify the path where the dot tool can be
# found. If left blank, it is assumed the dot tool can be found in the path.
@@ -1466,6 +1836,12 @@ DOT_PATH =
DOTFILE_DIRS =
+# The MSCFILE_DIRS tag can be used to specify one or more directories that
+# contain msc files that are included in the documentation (see the
+# \mscfile command).
+
+MSCFILE_DIRS =
+
# The DOT_GRAPH_MAX_NODES tag can be used to set the maximum number of
# nodes that will be shown in the graph. If the number of nodes in a graph
# becomes larger than this value, doxygen will truncate the graph, which is
diff --git a/host/docs/Ettus_Logo.png b/host/docs/Ettus_Logo.png
new file mode 100644
index 000000000..89587ab9a
--- /dev/null
+++ b/host/docs/Ettus_Logo.png
Binary files differ
diff --git a/host/docs/build.dox b/host/docs/build.dox
new file mode 100644
index 000000000..1584a7b58
--- /dev/null
+++ b/host/docs/build.dox
@@ -0,0 +1,186 @@
+/*! \page page_build_guide Building and Installing UHD
+
+\tableofcontents
+
+\section build_dependencies Build Dependencies
+
+<b>Linux Notes:</b>
+This is dependent on the distribution you are using, but most, if not all, of
+the dependencies should be available in the package repositories for your
+package manager.
+
+<b>Mac OS X Notes:</b>
+Install the Xcode app to get the build tools (GCC and Make).
+Use MacPorts to get the Boost and Cheetah dependencies.
+Other dependencies can be downloaded as DMG installers from the web
+or installed via MacPorts.
+See the UHD OS X page for more information: http://code.ettus.com/redmine/ettus/projects/uhd/wiki/UHD_OS_X
+
+<b>Windows Notes:</b>
+The dependencies can be acquired through installable EXE files.
+Usually, the Windows installer can be found on the project's website.
+Some projects do not host Windows installers, and if this is the case,
+follow the auxiliary download URL for the Windows installer (below).
+
+\section git Git
+Required to check out the repository.
+On Windows, install Cygwin with Git support to checkout the repository
+or install msysGit from http://code.google.com/p/msysgit/downloads/list.
+
+\section cpp_compiler C++ Compiler
+
+The following compilers are known to work:
+
+- GCC
+- Clang
+- MSVC
+
+### CMake
+
+- **Purpose:** generates project build files
+- **Minimum Version:** 2.6
+- **Usage:** build time (required)
+- **Download URL:** http://www.cmake.org/cmake/resources/software.html
+
+### Boost
+
+- **Purpose:** C++ library
+- **Minimum Version:** 1.36 (Linux), 1.40 (Windows)
+- **Usage:** build time + runtime (required)
+- **Download URL:** http://www.boost.org/users/download/
+- **Download URL (Windows installer):** http://www.boostpro.com/download
+
+### LibUSB
+
+- **Purpose:** USB-based hardware support
+- **Minimum Version:** 1.0
+- **Usage:** build time + runtime (optional)
+- **Download URL:** http://sourceforge.net/projects/libusb/files/libusb-1.0/
+- **Download URL (Windows):** https://github.com/libusbx/libusbx
+
+### Python
+
+- **Purpose:** used by Cheetah and utility scripts
+- **Minimum Version:** 2.6
+- **Usage:** build time + runtime utility scripts (required)
+- **Download URL:** http://www.python.org/download/
+
+### Cheetah
+
+- **Purpose:** source code generation
+- **Minimum Version:** 2.0
+- **Usage:** build time (required)
+- **Download URL:** http://www.cheetahtemplate.org/download.html
+- **Download URL (Windows installer):** http://feisley.com/python/cheetah/
+
+**Alternative method:**
+Install **setuptools**, and use the **easy_install** command to install Cheetah.
+http://pypi.python.org/pypi/setuptools
+
+### Doxygen
+
+- **Purpose:** generates HTML API documentation
+- **Usage:** build time (optional)
+- **Download URL:** http://www.stack.nl/~dimitri/doxygen/download.html#latestsrc
+
+**Alternate method:**
+Install **setuptools**, and use the **easy_install** command to install Docutils.
+http://pypi.python.org/pypi/setuptools
+
+\section build_instructions_unix Build Instructions (Unix)
+
+\subsection generate_unix Generate Makefiles with CMake
+
+ cd <uhd-repo-path>/host
+ mkdir build
+ cd build
+ cmake ../
+
+Additionally, configuration variables can be passed into CMake via the command line.
+The following common-use configuration variables are listed below:
+
+- For a custom install prefix: `-DCMAKE_INSTALL_PREFIX=<install-path>`
+- To install libs into lib64: `cmake -DLIB_SUFFIX=64`
+
+Example usage:
+
+ cmake -DCMAKE_INSTALL_PREFIX=/opt/uhd ../
+
+\subsection build_install_unix Build and install
+
+ make
+ make test
+ sudo make install
+
+\subsection libpath_linux Setup the library path (Linux)
+
+Make sure that `libuhd.so` is in your `LD_LIBRARY_PATH`,
+or add it to `/etc/ld.so.conf` and make sure to run:
+
+ sudo ldconfig
+
+\section build_instructions_windows Build Instructions (Windows)
+
+\subsection cmake_win Generate the project with CMake
+
+- Open the CMake GUI.
+- Set the path to the source code: `<uhd-repo-path>/host`.
+- Set the path to the build directory: `<uhd-repo-path>/host/build`.
+- Make sure that the paths do not contain spaces.
+- Click "Configure" and select "Microsoft Visual Studio 10".
+- Set the build variables and click "Configure" again.
+- Click "Generate", and a project file will be created in the build directory.
+
+\subsection libusb_notes LibUSB notes
+
+On Windows, CMake does not have the advantage of `pkg-config`,
+so we must manually tell CMake how to locate the LibUSB header and lib.
+
+- From the CMake GUI, select "Advanced View".
+- Set `LIBUSB_INCLUDE_DIRS` to the directory with `libusb.h`.
+- Set `LIBUSB_LIBRARIES` to the full path for `libusb-1.0.lib`.
+- Recommend the static `libusb-1.0.lib` to simplify runtime dependencies.
+- Check the box to enable USB support, click "Configure" and "Generate".
+
+<b>Note:</b> On Windows, LibUSBx is required to use most USB3 controllers.
+
+\subsection build_in_msvc Build the project in MSVC
+- Open the generated project file in MSVC.
+- Change the build type from "Debug" to "Release".
+- Select the "Build All" target, right-click, and choose "Build".
+- Select the install target, right-click, and choose "Build".
+
+<b>Note:</b>
+You may not have permission to build the install target.
+You need to be an administrator or to run MSVC as administrator.
+
+\section build_msvc_cmd_line Build the project in MSVC (command line)
+Open the Visual Studio Command Prompt Shorcut:
+
+ cd <uhd-repo-path>\host\build
+ DevEnv uhd.sln /build Release /project ALL_BUILD
+ DevEnv uhd.sln /build Release /project INSTALL
+
+\subsection path_env Setup the PATH environment variable
+* Add the UHD bin path to `%PATH%` (usually `C:\\Program Files\\UHD\\bin`)
+
+<b>Note:</b>
+The default interface for editing environment variable paths in Windows is very poor.
+We recommend using "Rapid Environment Editor" (http://www.rapidee.com) over the default editor.
+
+\section post_install_tasks Post-Install Tasks
+
+For USB-based devices,
+see the `USB Transport Application Notes <./transport.html#usb-transport-libusb>`_
+for platform-specific post-installation tasks.
+
+\section post_install_tasks_macosx Post-Install Tasks (Mac OS X)
+
+Make sure that the value of `CMAKE_INSTALL_PREFIX` is at or near the
+front of the shell `PATH` environment variable. Do \b NOT set
+`DYLD_LIBRARY_PATH` or any related DYLD environment variable
+permanently; these work differently than under Linux and should be
+used for testing / temporary purposes only.
+
+*/
+// vim:ft=doxygen:
diff --git a/host/docs/build.rst b/host/docs/build.rst
deleted file mode 100644
index f53a56d9b..000000000
--- a/host/docs/build.rst
+++ /dev/null
@@ -1,228 +0,0 @@
-========================================================================
-UHD Software - Build Guide
-========================================================================
-
-.. contents:: Table of Contents
-
-------------------------------------------------------------------------
-Build Dependencies
-------------------------------------------------------------------------
-
-**Linux Notes:**
-This is dependent on the distribution you are using, but most, if not all, of
-the dependencies should be available in the package repositories for your
-package manager.
-
-**Mac OS X Notes:**
-Install the Xcode app to get the build tools (GCC and Make).
-Use MacPorts to get the Boost and Cheetah dependencies.
-Other dependencies can be downloaded as DMG installers from the web
-or installed via MacPorts.
-See the UHD OS X page for more information: http://code.ettus.com/redmine/ettus/projects/uhd/wiki/UHD_OS_X
-
-**Windows Notes:**
-The dependencies can be acquired through installable EXE files.
-Usually, the Windows installer can be found on the project's website.
-Some projects do not host Windows installers, and if this is the case,
-follow the auxiliary download URL for the Windows installer (below).
-
-^^^^^^^^^^^^^^^^
-Git
-^^^^^^^^^^^^^^^^
-Required to check out the repository.
-On Windows, install Cygwin with Git support to checkout the repository
-or install msysGit from http://code.google.com/p/msysgit/downloads/list.
-
-^^^^^^^^^^^^^^^^
-C++ Compiler
-^^^^^^^^^^^^^^^^
-The following compilers are known to work:
-
-* GCC
-* Clang
-* MSVC
-
-^^^^^^^^^^^^^^^^
-CMake
-^^^^^^^^^^^^^^^^
-* **Purpose:** generates project build files
-* **Minimum Version:** 2.6
-* **Usage:** build time (required)
-* **Download URL:** http://www.cmake.org/cmake/resources/software.html
-
-^^^^^^^^^^^^^^^^
-Boost
-^^^^^^^^^^^^^^^^
-* **Purpose:** C++ library
-* **Minimum Version:** 1.36 (Linux), 1.40 (Windows)
-* **Usage:** build time + runtime (required)
-* **Download URL:** http://www.boost.org/users/download/
-* **Download URL (Windows installer):** http://www.boostpro.com/download
-
-^^^^^^^^^^^^^^^^
-LibUSB
-^^^^^^^^^^^^^^^^
-* **Purpose:** USB-based hardware support
-* **Minimum Version:** 1.0
-* **Usage:** build time + runtime (optional)
-* **Download URL:** http://sourceforge.net/projects/libusb/files/libusb-1.0/
-* **Download URL (Windows):** https://github.com/libusbx/libusbx
-
-^^^^^^^^^^^^^^^^
-Python
-^^^^^^^^^^^^^^^^
-* **Purpose:** used by Cheetah and utility scripts
-* **Minimum Version:** 2.6
-* **Usage:** build time + runtime utility scripts (required)
-* **Download URL:** http://www.python.org/download/
-
-^^^^^^^^^^^^^^^^
-Cheetah
-^^^^^^^^^^^^^^^^
-* **Purpose:** source code generation
-* **Minimum Version:** 2.0
-* **Usage:** build time (required)
-* **Download URL:** http://www.cheetahtemplate.org/download.html
-* **Download URL (Windows installer):** http://feisley.com/python/cheetah/
-
-**Alternative method:**
-Install **setuptools**, and use the **easy_install** command to install Cheetah.
-http://pypi.python.org/pypi/setuptools
-
-^^^^^^^^^^^^^^^^
-Doxygen
-^^^^^^^^^^^^^^^^
-* **Purpose:** generates HTML API documentation
-* **Usage:** build time (optional)
-* **Download URL:** http://www.stack.nl/~dimitri/doxygen/download.html#latestsrc
-
-^^^^^^^^^^^^^^^^
-Docutils
-^^^^^^^^^^^^^^^^
-* **Purpose:** generates HTML user manual
-* **Usage:** build time (optional)
-* **Download URL:** http://docutils.sourceforge.net/
-
-**Alternate method:**
-Install **setuptools**, and use the **easy_install** command to install Docutils.
-http://pypi.python.org/pypi/setuptools
-
-------------------------------------------------------------------------
-Build Instructions (Unix)
-------------------------------------------------------------------------
-
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-Generate Makefiles with CMake
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-::
-
- cd <uhd-repo-path>/host
- mkdir build
- cd build
- cmake ../
-
-Additionally, configuration variables can be passed into CMake via the command line.
-The following common-use configuration variables are listed below:
-
-* For a custom install prefix: **-DCMAKE_INSTALL_PREFIX=<install-path>**
-* To install libs into lib64: **cmake -DLIB_SUFFIX=64**
-
-Example usage:
-::
-
- cmake -DCMAKE_INSTALL_PREFIX=/opt/uhd ../
-
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-Build and install
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-::
-
- make
- make test
- sudo make install
-
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-Setup the library path (Linux)
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-Make sure that **libuhd.so** is in your **LD_LIBRARY_PATH**,
-or add it to **/etc/ld.so.conf** and make sure to run:
-::
-
- sudo ldconfig
-
-------------------------------------------------------------------------
-Build Instructions (Windows)
-------------------------------------------------------------------------
-
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-Generate the project with CMake
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-* Open the CMake GUI.
-* Set the path to the source code: **<uhd-repo-path>/host**.
-* Set the path to the build directory: **<uhd-repo-path>/host/build**.
-* Make sure that the paths do not contain spaces.
-* Click "Configure" and select "Microsoft Visual Studio 10".
-* Set the build variables and click "Configure" again.
-* Click "Generate", and a project file will be created in the build directory.
-
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-LibUSB notes
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-On Windows, CMake does not have the advantage of **pkg-config**,
-so we must manually tell CMake how to locate the LibUSB header and lib.
-
-* From the CMake GUI, select "Advanced View".
-* Set **LIBUSB_INCLUDE_DIRS** to the directory with **libusb.h**.
-* Set **LIBUSB_LIBRARIES** to the full path for **libusb-1.0.lib**.
-
- * Recommend the static **libusb-1.0.lib** to simplify runtime dependencies.
-
-* Check the box to enable USB support, click "Configure" and "Generate".
-
-**Note:** On Windows, LibUSBx is required to use most USB3 controllers.
-
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-Build the project in MSVC
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-* Open the generated project file in MSVC.
-* Change the build type from "Debug" to "Release".
-* Select the "Build All" target, right-click, and choose "Build".
-* Select the install target, right-click, and choose "Build".
-
-**Note:** You may not have permission to build the install target.
-You need to be an administrator or to run MSVC as administrator.
-
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-Build the project in MSVC (command line)
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-Open the Visual Studio Command Prompt Shorcut:
-::
-
- cd <uhd-repo-path>\host\build
- DevEnv uhd.sln /build Release /project ALL_BUILD
- DevEnv uhd.sln /build Release /project INSTALL
-
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-Setup the PATH environment variable
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-* Add the UHD bin path to **%PATH%** (usually **C:\\Program Files\\UHD\\bin**)
-
-**Note:**
-The default interface for editing environment variable paths in Windows is very poor.
-We recommend using "Rapid Environment Editor" (http://www.rapidee.com) over the default editor.
-
-------------------------------------------------------------------------
-Post-Install Tasks
-------------------------------------------------------------------------
-For USB-based devices,
-see the `USB Transport Application Notes <./transport.html#usb-transport-libusb>`_
-for platform-specific post-installation tasks.
-
-------------------------------------------------------------------------
-Post-Install Tasks (Mac OS X)
-------------------------------------------------------------------------
-Make sure that the value of **CMAKE_INSTALL_PREFIX** is at or near the
-front of the shell **PATH** environment variable. Do **NOT** set
-DYLD_LIBRARY_PATH or any related DYLD environment variable
-permanently; these work differently than under Linux and should be
-used for testing / temporary purposes only.
diff --git a/host/docs/calibration.dox b/host/docs/calibration.dox
new file mode 100644
index 000000000..494cfca49
--- /dev/null
+++ b/host/docs/calibration.dox
@@ -0,0 +1,70 @@
+/*! \page page_calibration Calibration Application Notes
+
+\tableofcontents
+
+\section calibration_self Self-Calibration
+
+UHD software comes with several self-calibration utilities for
+minimizing IQ imbalance and DC offset. These utilities perform
+calibration sweeps using transmit leakage into the receive path (special
+equipment is not required). The results from a calibration are written
+to a CSV file in the user's home directory. UHD software will
+automatically apply corrections at runtime when the user re-tunes the
+daughterboard LO. Calibration results are specific to an individual RF
+board.
+
+<b>Note:</b> When a calibration table is present, and the user wishes to
+override the calibration settings through the API: the user should
+re-apply the desired setting every time the LO is re-tuned.
+
+UHD software comes with the following calibration utilities:
+
+- **uhd_cal_rx_iq_balance:** - mimimizes RX IQ imbalance vs. LO
+ frequency
+- **uhd_cal_tx_dc_offset:** - mimimizes TX DC offset vs. LO
+ frequency
+- **uhd_cal_tx_iq_balance:** - mimimizes TX IQ imbalance vs. LO
+ frequency
+
+The following RF frontends are supported by the self-calibration
+utilities:
+
+- RFX Series transceiver boards
+- WBX Series transceiver boards
+- SBX Series transceiver boards
+- CBX Series transceiver boards
+
+\subsection calibration_self_utils Calibration Utilities
+
+UHD software installs the calibration utilities into
+`<install-path>/bin`. **Disconnect** any external hardware from the
+RF antenna ports, and run the following from the command line. Each
+utility will take several minutes to complete. :
+
+ uhd_cal_rx_iq_balance --verbose --args=<optional device args>
+ uhd_cal_tx_iq_balance --verbose --args=<optional device args>
+ uhd_cal_tx_dc_offset --verbose --args=<optional device args>
+
+See the output given by --help for more advanced options, such as:
+manually choosing the frequency range and step size for the sweeps.
+
+<b>Note:</b> Your daughterboard needs a serial number to run a calibration
+utility. Some older daughterboards may not have a serial number. If this
+is the case, run the following command to burn a serial number into the
+daughterboard's EEPROM: :
+
+ <install dir>/lib/uhd/utils/usrp_burn_db_eeprom --ser=<desired serial> --args=<optional device args>
+
+\subsection calibration_ Calibration Data
+
+Calibration files are stored in the user's home/application directory.
+They can easily be moved from machine to another by copying the "cal"
+directory. Re-running a calibration utility will replace the existing
+calibration file. The old calibration file will be renamed so it may be
+recovered by the user.
+
+- **Linux:** `${HOME}/.uhd/cal/`
+- **Windows:** `%APPDATA%\.uhd\cal\`
+
+*/
+// vim:ft=doxygen:
diff --git a/host/docs/calibration.rst b/host/docs/calibration.rst
deleted file mode 100644
index 23bef01b7..000000000
--- a/host/docs/calibration.rst
+++ /dev/null
@@ -1,70 +0,0 @@
-========================================================================
-UHD - Calibration Application Notes
-========================================================================
-
-.. contents:: Table of Contents
-
-------------------------------------------------------------------------
-Self-Calibration
-------------------------------------------------------------------------
-UHD software comes with several self-calibration utilities for minimizing IQ
-imbalance and DC offset. These utilities perform calibration sweeps using
-transmit leakage into the receive path (special equipment is not required).
-The results from a calibration are written to a CSV file in the user's home
-directory. UHD software will automatically apply corrections at runtime when
-the user re-tunes the daughterboard LO. Calibration results are specific to an
-individual RF board.
-
-**Note:**
-When a calibration table is present,
-and the user wishes to override the calibration settings through the API:
-the user should re-apply the desired setting every time the LO is re-tuned.
-
-UHD software comes with the following calibration utilities:
-
- * **uhd_cal_rx_iq_balance:** - mimimizes RX IQ imbalance vs. LO frequency
- * **uhd_cal_tx_dc_offset:** - mimimizes TX DC offset vs. LO frequency
- * **uhd_cal_tx_iq_balance:** - mimimizes TX IQ imbalance vs. LO frequency
-
-The following RF frontends are supported by the self-calibration utilities:
-
- * RFX Series transceiver boards
- * WBX Series transceiver boards
- * SBX Series transceiver boards
- * CBX Series transceiver boards
-
-********************************************
-Calibration Utilities
-********************************************
-UHD software installs the calibration utilities into **<install-path>/bin**.
-**Disconnect** any external hardware from the RF antenna ports,
-and run the following from the command line.
-Each utility will take several minutes to complete.
-::
-
- uhd_cal_rx_iq_balance --verbose --args=<optional device args>
- uhd_cal_tx_iq_balance --verbose --args=<optional device args>
- uhd_cal_tx_dc_offset --verbose --args=<optional device args>
-
-See the output given by --help for more advanced options, such as:
-manually choosing the frequency range and step size for the sweeps.
-
-**Note:**
-Your daughterboard needs a serial number to run a calibration utility. Some older daughterboards
-may not have a serial number. If this is the case, run the following command to burn a serial number
-into the daughterboard's EEPROM:
-::
-
- <install dir>/lib/uhd/utils/usrp_burn_db_eeprom --ser=<desired serial> --args=<optional device args>
-
-********************************************
-Calibration Data
-********************************************
-Calibration files are stored in the user's home/application directory.
-They can easily be moved from machine to another by copying the "cal" directory.
-Re-running a calibration utility will replace the existing calibration file.
-The old calibration file will be renamed so it may be recovered by the user.
-
- * **Linux:** ${HOME}/.uhd/cal/
- * **Windows:** %APPDATA%\\.uhd\\cal\\
-
diff --git a/host/docs/coding.dox b/host/docs/coding.dox
new file mode 100644
index 000000000..32dbe944a
--- /dev/null
+++ b/host/docs/coding.dox
@@ -0,0 +1,38 @@
+/*! \page page_coding Coding to the API
+
+\tableofcontents
+
+\section coding_api Various API interfaces
+
+\subsection coding_api_hilevel High-Level: The Multi-USRP
+
+The Multi-USRP class provides a high-level interface to a single USRP device
+with one or more channels, or multiple USRP devicess in a homogeneous
+setup. See the documentation for uhd::usrp::multi_usrp.
+
+\subsection coding_api_hilevelclock High-Level: The Multi-USRP-Clock
+
+The Multi-USRP-Clock class provides a high-level interface to a single clock
+device or set of clock devices, from which the time can be queried. See the
+documentation for uhd::usrp_clock::multi_usrp_clock.
+
+\subsection coding_api_lowlevel Low-Level: The device API
+
+A device is an abstraction for hardware that is connected to the host
+system. For a USRP device, this means that the motherboard and
+everything on it would be considered to be a "device". For a clock device, the
+device itself would be considered a "device" in software. The device API
+provides ways to:
+
+- Discover devices that are physically connected to the host system.
+- Create a device object for a particular device identified by
+ address.
+- Register a device driver into the discovery and factory sub-system.
+- Streaming samples with metadata into and out of the device.
+- Set and get properties on the device object.
+- Access various sensors on the device.
+
+See the documentation for uhd::device.
+
+*/
+// vim:ft=doxygen:
diff --git a/host/docs/coding.rst b/host/docs/coding.rst
deleted file mode 100644
index 432307cca..000000000
--- a/host/docs/coding.rst
+++ /dev/null
@@ -1,30 +0,0 @@
-========================================================================
-UHD - Coding to the API
-========================================================================
-
-.. contents:: Table of Contents
-
-------------------------------------------------------------------------
-Various API interfaces
-------------------------------------------------------------------------
-^^^^^^^^^^^^^^^^^^^^^^^^^^^
-Low-Level: The device API
-^^^^^^^^^^^^^^^^^^^^^^^^^^^
-A device is an abstraction for hardware that is connected to the host system.
-For a USRP device, this means that the motherboard and everything on it would be
-considered to be a "device". The device API provides ways to:
-
-* Discover devices that are physically connected to the host system.
-* Create a device object for a particular device identified by address.
-* Register a device driver into the discovery and factory sub-system.
-* Streaming samples with metadata into and out of the device.
-* Set and get properties on the device object.
-
-See the documentation in *device.hpp* for reference.
-
-^^^^^^^^^^^^^^^^^^^^^^^^^^^
-High-Level: The Multi-USRP
-^^^^^^^^^^^^^^^^^^^^^^^^^^^
-The Multi-USRP class provides a fat interface to a single USRP device with
-one or more channels, or multiple USRP devicess in a homogeneous setup.
-See the documentation in *usrp/multi_usrp.hpp* for reference.
diff --git a/host/docs/dboards.dox b/host/docs/dboards.dox
new file mode 100644
index 000000000..b25656b5b
--- /dev/null
+++ b/host/docs/dboards.dox
@@ -0,0 +1,405 @@
+/*! \page page_dboards Daughterboard Application Notes
+
+\tableofcontents
+
+\section dboards Daughterboard Properties
+
+
+The following contains interesting notes about each daughterboard.
+Eventually, this page will be expanded to list out the full properties
+of each board as well.
+
+\subsection dboards_basicrx Basic RX and LFRX
+
+The Basic RX and LFRX boards have 4 frontends:
+
+- **Frontend A:** real signal on antenna RXA
+- **Frontend B:** real signal on antenna RXB
+- **Frontend AB:** quadrature frontend using both antennas (IQ)
+- **Frontend BA:** quadrature frontend using both antennas (QI)
+
+The boards have no tunable elements or programmable gains. Through the
+magic of aliasing, you can down-convert signals greater than the Nyquist
+rate of the ADC.
+
+BasicRX Bandwidth:
+
+- **For Real-Mode (A or B frontend)**: 250 MHz
+- **For Complex (AB or BA frontend)**: 500 MHz
+
+LFRX Bandwidth:
+
+- **For Real-Mode (A or B frontend)**: 33 MHz
+- **For Complex (AB or BA frontend)**: 66 MHz
+
+\subsection dboards_basictx Basic TX and LFTX
+
+The Basic TX and LFTX boards have 4 frontends:
+
+- **Frontend A:** real signal on antenna TXA
+- **Frontend B:** real signal on antenna TXB
+- **Frontend AB:** quadrature frontend using both antennas (IQ)
+- **Frontend BA:** quadrature frontend using both antennas (QI)
+
+The boards have no tunable elements or programmable gains. Through the
+magic of aliasing, you can up-convert signals greater than the Nyquist
+rate of the DAC.
+
+BasicTX Bandwidth:
+
+- **For Real-Mode (A or B frontend**): 250 MHz
+- **For Complex (AB or BA frontend)**: 500 MHz
+
+LFTX Bandwidth:
+
+- **For Real-Mode (A or B frontend)**: 33 MHz
+- **For Complex (AB or BA frontend)**: 66 MHz
+
+\subsection dboards_dbsrx DBSRX
+
+The DBSRX board has 1 quadrature frontend. It defaults to direct
+conversion but can use a low IF through lo_offset in uhd::tune_request_t.
+
+Receive Antennas: **J3**
+
+- **Frontend 0:** Complex baseband signal from antenna J3
+
+The board has no user selectable antenna setting.
+
+Receive Gains:
+
+- **GC1**, Range: 0-56dB
+- **GC2**, Range: 0-24dB
+
+Bandwidth: 8 MHz - 66 MHz
+
+Sensors:
+
+- **lo_locked**: boolean for LO lock state
+
+\subsection dboards_dbsrx2 DBSRX2
+
+The DBSRX2 board has 1 quadrature frontend. It defaults to direct
+conversion, but can use a low IF through lo_offset in uhd::tune_request_t.
+
+Receive Antennas: **J3**
+
+- **Frontend 0:** Complex baseband signal from antenna J3
+
+The board has no user-selectable antenna setting.
+
+Receive Gains:
+
+- **GC1**, Range: 0-73dB
+- **BBG**, Range: 0-15dB
+
+Bandwidth (Hz): 8 MHz -80 MHz
+
+Sensors:
+
+- **lo_locked**: boolean for LO lock state
+
+\subsection dboards_rfx RFX Series
+
+The RFX Series boards have 2 quadrature frontends: Transmit and Receive.
+Transmit defaults to low IF, and Receive defaults to direct conversion.
+The IF can be adjusted through lo_offset in uhd::tune_request_t.
+
+The RFX Series boards have independent receive and transmit LO's and
+synthesizers allowing full-duplex operation on different transmit and
+receive frequencies.
+
+Transmit Antennas: **TX/RX**
+
+Receive Antennas: **TX/RX** or **RX2**
+
+- **Frontend 0:** Complex baseband signal for selected antenna
+
+The user may set the receive antenna to be TX/RX or RX2. However, when
+using an RFX board in full-duplex mode, the receive antenna will always
+be set to RX2, regardless of the settings.
+
+Receive Gains: **PGA0**, Range: 0-70dB (except RFX400 range is 0-45dB)
+
+Bandwidth:
+
+- **RX**: 40 MHz
+- **TX**: 40 MHz
+
+Sensors:
+
+- **lo_locked**: boolean for LO lock state
+
+\subsection dboards_xcvr XCVR 2450
+
+The XCVR2450 has 2 quadrature frontends, one transmit, one receive.
+Transmit and Receive default to direct conversion but can be used in low
+IF mode through lo_offset in uhd::tune_request_t.
+
+The XCVR2450 has a non-contiguous tuning range consisting of a high band
+(4.9-6.0 GHz) and a low band (2.4-2.5 GHz).
+
+Transmit Antennas: **J1** or **J2**
+
+Receive Antennas: **J1** or **J2**
+
+- **Frontend 0:** Complex baseband signal for selected antenna
+
+The XCVR2450 uses a common LO for both receive and transmit. Even though
+the API allows the RX and TX LOs to be individually set, a change of one
+LO setting will be reflected in the other LO setting.
+
+The XCVR2450 does not support full-duplex mode, attempting to operate in
+full-duplex will result in transmit-only operation.
+
+Transmit Gains:
+
+- **VGA**, Range: 0-30dB
+- **BB**, Range: 0-5dB
+
+Receive Gains:
+
+- **LNA**, Range: 0-30.5dB
+- **VGA**, Range: 0-62dB
+
+Bandwidths:
+
+- **RX**: 15 MHz, 19 MHz, 28 MHz, 36 MHz; (each +-0, 5, or 10%)
+- **TX**: 24 MHz, 36 MHz, 48 MHz
+
+Sensors:
+
+- **lo_locked**: boolean for LO lock state
+- **rssi**: float for rssi in dBm
+
+\subsection dboards_wbx WBX Series
+
+Features:
+
+- 2 quadrature frontends (1 transmit, 1 receive)
+ - Defaults to direct conversion
+ - Can be used in low IF mode through lo_offset with uhd::tune_request_t
+- Independent recieve and transmit LO's and synthesizers
+ - Allows for full-duplex operation on different transmit and receive frequencies
+ - Can be set to use Integer-N tuning for better spur performance
+ with uhd::tune_request_t
+
+Transmit Antennas: **TX/RX**
+
+Receive Antennas: **TX/RX** or **RX2**
+
+- **Frontend 0:** Complex baseband signal for selected antenna
+
+- **Note:** The user may set the receive antenna to be TX/RX or RX2.
+ However, when using a WBX board in full-duplex mode, the receive
+ antenna will always be set to RX2, regardless of the settings.
+
+Transmit Gains: **PGA0**, Range: 0-25dB
+
+Receive Gains: **PGA0**, Range: 0-31.5dB
+
+Bandwidths:
+
+- **WBX**: 40 MHz, RX & TX
+- **WBX-120**: 120 MHz, RX & TX
+
+Sensors:
+
+- **lo_locked**: boolean for LO lock state
+
+\subsection dboards_sbx SBX Series
+
+Features:
+
+- 2 quadrature frontends (1 transmit, 1 receive)
+ - Defaults to direct conversion
+ - Can be used in low IF mode through lo_offset with uhd::tune_request_t
+- Independent recieve and transmit LO's and synthesizers
+ - Allows for full-duplex operation on different transmit and
+ receive frequencies
+ - Can be set to use Integer-N tuning for better spur performance with uhd::tune_request_t
+
+Transmit Antennas: **TX/RX**
+
+Receive Antennas: **TX/RX** or **RX2**
+
+- **Frontend 0:** Complex baseband signal for selected antenna
+
+- **Note:** The user may set the receive antenna to be TX/RX or RX2.
+ However, when using an SBX board in full-duplex mode, the receive
+ antenna will always be set to RX2, regardless of the settings.
+
+Transmit Gains: **PGA0**, Range: 0-31.5dB
+
+Receive Gains: **PGA0**, Range: 0-31.5dB
+
+Bandwidths:
+
+- **SBX**: 40 MHz, RX & TX
+- **SBX-120**: 120 MHz, RX & TX
+
+Sensors:
+
+- **lo_locked**: boolean for LO lock state
+
+LEDs:
+
+- All LEDs flash when daughterboard control is initialized
+- **TX LD**: Transmit Synthesizer Lock Detect
+- **TX/RX**: Receiver on TX/RX antenna port (No TX)
+- **RX LD**: Receive Synthesizer Lock Detect
+- **RX1/RX2**: Receiver on RX2 antenna port
+
+\subsection dboards_cbx CBX Series
+
+Features:
+- 2 quadrature frontends (1 transmit, 1 receive)
+ - Defaults to direct conversion
+ - Can be used in low IF mode through lo_offset with uhd::tune_request_t
+- Independent recieve and transmit LO's and synthesizers
+ - Allows for full-duplex operation on different transmit and
+ receive frequencies
+ - Can be set to use Integer-N tuning for better spur performance with uhd::tune_request_t
+
+Transmit Antennas: **TX/RX**
+
+Receive Antennas: **TX/RX** or **RX2**
+
+- **Frontend 0:** Complex baseband signal for selected antenna
+
+- **Note:** The user may set the receive antenna to be TX/RX or RX2.
+ However, when using a CBX board in full-duplex mode, the receive
+ antenna will always be set to RX2, regardless of the settings.
+
+Transmit Gains: **PGA0**, Range: 0-31.5dB
+
+Receive Gains: **PGA0**, Range: 0-31.5dB
+
+Bandwidths:
+
+- **CBX**: 40 MHz, RX & TX
+- **CBX-120**: 120 MHz, RX & TX
+
+Sensors:
+
+- **lo_locked**: boolean for LO lock state
+
+LEDs:
+
+- All LEDs flash when daughterboard control is initialized
+- **TX LD**: Transmit Synthesizer Lock Detect
+- **TX/RX**: Receiver on TX/RX antenna port (No TX)
+- **RX LD**: Receive Synthesizer Lock Detect
+- **RX1/RX2**: Receiver on RX2 antenna port
+
+\subsection dboards_tvrx TVRX
+
+The TVRX board has 1 real-mode frontend. It is operated at a low IF.
+
+Receive Antennas: RX
+
+- **Frontend 0:** real-mode baseband signal from antenna RX
+
+Receive Gains:
+
+- **RF**, Range: -13.3-50.3dB (frequency-dependent)
+- **IF**, Range: -1.5-32.5dB
+
+Bandwidth: 6 MHz
+
+\subsection dboards_tvrx2 TVRX2
+
+The TVRX2 board has 2 real-mode frontends. It is operated at a low IF.
+
+Receive Frontends:
+
+- **Frontend RX1:** real-mode baseband from antenna J100
+- **Frontend RX2:** real-mode baseband from antenna J140
+
+Note: The TVRX2 has always-on AGC; the software controllable gain is the
+final gain stage which controls the AGC set-point for output to ADC.
+
+Receive Gains:
+
+- **IF**, Range: 0.0-30.0dB
+
+Bandwidth: 1.7 MHz, 6 MHz, 7 MHz, 8 MHz, 10 MHz
+
+Sensors:
+
+- **lo_locked**: boolean for LO lock state
+- **rssi**: float for measured RSSI in dBm
+- **temperature**: float for measured temperature in degC
+
+\subsection dboards_dbsrxmod DBSRX - Modifying for other boards that USRP1
+
+Due to different clocking capabilities, the DBSRX will require
+modifications to operate on a non-USRP1 motherboard. On a USRP1
+motherboard, a divided clock is provided from an FPGA pin because the
+standard daughterboard clock lines cannot provided a divided clock.
+However, on other USRP motherboards, the divided clock is provided over
+the standard daughterboard clock lines.
+
+\subsubsection dboards_dbsrxmod_1 Step 1: Move the clock configuration resistor
+
+Remove **R193** (which is 10 Ohms, 0603 size), and put it on **R194**,
+which is empty. This is made somewhat more complicated by the fact that
+the silkscreen is not clear in that area. **R193** is on the back,
+immediately below the large beige connector, **J2**. **R194** is just
+below, and to the left of **R193**. The silkscreen for **R193** is ok,
+but for **R194**, it is upside down, and partially cut off. If you lose
+**R193**, you can use anything from 0 to 10 Ohms there.
+
+\subsubsection dboards_dbsrxmod_1 Step 2: Burn a new daughterboard id into the EEPROM
+
+With the daughterboard plugged-in, run the following commands:
+
+ cd <install-path>/lib/uhd/utils
+ ./usrp_burn_db_eeprom --id=0x000d --unit=RX --args=<args> --slot=<slot>
+
+- **\<args\>** are device address arguments (optional if only one USRP
+ device is on your machine)
+- **\<slot\>** is the name of the daughterboard slot (optional if the
+ USRP device has only one slot)
+
+\subsection dboards_rfxmod RFX - Modify to use motherboard oscillator
+
+Older RFX boards require modifications to use the motherboard
+oscillator. If this is the case, UHD software will print a warning about
+the modification. Please follow the modification procedures below:
+
+- Step 1: Disable the daughterboard clocks**
+
+Move **R64** to **R84**. Move **R142** to **R153**.
+
+- Step 2: Connect the motherboard blocks
+
+Move **R35** to **R36**. Move **R117** to **R115**. These are all 0-Ohm,
+so if you lose one, just short across the appropriate pads.
+
+- Step 3: Burn the appropriate daughterboard ID into the EEPROM
+
+With the daughterboard plugged in, run the following commands: :
+
+ cd <install-path>/lib/uhd/utils
+ ./usrp_burn_db_eeprom --id=<rx_id> --unit=RX --args=<args> --slot=<slot>
+ ./usrp_burn_db_eeprom --id=<tx_id> --unit=TX --args=<args> --slot=<slot>
+
+- `<rx_id>` choose the appropriate RX ID for your daughterboard
+ - **RFX400:** 0x0024
+ - **RFX900:** 0x0025
+ - **RFX1800:** 0x0034
+ - **RFX1200:** 0x0026
+ - **RFX2400:** 0x0027
+- `<tx_id>` choose the appropriate TX ID for your daughterboard
+ - **RFX400:** 0x0028
+ - **RFX900:** 0x0029
+ - **RFX1800:** 0x0035
+ - **RFX1200:** 0x002a
+ - **RFX2400:** 0x002b
+- `<args>` are device address arguments (optional if only one USRP device is on your machine)
+- `<slot>` is the name of the daughterboard slot (optional if the USRP device has only one slot)
+
+
+*/
+// vim:ft=doxygen:
diff --git a/host/docs/dboards.rst b/host/docs/dboards.rst
deleted file mode 100644
index d6cbc6151..000000000
--- a/host/docs/dboards.rst
+++ /dev/null
@@ -1,425 +0,0 @@
-========================================================================
-UHD Daughterboard Application Notes
-========================================================================
-
-.. contents:: Table of Contents
-
-------------------------------------------------------------------------
-Daughterboard Properties
-------------------------------------------------------------------------
-
-The following contains interesting notes about each daughterboard.
-Eventually, this page will be expanded to list out the full
-properties of each board as well.
-
-^^^^^^^^^^^^^^^^^^^^^^^^^^^
-Basic RX and LFRX
-^^^^^^^^^^^^^^^^^^^^^^^^^^^
-The Basic RX and LFRX boards have 4 frontends:
-
-* **Frontend A:** real signal on antenna RXA
-* **Frontend B:** real signal on antenna RXB
-* **Frontend AB:** quadrature frontend using both antennas (IQ)
-* **Frontend BA:** quadrature frontend using both antennas (QI)
-
-The boards have no tunable elements or programmable gains.
-Through the magic of aliasing, you can down-convert signals
-greater than the Nyquist rate of the ADC.
-
-BasicRX Bandwidth:
-
-* **For Real-Mode (A or B frontend)**: 250 MHz
-* **For Complex (AB or BA frontend)**: 500 MHz
-
-LFRX Bandwidth:
-
-* **For Real-Mode (A or B frontend)**: 33 MHz
-* **For Complex (AB or BA frontend)**: 66 MHz
-
-^^^^^^^^^^^^^^^^^^^^^^^^^^^
-Basic TX and LFTX
-^^^^^^^^^^^^^^^^^^^^^^^^^^^
-The Basic TX and LFTX boards have 4 frontends:
-
-* **Frontend A:** real signal on antenna TXA
-* **Frontend B:** real signal on antenna TXB
-* **Frontend AB:** quadrature frontend using both antennas (IQ)
-* **Frontend BA:** quadrature frontend using both antennas (QI)
-
-The boards have no tunable elements or programmable gains.
-Through the magic of aliasing, you can up-convert signals
-greater than the Nyquist rate of the DAC.
-
-BasicTX Bandwidth (Hz):
-
-* **For Real-Mode (A or B frontend**): 250 MHz
-* **For Complex (AB or BA frontend)**: 500 MHz
-
-LFTX Bandwidth (Hz):
-
-* **For Real-Mode (A or B frontend)**: 33 MHz
-* **For Complex (AB or BA frontend)**: 66 MHz
-
-^^^^^^^^^^^^^^^^^^^^^^^^^^^
-DBSRX
-^^^^^^^^^^^^^^^^^^^^^^^^^^^
-The DBSRX board has 1 quadrature frontend.
-It defaults to direct conversion but can use a low IF through lo_offset in **uhd::tune_request_t**.
-
-Receive Antennas: **J3**
-
-* **Frontend 0:** Complex baseband signal from antenna J3
-
-The board has no user selectable antenna setting.
-
-Receive Gains:
-
-* **GC1**, Range: 0-56dB
-* **GC2**, Range: 0-24dB
-
-Bandwidth: 8 MHz - 66 MHz
-
-Sensors:
-
-* **lo_locked**: boolean for LO lock state
-
-^^^^^^^^^^^^^^^^^^^^^^^^^^^
-DBSRX2
-^^^^^^^^^^^^^^^^^^^^^^^^^^^
-The DBSRX2 board has 1 quadrature frontend.
-It defaults to direct conversion, but can use a low IF through lo_offset in **uhd::tune_request_t**.
-
-Receive Antennas: **J3**
-
-* **Frontend 0:** Complex baseband signal from antenna J3
-
-The board has no user-selectable antenna setting.
-
-Receive Gains:
-
-* **GC1**, Range: 0-73dB
-* **BBG**, Range: 0-15dB
-
-Bandwidth (Hz): 8 MHz -80 MHz
-
-Sensors:
-
-* **lo_locked**: boolean for LO lock state
-
-^^^^^^^^^^^^^^^^^^^^^^^^^^^
-RFX Series
-^^^^^^^^^^^^^^^^^^^^^^^^^^^
-The RFX Series boards have 2 quadrature frontends: Transmit and Receive.
-Transmit defaults to low IF, and Receive defaults to direct conversion.
-The IF can be adjusted through lo_offset in **uhd::tune_request_t**.
-
-The RFX Series boards have independent receive and transmit LO's and synthesizers
-allowing full-duplex operation on different transmit and receive frequencies.
-
-Transmit Antennas: **TX/RX**
-
-Receive Antennas: **TX/RX** or **RX2**
-
-* **Frontend 0:** Complex baseband signal for selected antenna
-
-The user may set the receive antenna to be TX/RX or RX2.
-However, when using an RFX board in full-duplex mode,
-the receive antenna will always be set to RX2, regardless of the settings.
-
-Receive Gains: **PGA0**, Range: 0-70dB (except RFX400 range is 0-45dB)
-
-Bandwidth:
-
-* **RX**: 40 MHz
-* **TX**: 40 MHz
-
-Sensors:
-
-* **lo_locked**: boolean for LO lock state
-
-^^^^^^^^^^^^^^^^^^^^^^^^^^^
-XCVR 2450
-^^^^^^^^^^^^^^^^^^^^^^^^^^^
-The XCVR2450 has 2 quadrature frontends, one transmit, one receive.
-Transmit and Receive default to direct conversion but
-can be used in low IF mode through lo_offset in uhd::tune_request_t.
-
-The XCVR2450 has a non-contiguous tuning range consisting of a
-high band (4.9-6.0 GHz) and a low band (2.4-2.5 GHz).
-
-Transmit Antennas: **J1** or **J2**
-
-Receive Antennas: **J1** or **J2**
-
-* **Frontend 0:** Complex baseband signal for selected antenna
-
-The XCVR2450 uses a common LO for both receive and transmit.
-Even though the API allows the RX and TX LOs to be individually set,
-a change of one LO setting will be reflected in the other LO setting.
-
-The XCVR2450 does not support full-duplex mode, attempting to operate
-in full-duplex will result in transmit-only operation.
-
-Transmit Gains:
-
-* **VGA**, Range: 0-30dB
-* **BB**, Range: 0-5dB
-
-Receive Gains:
-
-* **LNA**, Range: 0-30.5dB
-* **VGA**, Range: 0-62dB
-
-Bandwidths:
-
-* **RX**: 15 MHz, 19 MHz, 28 MHz, 36 MHz; (each +-0, 5, or 10%)
-* **TX**: 24 MHz, 36 MHz, 48 MHz
-
-Sensors:
-
-* **lo_locked**: boolean for LO lock state
-* **rssi**: float for rssi in dBm
-
-^^^^^^^^^^^^^^^^^^^^^^^^^^^
-WBX Series
-^^^^^^^^^^^^^^^^^^^^^^^^^^^
-
-Features:
-
-* 2 quadrature frontends (1 transmit, 1 receive)
-
- * Defaults to direct conversion
- * Can be used in low IF mode through lo_offset with **uhd::tune_request_t**
-
-* Independent recieve and transmit LO's and synthesizers
-
- * Allows for full-duplex operation on different transmit and receive frequencies
- * Can be set to use Integer-N tuning for better spur performance with **uhd::tune_request_t**
-
-Transmit Antennas: **TX/RX**
-
-Receive Antennas: **TX/RX** or **RX2**
-
-* **Frontend 0:** Complex baseband signal for selected antenna
-
-* **Note:** The user may set the receive antenna to be TX/RX or RX2. However, when using a WBX board in full-duplex mode, the receive antenna will always be set to RX2, regardless of the settings.
-
-Transmit Gains: **PGA0**, Range: 0-25dB
-
-Receive Gains: **PGA0**, Range: 0-31.5dB
-
-Bandwidths:
-
-* **WBX**: 40 MHz, RX & TX
-* **WBX-120**: 120 MHz, RX & TX
-
-Sensors:
-
-* **lo_locked**: boolean for LO lock state
-
-^^^^^^^^^^^^^^^^^^^^^^^^^^^
-SBX Series
-^^^^^^^^^^^^^^^^^^^^^^^^^^^
-
-Features:
-
-* 2 quadrature frontends (1 transmit, 1 receive)
-
- * Defaults to direct conversion
- * Can be used in low IF mode through lo_offset with **uhd::tune_request_t**
-
-* Independent recieve and transmit LO's and synthesizers
-
- * Allows for full-duplex operation on different transmit and receive frequencies
- * Can be set to use Integer-N tuning for better spur performance with **uhd::tune_request_t**
-
-Transmit Antennas: **TX/RX**
-
-Receive Antennas: **TX/RX** or **RX2**
-
-* **Frontend 0:** Complex baseband signal for selected antenna
-
-* **Note:** The user may set the receive antenna to be TX/RX or RX2. However, when using an SBX board in full-duplex mode, the receive antenna will always be set to RX2, regardless of the settings.
-
-Transmit Gains: **PGA0**, Range: 0-31.5dB
-
-Receive Gains: **PGA0**, Range: 0-31.5dB
-
-Bandwidths:
-
-* **SBX**: 40 MHz, RX & TX
-* **SBX-120**: 120 MHz, RX & TX
-
-Sensors:
-
-* **lo_locked**: boolean for LO lock state
-
-LEDs:
-
-* All LEDs flash when daughterboard control is initialized
-* **TX LD**: Transmit Synthesizer Lock Detect
-* **TX/RX**: Receiver on TX/RX antenna port (No TX)
-* **RX LD**: Receive Synthesizer Lock Detect
-* **RX1/RX2**: Receiver on RX2 antenna port
-
-^^^^^^^^^^^^^^^^^^^^^^^^^^^
-CBX Series
-^^^^^^^^^^^^^^^^^^^^^^^^^^^
-
-Features:
-
-* 2 quadrature frontends (1 transmit, 1 receive)
-
- * Defaults to direct conversion
- * Can be used in low IF mode through lo_offset with **uhd::tune_request_t**
-
-* Independent recieve and transmit LO's and synthesizers
-
- * Allows for full-duplex operation on different transmit and receive frequencies
- * Can be set to use Integer-N tuning for better spur performance with **uhd::tune_request_t**
-
-Transmit Antennas: **TX/RX**
-
-Receive Antennas: **TX/RX** or **RX2**
-
-* **Frontend 0:** Complex baseband signal for selected antenna
-
-* **Note:** The user may set the receive antenna to be TX/RX or RX2. However, when using a CBX board in full-duplex mode, the receive antenna will always be set to RX2, regardless of the settings.
-
-Transmit Gains: **PGA0**, Range: 0-31.5dB
-
-Receive Gains: **PGA0**, Range: 0-31.5dB
-
-Bandwidths:
-
-* **CBX**: 40 MHz, RX & TX
-* **CBX-120**: 120 MHz, RX & TX
-
-Sensors:
-
-* **lo_locked**: boolean for LO lock state
-
-LEDs:
-
-* All LEDs flash when daughterboard control is initialized
-* **TX LD**: Transmit Synthesizer Lock Detect
-* **TX/RX**: Receiver on TX/RX antenna port (No TX)
-* **RX LD**: Receive Synthesizer Lock Detect
-* **RX1/RX2**: Receiver on RX2 antenna port
-
-^^^^^^^^^^^^^^^^^^^^^^^^^^^
-TVRX
-^^^^^^^^^^^^^^^^^^^^^^^^^^^
-The TVRX board has 1 real-mode frontend.
-It is operated at a low IF.
-
-Receive Antennas: RX
-
-* **Frontend 0:** real-mode baseband signal from antenna RX
-
-Receive Gains:
-
-* **RF**, Range: -13.3-50.3dB (frequency-dependent)
-* **IF**, Range: -1.5-32.5dB
-
-Bandwidth: 6 MHz
-
-^^^^^^^^^^^^^^^^^^^^^^^^^^^
-TVRX2
-^^^^^^^^^^^^^^^^^^^^^^^^^^^
-The TVRX2 board has 2 real-mode frontends.
-It is operated at a low IF.
-
-Receive Frontends:
-
-* **Frontend RX1:** real-mode baseband from antenna J100
-* **Frontend RX2:** real-mode baseband from antenna J140
-
-Note: The TVRX2 has always-on AGC; the software controllable gain is the
-final gain stage which controls the AGC set-point for output to ADC.
-
-Receive Gains:
-
-* **IF**, Range: 0.0-30.0dB
-
-Bandwidth: 1.7 MHz, 6 MHz, 7 MHz, 8 MHz, 10 MHz
-
-Sensors:
-
-* **lo_locked**: boolean for LO lock state
-* **rssi**: float for measured RSSI in dBm
-* **temperature**: float for measured temperature in degC
-
-^^^^^^^^^^^^^^^^^^^^^^^^^^^
-DBSRX - Mod
-^^^^^^^^^^^^^^^^^^^^^^^^^^^
-
-Due to different clocking capabilities,
-the DBSRX will require modifications to operate on a non-USRP1 motherboard.
-On a USRP1 motherboard, a divided clock is provided from an FPGA pin
-because the standard daughterboard clock lines cannot provided a divided clock.
-However, on other USRP motherboards, the divided clock is provided
-over the standard daughterboard clock lines.
-
-**Step 1: Move the clock configuration resistor**
-
-Remove **R193** (which is 10 Ohms, 0603 size), and put it on **R194**, which is empty.
-This is made somewhat more complicated by the fact that the silkscreen is not clear in that area.
-**R193** is on the back, immediately below the large beige connector, **J2**.
-**R194** is just below, and to the left of **R193**.
-The silkscreen for **R193** is ok, but for **R194**,
-it is upside down, and partially cut off.
-If you lose **R193**, you can use anything from 0 to 10 Ohms there.
-
-**Step 2: Burn a new daughterboard id into the EEPROM**
-
-With the daughterboard plugged-in, run the following commands:
-::
-
- cd <install-path>/lib/uhd/utils
- ./usrp_burn_db_eeprom --id=0x000d --unit=RX --args=<args> --slot=<slot>
-
-* **<args>** are device address arguments (optional if only one USRP device is on your machine)
-* **<slot>** is the name of the daughterboard slot (optional if the USRP device has only one slot)
-
-^^^^^^^^^^^^^^^^^^^^^^^^^^^
-RFX - Mod
-^^^^^^^^^^^^^^^^^^^^^^^^^^^
-Older RFX boards require modifications to use the motherboard oscillator.
-If this is the case, UHD software will print a warning about the modification.
-Please follow the modification procedures below:
-
-**Step 1: Disable the daughterboard clocks**
-
-Move **R64** to **R84**. Move **R142** to **R153**.
-
-**Step 2: Connect the motherboard blocks**
-
-Move **R35** to **R36**. Move **R117** to **R115**.
-These are all 0-Ohm, so if you lose one, just short across the appropriate pads.
-
-**Step 3: Burn the appropriate daughterboard ID into the EEPROM**
-
-With the daughterboard plugged-in, run the following commands:
-::
-
- cd <install-path>/lib/uhd/utils
- ./usrp_burn_db_eeprom --id=<rx_id> --unit=RX --args=<args> --slot=<slot>
- ./usrp_burn_db_eeprom --id=<tx_id> --unit=TX --args=<args> --slot=<slot>
-
-* **<rx_id>** choose the appropriate RX ID for your daughterboard
-
- * **RFX400:** 0x0024
- * **RFX900:** 0x0025
- * **RFX1800:** 0x0034
- * **RFX1200:** 0x0026
- * **RFX2400:** 0x0027
-* **<tx_id>** choose the appropriate TX ID for your daughterboard
-
- * **RFX400:** 0x0028
- * **RFX900:** 0x0029
- * **RFX1800:** 0x0035
- * **RFX1200:** 0x002a
- * **RFX2400:** 0x002b
-* **<args>** are device address arguments (optional if only one USRP device is on your machine)
-* **<slot>** is the name of the daughterboard slot (optional if the USRP device has only one slot)
diff --git a/host/docs/general.dox b/host/docs/general.dox
new file mode 100644
index 000000000..3a344ffe7
--- /dev/null
+++ b/host/docs/general.dox
@@ -0,0 +1,225 @@
+/*! \page page_general General Application Notes
+
+\tableofcontents
+
+\section general_tuning Tuning Notes
+
+\subsection general_tuning_process Two-stage tuning process
+
+A USRP device has two stages of tuning:
+
+- RF front-end: translates bewteen RF and IF
+- DSP: translates between IF and baseband
+
+In a typical use-case, the user specifies an overall center frequency
+for the signal chain. The RF front-end will be tuned as close as
+possible to the center frequency, and the DSP will account for the error
+in tuning between target frequency and actual frequency. The user may
+also explicitly control both stages of tuning through through the **tune_request_t** object, which allows for more advanced tuning.
+
+In general, Using UHD software's advanced tuning is highly recommended
+as it makes it easy to move the DC component out of your
+band-of-interest. This can be done by passing your desired LO offset to
+the **tune_request_t** object, and letting the UHD software handle the
+rest.
+
+The **tune_request_t** object can also be used with certain
+daughterboards to use Integer-N tuning instead of the default fractional
+tuning, allowing for better spur performance. The daughterboards that
+support this functionality are:
+
+- WBX (all revisions)
+- WBX-120
+- SBX (all revisions)
+- SBX-120
+- CBX
+- CBX-120
+
+\subsubsection general_tuning_rxchain Tuning the receive chain:
+
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~{.cpp}
+//tuning to a desired center frequency
+usrp->set_rx_freq(target_frequency_in_hz);
+
+--OR--
+
+//advanced tuning with tune_request_t uhd::tune_request_t
+tune_req(target_frequency_in_hz, desired_lo_offset);
+tune_req.args = uhd::device_addr_t("mode_n=integer"); //to use Int-N tuning
+//fill in any additional/optional tune request fields...
+usrp->set_rx_freq(tune_req);
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+More information can be found in uhd::tune_request_t.
+
+\subsection general_tuning_rfsettling RF front-end settling time
+
+After tuning, the RF front-end will need time to settle into a usable
+state. Typically, this means that the local oscillators must be given
+time to lock before streaming begins. Lock time is not consistent; it
+varies depending upon the device and requested settings. After tuning
+and before streaming, the user should wait for the **lo_locked** sensor
+to become true or sleep for a conservative amount of time (perhaps a
+second).
+
+\subsubsection general_tuning_waitcode Pseudo-code for dealing with settling time after tuning on receive:
+
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~{.cpp}
+ usrp->set_rx_freq(...);
+ sleep(1);
+ usrp->issue_stream_command(...);
+
+ --OR--
+
+ usrp->set_rx_freq(...);
+ while (not usrp->get_rx_sensor("lo_locked").to_bool()){
+ //sleep for a short time in milliseconds
+ }
+ usrp->issue_stream_command(...);
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+\section general_subdev Specifying the Subdevice to Use
+
+A subdevice specification string for USRP family devices is composed of:
+
+ <motherboard slot name>:<daughterboard frontend name>
+
+Ex: The subdev spec markup string to select a WBX on slot B.
+
+ B:0
+
+Ex: The subdev spec markup string to select a BasicRX on slot B.
+
+ B:AB
+
+ -- OR --
+
+ B:A
+
+ -- OR --
+
+ B:B
+
+\subsection general_subdev_slotnames USRP Family Motherboard Slot Names
+
+All USRP family motherboards have a first slot named **A:**. The USRP1 and the X3x0
+have two daughterboard subdevice slots, known as **A:** and **B:**.
+
+\subsection general_subdev_dbnames Daughterboard Frontend Names
+
+Daughterboard frontend names can be used to specify which signal path is
+used from a daughterboard. Most daughterboards have only one frontend **:0**.
+A few daughterboards (Basic, LF and TVRX2) have multiple
+frontend names available. The frontend names are documented in \ref page_dboards.
+
+\section general_ounotes Overflow/Underflow Notes
+
+<b>Note:</b> The following overflow/underflow notes do not apply to USRP1,
+which does not support the advanced features available in newer
+products.
+
+\subsection general_ounotes_overflow Overflow notes
+
+When receiving, the device produces samples at a constant rate.
+Overflows occurs when the host does not consume data fast enough. When
+UHD software detects the overflow, it prints an "O" or "D" to stdout,
+and pushes an inline message packet into the receive stream.
+
+<b>Network-based devices</b>: The host does not back-pressure the receive
+stream. When the kernel's socket buffer becomes full, it will drop
+subsequent packets. UHD software detects the overflow as a discontinuity
+in the packet's sequence numbers, and pushes an inline message packet
+into the receive stream. In this case the character "D" is printed to
+stdout as an indication.
+
+<b>Other devices</b>: The host back-pressures the receive stream.
+Therefore, overflows always occur in the device itself. When the
+device's internal buffers become full, streaming is shut off, and an
+inline message packet is sent to the host. In this case the character
+"O" is printed to stdout as an indication. If the device was in
+continuous streaming mode, the UHD software will automatically restart
+streaming when the buffer has space again.
+
+\subsection general_ounotes_underrun Underrun notes
+
+When transmitting, the device consumes samples at a constant rate.
+Underflow occurs when the host does not produce data fast enough. When
+UHD software detects the underflow, it prints a "U" to stdout, and
+pushes a message packet into the async message stream.
+
+<b>Note:</b> "O" and "U" message are generally harmless, and just mean the host machine can't keep up with the requested rates.
+
+\section general_threading Threading Notes
+
+\subsection general_threading_safety Thread safety notes
+
+For the most part, UHD software is thread-safe. Please observe the
+following limitations:
+
+<b>Fast-path thread requirements:</b> There are three fast-path methods for
+a device: `send()`, `recv()`, and `recv_async_msg()`. All three
+methods are thread-safe and can be called from different thread
+contexts. For performance, the user should call each method from a
+separate thread context. These methods can also be used in a
+non-blocking fashion by using a timeout of zero.
+
+<b>Slow-path thread requirements:</b> It is safe to change multiple
+settings simultaneously. However, this could leave the settings for a
+device in an uncertain state. This is because changing one setting could
+have an impact on how a call affects other settings. Example: setting
+the channel mapping affects how the antennas are set. It is recommended
+to use at most one thread context for manipulating device settings.
+
+\subsection general_threading_prio Thread priority scheduling
+
+When UHD software spawns a new thread, it may try to boost the thread's
+scheduling priority. If setting the new priority fails, the UHD software
+prints a warning to the console, as shown below. This warning is harmless;
+it simply means that the thread will retain a normal or default scheduling priority.
+
+ UHD Warning:
+ Unable to set the thread priority. Performance may be negatively affected.
+ Please see the general application notes in the manual for instructions.
+ EnvironmentError: OSError: error in pthread_setschedparam
+
+<b>Linux Notes:</b>
+
+Non-privileged users need special permission to change the scheduling
+priority. Add the following line to the file `/etc/security/limits.conf`:
+
+ @GROUP - rtprio 99
+
+Replace `GROUP` with a group in which your user is a member. You may need
+to log out and log back into the account for the settings to take effect.
+In most Linux distributions, a list of groups and group members can be found in the file `/etc/group`.
+
+\section general_misc Miscellaneous Notes
+
+\subsection general_misc_dynamic Support for dynamically loadable modules
+
+For a module to be loaded at runtime, it must be:
+
+- found in the `UHD_MODULE_PATH` environment variable,
+- installed into the `\<install-path\>/share/uhd/modules` directory,
+- or installed into `/usr/share/uhd/modules` directory (UNIX only).
+
+\subsection general_misc_prints Disabling or redirecting prints to stdout
+
+The user can disable the UHD library from printing directly to stdout by
+registering a custom message handler. The handler will intercept all
+messages, which can be dropped or redirected. Only one handler can be
+registered at a time. Make **register_handler** your first call into
+the UHD library:
+
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~{.cpp}
+#include <uhd/utils/msg.hpp>
+
+void my_handler(uhd::msg::type_t type, const std::string &msg){
+//handle the message...
+}
+
+uhd::msg::register_handler(&my_handler);
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+*/
+// vim:ft=doxygen:
diff --git a/host/docs/general.rst b/host/docs/general.rst
deleted file mode 100644
index 930c18188..000000000
--- a/host/docs/general.rst
+++ /dev/null
@@ -1,242 +0,0 @@
-===============================
-UHD - General Application Notes
-===============================
-
-.. contents:: Table of Contents
-
-------------
-Tuning Notes
-------------
-
-^^^^^^^^^^^^^^^^^^^^^^^^
-Two-stage tuning process
-^^^^^^^^^^^^^^^^^^^^^^^^
-A USRP device has two stages of tuning:
-
-* RF front-end: translates bewteen RF and IF
-* DSP: translates between IF and baseband
-
-In a typical use-case, the user specifies an overall center frequency for the
-signal chain. The RF front-end will be tuned as close as possible to the center
-frequency, and the DSP will account for the error in tuning between target
-frequency and actual frequency. The user may also explicitly control both
-stages of tuning through through the **tune_request_t** object, which allows for
-more advanced tuning.
-
-In general, Using UHD software's advanced tuning is highly recommended as it makes it
-easy to move the DC component out of your band-of-interest. This can be done by
-passing your desired LO offset to the **tune_request_t** object, and letting the UHD
-software handle the rest.
-
-The **tune_request_t** object can also be used with certain daughterboards to use
-Integer-N tuning instead of the default fractional tuning, allowing for better spur
-performance. The daughterboards that support this functionality are:
-
-* WBX (all revisions)
-* WBX-120
-* SBX (all revisions)
-* SBX-120
-* CBX
-* CBX-120
-
-Tuning the receive chain:
-:::::::::::::::::::::::::
-
- //tuning to a desired center frequency
- usrp->set_rx_freq(target_frequency_in_hz);
-
- --OR--
-
- //advanced tuning with tune_request_t
- uhd::tune_request_t tune_req(target_frequency_in_hz, desired_lo_offset);
- tune_req.args = uhd::device_addr_t("mode_n=integer"); //to use Int-N tuning
- //fill in any additional/optional tune request fields...
- usrp->set_rx_freq(tune_req);
-
-More information can be found in `tune_request.hpp <./../../doxygen/html/structuhd_1_1tune__request__t.html>`_.
-
-^^^^^^^^^^^^^^^^^^^^^^^^^^
-RF front-end settling time
-^^^^^^^^^^^^^^^^^^^^^^^^^^
-After tuning, the RF front-end will need time to settle into a usable state.
-Typically, this means that the local oscillators must be given time to lock
-before streaming begins. Lock time is not consistent; it varies depending upon
-the device and requested settings. After tuning and before streaming, the user
-should wait for the **lo_locked** sensor to become true or sleep for
-a conservative amount of time (perhaps a second).
-
-Pseudo-code for dealing with settling time after tuning on receive:
-:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
-
-::
-
- usrp->set_rx_freq(...);
- sleep(1);
- usrp->issue_stream_command(...);
-
- --OR--
-
- usrp->set_rx_freq(...);
- while (not usrp->get_rx_sensor("lo_locked").to_bool()){
- //sleep for a short time in milliseconds
- }
- usrp->issue_stream_command(...);
-
-
--------------------------------
-Specifying the Subdevice to Use
--------------------------------
-A subdevice specification string for USRP family devices is composed of:
-
-::
-
- <motherboard slot name>:<daughterboard frontend name>
-
-Ex: The subdev spec markup string to select a WBX on slot B.
-
-::
-
- B:0
-
-Ex: The subdev spec markup string to select a BasicRX on slot B.
-
-::
-
- B:AB
-
- -- OR --
-
- B:A
-
- -- OR --
-
- B:B
-
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-USRP Family Motherboard Slot Names
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-
-All USRP family motherboards have a first slot named **A:**. The USRP1 has
-two daughterboard subdevice slots, known as **A:** and **B:**.
-
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-Daughterboard Frontend Names
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-
-Daughterboard frontend names can be used to specify which signal path is used
-from a daughterboard. Most daughterboards have only one frontend **:0**. A few
-daughterboards (Basic, LF and TVRX2) have multiple frontend names available.
-The frontend names are documented in the
-`Daughterboard Application Notes <./dboards.html>`_
-
-------------------------
-Overflow/Underflow Notes
-------------------------
-**Note:** The following overflow/underflow notes do not apply to USRP1,
-which does not support the advanced features available in newer products.
-
-^^^^^^^^^^^^^^
-Overflow notes
-^^^^^^^^^^^^^^
-When receiving, the device produces samples at a constant rate.
-Overflows occurs when the host does not consume data fast enough.
-When UHD software detects the overflow, it prints an "O" or "D" to stdout,
-and pushes an inline message packet into the receive stream.
-
-**Network-based devices**:
-The host does not back-pressure the receive stream.
-When the kernel's socket buffer becomes full, it will drop subsequent packets.
-UHD software detects the overflow as a discontinuity in the packet's sequence numbers,
-and pushes an inline message packet into the receive stream.
-In this case the character "D" is printed to stdout as an indication.
-
-**Other devices**:
-The host back-pressures the receive stream.
-Therefore, overflows always occur in the device itself.
-When the device's internal buffers become full, streaming is shut off,
-and an inline message packet is sent to the host.
-In this case the character "O" is printed to stdout as an indication.
-If the device was in continuous streaming mode,
-the UHD software will automatically restart streaming when the buffer has
-space again.
-
-^^^^^^^^^^^^^^^
-Underflow notes
-^^^^^^^^^^^^^^^
-When transmitting, the device consumes samples at a constant rate.
-Underflow occurs when the host does not produce data fast enough.
-When UHD software detects the underflow, it prints a "U" to stdout,
-and pushes a message packet into the async message stream.
-
----------------
-Threading Notes
----------------
-
-^^^^^^^^^^^^^^^^^^^
-Thread safety notes
-^^^^^^^^^^^^^^^^^^^
-For the most part, UHD software is thread-safe.
-Please observe the following limitations:
-
-**Fast-path thread requirements:**
-There are three fast-path methods for a device: **send()**, **recv()**, and **recv_async_msg()**.
-All three methods are thread-safe and can be called from different thread contexts.
-For performance, the user should call each method from a separate thread context.
-These methods can also be used in a non-blocking fashion by using a timeout of zero.
-
-**Slow-path thread requirements:**
-It is safe to change multiple settings simultaneously. However,
-this could leave the settings for a device in an uncertain state.
-This is because changing one setting could have an impact on how a call affects other settings.
-Example: setting the channel mapping affects how the antennas are set.
-It is recommended to use at most one thread context for manipulating device settings.
-
-^^^^^^^^^^^^^^^^^^^^^^^^^^
-Thread priority scheduling
-^^^^^^^^^^^^^^^^^^^^^^^^^^
-
-When UHD software spawns a new thread it may try to boost the thread's scheduling priority.
-When setting the priority fails, the UHD software prints out an error.
-This error is harmless; it simply means that the thread will have a normal scheduling priority.
-
-**Linux Notes:**
-
-Non-privileged users need special permission to change the scheduling priority.
-Add the following line to **/etc/security/limits.conf**:
-::::::::::::::::::::::::::::::::::::::::::::::::::::::::
-
- @<my_group> - rtprio 99
-
-Replace **<my_group>** with a group to which your user belongs.
-Settings will not take effect until the user is in a different login session.
-
--------------------
-Miscellaneous Notes
--------------------
-
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-Support for dynamically loadable modules
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-For a module to be loaded at runtime, it must be:
-
-* found in the **UHD_MODULE_PATH** environment variable,
-* installed into the **<install-path>/share/uhd/modules** directory,
-* or installed into **/usr/share/uhd/modules** directory (UNIX only).
-
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-Disabling or redirecting prints to stdout
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-The user can disable the UHD library from printing directly to stdout by registering a custom message handler.
-The handler will intercept all messages, which can be dropped or redirected.
-Only one handler can be registered at a time.
-Make **register_handler** your first call into the UHD library:
-
-::
-
- #include <uhd/utils/msg.hpp>
-
- void my_handler(uhd::msg::type_t type, const std::string &msg){
- //handle the message...
- }
-
- uhd::msg::register_handler(&my_handler);
diff --git a/host/docs/gpio_api.dox b/host/docs/gpio_api.dox
new file mode 100644
index 000000000..96d2a14be
--- /dev/null
+++ b/host/docs/gpio_api.dox
@@ -0,0 +1,119 @@
+/*! \page page_gpio_api X3x0 GPIO API
+
+\tableofcontents
+
+\section xgpio_fpanel The X3x0 Front Panel GPIO
+
+The X3x0 is the first USRP device to offer an auxiliary GPIO connection
+on the motherboard itself (independent of the daughterboards). These
+GPIO pins are controlled directly by the FPGA, where they are controlled
+by an ATR (Automatic Transmit / Receive). This allows them to be toggled
+simultaneously with other radio-level changes (e.g., enabling or
+disabling a TX or RX mixer).
+
+\subsection xgpio_fpanel_gpio Front Panel GPIO
+
+\subsubsection xgpio_fpanel_conn Connector
+
+\image html x3x0_gpio_conn.png "X3x0 GPIO Connectors"
+
+\subsubsection xgpio_fpanel_pins Pin Mapping
+
+- Pin 1: +3.3V
+- Pin 2: Data[0]
+- Pin 3: Data[1]
+- Pin 4: Data[2]
+- Pin 5: Data[3]
+- Pin 6: Data[4]
+- Pin 7: Data[5]
+- Pin 8: Data[6]
+- Pin 9: Data[7]
+- Pin 10: Data[8]
+- Pin 11: Data[9]
+- Pin 12: Data[10]
+- Pin 13: Data[11]
+- Pin 14: 0V
+- Pin 15: 0V
+
+\subsection xgpio_fpanel_atr Explaining ATR
+
+ATR works by defining the value of the GPIO pins for certain states of
+the radio. This is the "automatic" part of it. For example, you can tell
+UHD that when the radio is transmitting and receiving (full duplex),
+GPIO6 should be high, but when it is only transmitting, GPI06 should be
+low. This state machine is set up using a series of GPIO attributes,
+with paired values and a mask, which you will want to define for the
+GPIO pins you intend to use. To set up the ATR, you use uhd::usrp::multi_usrp::set_gpio_attr().
+
+- **CTRL**: Is this pin controlled by ATR (automatic), or by manual
+ control only?
+- **DDR**: "Data Direction Register" - defines whether or not a GPIO
+ is an output or an input.
+- **OUT**: Manually set the value of a pin (only to be used in non-ATR
+ mode).
+- **ATR_0X**: The status of the pins when the radio is **idle**.
+- **ATR_RX**: The status of the pins when the radio is only
+ **receiving**.
+- **ATR_TX**: The status of the pins when the radio is only
+ **transmitting**.
+- **ATR_XX**: The status of the pins when the radio is in
+ **full-duplex** mode.
+
+The counterpart to setting the ATR (the "getter"), is called
+uhd::usrp::multi_usrp::get_gpio_attr().
+t has the exact same attributes as above, and has
+one more:
+
+- **READBACK**: Readback the GPIOs marked as inputs.
+
+\subsection xgpio_fpanel_xample An Example
+
+The front panel X3x0 GPIO bank is enumerated in the motherboard property
+tree ('*<mb_path>/gpio/FP0/\*'), and so is easily accessible through
+the standard uhd::usrp::multi_usrp UHD interface.
+
+You can discover this using the uhd::usrp::multi_usrp::get_gpio_banks() function.
+This will tell you that there is a GPIO bank on your
+X3x0 called "FP0". This is the bank we want to set-up.
+
+Let's say we want to use GPIO6 for an external amp. We want it to be
+automatically controlled by ATR as an output, and we want it to be high
+when we are transmitting, and low in all other cases. We are also using
+GPIO4, which we want to control manually, as an output. We can set this
+up with the following code:
+
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~{.cpp}
+ // set up our masks, defining the pin numbers
+ #define AMP_GPIO_MASK (1 << 6)
+ #define MAN_GPIO_MASK (1 << 4)
+
+ #define ATR_MASKS (AMP_GPIO_MASK | MAN_GPIO_MASK)
+
+ // set up our values for ATR control: 1 for ATR, 0 for manual
+ #define ATR_CONTROL (AMP_GPIO_MASK & ~MAN_GPIO_MASK)
+
+ // set up the GPIO directions: 1 for output, 0 for input
+ #define GPIO_DDR (AMP_GPIO_MASK & ~MAN_GPIO_MASK)
+
+ // assume an existing USRP device handle, called "usrp_x300"
+
+ // now, let's do the basic ATR setup
+ usrp_x300->set_gpio_attr("FP0", "CTRL", ATR_CONTROL, ATR_MASKS);
+ usrp_x300->set_gpio_attr("FP0", "DDR", GPIO_DDR, ATR_MASKS);
+
+ // let's manually set GPIO4 high
+ usrp_x300->set_gpio_attr("FP0", "OUT", 1, MAN_GPIO_MASK);
+
+ // finally, let's set up GPIO6 as we described above
+ usrp_x300->set_gpio_attr("FP0", "ATR_0X", 0, AMP_GPIO_MASK);
+ usrp_x300->set_gpio_attr("FP0", "ATR_RX", 0, AMP_GPIO_MASK);
+ usrp_x300->set_gpio_attr("FP0", "ATR_TX", 0, AMP_GPIO_MASK);
+ usrp_x300->set_gpio_attr("FP0", "ATR_XX", 0, AMP_GPIO_MASK);
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+After the above code is run, the ATR in the FPGA will automatically
+control GPIO6, as we have described, based on the radio state, and we
+have direct manual control over GPIO4.
+
+*/
+// vim:ft=doxygen:
diff --git a/host/docs/gpio_api.rst b/host/docs/gpio_api.rst
deleted file mode 100644
index 9fd86d081..000000000
--- a/host/docs/gpio_api.rst
+++ /dev/null
@@ -1,129 +0,0 @@
-========================================================================
-UHD - X3x0 GPIO API
-========================================================================
-
-.. contents:: Table of Contents
-
-------------------------------------------------------------------------
-The X3x0 Front Panel GPIO
-------------------------------------------------------------------------
-The X3x0 is the first USRP device to offer an auxiliary GPIO connection on the
-motherboard itself (independent of the daughterboards). These GPIO pins are
-controlled directly by the FPGA, where they are controlled by an ATR (Automatic
-Transmit / Receive). This allows them to be toggled simultaneously with other
-radio-level changes (e.g., enabling or disabling a TX or RX mixer).
-
-
-^^^^^^^^^^^^^^^^
-Front Panel GPIO
-^^^^^^^^^^^^^^^^
-
-Connector
-:::::::::
-
-.. image:: ./res/x3x0_gpio_conn.png
- :scale: 75%
- :align: left
-
-Pin Mapping
-:::::::::::
-
-* Pin 1: +3.3V
-* Pin 2: Data[0]
-* Pin 3: Data[1]
-* Pin 4: Data[2]
-* Pin 5: Data[3]
-* Pin 6: Data[4]
-* Pin 7: Data[5]
-* Pin 8: Data[6]
-* Pin 9: Data[7]
-* Pin 10: Data[8]
-* Pin 11: Data[9]
-* Pin 12: Data[10]
-* Pin 13: Data[11]
-* Pin 14: 0V
-* Pin 15: 0V
-
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-Explaining ATR
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-
-ATR works by defining the value of the GPIO pins for certain states of the
-radio. This is the "automatic" part of it. For example, you can tell UHD that
-when the radio is transmitting and receiving (full duplex), GPIO6 should be
-high, but when it is only transmitting, GPI06 should be low. This state machine
-is set up using a series of GPIO attributes, with paired values and a mask,
-which you will want to define for the GPIO pins you intend to use. To set up
-the ATR, you use the **multi_usrp** function *set_gpio_attr*.
-
-* **CTRL**: Is this pin controlled by ATR (automatic), or by manual control
- only?
-* **DDR**: "Data Direction Register" - defines whether or not a GPIO is an
- output or an input.
-* **OUT**: Manually set the value of a pin (only to be used in non-ATR mode).
-* **ATR_0X**: The status of the pins when the radio is **idle**.
-* **ATR_RX**: The status of the pins when the radio is only **receiving**.
-* **ATR_TX**: The status of the pins when the radio is only **transmitting**.
-* **ATR_XX**: The status of the pins when the radio is in **full-duplex** mode.
-
-The counterpart to setting the ATR (the "getter"), is called *get_gpio_attr*.
-It has the exact same attributes as above, and has one more:
-
-* **READBACK**: Readback the GPIOs marked as inputs.
-
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-An Example
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-The front panel X3x0 GPIO bank is enumerated in the motherboard property tree
-("*<mb_path>/gpio/FP0/*"), and so is easily accessible through the standard
-**multi_usrp** UHD interface.
-
-You can discover this using the *get_gpio_banks* function in **multi_usrp**.
-This will tell you that there is a GPIO bank on your X3x0 called "FP0". This is
-the bank we want to set-up.
-
-Let's say we want to use GPIO6 for an external amp. We want it to be
-automatically controlled by ATR as an output, and we want it to be high when we
-are transmitting, and low in all other cases. We are also using GPIO4, which
-we want to control manually, as an output. We can set this up with the following
-code:
-
-::
-
- // set up our masks, defining the pin numbers
- #define AMP_GPIO_MASK (1 << 6)
- #define MAN_GPIO_MASK (1 << 4)
-
- #define ATR_MASKS (AMP_GPIO_MASK | MAN_GPIO_MASK)
-
- // set up our values for ATR control: 1 for ATR, 0 for manual
- #define ATR_CONTROL (AMP_GPIO_MASK & ~MAN_GPIO_MASK)
-
- // set up the GPIO directions: 1 for output, 0 for input
- #define GPIO_DDR (AMP_GPIO_MASK & ~MAN_GPIO_MASK)
-
- // assume an existing USRP device handle, called "usrp_x300"
-
- // now, let's do the basic ATR setup
- usrp_x300->set_gpio_attr("FP0", "CTRL", ATR_CONTROL, ATR_MASKS);
- usrp_x300->set_gpio_attr("FP0", "DDR", GPIO_DDR, ATR_MASKS);
-
- // let's manually set GPIO4 high
- usrp_x300->set_gpio_attr("FP0", "OUT", 1, MAN_GPIO_MASK);
-
- // finally, let's set up GPIO6 as we described above
- usrp_x300->set_gpio_attr("FP0", "ATR_0X", 0, AMP_GPIO_MASK);
- usrp_x300->set_gpio_attr("FP0", "ATR_RX", 0, AMP_GPIO_MASK);
- usrp_x300->set_gpio_attr("FP0", "ATR_TX", 0, AMP_GPIO_MASK);
- usrp_x300->set_gpio_attr("FP0", "ATR_XX", 0, AMP_GPIO_MASK);
-
-After the above code is run, the ATR in the FPGA will automatically control
-GPIO6, as we have described, based on the radio state, and we have direct
-manual control over GPIO4.
-
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-Further Information
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-For more information, see the Doxygen API documentation:
-
-* `multi_usrp API <./../../doxygen/html/classuhd_1_1usrp_1_1multi__usrp.html>`_
diff --git a/host/docs/gpsdo.dox b/host/docs/gpsdo.dox
new file mode 100644
index 000000000..397bde297
--- /dev/null
+++ b/host/docs/gpsdo.dox
@@ -0,0 +1,81 @@
+/*! \page page_gpsdo Internal GPSDO Application Notes (USRP-N2x0/E1X0 Models)
+
+\tableofcontents
+
+This application note describes the use of integrated GPS-disciplined
+oscillators (GPSDOs) for the USRP N-Series and E1xx. For information
+regarding the GPSDO that is compatible with the USRP X-Series, please
+see: \ref page_gpsdo_x3x0
+
+
+\section gpsdo_specs Specifications
+
+- **Receiver type**: 50 channel with WAAS, EGNOS, MSAS
+- **10MHz ADEV**: 1e-11 over \> 24h
+- **1PPS RMS jitter**: \< 50ns 1-sigma
+- **Holdover**: \< 11us over 3h
+- **Phase noise**:
+ - **1Hz:** -80 dBc/Hz
+ - **10Hz:** -110 dBc/Hz
+ - **100Hz:** -135 dBc/Hz
+ - **1kHz:** -145 dBc/Hz
+ - **10kHz:** \< -145 dBc/Hz
+
+<b>Antenna Types:</b>
+
+The GPSDO is capable of supplying a 3V for active GPS antennas or
+supporting passive antennas.
+
+\section gpsdo_install Installation Instructions
+
+Instructions for mounting the GPSDO kit onto your USRP device can be
+found here: http://www.ettus.com/content/files/gpsdo-kit_2.pdf
+
+\subsection gspdo_install_post Post-installation Task (N-Series only)
+
+<b>Note:</b> The following instructions are only necessary for UHD 3.4.\*
+and below.
+
+This is necessary if you require absolute GPS time in your application
+or need to communicate with the GPSDO to obtain location, satellite
+info, etc. If you only require 10 MHz and PPS signals for reference or
+MIMO use (see \ref page_sync), it is not necessary to perform this step.
+
+To configure the USRP to communicate with the GPSDO, use the
+`usrp_burn_mb_eeprom` utility:
+
+ cd <install-path>/lib/uhd/utils
+ ./usrp_burn_mb_eeprom --args=<optional device args> --values="gpsdo=internal"
+
+ -- restore original setting --
+ ./usrp_burn_mb_eeprom --args=<optional device args> --values="gpsdo=internal"
+
+\section gpsdo_use Using the GPSDO in Your Application
+
+By default, if a GPSDO is detected at startup, the USRP will be
+configured to use it as a frequency and time reference. The internal
+VITA timestamp will be initialized to the GPS time, and the internal
+oscillator will be phase-locked to the 10 MHz GPSDO reference. If the
+GPSDO is not locked to satellites, the VITA time will not be
+initialized.
+
+GPS data is obtained through the **mboard_sensors** interface. To
+retrieve the current GPS time, use the **gps_time** sensor:
+
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~{.cpp}
+ usrp->get_mboard_sensor("gps_time");
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+The returned value will be the current epoch time, in seconds since
+January 1, 1970. This value is readily converted into human-readable
+format using the **time.h** library in C, **boost::posix_time** in C++,
+etc.
+
+Other information can be fetched as well. You can query the lock status
+with the **gps_locked** sensor, as well as obtain raw NMEA sentences
+using the **gps_gprmc**, and **gps_gpgga** sensors. Location
+information can be parsed out of the **gps_gpgga** sensor by using **gpsd**
+or another NMEA parser.
+
+*/
+// vim:ft=doxygen:
diff --git a/host/docs/gpsdo.rst b/host/docs/gpsdo.rst
index 8ffff8672..5afd9d78d 100644
--- a/host/docs/gpsdo.rst
+++ b/host/docs/gpsdo.rst
@@ -55,10 +55,10 @@ To configure the USRP to communicate with the GPSDO, use the
::
cd <install-path>/lib/uhd/utils
- ./usrp_burn_mb_eeprom --args=<optional device args> --key=gpsdo --val=internal
+ ./usrp_burn_mb_eeprom --args=<optional device args> --values="gpsdo=internal"
-- restore original setting --
- ./usrp_burn_mb_eeprom --args=<optional device args> --key=gpsdo --val=none
+ ./usrp_burn_mb_eeprom --args=<optional device args> --values="gpsdo=none"
------------------------------------------------------------------------
Using the GPSDO in Your Application
diff --git a/host/docs/gpsdo_b2x0.dox b/host/docs/gpsdo_b2x0.dox
new file mode 100644
index 000000000..a54665427
--- /dev/null
+++ b/host/docs/gpsdo_b2x0.dox
@@ -0,0 +1,73 @@
+/*! \page page_gpsdo_b2x0 Internal GPSDO Application Notes (USRP-B2x0 Models)
+
+\tableofcontents
+
+This application note describes the use of integrated GPS-disciplined
+oscillators with Ettus Research USRP devices.
+
+\section gpsdob_specs Specifications
+
+- **Receiver type**: 50 channel with WAAS, EGNOS, MSAS
+- **10MHz ADEV**: 5e-11 over \>24h
+- **1PPS RMS jitter**: \<50ns 1-sigma
+- **Holdover**: \<20us over 3h
+
+<b>Phase noise</b>:
+
+ Offset | Phase Noise Power
+---------|-------------------
+ 1Hz | -65dBc/Hz
+ 10Hz | > -102dBc/Hz
+ 100Hz | -132dBc/Hz
+ 1kHz | -148dBc/Hz
+ 10kHz | -152dBc/Hz
+ 100kHz | \< -155dBc/Hz
+
+<b>Antenna Types:</b>
+
+The GPSDO is capable of supplying a 3V for active GPS antennas or
+supporting passive antennas.
+
+\section gpsdob_install Installation Instructions
+
+To install the GPSDO, you must insert it into the slot on the board near
+the 10 MHz Reference SMA. Keep in mind that the two sides of the GPSDO
+have a different number of pins. When inserting the GPSDO, make sure to
+press down firmly and evenly. When turning on the USRP B2X0 device, a
+green LED should illuminate on the GPSDO. This signifies that the unit
+has successfully been placed.
+
+<b>NOTE: The pins on the GPSDO are very fragile. Be sure to press down
+evenly, or the pins may bend or break. Once the GPSDO is in place, we
+very highly discourage further removal, as this also risks damaging the
+pins.</b>
+
+\section gpsdob_using Using the GPSDO in Your Application
+
+By default, if a GPSDO is detected at startup, the USRP will be
+configured to use it as a frequency and time reference. The internal
+VITA timestamp will be initialized to the GPS time, and the internal
+oscillator will be phase-locked to the 10MHz GPSDO reference. If the
+GPSDO is not locked to satellites, the VITA time will not be
+initialized.
+
+GPS data is obtained through the **mboard_sensors** interface. To
+retrieve the current GPS time, use the **gps_time** sensor:
+
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~{.cpp}
+usrp->get_mboard_sensor("gps_time");
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+The returned value will be the current epoch time, in seconds since
+January 1, 1970. This value is readily converted into human-readable
+format using the **time.h** library in C, **boost::posix_time** in C++,
+etc.
+
+Other information can be fetched as well. You can query the lock status
+with the **gps_locked** sensor, as well as obtain raw NMEA sentences
+using the **gps_gprmc**, and **gps_gpgga** sensors. Location
+information can be parsed out of the **gps_gpgga** sensor by using **gpsd**
+or another NMEA parser.
+
+*/
+// vim:ft=doxygen:
diff --git a/host/docs/gpsdo_b2x0.rst b/host/docs/gpsdo_b2x0.rst
deleted file mode 100644
index a0815d23a..000000000
--- a/host/docs/gpsdo_b2x0.rst
+++ /dev/null
@@ -1,79 +0,0 @@
-========================================================================
-UHD - Internal GPSDO Application Notes (USRP-B2x0 Models)
-========================================================================
-
-.. contents:: Table of Contents
-
-This application note describes the use of integrated GPS-disciplined
-oscillators with Ettus Research USRP devices.
-
-------------------------------------------------------------------------
-Specifications
-------------------------------------------------------------------------
-* **Receiver type**: 50 channel with WAAS, EGNOS, MSAS
-* **10MHz ADEV**: 5e-11 over >24h
-* **1PPS RMS jitter**: <50ns 1-sigma
-* **Holdover**: <20us over 3h
-
-**Phase noise**:
-
-+------------+-------------+
-| | TCXO |
-+============+=============+
-| **1Hz** | -65dBc/Hz |
-+------------+-------------+
-| **10Hz** | -102dBc/Hz |
-+------------+-------------+
-| **100Hz** | -132dBc/Hz |
-+------------+-------------+
-| **1kHz** | -148dBc/Hz |
-+------------+-------------+
-| **10kHz** | -152dBc/Hz |
-+------------+-------------+
-| **100kHz** | <-155dBc/Hz |
-+------------+-------------+
-
-**Antenna Types:**
-
-The GPSDO is capable of supplying a 3V for active GPS antennas or supporting passive antennas.
-
-------------------------------------------------------------------------
-Installation Instructions
-------------------------------------------------------------------------
-To install the GPSDO, you must insert it into the slot on the board
-near the 10 MHz Reference SMA. Keep in mind that the two sides of the
-GPSDO have a different number of pins. When inserting the GPSDO, make
-sure to press down firmly and evenly. When turning on the USRP B2X0 device,
-a green LED should illuminate on the GPSDO. This signifies that the unit
-has successfully been placed.
-
-**NOTE: The pins on the GPSDO are very fragile. Be sure to press down
-evenly, or the pins may bend or break. Once the GPSDO is in place,
-we very highly discourage further removal, as this also risks damaging
-the pins.**
-
-------------------------------------------------------------------------
-Using the GPSDO in Your Application
-------------------------------------------------------------------------
-By default, if a GPSDO is detected at startup, the USRP will be configured
-to use it as a frequency and time reference. The internal VITA timestamp
-will be initialized to the GPS time, and the internal oscillator will be
-phase-locked to the 10MHz GPSDO reference. If the GPSDO is not locked to
-satellites, the VITA time will not be initialized.
-
-GPS data is obtained through the **mboard_sensors** interface. To retrieve
-the current GPS time, use the **gps_time** sensor:
-
-::
-
- usrp->get_mboard_sensor("gps_time");
-
-The returned value will be the current epoch time, in seconds since
-January 1, 1970. This value is readily converted into human-readable
-format using the **time.h** library in C, **boost::posix_time** in C++, etc.
-
-Other information can be fetched as well. You can query the lock status
-with the **gps_locked** sensor, as well as obtain raw NMEA sentences using
-the **gps_gprmc**, and **gps_gpgga** sensors. Location
-information can be parsed out of the **gps_gpgga** sensor by using **gpsd** or
-another NMEA parser.
diff --git a/host/docs/gpsdo_x3x0.dox b/host/docs/gpsdo_x3x0.dox
new file mode 100644
index 000000000..24997d50b
--- /dev/null
+++ b/host/docs/gpsdo_x3x0.dox
@@ -0,0 +1,76 @@
+/*! \page page_gpsdo_x3x0 Internal GPSDO Application Notes (USRP-X3x0 Models)
+
+\tableofcontents
+
+This application note describes the use of the board-mounted GPS
+Disciplined OCXO, as used with the USRP X300/X310. For information
+regarding the GPSDO that is compatible with the USRP N2xx or E1xx,
+please see \ref page_gpsdo.
+
+\section gpsdox_specs Specifications
+
+- **Receiver type**: 50 channel with WAAS, EGNOS, MSAS
+- **10 MHz ADEV**: 5e-11 over \>24h
+- **1PPS RMS jitter**: \<50ns 1-sigma
+- **Holdover**: \<20us over 3h
+
+<b>Phase noise</b>:
+
+ Offset | OCXO Phase noise power
+---------|----------------------------
+1Hz |-75dBc/Hz
+10Hz |-110dBc/Hz
+100Hz |-132dBc/Hz
+1kHz |-142dBc/Hz
+10kHz |-145dBc/Hz
+100kHz |-150dBc/Hz
+
+<b>Antenna Types:</b>
+
+The GPSDO is capable of supplying a 3V for active GPS antennas or
+supporting passive antennas.
+
+\section gpsdox_install Installation Instructions
+
+To install the GPSDO, you must insert it into the slot on the board near
+the 10 MHz Reference SMA. Keep in mind that the two sides of the GPSDO
+have a different number of pins. When inserting the GPSDO, make sure to
+press down firmly and evenly. When turning on the USRP X3x0 device, a
+green LED should illuminate on the GPSDO. This signifies that the unit
+has successfully been placed.
+
+<b>NOTE: The pins on the GPSDO are very fragile. Be sure to press down
+evenly, or the pins may bend or break. Once the GPSDO is in place, we
+very highly discourage further removal, as this also risks damaging the
+pins.</b>
+
+\section gpsdox_using Using the GPSDO in Your Application
+
+By default, if a GPSDO is detected at startup, the USRP will be
+configured to use it as a frequency and time reference. The internal
+VITA timestamp will be initialized to the GPS time, and the internal
+oscillator will be phase-locked to the 10MHz GPSDO reference. If the
+GPSDO is not locked to satellites, the VITA time will not be
+initialized.
+
+GPS data is obtained through the **mboard_sensors** interface. To
+retrieve the current GPS time, use the **gps_time** sensor:
+
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~{.cpp}
+ usrp->get_mboard_sensor("gps_time");
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+The returned value will be the current epoch time, in seconds since
+January 1, 1970. This value is readily converted into human-readable
+format using the **time.h** library in C, **boost::posix_time** in C++,
+etc.
+
+Other information can be fetched as well. You can query the lock status
+with the **gps_locked** sensor, as well as obtain raw NMEA sentences
+using the **gps_gprmc**, and **gps_gpgga** sensors. Location
+information can be parsed out of the **gps_gpgga** sensor by using **gpsd**
+or another NMEA parser.
+
+
+*/
+// vim:ft=doxygen:
diff --git a/host/docs/gpsdo_x3x0.rst b/host/docs/gpsdo_x3x0.rst
deleted file mode 100644
index 0d4d31f3b..000000000
--- a/host/docs/gpsdo_x3x0.rst
+++ /dev/null
@@ -1,82 +0,0 @@
-========================================================================
-UHD - Internal GPSDO Application Notes (USRP-X3x0 Models)
-========================================================================
-
-.. contents:: Table of Contents
-
-This application note describes the use of the board-mounted GPS Disciplined OCXO,
-as used with the USRP X300/X310. For information regarding the GPSDO that is
-compatible with the USRP N2xx or E1xx, please see:
-
-`USRP-N2x0/E1x0 Internal GPSDO Device Manual <./gpsdo.html>`_
-
-------------------------------------------------------------------------
-Specifications
-------------------------------------------------------------------------
-* **Receiver type**: 50 channel with WAAS, EGNOS, MSAS
-* **10 MHz ADEV**: 5e-11 over >24h
-* **1PPS RMS jitter**: <50ns 1-sigma
-* **Holdover**: <20us over 3h
-
-**Phase noise**:
-
-+------------+------------+
-| | OCXO |
-+============+============+
-| **1Hz** | -75dBc/Hz |
-+------------+------------+
-| **10Hz** | -110dBc/Hz |
-+------------+------------+
-| **100Hz** | -132dBc/Hz |
-+------------+------------+
-| **1kHz** | -142dBc/Hz |
-+------------+------------+
-| **10kHz** | -145dBc/Hz |
-+------------+------------+
-| **100kHz** | -150dBc/Hz |
-+------------+------------+
-
-**Antenna Types:**
-
-The GPSDO is capable of supplying a 3V for active GPS antennas or supporting passive antennas.
-
-------------------------------------------------------------------------
-Installation Instructions
-------------------------------------------------------------------------
-To install the GPSDO, you must insert it into the slot on the board
-near the 10 MHz Reference SMA. Keep in mind that the two sides of the
-GPSDO have a different number of pins. When inserting the GPSDO, make
-sure to press down firmly and evenly. When turning on the USRP B2X0 device,
-a green LED should illuminate on the GPSDO. This signifies that the unit
-has successfully been placed.
-
-**NOTE: The pins on the GPSDO are very fragile. Be sure to press down
-evenly, or the pins may bend or break. Once the GPSDO is in place,
-we very highly discourage further removal, as this also risks damaging
-the pins.**
-
-------------------------------------------------------------------------
-Using the GPSDO in Your Application
-------------------------------------------------------------------------
-By default, if a GPSDO is detected at startup, the USRP will be configured
-to use it as a frequency and time reference. The internal VITA timestamp
-will be initialized to the GPS time, and the internal oscillator will be
-phase-locked to the 10MHz GPSDO reference. If the GPSDO is not locked to
-satellites, the VITA time will not be initialized.
-
-GPS data is obtained through the **mboard_sensors** interface. To retrieve
-the current GPS time, use the **gps_time** sensor:
-
-::
-
- usrp->get_mboard_sensor("gps_time");
-
-The returned value will be the current epoch time, in seconds since
-January 1, 1970. This value is readily converted into human-readable
-format using the **time.h** library in C, **boost::posix_time** in C++, etc.
-
-Other information can be fetched as well. You can query the lock status
-with the **gps_locked** sensor, as well as obtain raw NMEA sentences using
-the **gps_gprmc**, and **gps_gpgga** sensors. Location
-information can be parsed out of the **gps_gpgga** sensor by using **gpsd** or
-another NMEA parser.
diff --git a/host/docs/identification.dox b/host/docs/identification.dox
new file mode 100644
index 000000000..38bc93439
--- /dev/null
+++ b/host/docs/identification.dox
@@ -0,0 +1,112 @@
+/*! \page page_identification Device Identification Notes
+
+\tableofcontents
+
+\section id_identifying Identifying USRP Devices
+
+Devices are addressed through key/value string pairs. These string pairs
+can be used to narrow down the search for a specific device or group of
+devices. Most UHD utility applications and examples have an `--args`
+parameter that takes a device address, which is expressed as a delimited
+string.
+
+See device_addr.hpp for reference.
+
+\subsection id_identifying_common Common device identifiers
+
+Every device has several ways of identifying it on the host system:
+
+Identifier | Key | Notes | Example
+-----------|----------|-----------------------------------------------------------|---------------------------------
+Serial | serial | globally unique identifier | 12345678
+Address | addr | unique identifier on a network | 192.168.10.2
+Resource | resource | unique identifier for USRP RIO devices (over PCI Express) | RIO0
+Name | name | optional user-set identifier | my_usrp1 (User-defined value)
+Type | type | hardware series identifier | usrp1, usrp2, b200, x300, ...
+
+\subsection id_identifying_cmdline Device discovery via command line
+
+Devices attached to your system can be discovered using the
+`uhd_find_devices` program. This program scans your system for
+supported devices and prints out an enumerated list of discovered
+devices and their addresses. The list of discovered devices can be
+narrowed down by specifying device address args.
+
+ uhd_find_devices
+
+Device address arguments can be supplied to narrow the scope of the
+search.
+
+ uhd_find_devices --args="type=usrp1"
+
+ -- OR --
+
+ uhd_find_devices --args="serial=12345678"
+
+\subsection id_identifying_api Device discovery through the API
+
+The device::find() API call searches for devices and returns a list
+of discovered devices.
+
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~{.cpp}
+ uhd::device_addr_t hint; //an empty hint discovers all devices
+ uhd::device_addrs_t dev_addrs = uhd::device::find(hint);
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+The `hint` argument can be populated to narrow the scope of the search.
+
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~{.cpp}
+ uhd::device_addr_t hint;
+ hint["type"] = "usrp1";
+ uhd::device_addrs_t dev_addrs = uhd::device::find(hint);
+
+ -- OR --
+
+ uhd::device_addr_t hint;
+ hint["serial"] = "12345678";
+ uhd::device_addrs_t dev_addrs = uhd::device::find(hint);
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+\subsection id_identifying_props Device properties
+
+Properties of devices attached to your system can be probed with the
+`uhd_usrp_probe` program. This program constructs an instance of the
+device and prints out its properties, such as detected daughterboards,
+frequency range, gain ranges, etc...
+
+<b>Usage:</b>
+
+ uhd_usrp_probe --args <device-specific-address-args>
+
+\section id_naming Naming a USRP Device
+
+For convenience purposes, users may assign a custom name to their USRP
+device. The USRP device can then be identified via name, rather than a
+difficult to remember serial or address.
+
+A name has the following properties:
+
+- is composed of ASCII characters
+- is 0-20 characters
+- is not required to be unique
+
+\subsection id_naming_set Set a custom name
+
+Run the following commands:
+
+ cd <install-path>/lib/uhd/utils
+ ./usrp_burn_mb_eeprom --args=<optional device args> --values="name=lab1_xcvr"
+
+\subsection id_naming_discovery Discovery via name
+
+The keyword `name` can be used to narrow the scope of the search.
+Example with the find devices utility:
+
+ uhd_find_devices --args="name=lab1_xcvr"
+
+ -- OR --
+
+ uhd_find_devices --args="type=usrp1, name=lab1_xcvr"
+
+*/
+// vim:ft=doxygen:
diff --git a/host/docs/identification.rst b/host/docs/identification.rst
index cbae25082..65b4e5e99 100644
--- a/host/docs/identification.rst
+++ b/host/docs/identification.rst
@@ -112,7 +112,7 @@ Run the following commands:
::
cd <install-path>/lib/uhd/utils
- ./usrp_burn_mb_eeprom --args=<optional device args> --key=name --val=lab1_xcvr
+ ./usrp_burn_mb_eeprom --args=<optional device args> --values="name=lab1_xcvr"
^^^^^^^^^^^^^^^^^^
Discovery via name
diff --git a/host/docs/images.dox b/host/docs/images.dox
new file mode 100644
index 000000000..321452b87
--- /dev/null
+++ b/host/docs/images.dox
@@ -0,0 +1,114 @@
+/*! \page page_images Firmware and FPGA Image Application Notes
+
+\tableofcontents
+
+\section images_overview Images Overview
+
+Every USRP device must be loaded with special firmware and FPGA images.
+The methods of loading images into the device vary among devices:
+
+- **USRP1:** The host code will automatically load the firmware and
+ FPGA at runtime.
+- **USRP2:** The user must manually write the images onto the USRP2 SD
+ card.
+- **USRP-N Series:** The user programs an image into on-board storage,
+ which then is automatically loaded at runtime.
+- **USRP-E Series:** The host code will automatically load the FPGA at
+ runtime.
+- **USRP-B Series:** The host code will automatically load the FPGA at
+ runtime.
+- **USRP-X Series:** The user programs an image into on-board storage,
+ which then is automatically loaded at runtime.
+
+\section images_prebuild Pre-built Images
+
+Pre-built images are available for download.
+
+- <a href="http://files.ettus.com/binaries/master_images/">Master Branch images</a>
+- <a href="http://files.ettus.com/binaries/maint_images/">Maint Branch images</a>
+
+The pre-built images come in two forms:
+
+- bundled with UHD software in a platform-specific installer
+- stand-alone platform-independent archive files
+
+\subsection images_prebuilt_downloader UHD Images Downloader
+
+The UHD images downloader downloads UHD images compatible with the host
+code and places them in the default images directory.
+
+By default, it can be found at: `<install-path>/lib/uhd/utils/uhd_images_downloader.py`
+
+By default, it installs images to: `<install-path>/share/uhd/images`
+
+\subsection images_prebuilt_installers Platform installers
+
+The UNIX-based installers will install the images into `/usr/share/uhd/images`.
+
+The Windows installers will install the images into `C:/Program Files/UHD/share/uhd/images`.
+
+\subsection images_prebuilt_archive Archive install
+
+When installing images from an archive, there are two options:
+
+<b>Option 1:</b>
+
+Unpack the archive into the UHD installation prefix. UHD software will
+always search `<install-path>/share/uhd/images` for image files.
+Where `<install-path>` was set by the `CMAKE_INSTALL_PREFIX` at
+configure-time.
+
+<b>Option 2:</b>
+
+Unpack the archive anywhere and set the `UHD_IMAGES_PATH`
+environment variable. `UHD_IMAGES_PATH` may contain a list of
+directories to search for image files.
+
+\section images_building Building Images
+
+The UHD source repository comes with the source code necessary to build
+both firmware and FPGA images for all supported devices.
+
+The build commands for a particular image can be found in
+`<uhd-repo-path>/images/Makefile`.
+
+\subsection images_building_xilinx Xilinx FPGA builds
+
+USRP Xilinx FPGA images are built with two different versions of ISE,
+depending on the device.
+
+The build requires that you have a UNIX-like environment with `Make`.
+Make sure that `xtclsh` from the Xilinx ISE bin directory is in your `$PATH`.
+
+- Xilinx ISE 14.4: USRP X3x0 Series, USRP B2x0
+
+See `<uhd-repo-path>/fpga/usrp3/top/`.
+
+- Xilinx ISSE 12.2: USRP N2x0, USRP B1x0, USRP E1x0, USRP2
+
+See `<uhd-repo-path>/fpga/usrp2/top/`.
+
+\subsection images_building_zpu ZPU firmware builds
+
+The ZPU GCC compiler is required to build the ZPU firmware images. The
+build requires that you have a UNIX-like environment with `CMake` and
+`Make`. Make sure that `zpu-elf-gcc` is in your `$PATH`.
+
+See `<uhd-repo-path>/firmware/zpu`.
+
+\subsection images_building_altera Altera FPGA builds
+
+Quartus is required to build the Altera FPGA image for the USRP1.
+Pre-built images can also be found in `<uhd-repo-path>/fpga/usrp1/rbf`.
+
+See `<uhd-repo-path>/fpga/usrp1/toplevel/`.
+
+\subsection images_building_fx2 FX2 firmware builds
+
+The SDCC compiler is required to build the FX2 firmware images. The
+build requires that you have a UNIX-like environment with `CMake` and `Make`.
+
+See `<uhd-repo-path>/firmware/fx2`.
+
+*/
+// vim:ft=doxygen:
diff --git a/host/docs/images.rst b/host/docs/images.rst
deleted file mode 100644
index 37fbabf4b..000000000
--- a/host/docs/images.rst
+++ /dev/null
@@ -1,126 +0,0 @@
-========================================================================
-UHD - Firmware and FPGA Image Application Notes
-========================================================================
-
-.. contents:: Table of Contents
-
-------------------------------------------------------------------------
-Images Overview
-------------------------------------------------------------------------
-Every USRP device must be loaded with special firmware and FPGA images.
-The methods of loading images into the device vary among devices:
-
-* **USRP1:** The host code will automatically load the firmware and FPGA at runtime.
-* **USRP2:** The user must manually write the images onto the USRP2 SD card.
-* **USRP-N Series:** The user programs an image into on-board storage, which
- then is automatically loaded at runtime.
-* **USRP-E Series:** The host code will automatically load the FPGA at runtime.
-* **USRP-B Series:** The host code will automatically load the FPGA at runtime.
-* **USRP-X Series:** The user programs an image into on-board storage, which
- then is automatically loaded at runtime.
-
-------------------------------------------------------------------------
-Pre-built Images
-------------------------------------------------------------------------
-
-Pre-built images are available for download.
-
-* `Master Branch images <http://files.ettus.com/binaries/master_images/>`_
-* `Maint Branch images <http://files.ettus.com/binaries/maint_images/>`_
-
-The pre-built images come in two forms:
-
-* bundled with UHD software in a platform-specific installer
-* stand-alone platform-independent archive files
-
-^^^^^^^^^^^^^^^^^^^^^^
-UHD Images Downloader
-^^^^^^^^^^^^^^^^^^^^^^
-
-The UHD images downloader downloads UHD images compatible with the host code
-and places them in the default images directory.
-
-By default, it can be found at: **<install-path>/lib/uhd/utils/uhd_images_downloader.py**
-
-By default, it installs images to: **<install-path>/share/uhd/images**
-
-^^^^^^^^^^^^^^^^^^^^^^
-Platform installers
-^^^^^^^^^^^^^^^^^^^^^^
-The UNIX-based installers will install the images into **/usr/share/uhd/images**.
-
-The Windows installers will install the images into **C:/Program Files/UHD/share/uhd/images**.
-
-^^^^^^^^^^^^^^^^^^^^^^
-Archive install
-^^^^^^^^^^^^^^^^^^^^^^
-When installing images from an archive, there are two options:
-
-**Option 1:**
-
-Unpack the archive into the UHD installation prefix.
-UHD software will always search **<install-path>/share/uhd/images** for image files.
-Where **<install-path>** was set by the **CMAKE_INSTALL_PREFIX** at configure-time.
-
-**Option 2:**
-
-Unpack the archive anywhere and set the **UHD_IMAGES_PATH** environment variable.
-**UHD_IMAGES_PATH** may contain a list of directories to search for image files.
-
-------------------------------------------------------------------------
-Building Images
-------------------------------------------------------------------------
-
-The UHD source repository comes with the source code necessary to build
-both firmware and FPGA images for all supported devices.
-
-The build commands for a particular image can be found in **<uhd-repo-path>/images/Makefile**.
-
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-Xilinx FPGA builds
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-USRP Xilinx FPGA images are built with two different versions of ISE, depending
-on the device.
-
-The build requires that you have a UNIX-like environment with **Make**.
-Make sure that **xtclsh** from the Xilinx ISE bin directory is in your **$PATH**.
-
-
-**Xilinx ISE 14.4**
-* USRP X3x0 Series
-
-See **<uhd-repo-path>/fpga/usrp3/top/**.
-
-**Xilinx ISE 12.2**
-* USRP N2x0
-* USRP B2x0
-* USRP B1x0
-* USRP E1x0
-* USRP2
-
-See **<uhd-repo-path>/fpga/usrp2/top/**.
-
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-ZPU firmware builds
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-The ZPU GCC compiler is required to build the ZPU firmware images.
-The build requires that you have a UNIX-like environment with **CMake** and **Make**.
-Make sure that **zpu-elf-gcc** is in your **$PATH**.
-
-See **<uhd-repo-path>/firmware/zpu**.
-
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-Altera FPGA builds
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-Quartus is required to build the Altera FPGA image for the USRP1.
-Pre-built images can also be found in **<uhd-repo-path>/fpga/usrp1/rbf**.
-
-See **<uhd-repo-path>/fpga/usrp1/toplevel/***.
-
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-FX2 firmware builds
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-The SDCC compiler is required to build the FX2 firmware images.
-The build requires that you have a UNIX-like environment with **CMake** and **Make**.
-
-See **<uhd-repo-path>/firmware/fx2**.
diff --git a/host/docs/index.rst b/host/docs/index.rst
deleted file mode 100644
index ffad1488d..000000000
--- a/host/docs/index.rst
+++ /dev/null
@@ -1,68 +0,0 @@
-========================================================================
-UHD - USRP Hardware Driver
-========================================================================
-
-UHD software is the "Universal Software Radio Peripheral" Hardware Driver software.
-The goal of UHD software is to provide a host driver and API for current and future Ettus Research products.
-Users will be able to use the UHD driver standalone or with third-party applications.
-
-------------------------------------------------------------------------
-Contents
-------------------------------------------------------------------------
-
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-Building and Installing UHD Software
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-* `Build Guide <./build.html>`_
-* `Installation Guide (Linux) <http://code.ettus.com/redmine/ettus/projects/uhd/wiki/UHD_Linux>`_
-* `Installation Guide (Windows) <http://code.ettus.com/redmine/ettus/projects/uhd/wiki/UHD_Windows>`_
-
-^^^^^^^^^^^^^^^^^^^^^
-General UHD Manuals
-^^^^^^^^^^^^^^^^^^^^^
-* `General Application Notes <./general.html>`_
-* `Device Identification Notes <./identification.html>`_
-* `Firmware and FPGA Image Notes <./images.html>`_
-* `Daughterboard Application Notes <./dboards.html>`_
-* `Transport Application Notes <./transport.html>`_
-* `Synchronization Application Notes <./sync.html>`_
-* `Calibration Application Notes <./calibration.html>`_
-
-^^^^^^^^^^^^^^^^^^^^^
-USRP N-Series Devices
-^^^^^^^^^^^^^^^^^^^^^
-* `USRP-N2x0 Series Device Manual <./usrp2.html>`_
-* `USRP-N2x0 Internal GPSDO Device Manual <./gpsdo.html>`_
-
-^^^^^^^^^^^^^^^^^^^^^
-USRP B-Series Devices
-^^^^^^^^^^^^^^^^^^^^^
-* `USRP-B100 Series Device Manual <./usrp_b100.html>`_
-* `USRP-B2x0 Series Device Manual <./usrp_b200.html>`_
-* `USRP1 Device Manual <./usrp1.html>`_
-
-^^^^^^^^^^^^^^^^^^^^^
-USRP E-Series Devices
-^^^^^^^^^^^^^^^^^^^^^
-* `USRP-E1x0 Series Device Manual <./usrp_e1x0.html>`_
-* `USRP-E1x0 Internal GPSDO Device Manual <./gpsdo.html>`_
-
-^^^^^^^^^^^^^^^^^^^^^
-USRP X-Series Devices
-^^^^^^^^^^^^^^^^^^^^^
-* `USRP-X3x0 Series Device Manual <./usrp_x3x0.html>`_
-* `USRP-X3x0 Internal GPSDO Device Manual <./gpsdo_x3x0.html>`_
-* `USRP-X3x0 Front Panel GPIO API <./gpio_api.html>`_
-* `USRP-X3x0 System Configuration <./usrp_x3x0_config.html>`_
-
-^^^^^^^^^^^^^^^^^^^^^
-USRP Legacy Series
-^^^^^^^^^^^^^^^^^^^^^
-* `USRP2 Device Manual <./usrp2.html>`_
-
-^^^^^^^^^^^^^^^^^^^^^
-API Documentation
-^^^^^^^^^^^^^^^^^^^^^
-* `Doxygen <./../../doxygen/html/index.html>`_
-* `Using the API <./coding.html>`_
-* `Device Streaming <./stream.html>`_
diff --git a/host/docs/mainpage.dox b/host/docs/mainpage.dox
new file mode 100644
index 000000000..597938c35
--- /dev/null
+++ b/host/docs/mainpage.dox
@@ -0,0 +1,66 @@
+/*! \mainpage Table Of Contents
+
+\tableofcontents
+
+Welcome to the manual pages for the USRP Hardware Driver (UHD), the host driver
+for Ettus Research devices. Here, you will find information on how to use the
+devices and how to use the API to connect to them through your own software.
+
+# Building and Installing UHD
+
+\li \subpage page_build_guide
+\li <a href="http://code.ettus.com/redmine/ettus/projects/uhd/wiki/UHD_Linux">Installation Guide (Linux)</a>
+\li <a href="http://code.ettus.com/redmine/ettus/projects/uhd/wiki/UHD_Windows">Installation Guide (Windows)</a>
+
+# General UHD Manuals
+
+\li \subpage page_general
+\li \subpage page_identification
+\li \subpage page_images
+\li \subpage page_dboards
+\li \subpage page_transport
+\li \subpage page_sync
+\li \subpage page_calibration
+
+# Device Specific Manuals
+
+## USRP N-Series Devices
+
+\li \subpage page_usrp2
+\li \subpage page_gpsdo
+
+## USRP B-Series Devices
+
+\li \subpage page_usrp_b100
+\li \subpage page_usrp_b200
+\li \subpage page_gpsdo_b2x0
+\li \subpage page_usrp1
+
+## USRP E-Series Devices
+
+\li \subpage page_usrp_e1x0
+\li \subpage page_gpsdo
+
+## USRP X-Series Devices
+
+\li \subpage page_usrp_x3x0
+\li \subpage page_gpsdo_x3x0
+\li \subpage page_gpio_api
+\li \subpage page_usrp_x3x0_config
+\li \subpage page_ni_rio_kernel
+
+## USRP Legacy Series
+
+\li \subpage page_usrp2
+
+## OctoClock
+
+\li \subpage page_octoclock
+
+# API Documentation
+
+\li \subpage page_coding
+\li \subpage page_stream
+
+*/
+// vim:ft=doxygen:
diff --git a/host/docs/ni_rio_kernel.dox b/host/docs/ni_rio_kernel.dox
new file mode 100644
index 000000000..d364cad3c
--- /dev/null
+++ b/host/docs/ni_rio_kernel.dox
@@ -0,0 +1,142 @@
+/*! \page page_ni_rio_kernel NI RIO Kernel Modules for X-Series PCIe Connectivity
+
+\tableofcontents
+
+\section linux_rio Linux NI RIO Installation and Usage
+
+\subsection linux_requirements Requirements
+
+In order to use the PCIe transport connection on the USRP X300 / X310 devices,
+you must install the NI USRP RIO driver stack. These include kernel modules
+which must be loaded.
+
+Your kernel version must be supported by the kernel modules. Only 64-bit kernels
+are supported.
+
+<b>Currently, the latest supported kernel version is 3.14.x.</b>
+
+\subsection linux_installation Installing the Drivers in Linux
+
+The NI USRP RIO installer can be found <a
+href=http://files.ettus.com/binaries/niusrprio/niusrprio-installer.tar.gz>here</a>.
+
+Download the installer and extract it with the following command:
+
+ tar zxf niusrprio-installer.tar.gz
+
+The files will be extracted into a directory called <b>niusrprio-installer</b>.
+
+To install the NI USRPRIO kernel modules and RPC server, run the following
+command:
+
+ sudo niusrprio-installer/INSTALL
+
+Select 'y' for each prompt, and the script will install all necessary
+components. This script will automatically load all necessary kernel modules
+for the duration of the session.
+
+\subsection linux_enabling Enabling and Disabling Usage
+
+Once everything is installed, run the following commands to enable use of the
+X300/X310 over PCI Express:
+
+ sudo /usr/local/bin/niusrprio_pcie start
+
+To stop these processes, run the following command:
+
+ sudo /usr/local/bin/niusrprio_pcie stop
+
+To check if the kernel modules are loaded and if the RPC server is running, run
+the following command:
+
+ /usr/local/bin/niusrprio_pcie status
+
+<b>NOTE:</b> niusrprio_pcie start does not run when the host system is booted.
+If you would like the USRP PCIe device to be available automatically after
+a system restart, please create an init.d script that runs niusrprio_pcie start.
+
+\subsection linux_swapping Hot-Plugging and Power-Cycling
+
+The NI USRPRIO kernel modules are built for a specific kernel version. If you
+upgrade/downgrade the linux kernel on the host to a version different from the
+one that the installer was run on, then you may see the following error message
+when running `niusrprio star`.
+
+ ERROR: could not insert 'NiRioSrv': Unknown symbol in module, or unknown
+ parameter (see dmesg) ERROR: could not insert 'niusrpriok': Unknown symbol
+ in module, or unknown parameter (see dmesg)
+
+To rebuild the kernel modules for the currently running kernel, simple run the
+following
+
+ sudo /usr/local/bin/niusrprio_pcie stop sudo /usr/local/bin/updateNIDrivers
+ --no-prompt sudo /usr/local/bin/niusrprio_pcie start
+
+\subsection linux_uninstalling Uninstalling in Linux
+
+To uninstall the NI USRP RIO kernel modules and RPC server, run the following
+command:
+
+ sudo niusrprio-installer/UNINSTALL
+
+Select y at the prompt, and the script will uninstall all installed components.
+
+
+\section windows_rio Windows NI RIO Installation and Usage
+
+\subsection win_requirements Requirements
+
+The kernel driver is only supported on:
+
+- Windows 8.1 32-bit
+- Windows 8.1 64-bit
+- Windows 7 32-bit
+- Windows 7 64-bit
+- Windows Vista 32-bit
+- Windows Vista 64-bit
+- Windows XP (SP3) 32-bit.
+
+\subsection win_install Installing NI-USRP in Windows
+
+The NI-USRP 1.3 installer can be found <a
+href="http://www.ni.com/download/ni-usrp-1.3/4711/en/">here</a> You will need to
+create a free NI User Account to download the installer.
+
+Perform the following steps to download and install the NI-USRP exe driver
+package:
+
+- Choose the "2. Standard Download:NIUSRP130.exe" option to download
+- NIUSRP130.exe to your computer Run NIUSRP130.exe as an Administrator and
+- extract the contents to 'C:\\National Instruments Downloads\\NI-USRP\\1.3' In the
+- extract location, run setup.exe and follow the prompts.
+
+Reboot the computer after both the NI-USRP package has been installed.
+
+\subsection win_enabling Enabling and Disabling Usage
+
+Once everything is installed and the system is rebooted, your X300/X310 PCI
+Express device should automatically be detected by the Windows Device Manager.
+The device should be enabled by default.
+
+- To disable the USRPRIO device, navigate to "Device Manager", locate your
+- USRPRIO-X3x0 device, right-click on it and choose "Disable". To enable the
+- USRPRIO device, navigate to "Device Manager", locate your USRPRIO-X3x0 device,
+- right-click on it and choose "Enable".
+
+\subsection win_swapping Hot-plugging and Power-cycling
+
+The USRP X3x0, NI USRP-294x and NI USRP-295x devices <b>cannot</b> be hot-swapped
+when connected over PCI Express. Unplugging the PCI Express connection or
+powering the device should be done only after disabling the device.
+
+<b>WARNING:</b> If the device is unplugged without running the above command, the
+system could become unstable.
+
+\subsection win_uninstall Uninstalling NI-USRP in Windows
+
+Navigate to the Control Panel and open "Programs". Then select National
+Instruments Software and select NI-USRP and NI-RIO from the list. Click on
+uninstall to remove the drivers from your system.
+
+*/
+// vim:ft=doxygen:
diff --git a/host/docs/octoclock.dox b/host/docs/octoclock.dox
new file mode 100644
index 000000000..d4c6161a1
--- /dev/null
+++ b/host/docs/octoclock.dox
@@ -0,0 +1,126 @@
+/*! \page page_octoclock OctoClock Device Manual
+
+\tableofcontents
+
+\section octoclock_features Feature list
+
+- Hardware Capabilities:
+ - Fully integrated timing source with 8-Way distribution (10 MHz and 1 PPS)
+ - User selection between internal GPSDO (when present) or external 10 MHz/1 PPS source
+ - Source detection with automatic switch over in case of failure or disconnect
+ - Streaming GPS time and NMEA strings over Ethernet (OctoClock-G only)
+
+\section octoclock_load Loading Firmware onto the Octoclock
+
+\subsection bootloader OctoClock bootloader
+
+If you purchased your OctoClock device before Ethernet functionality was introduced, or if your unit's
+bootloader has somehow become corrupted, you must burn the bootloader onto the device before you can load
+the primary firmware.
+
+To load the bootloader onto the OctoClock, two things are needed:
+
+- AVR programmer
+- AVRdude software
+
+Connect the AVR programmer to J108, as specified on the <a href="http://files.ettus.com/schematics/octoclock/octoclock.pdf">
+schematics</a>. Once you verify that the programmer is properly connected, run the following commands to burn the firmware:
+
+ cd <install path>/share/uhd/images
+ avrdude -p atmega128 -c <programmer name> -P usb -U efuse:w:0xFF:m -U hfuse:w:0x80:m -U lfuse:w:0xFF:m -U flash:w:octoclock_bootloader.hex:i
+
+**Note:** On Linux, **sudo** must be used with the **avrdude** command.
+
+Once the bootloader has been burned, power-cycle your OctoClock device and refer to the below instructions on burning the OctoClock's
+primary firmware.
+
+\subsection application Primary Octoclock firmware
+
+To load firmware onto the OctoClock, you must use the *octoclock_firmware_burner* utility, specifying the IP
+address of the OctoClock device, as follows:
+
+ octoclock_firmware_burner --addr=192.168.10.3
+
+\section octoclock_network Setting Up Networking
+
+\subsection host_interface Setting up the host interface
+
+The OctoClock communicates with the host machine at the UDP layer over Gigabit Ethernet. The default device
+of the OctoClock is **192.168.10.3**. You will need to configure the host machine's Ethernet interface with
+a static IP address to enable communication. An address of **192.168.10.1** and a subnet mask of
+**255.255.255.0** is recommended.
+
+**Note:** When using UHD software, if an IP address for the OctoClock is not specified, the software will
+use UDP broadcast packets to locate the OctoClock. On some systems, the firewall will block UDP broadcast
+packets. It is recommended that you change your firewall settings.
+
+\subsection changing_ip Changing the OctoClock's IP address
+
+You may need to change the OctoClock's IP address for various reasons.
+
+- To satisfy your particular network configuration
+- To use multiple OctoClocks on the same host computer
+
+To change the OctoClock's IP address, run the following commands (using the default IP address as an example):
+
+ cd <install path>/lib/uhd/utils
+ ./octoclock_burn_eeprom --args="<optional device args>" --values="ip-addr=192.168.10.3"
+
+\section addressing Addressing the Device
+
+There are two ways to address the OctoClock from UHD software: the IP address, and the serial.
+
+To use the IP address, address it as follows:
+
+ "addr=<ip address>"
+
+If you want to use multiple OctoClock devices, address it as follows:
+
+ "addr0=<ip address 1>,addr1=<ip address 2>"
+
+To use the serial, address it as follows:
+
+ "serial=<serial>"
+
+\section hardware_setup Hardware Setup Notes
+
+\subsection front_panel_leds Front Panel LEDs
+
+The LEDs on the front panel show the current status of the device. Each LED is described below:
+
+- **Internal:** the device is using the internal GPSDO
+- **External:** the device is using an external reference
+- **Status:** the device is successfully distributing a 10 MHz and PPS signal
+- **PPS:** lights up when a PPS signal is detected
+- **GPS Lock:** the internal GPSDO has achieved a lock (not necessary to distribute the signals)
+- **Power:** the device is receiving power
+
+\subsection front_panel_switch Front Panel Switch
+
+The front panel switch, marked **Primary Ref** determines which reference the OctoClock will prefer to use. If it is receiving
+both an internal and external reference, the device will use whichever one the switch specifies.
+
+However, if it is only receiving an internal reference, it will use this reference no matter what position the switch is in.
+The same applies for an external signal.
+
+\section misc Miscellaneous
+
+\subsection available_sensors Available Sensors
+
+The following sensors are available on both the OctoClock and Octoclock-G; these can be queried through the
+<a href="classuhd_1_1octoclock.html">API</a>.
+
+- **ext_ref_detected:** whether or not the device detects an external reference
+- **gps_detected:** whether or not the device detects an internal GPSDO
+- **using_ref:** which reference the device is using (internal or external)
+- **switch_pos:** the position of the front switch (internal or external)
+
+On the OctoClock-G, the following sensors are added:
+
+- **gps_gpgga:** the latest GPGGA string sent by the GPSDO
+- **gps_gprmc:** the latest GPRMC string sent by the GPSDO
+- **gps_time:** the time reported by the GPSDO
+- **gps_locked:** whether or not the GPSDO is locked (true/false)
+- **gps_servo:** the latest debug trace information sent by the GPSDO
+
+*/
diff --git a/host/docs/octoclock_firmware_burner.1 b/host/docs/octoclock_firmware_burner.1
new file mode 100644
index 000000000..44ff47a85
--- /dev/null
+++ b/host/docs/octoclock_firmware_burner.1
@@ -0,0 +1,45 @@
+.TH "octoclock_firmware_burner" 1 "3.7.1" UHD "User Commands"
+.SH NAME
+octoclock_firmware_burner - OctoClock Firmware Burner
+.SH DESCRIPTION
+Burn firmware images onto an Ettus Research OctoClock device over Ethernet.
+.SH SYNOPSIS
+.B octoclock_firmware_burner [OPTIONS]
+.SH OPTIONS
+This program works best when only an IP address is specified.
+.IP "Device IP Address:"
+--addr=\fI"Address"\fR
+.IP "This help information:"
+--help
+.IP "Custom Firmware Filepath:"
+--fw-path=\fI"filepath"\fR
+.IP "List all OctoClock devices without burning"
+--list
+.SH EXAMPLES
+.SS Selecting a custom firmware path
+.sp
+octoclock_firmware_burner --addr=192.168.10.3 --fw-path=~/custom_octoclock_image.bin
+.ft
+.fi
+.SH SEE ALSO
+UHD documentation:
+.B http://files.ettus.com/manual/
+.LP
+Other UHD programs:
+.sp
+uhd_images_downloader(1) usrp2_card_burner(1) usrp_n2xx_simple_net_burner(1) usrp_x3xx_fpga_burner(1)
+.SH AUTHOR
+This manual page was written by Nicholas Corgan
+for the Debian project (but may be used by others).
+.SH COPYRIGHT
+Copyright (c) 2014 Ettus Research LLC
+.LP
+This program is free software: you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation, either version 3 of the License, or
+(at your option) any later version.
+.LP
+This program is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+GNU General Public License for more details.
diff --git a/host/docs/stream.dox b/host/docs/stream.dox
new file mode 100644
index 000000000..0c015c5bd
--- /dev/null
+++ b/host/docs/stream.dox
@@ -0,0 +1,56 @@
+/*! \page page_stream Device streaming
+
+\tableofcontents
+
+\section stream_intro Introduction to Streaming
+
+The concept of streaming refers to the transportation of samples between
+host and device. A stream is an object that facilitates streaming
+between host application and device. An RX stream allows the user to
+receive samples from the device. A TX stream allows the user to transmit
+samples to the device.
+
+\section stream_lle Link Layer Encapsulation
+
+The VITA49 standard provides encapsulation for sample data across a link
+layer. On all second generation hardware (and later), samples are
+encapsulated into VRT IF data packets. These packets also provide sample
+decoration such as stream time and burst flags. Sample decoration is
+exposed to the user in the form of RX and TX metadata structs.
+
+The length of an IF data packet can be limited by several factors:
+
+- **MTU of the link layer:** network card, network switch
+- **Buffering on the host:** frame size in a ring buffer
+- **Buffering on the device:** size of BRAM FIFOs
+
+\section stream_datatypes Data Types
+
+There are two important data types to consider when streaming:
+
+- The data type of the samples used on the host for processing
+- The data type of the samples sent through the link-layer
+
+\subsection stream_datatypes_cpu The host/CPU data type
+
+The host data type refers to the format of samples used in the host for
+baseband processing. Typically, the data type is complex baseband such
+as normalized **complex-float32** or **complex-int16**.
+
+\subsection stream_datatypes_otw The link-layer data type
+
+The link-layer or "over-the-wire" data type refers to the format of the
+samples sent through the link. Typically, this data type is **complex-int16**.
+However, to increase throughput over the link-layer,
+at the expense of precision, **complex-int8** may be used.
+
+\subsection stream_datatypes_conv Conversion
+
+The user may request arbitrary combinations of host and link data types;
+however, not all combinations are supported. The user may register
+custom data type formats and conversion routines. See
+convert.hpp for further documentation.
+
+TODO: provide example of convert API
+*/
+// vim:ft=doxygen:
diff --git a/host/docs/stream.rst b/host/docs/stream.rst
deleted file mode 100644
index 337d7ca40..000000000
--- a/host/docs/stream.rst
+++ /dev/null
@@ -1,59 +0,0 @@
-========================================================================
-UHD - Device streaming
-========================================================================
-
-.. contents:: Table of Contents
-
-------------------------------------------------------------------------
-Introduction to Streaming
-------------------------------------------------------------------------
-The concept of streaming refers to the transportation of samples between host and device.
-A stream is an object that facilitates streaming between host application and device.
-An RX stream allows the user to receive samples from the device.
-A TX stream allows the user to transmit samples to the device.
-
-------------------------------------------------------------------------
-Link Layer Encapsulation
-------------------------------------------------------------------------
-The VITA49 standard provides encapsulation for sample data across a link layer.
-On all second generation hardware (and later), samples are encapsulated into VRT IF data packets.
-These packets also provide sample decoration such as stream time and burst flags.
-Sample decoration is exposed to the user in the form of RX and TX metadata structs.
-
-The length of an IF data packet can be limited by several factors:
-
-* **MTU of the link layer:** network card, network switch
-* **Buffering on the host:** frame size in a ring buffer
-* **Buffering on the device:** size of BRAM FIFOs
-
-------------------------------------------------------------------------
-Data Types
-------------------------------------------------------------------------
-There are two important data types to consider when streaming:
-
-* The data type of the samples used on the host for processing
-* The data type of the samples sent through the link-layer
-
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-The host/CPU data type
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-The host data type refers to the format of samples used in the host for baseband processing.
-Typically, the data type is complex baseband such as normalized **complex-float32** or **complex-int16**.
-
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-The link-layer data type
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-The link-layer or "over-the-wire" data type refers to the format of the samples sent through the link.
-Typically, this data type is **complex-int16**.
-However, to increase throughput over the link-layer,
-at the expense of precision, **complex-int8** may be used.
-
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-Conversion
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-The user may request arbitrary combinations of host and link data types;
-however, not all combinations are supported.
-The user may register custom data type formats and conversion routines.
-See **uhd/convert.hpp** for further documentation.
-
-TODO: provide example of convert API
diff --git a/host/docs/sync.dox b/host/docs/sync.dox
new file mode 100644
index 000000000..f41d3a78c
--- /dev/null
+++ b/host/docs/sync.dox
@@ -0,0 +1,197 @@
+/*! \page page_sync Synchronization Application Notes
+
+\tableofcontents
+
+The following application notes explain how to synchronize multiple USRP
+devices with the goal of transmitting or receiving time-aligned samples
+for MIMO or other applications requiring multiple USRP devices operating
+synchronously.
+
+<b>Note:</b> The following synchronization notes do not apply to USRP1,
+which does not support the advanced features available in newer
+products.
+
+\section sync_commonref Common Reference Signals
+
+USRP devices take two reference signals in order to synchronize clocks
+and time:
+
+- A 10MHz reference to provide a single frequency reference for both
+ devices.
+- A pulse-per-second (PPS) to synchronize the sample time across
+ devices.
+- A MIMO cable transmits an encoded time message from one device to
+ another.
+
+\subsection sync_commonref_pps PPS and 10 MHz reference signals
+
+Connect the front panel SMA connectors to the reference sources.
+Typically, these signals are provided by an external GPSDO. However,
+some USRP models can provide these signals from an optional internal
+GPSDO.
+
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~{.cpp}
+usrp->set_clock_source("external");
+usrp->set_time_source("external");
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+<b>Note:</b> Sometimes the delay on the PPS signal will cause it to arrive
+inside the timing margin the FPGA sampling clock, causing PPS edges to
+be separated by less or more than 100 million cycles of the FPGA clock.
+If this is the case, you can change the edge reference of the PPS signal
+with this parameter:
+
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~{.cpp}
+usrp->set_time_source("_external_");
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+<b>Note2:</b> For users generating their own signals for the external SMA
+connectors, the PPS should be clocked from the 10MHz reference. See the
+application notes for your device for specific signal requirements.
+
+\subsection sync_commonref_mimo MIMO cable reference signals
+
+Use the MIMO expansion cable to share reference sources (USRP2 and
+N-Series). The MIMO cable can be used synchronize one device to another
+device. Users of the MIMO cable may use Method 1 (explained below) to
+synchronize multiple pairs of devices.
+
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~{.cpp}
+ usrp->set_clock_source("mimo");
+ usrp->set_time_source("mimo");
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+\section sync_time Synchronizing the Device Time
+
+The purpose of the PPS signal is to synchronously latch a time into the
+device. You can use the `set_time_next_pps(...)` function to either
+initialize the sample time to 0 or an absolute time, such as GPS time or
+UTC time. For the purposes of synchronizing devices, it doesn't matter
+what time you initialize to when using `set_time_next_pps(...)`.
+
+\subsection sync_time_reg Method 1 - poll the USRP time registers
+
+One way to initialize the PPS edge is to poll the "last PPS" time from
+the USRP device. When the last PPS time increments, the user can
+determine that a PPS has occurred:
+
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~{.cpp}
+ const uhd::time_spec_t last_pps_time = usrp->get_time_last_pps();
+ while (last_pps_time == usrp->get_time_last_pps()){
+ //sleep 100 milliseconds (give or take)
+ }
+ usrp->set_time_next_pps(uhd::time_spec_t(0.0));
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+\subsection sync_time_gpsdo Method 2 - query the GPSDO for seconds
+
+Most GPSDOs can be configured to output a NMEA string over the serial
+port once every PPS. The user can wait for this string to determine the
+PPS edge, and the user can also parse this string to determine GPS time:
+
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~{.cpp}
+ //call user's function to wait for NMEA message...
+ usrp->set_time_next_pps(uhd::time_spec_t(0.0));
+
+ -- OR --
+
+ //call user's function to wait for NMEA message...
+ //call user's function to parse the NMEA message...
+ usrp->set_time_next_pps(uhd::time_spec_t(gps_time+1));
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+\subsection sync_time_internalgps Method 3 - internal GPSDO
+
+USRP devices with internal GPSDOs properly configured will automatically
+configure themselves to set the VITA time to current UTC time. See \ref page_gpsdo
+for more details.
+
+\subsection sync_time_mimocable Method 4 - MIMO cable
+
+A USRP device can synchronize its time to another USRP device via the
+MIMO cable. Unlike the other methods, this does not use a real "pulse
+per second". Rather, the USRP device sends an encoded time message over
+the MIMO cable. The slave device will automatically synchronize to the
+time on the master device. See \ref usrp2_mimocable for more detail.
+
+\section sync_phase Synchronizing Channel Phase
+
+\subsection sync_phase_cordics Align CORDICs in the DSP
+
+In order to achieve phase alignment between USRP devices, the CORDICS in
+both devices must be aligned with respect to each other. This is easily
+achieved by issuing stream commands with a time spec property, which
+instructs the streaming to begin at a specified time. Since the devices
+are already synchronized via the 10 MHz and PPS inputs, the streaming
+will start at exactly the same time on both devices. The CORDICs are
+reset at each start-of-burst command, so users should ensure that every
+start-of-burst also has a time spec set.
+
+For receive, a burst is started when the user issues a stream command.
+This stream command should have a time spec set:
+
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~{.cpp}
+ uhd::stream_cmd_t stream_cmd(uhd::stream_cmd_t::STREAM_MODE_NUM_SAMPS_AND_DONE);
+ stream_cmd.num_samps = samps_to_recv;
+ stream_cmd.stream_now = false;
+ stream_cmd.time_spec = time_to_recv;
+ usrp->issue_stream_cmd(stream_cmd);
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+For transmit, a burst is started when the user calls send(). The
+metadata should have a time spec set: :
+
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~{.cpp}
+ uhd::tx_metadata_t md;
+ md.start_of_burst = true;
+ md.end_of_burst = false;
+ md.has_time_spec = true;
+ md.time_spec = time_to_send;
+
+ //send a single packet
+ size_t num_tx_samps = tx_streamer->send(buffs, samps_to_send, md);
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+\subsection sync_phase_lo Align LOs in the front-end (SBX, WBX, CBX)
+
+Using timed commands, multiple frontends can be tuned at a specific
+time. This timed-tuning ensures that the phase offsets between VCO/PLL
+chains will remain constant after each re-tune. See notes below:
+
+- There is a random phase offset between any two frontends
+- This phase offset is different for different LO frequencies
+- This phase offset remains constant after retuning
+ - Due to a divider, WBX phase offset will be randomly +/- 180 deg after re-tune
+- This phase offset will drift over time due to thermal and other characteristics
+- Periodic calibration will be necessary for phase-coherent applications
+
+Code snippet example, tuning with timed commands: :
+
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~{.cpp}
+ //we will tune the frontends in 100ms from now
+ uhd::time_spec_t cmd_time = usrp->get_time_now() + uhd::time_spec_t(0.1);
+
+ //sets command time on all devices
+ //the next commands are all timed
+ usrp->set_command_time(cmd_time);
+
+ //tune channel 0 and channel 1
+ usrp->set_rx_freq(1.03e9, 0); // Channel 0
+ usrp->set_rx_freq(1.03e9, 1); // Channel 1
+
+ //end timed commands
+ usrp->clear_command_time();
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+\subsection sync_phase_lootherfe Align LOs in the front-end (others)
+
+After tuning the RF front-ends, each local oscillator may have a random
+phase offset due to the dividers in the VCO/PLL chains. This offset will
+remain constant after the device has been initialized, and will remain
+constant until the device is closed or re-tuned. This phase offset is
+typically removed by the user in MIMO applications, using a training
+sequence to estimate the offset. It will be necessary to re-align the
+LOs after each tune command.
+
+*/
+// vim:ft=doxygen:
diff --git a/host/docs/sync.rst b/host/docs/sync.rst
deleted file mode 100644
index 21be60a20..000000000
--- a/host/docs/sync.rst
+++ /dev/null
@@ -1,197 +0,0 @@
-========================================================================
-UHD - Synchronization Application Notes
-========================================================================
-
-.. contents:: Table of Contents
-
-The following application notes explain how to synchronize multiple USRP
-devices with the goal of transmitting or receiving time-aligned samples for MIMO
-or other applications requiring multiple USRP devices operating synchronously.
-
-**Note:** The following synchronization notes do not apply to USRP1,
-which does not support the advanced features available in newer products.
-
-------------------------------------------------------------------------
-Common Reference Signals
-------------------------------------------------------------------------
-USRP devices take two reference signals in order to synchronize clocks and time:
-
-* A 10MHz reference to provide a single frequency reference for both devices.
-* A pulse-per-second (PPS) to synchronize the sample time across devices.
-* A MIMO cable transmits an encoded time message from one device to another.
-
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-PPS and 10 MHz reference signals
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-Connect the front panel SMA connectors to the reference sources.
-Typically, these signals are provided by an external GPSDO.
-However, some USRP models can provide these signals from an optional internal GPSDO.
-
-::
-
- usrp->set_clock_source("external");
- usrp->set_time_source("external");
-
-**Note:**
-Sometimes the delay on the PPS signal will cause it to arrive inside the timing
-margin the FPGA sampling clock, causing PPS edges to be separated by less or
-more than 100 million cycles of the FPGA clock. If this is the case,
-you can change the edge reference of the PPS signal with this parameter:
-
-::
-
- usrp->set_time_source("_external_");
-
-**Note2:**
-For users generating their own signals for the external SMA connectors,
-the PPS should be clocked from the 10MHz reference.
-See the application notes for your device for specific signal requirements.
-
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-MIMO cable reference signals
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-Use the MIMO expansion cable to share reference sources (USRP2 and N-Series).
-The MIMO cable can be used synchronize one device to another device.
-Users of the MIMO cable may use Method 1 (explained below) to synchronize multiple pairs of devices.
-
-::
-
- usrp->set_clock_source("mimo");
- usrp->set_time_source("mimo");
-
-------------------------------------------------------------------------
-Synchronizing the Device Time
-------------------------------------------------------------------------
-The purpose of the PPS signal is to synchronously latch a time into the device.
-You can use the **set_time_next_pps(...)** function to either initialize the sample time to 0
-or an absolute time, such as GPS time or UTC time.
-For the purposes of synchronizing devices,
-it doesn't matter what time you initialize to when using **set_time_next_pps(...)**.
-
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-Method 1 - poll the USRP time registers
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-One way to initialize the PPS edge is to poll the "last PPS" time from the USRP device.
-When the last PPS time increments, the user can determine that a PPS has occurred:
-
-::
-
- const uhd::time_spec_t last_pps_time = usrp->get_time_last_pps();
- while (last_pps_time == usrp->get_time_last_pps()){
- //sleep 100 milliseconds (give or take)
- }
- usrp->set_time_next_pps(uhd::time_spec_t(0.0));
-
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-Method 2 - query the GPSDO for seconds
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-Most GPSDOs can be configured to output a NMEA string over the serial port once every PPS.
-The user can wait for this string to determine the PPS edge,
-and the user can also parse this string to determine GPS time:
-
-::
-
- //call user's function to wait for NMEA message...
- usrp->set_time_next_pps(uhd::time_spec_t(0.0));
-
- -- OR --
-
- //call user's function to wait for NMEA message...
- //call user's function to parse the NMEA message...
- usrp->set_time_next_pps(uhd::time_spec_t(gps_time+1));
-
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-Method 3 - internal GPSDO
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-USRP devices with internal GPSDOs properly configured will automatically
-configure themselves to set the VITA time to current UTC time.
-See the `GPSDO Application Notes <./gpsdo.html>`_ for more details.
-
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-Method 4 - MIMO cable
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-A USRP device can synchronize its time to another USRP device via the MIMO cable.
-Unlike the other methods, this does not use a real "pulse per second".
-Rather, the USRP device sends an encoded time message over the MIMO cable.
-The slave device will automatically synchronize to the time on the master device.
-See the `MIMO Cable Application Notes <./usrp2.html#using-the-mimo-cable>`_ for more detail.
-
-------------------------------------------------------------------------
-Synchronizing Channel Phase
-------------------------------------------------------------------------
-
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-Align CORDICs in the DSP
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-In order to achieve phase alignment between USRP devices, the CORDICS in both
-devices must be aligned with respect to each other. This is easily achieved
-by issuing stream commands with a time spec property, which instructs the
-streaming to begin at a specified time. Since the devices are already
-synchronized via the 10MHz and PPS inputs, the streaming will start at exactly
-the same time on both devices. The CORDICs are reset at each start-of-burst
-command, so users should ensure that every start-of-burst also has a time spec set.
-
-For receive, a burst is started when the user issues a stream command. This stream command should have a time spec set:
-::
-
- uhd::stream_cmd_t stream_cmd(uhd::stream_cmd_t::STREAM_MODE_NUM_SAMPS_AND_DONE);
- stream_cmd.num_samps = samps_to_recv;
- stream_cmd.stream_now = false;
- stream_cmd.time_spec = time_to_recv;
- usrp->issue_stream_cmd(stream_cmd);
-
-For transmit, a burst is started when the user calls send(). The metadata should have a time spec set:
-::
-
- uhd::tx_metadata_t md;
- md.start_of_burst = true;
- md.end_of_burst = false;
- md.has_time_spec = true;
- md.time_spec = time_to_send;
-
- //send a single packet
- size_t num_tx_samps = tx_streamer->send(buffs, samps_to_send, md);
-
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-Align LOs in the front-end (SBX, WBX, CBX)
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-Using timed commands, multiple frontends can be tuned at a specific time.
-This timed-tuning ensures that the phase offsets between VCO/PLL chains
-will remain constant after each re-tune. See notes below:
-
-* There is a random phase offset between any two frontends
-* This phase offset is different for different LO frequencies
-* This phase offset remains constant after retuning
-
- * Due to a divider, WBX phase offset will be randomly +/- 180 deg after re-tune
-
-* This phase offset will drift over time due to thermal and other characteristics
-* Periodic calibration will be necessary for phase-coherent applications
-
-Code snippet example, tuning with timed commands:
-::
-
- //we will tune the frontends in 100ms from now
- uhd::time_spec_t cmd_time = usrp->get_time_now() + uhd::time_spec_t(0.1);
-
- //sets command time on all devices
- //the next commands are all timed
- usrp->set_command_time(cmd_time);
-
- //tune channel 0 and channel 1
- usrp->set_rx_freq(1.03e9, 0/*ch0*/);
- usrp->set_rx_freq(1.03e9, 1/*ch1*/);
-
- //end timed commands
- usrp->clear_command_time();
-
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-Align LOs in the front-end (others)
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-After tuning the RF front-ends,
-each local oscillator may have a random phase offset due to the dividers
-in the VCO/PLL chains. This offset will remain constant after the device
-has been initialized, and will remain constant until the device is closed
-or re-tuned. This phase offset is typically removed by the user in MIMO
-applications, using a training sequence to estimate the offset. It will
-be necessary to re-align the LOs after each tune command.
diff --git a/host/docs/transport.dox b/host/docs/transport.dox
new file mode 100644
index 000000000..a00a7aa5f
--- /dev/null
+++ b/host/docs/transport.dox
@@ -0,0 +1,160 @@
+/*! \page page_transport Transport Application Notes
+
+\tableofcontents
+
+\section transport_intro Introduction
+
+A transport is the layer between the packet interface and a device IO
+interface. The advanced user can pass optional parameters into the
+underlying transport layer through the device address. These optional
+parameters control how the transport object allocates memory, resizes
+kernel buffers, spawns threads, etc. When not spcified, the transport
+layer will use values for these parameters that are known to perform
+well on a variety of systems. The transport parameters are defined below
+for the various transports in the UHD software:
+
+\section transport_udp UDP Transport (Sockets)
+
+The UDP transport is implemented with user-space sockets. This means
+standard Berkeley sockets API using send()/recv().
+
+\subsection transport_udp_params Transport parameters
+
+The following parameters can be used to alter the transport's default
+behavior:
+
+- `recv_frame_size:` The size of a single receive buffer in bytes
+- `num_recv_frames:` The number of receive buffers to allocate
+- `send_frame_size:` The size of a single send buffer in bytes
+- `num_send_frames:` The number of send buffers to allocate
+
+<b>Notes:</b>
+- `num_recv_frames` does not affect performance.
+- `num_send_frames` does not affect performance.
+- `recv_frame_size` and `send_frame_size` can be used
+ to increase or decrease the maximum number of samples per packet. The
+ frame sizes default to an MTU of 1472 bytes per IP/UDP packet and may be
+ increased if permitted by your network hardware.
+
+\subsection transport_udp_flow Flow control parameters
+
+The host-based flow control expects periodic update packets from the
+device. These update packets inform the host of the last packet consumed
+by the device, which allows the host to determine throttling conditions
+for the transmission of packets. The following mechanisms affect the
+transmission of periodic update packets:
+
+- `ups_per_fifo:` The number of update packets for each FIFO's
+ worth of bytes sent into the device
+- `ups_per_sec:` The number of update packets per second (defaults
+ to 20 updates per second)
+
+\subsection transport_udp_sockbufs Resize socket buffers
+
+It may be useful to increase the size of the socket buffers to move the
+burden of buffering samples into the kernel or to buffer incoming
+samples faster than they can be processed. However, if your application
+cannot process samples fast enough, no amount of buffering can save you.
+The following parameters can be used to alter socket's buffer sizes:
+
+- `recv_buff_size:` The desired size of the receive buffer in
+ bytes
+- `send_buff_size:` The desired size of the send buffer in bytes
+
+<b>Note:</b> Large send buffers tend to decrease transmit performance.
+
+\subsection transport_udp_latency Latency Optimization
+
+Latency is a measurement of the time it takes a sample to travel between
+the host and device. Most computer hardware and software is bandwidth
+optimized, which may negatively affect latency. If your application has
+strict latency requirements, please consider the following notes:
+
+<b>Note1:</b> The time taken by the device to populate a packet is
+proportional to the sample rate. Therefore, to improve receive latency,
+configure the transport for a smaller frame size.
+
+<b>Note2:</b> For overall latency improvements, look for "Interrupt
+Coalescing" settings for your OS and ethernet chipset. It seems the
+Intel ethernet chipsets offer fine-grained control in Linux. Also,
+consult:
+
+- <http://publib.boulder.ibm.com/infocenter/pseries/v5r3/index.jsp?topic=/com.ibm.aix.prftungd/doc/prftungd/interrupt_coal.htm>
+
+\subsection transport_udp_linux Linux specific notes
+
+On Linux, the maximum buffer sizes are capped by the sysctl values
+`net.core.rmem_max` and `net.core.wmem_max`. To change the maximum
+values, run the following commands: :
+
+ sudo sysctl -w net.core.rmem_max=<new value>
+ sudo sysctl -w net.core.wmem_max=<new value>
+
+Set the values permanently by editing `/etc/sysctl.conf`.
+
+\subsection transport_udp_windows Windows specific notes
+
+**UDP send fast-path:** It is important to change the default UDP
+behavior such that 1500 byte packets still travel through the fast path
+of the sockets stack. This can be adjusted with the
+FastSendDatagramThreshold registry key:
+
+- FastSendDatagramThreshold registry key documented here:
+
+ - <http://www.microsoft.com/windows/windowsmedia/howto/articles/optimize_web.aspx#appendix_e>
+
+- Double click and run
+ `<install-path>/share/uhd/FastSendDatagramThreshold.reg`
+- A system reboot is recommended after the registry key change.
+
+<b>Power profile:</b> The Windows power profile can seriously impact
+instantaneous bandwidth. Application can take time to ramp-up to full
+performance capability. It is recommended that users set the power
+profile to "high performance".
+
+\section transport_usb USB Transport (LibUSB)
+
+The USB transport is implemented with LibUSB. LibUSB provides an
+asynchronous API for USB bulk transfers.
+
+\subsection transport_usb_params Transport parameters
+
+The following parameters can be used to alter the transport's default
+behavior:
+
+- `recv_frame_size:` The size of a single receive transfers in
+ bytes
+- `num_recv_frames:` The number of simultaneous receive transfers
+- `send_frame_size:` The size of a single send transfers in bytes
+- `num_send_frames:` The number of simultaneous send transfers
+
+\subsection transport_usb_udev Setup Udev for USB (Linux)
+
+On Linux, Udev handles USB plug and unplug events. The following
+commands install a Udev rule so that non-root users may access the
+device:
+
+ cd <install-path>/lib/uhd/utils
+ sudo cp uhd-usrp.rules /etc/udev/rules.d/
+ sudo udevadm control --reload-rules
+ sudo udevadm trigger
+
+\subsection transport_usb_installwin Install USB driver (Windows)
+
+A driver package must be installed to use a USB-based product with UHD
+software:
+
+- Download the driver from the UHD wiki page
+ <a href="http://files.ettus.com/binaries/misc/erllc_uhd_winusb_driver.zip">here</a>.
+- Unzip the file into a known location. We will refer to this as the `<directory>`.
+- Open the device manager and plug in the USRP device. You will see an
+ unrecognized USB device in the device manager.
+- Right click on the unrecognized USB device and select update/install
+ driver software (may vary for your OS).
+- In the driver installation wizard, select "browse for driver",
+ browse to the `<directory>`, and select the `.inf` file.
+- Continue through the installation wizard until the driver is
+ installed.
+
+*/
+// vim:ft=doxygen:
diff --git a/host/docs/transport.rst b/host/docs/transport.rst
deleted file mode 100644
index 88f787893..000000000
--- a/host/docs/transport.rst
+++ /dev/null
@@ -1,165 +0,0 @@
-========================================================================
-UHD - Transport Application Notes
-========================================================================
-
-.. contents:: Table of Contents
-
-------------------------------------------------------------------------
-Introduction
-------------------------------------------------------------------------
-A transport is the layer between the packet interface and a device IO
-interface. The advanced user can pass optional parameters into the underlying
-transport layer through the device address. These optional parameters control
-how the transport object allocates memory, resizes kernel buffers, spawns
-threads, etc. When not spcified, the transport layer will use values for these
-parameters that are known to perform well on a variety of systems. The
-transport parameters are defined below for the various transports in the UHD
-software:
-
-------------------------------------------------------------------------
-UDP Transport (Sockets)
-------------------------------------------------------------------------
-The UDP transport is implemented with user-space sockets.
-This means standard Berkeley sockets API using send()/recv().
-
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-Transport parameters
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-The following parameters can be used to alter the transport's default behavior:
-
-* **recv_frame_size:** The size of a single receive buffer in bytes
-* **num_recv_frames:** The number of receive buffers to allocate
-* **send_frame_size:** The size of a single send buffer in bytes
-* **num_send_frames:** The number of send buffers to allocate
-
-**Note1:**
-**num_recv_frames** does not affect performance.
-
-**Note2:**
-**num_send_frames** does not affect performance.
-
-**Note3:**
-**recv_frame_size** and **send_frame_size** can be used to
-increase or decrease the maximum number of samples per packet.
-The frame sizes default to an MTU of 1472 bytes per IP/UDP packet
-and may be increased if permitted by your network hardware.
-
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-Flow control parameters
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-The host-based flow control expects periodic update packets from the device.
-These update packets inform the host of the last packet consumed by the device,
-which allows the host to determine throttling conditions for the transmission of packets.
-The following mechanisms affect the transmission of periodic update packets:
-
-* **ups_per_fifo:** The number of update packets for each FIFO's worth of bytes sent into the device
-* **ups_per_sec:** The number of update packets per second (defaults to 20 updates per second)
-
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-Resize socket buffers
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-It may be useful to increase the size of the socket buffers to
-move the burden of buffering samples into the kernel or to
-buffer incoming samples faster than they can be processed.
-However, if your application cannot process samples fast enough,
-no amount of buffering can save you.
-The following parameters can be used to alter socket's buffer sizes:
-
-* **recv_buff_size:** The desired size of the receive buffer in bytes
-* **send_buff_size:** The desired size of the send buffer in bytes
-
-**Note:** Large send buffers tend to decrease transmit performance.
-
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-Latency Optimization
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-Latency is a measurement of the time it takes a sample to travel between the host and device.
-Most computer hardware and software is bandwidth optimized, which may negatively affect latency.
-If your application has strict latency requirements, please consider the following notes:
-
-**Note1:**
-The time taken by the device to populate a packet is proportional to the sample rate.
-Therefore, to improve receive latency, configure the transport for a smaller frame size.
-
-**Note2:**
-For overall latency improvements,
-look for "Interrupt Coalescing" settings for your OS and ethernet chipset.
-It seems the Intel ethernet chipsets offer fine-grained control in Linux.
-Also, consult:
-
-* http://publib.boulder.ibm.com/infocenter/pseries/v5r3/index.jsp?topic=/com.ibm.aix.prftungd/doc/prftungd/interrupt_coal.htm
-
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-Linux specific notes
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-On Linux, the maximum buffer sizes are capped by the sysctl values
-**net.core.rmem_max** and **net.core.wmem_max**.
-To change the maximum values, run the following commands:
-::
-
- sudo sysctl -w net.core.rmem_max=<new value>
- sudo sysctl -w net.core.wmem_max=<new value>
-
-Set the values permanently by editing **/etc/sysctl.conf**.
-
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-Windows specific notes
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-**UDP send fast-path:**
-It is important to change the default UDP behavior such that
-1500 byte packets still travel through the fast path of the sockets stack.
-This can be adjusted with the FastSendDatagramThreshold registry key:
-
-* FastSendDatagramThreshold registry key documented here:
-
- * http://www.microsoft.com/windows/windowsmedia/howto/articles/optimize_web.aspx#appendix_e
-
-* Double click and run <install-path>/share/uhd/FastSendDatagramThreshold.reg
-* A system reboot is recommended after the registry key change.
-
-**Power profile:**
-The Windows power profile can seriously impact instantaneous bandwidth.
-Application can take time to ramp-up to full performance capability.
-It is recommended that users set the power profile to "high performance".
-
-------------------------------------------------------------------------
-USB Transport (LibUSB)
-------------------------------------------------------------------------
-The USB transport is implemented with LibUSB.
-LibUSB provides an asynchronous API for USB bulk transfers.
-
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-Transport parameters
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-The following parameters can be used to alter the transport's default behavior:
-
-* **recv_frame_size:** The size of a single receive transfers in bytes
-* **num_recv_frames:** The number of simultaneous receive transfers
-* **send_frame_size:** The size of a single send transfers in bytes
-* **num_send_frames:** The number of simultaneous send transfers
-
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-Setup Udev for USB (Linux)
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-On Linux, Udev handles USB plug and unplug events.
-The following commands install a Udev rule
-so that non-root users may access the device:
-
-::
-
- cd <install-path>/lib/uhd/utils
- sudo cp uhd-usrp.rules /etc/udev/rules.d/
- sudo udevadm control --reload-rules
- sudo udevadm trigger
-
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-Install USB driver (Windows)
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-A driver package must be installed to use a USB-based product with UHD software:
-
-* Download the driver from the UHD wiki page `here <http://files.ettus.com/binaries/misc/erllc_uhd_winusb_driver.zip>`_.
-* Unzip the file into a known location. We will refer to this as the **<directory>**.
-* Open the device manager and plug in the USRP device. You will see an unrecognized USB device in the device manager.
-* Right click on the unrecognized USB device and select update/install driver software (may vary for your OS).
-* In the driver installation wizard, select "browse for driver", browse to the **<directory>**, and select the **.inf** file.
-* Continue through the installation wizard until the driver is installed.
diff --git a/host/docs/uhd_find_devices.1 b/host/docs/uhd_find_devices.1
index 405111a00..dfd5c0751 100644
--- a/host/docs/uhd_find_devices.1
+++ b/host/docs/uhd_find_devices.1
@@ -2,7 +2,7 @@
.SH NAME
uhd_find_devices \- USRP Hardware Driver Discovery Utility
.SH DESCRIPTION
-Find UHD-supporting Software Radio Peripherals attached by USB,
+Find UHD-supporting Ettus Research products attached by USB,
network or embedded configuration.
.LP
The UHD package is the universal hardware driver for Ettus Research
@@ -16,7 +16,7 @@ the UHD driver standalone or with 3rd party applications.
--args \fIarg\fR
.IP "This help information:"
--help
-.SH IDENTIFYING USRP DEVICES
+.SH IDENTIFYING DEVICES
.sp
Devices are addressed through key/value string pairs.
These string pairs can be used to narrow down the search for a specific device or group of devices.
@@ -28,36 +28,42 @@ Every device has several ways of identifying it on the host system.
.SS Identifying by hardware identifier
.sp
-All USRP devices can be found through their hardware series identifier, which match to USRP
+All Ettus Research devices can be found through their hardware series identifier, which match to
devices as follows:
-Argument | Device
+Argument | Device
-type=usrp1 | USRP1
+type=usrp1 | USRP1
-type=usrp2 | USRP2, USRP N200, USRP N210
+type=usrp2 | USRP2, USRP N200, USRP N210
-type=b100 | USRP B100
+type=b100 | USRP B100
-type=e100 | USRP E100, USRP E110
+type=b200 | USRP B200, USRP B210
+
+type=e100 | USRP E100, USRP E110
+
+type=x300 | USRP X300, USRP X310
+
+type=octoclock | OctoClock
.SS Identifying by serial number
-All USRP devices are given a unique serial number, which can be used to identify a device as follows:
+All Ettus Research devices are given a unique serial number, which can be used to identify a device as follows:
serial=12345678
.SS Identifying by IP address
-USRP2, USRP N200, and USRP N210 devices connected to the host machine can all be found through their
+USRP2, USRP N200, USRP N210, USRP X300, USRP X310, and OctoClock devices connected to the host machine can all be found through their
IP addresses, as follows:
addr=192.168.10.2
.SS Identifying by name
-Users have the option of giving their USRP devices short names using the usrp_burn_mb_eeprom utility
-in lib/uhd/utils. Devices that have been given a name can be identified as follows:
+Users have the option of giving their devices short names using the usrp_burn_mb_eeprom and octoclock_burn_eeprom
+utilities in lib/uhd/utils. Devices that have been given a name can be identified as follows:
name=foo
diff --git a/host/docs/uhd_images_downloader.1 b/host/docs/uhd_images_downloader.1
index e6cd7d978..19f109ec5 100644
--- a/host/docs/uhd_images_downloader.1
+++ b/host/docs/uhd_images_downloader.1
@@ -33,7 +33,7 @@ GR-UHD documentation:
.LP
Other UHD programs:
.sp
-usrp2_card_burner(1) usrp_n2xx_simple_net_burner(1)
+usrp2_card_burner(1) usrp_n2xx_simple_net_burner(1) usrp_x3xx_fpga_burner(1) octoclock_firmware_burner(1)
.SH AUTHOR
This manual page was written by Maitland Bottoms and Nicholas Corgan
for the Debian project (but may be used by others).
diff --git a/host/docs/uhd_usrp_probe.1 b/host/docs/uhd_usrp_probe.1
index d26408ce6..178027aea 100644
--- a/host/docs/uhd_usrp_probe.1
+++ b/host/docs/uhd_usrp_probe.1
@@ -47,8 +47,12 @@ type=usrp2 | USRP2, USRP N200, USRP N210
type=b100 | USRP B100
+type=b200 | USRP B200, USRP B210
+
type=e100 | USRP E100, USRP E110
+type=x300 | USRP X300, USRP X310
+
.SS Identifying by serial number
All USRP devices are given a unique serial number, which can be used to identify a device as follows:
@@ -57,7 +61,7 @@ serial=12345678
.SS Identifying by IP address
-USRP2, USRP N200, and USRP N210 devices connected to the host machine can all be found through their
+USRP2, USRP N200, USRP N210, USRP X300, and USRP X310 devices connected to the host machine can all be found through their
IP addresses, as follows:
addr=192.168.10.2
diff --git a/host/docs/usrp1.dox b/host/docs/usrp1.dox
new file mode 100644
index 000000000..9dfdf02c5
--- /dev/null
+++ b/host/docs/usrp1.dox
@@ -0,0 +1,95 @@
+/*! \page page_usrp1 USRP1 Device Manual
+
+\tableofcontents
+
+\section usrp1_features Comparative features list
+
+- Hardware Capabilities:
+ - 2 transceiver card slots
+ - 64 MHz fixed clock rate
+- FPGA Capabilities:
+ - 2 RX DDC chains in FPGA
+ - 2 TX DUC chains in FPGA (no TX CORDIC -\> uses DAC)
+ - sc16 sample modes - RX & TX
+ - Up to 8 MHz of RF BW with 16-bit samples
+ - sc8 sample mode - RX only
+ - Up to 16 MHz of RF BW with 8-bit samples
+
+\section usrp1_imgs Specify a Non-standard Image
+
+The standard USRP1 images installer comes with two FPGA images:
+- **usrp1_fpga.rbf:** 2 DDCs + 2 DUCs
+- **usrp1_fpga_4rx.rbf:** 4 DDCs + 0 DUCs
+
+By default, the USRP1 uses the FPGA image with 2 DDCs and 2 DUCs.
+However, a device address parameter can be used to override the FPGA
+image selection to use an alternate or a custom FPGA image. See the
+images application notes for installing custom images.
+
+Example device address string representations to specify non-standard
+firmware and/or FPGA images:
+
+ fpga=usrp1_fpga_4rx.rbf
+
+ -- OR --
+
+ fw=usrp1_fw_custom.ihx
+
+ -- OR --
+
+ fpga=usrp1_fpga_4rx.rbf, fw=usrp1_fw_custom.ihx
+
+\section usrp1_emul Missing and Emulated Features
+
+The USRP1 FPGA does not have the necessary space to support the advanced
+streaming capabilities that are possible with the newer USRP devices.
+Some of these features are emulated in software to support the API.
+
+\subsection usrp1_emul_list List of emulated features
+
+- Setting the current device time
+- Getting the current device time
+- Transmitting at a specific time
+- Transmitting a specific number of samples
+- Receiving at a specific time
+- Receiving a specific number of samples
+- End of burst flags for transmit/receive
+- Notification on late stream command
+- Notification on late transmit packet
+- Notification on underflow or overflow
+- Notification on broken chain error
+
+<b>Note:</b> These emulated features rely on the host system's clock for
+timed operations and therefore may not have sufficient precision for the
+application.
+
+\subsection usrp1_emul_listmissing List of missing features
+
+- Start of burst flags for transmit/receive
+
+\section usrp1_hw Hardware Setup Notes
+
+\subsection usrp1_hw_extclk External clock modification
+
+The USRP device can be modified to accept an external clock reference instead of the 64MHz onboard reference.
+ - Solder SMA (**LTI-SASF54GT**) connector to **J2001**.
+ - Move 0 ohm 0603 resistor **R2029** to **R2030**.
+ - Move 0.01uF 0603 capacitor **C925** to **C926**.
+ - Remove 0.01uF 0603 capacitor **C924**.
+
+The new external clock needs to be a square wave between +7dBm and +15dBm.
+
+After the hardware modification, the user should burn the setting into
+the EEPROM, so UHD software can initialize with the correct clock rate.
+Run the following commands to record the setting into the EEPROM:
+
+ cd <install-path>/lib/uhd/utils
+ ./usrp_burn_mb_eeprom --args=<optional device args> --values="mcr=<rate>"
+
+The user may override the clock rate specified in the EEPROM by using a
+device address: Example:
+
+ uhd_usrp_probe --args="mcr=52e6"
+
+*/
+// vim:ft=doxygen:
diff --git a/host/docs/usrp1.rst b/host/docs/usrp1.rst
index be74fe00a..ecf90502b 100644
--- a/host/docs/usrp1.rst
+++ b/host/docs/usrp1.rst
@@ -102,7 +102,7 @@ Run the following commands to record the setting into the EEPROM:
::
cd <install-path>/lib/uhd/utils
- ./usrp_burn_mb_eeprom --args=<optional device args> --key=mcr --val=<rate>
+ ./usrp_burn_mb_eeprom --args=<optional device args> --values="mcr=<rate>"
The user may override the clock rate specified in the EEPROM by using a device address:
Example:
diff --git a/host/docs/usrp2.dox b/host/docs/usrp2.dox
new file mode 100644
index 000000000..e1be733c0
--- /dev/null
+++ b/host/docs/usrp2.dox
@@ -0,0 +1,424 @@
+/*! \page page_usrp2 USRP2 and N2x0 Series Device Manual
+
+\tableofcontents
+
+\section usrp2_features Comparative features list
+
+- Hardware Capabilities:
+ - 1 transceiver card slot
+ - External PPS reference input
+ - External 10 MHz reference input
+ - MIMO cable shared reference
+ - Fixed 100 MHz clock rate
+ - Internal GPSDO option (N2x0 only)
+- FPGA Capabilities:
+ - 2 RX DDC chains in FPGA
+ - 1 TX DUC chain in FPGA
+ - Timed commands in FPGA (N2x0 only)
+ - Timed sampling in FPGA
+ - 16-bit and 8-bit sample modes (sc8 and sc16)
+ - Up to 25 MHz of RF BW with 16-bit samples
+ - Up to 50 MHz of RF BW with 8-bit samples
+
+\section usrp2_load Load the Images onto the SD card (USRP2 only)
+
+<b>Warning!</b> Use `usrp2_card_burner` with caution. If you specify
+the wrong device node, you could overwrite your hard drive. Make sure
+that `--dev=` specifies the SD card.
+
+<b>Warning!</b> It is possible to use 3rd party SD cards with the USRP2.
+However, certain types of SD cards will not interface with the CPLD:
+
+- Cards can be SDHC, which is not a supported interface.
+- Cards can have unexpected timing characteristics.
+
+For these reasons, we recommend that you use the SD card that was
+supplied with the USRP2.
+
+\subsection usrp2_load_cardburner Use the card burner tool (UNIX)
+
+ sudo <install-path>/lib/uhd/utils/usrp2_card_burner_gui.py
+
+ -- OR --
+
+ cd <install-path>/lib/uhd/utils
+ sudo ./usrp2_card_burner.py --dev=/dev/sd<XXX> --fpga=<path_to_fpga_image>
+ sudo ./usrp2_card_burner.py --dev=/dev/sd<XXX> --fw=<path_to_firmware_image>
+
+Use the `--list` option to get a list of possible raw devices. The
+list result will filter out disk partitions and devices too large to be
+the sd card. The list option has been implemented on Linux, Mac OS X,
+and Windows.
+
+\subsection usrp2_load_cardburnerwin Use the card burner tool (Windows)
+
+ <path_to_python.exe> <install-path>/lib/uhd/utils/usrp2_card_burner_gui.py
+
+\section usrp2_loadflash Load the Images onto the On-board Flash (USRP-N Series only)
+
+The USRP-N Series can be reprogrammed over the network to update or
+change the firmware and FPGA images. When updating images, always burn
+both the FPGA and firmware images before power cycling. This ensures
+that when the device reboots, it has a compatible set of images to boot
+into.
+
+\subsection usrp2_loadflash_netburner Use the net burner tool
+
+Use default images:
+
+ usrp_n2xx_simple_net_burner --addr=<IP address>
+
+Use custom-built images:
+
+ usrp_n2xx_simple_net_burner --addr=<IP address> --fw=<firmware path> --fpga=<FPGA path>
+
+<b>Note:</b> Different hardware revisions require different FPGA images.
+Determine the revision number from the sticker on the rear of the
+chassis. Use this number to select the correct FPGA image for your
+device.
+
+For users who would prefer a graphical utility, a Python-based
+alternative exists.
+
+\subsection usrp2_loadflash_gui Use the graphical net burner tool (Linux)
+
+ <install-path>/lib/uhd/utils/usrp_n2xx_net_burner_gui.py
+
+\subsection usrp2_loadflash_guiwin Use the graphical net burner tool (Windows)
+
+ <path_to_python.exe> <install-path>/lib/uhd/utils/usrp_n2xx_net_burner_gui.py
+
+\subsection usrp2_loadflash_brick Device recovery and bricking
+
+Its possible to put the device into an unusable state by loading bad
+images. Fortunately, the USRP-N Series can be booted into a safe
+(read-only) image. Once booted into the safe image, the user can once
+again load images onto the device.
+
+The safe-mode button is a pushbutton switch (S2) located inside the
+enclosure. To boot into the safe image, hold-down the safe-mode button
+while power-cycling the device. Continue to hold-down the button until
+the front-panel LEDs blink and remain solid.
+
+When in safe-mode, the USRP-N device will always have the IP address **192.168.10.2**.
+
+\section usrp2_network Setup Networking
+
+The USRP2 only supports Gigabit Ethernet and will not work with a 10/100
+Mbps interface. However, a 10/100 Mbps interface can be connected
+indirectly to a USRP2 through a Gigabit Ethernet switch.
+
+\subsection usrp2_network_setuphost Setup the host interface
+
+The USRP2 communicates at the IP/UDP layer over the gigabit ethernet.
+The default IP address of the USRP2 is **192.168.10.2**. You will need
+to configure the host's Ethernet interface with a static IP address to
+enable communication. An address of **192.168.10.1** and a subnet mask
+of **255.255.255.0** is recommended.
+
+On a Linux system, you can set a static IP address very easily by using
+the 'ifconfig' command:
+
+ sudo ifconfig <interface> 192.168.10.1
+
+Note that `interface` is usually something like **eth0**. You can
+discover the names of the network interfaces in your computer by running **ifconfig**
+without any parameters:
+
+ ifconfig -a
+
+<b>Note:</b> When using UHD software, if an IP address for the USRP2 is not
+specified, the software will use UDP broadcast packets to locate the
+USRP2. On some systems, the firewall will block UDP broadcast packets.
+It is recommended that you change or disable your firewall settings.
+
+\subsection usrp2_network_multidev Multiple devices per host
+
+For maximum throughput, one Ethernet interface per USRP2 is recommended,
+although multiple devices may be connected via a Gigabit Ethernet
+switch. In any case, each Ethernet interface should have its own subnet,
+and the corresponding USRP2 device should be assigned an address in that
+subnet. Example:
+
+- Configuration for USRP2 device 0:
+ - Ethernet interface IPv4 address: **192.168.10.1**
+ - Ethernet interface subnet mask: **255.255.255.0**
+ - USRP2 device IPv4 address: **192.168.10.2**
+
+- Configuration for USRP2 device 1:
+ - Ethernet interface IPv4 address: **192.168.20.1**
+ - Ethernet interface subnet mask: **255.255.255.0**
+ - USRP2 device IPv4 address: **192.168.20.2**
+
+\subsection usrp2_network_changeip Change the USRP2's IP address
+
+You may need to change the USRP2's IP address for several reasons:
+- to satisfy your particular network configuration
+- to use multiple USRP2s on the same host computer
+- to set a known IP address into USRP2 (in case you forgot)
+
+#### Method 1
+
+To change the USRP2's IP address, you must know the
+current address of the USRP2, and the network must be setup properly as
+described above. Run the following commands: :
+
+ cd <install-path>/lib/uhd/utils
+ ./usrp_burn_mb_eeprom --args=<optional device args> --values="ip-addr=192.168.10.3"
+
+#### Method 2 (Linux Only)
+
+This method assumes that you do not know the
+IP address of your USRP2. It uses raw Ethernet packets to bypass the
+IP/UDP layer to communicate with the USRP2. Run the following commands:
+
+ cd <install-path>/lib/uhd/utils
+ sudo ./usrp2_recovery.py --ifc=eth0 --new-ip=192.168.10.3
+
+\section usrp2_commprob Communication Problems
+
+When setting up a development machine for the first time, you may have
+various difficulties communicating with the USRP device. The following
+tips are designed to help narrow down and diagnose the problem.
+
+\subsection usrp2_commprob_ctrlresponse RuntimeError: no control response
+
+This is a common error that occurs when you have set the subnet of your
+network interface to a different subnet than the network interface of
+the USRP device. For example, if your network interface is set to **192.168.20.1**,
+and the USRP device is **192.168.10.2** (note the
+difference in the third numbers of the IP addresses), you will likely
+see a 'no control response' error message.
+
+Fixing this is simple - just set the your host PC's IP address to the
+same subnet as that of your USRP device. Instructions for setting your
+IP address are in the previous section of this documentation.
+
+\subsection usrp2_commprob_firewall Firewall issues
+
+When the IP address is not specified, the device discovery broadcasts
+UDP packets from each ethernet interface. Many firewalls will block the
+replies to these broadcast packets. If disabling your system's firewall
+or specifying the IP address yields a discovered device, then your
+firewall may be blocking replies to UDP broadcast packets. If this is
+the case, we recommend that you disable the firewall or create a rule to
+allow all incoming packets with UDP source port **49152**.
+
+\subsection usrp2_commprob_ping Ping the device
+
+The USRP device will reply to ICMP echo requests. A successful ping
+response means that the device has booted properly and that it is using
+the expected IP address.
+
+ ping 192.168.10.2
+
+\subsection usrp2_commprob_uart Monitor the serial output
+
+Read the serial port to get debug verbose output from the embedded
+microcontroller. The microcontroller prints useful information about IP
+addresses, MAC addresses, control packets, fast-path settings, and
+bootloading. Use a standard USB to 3.3v-level serial converter at 230400
+baud. Connect **GND** to the converter ground, and connect **TXD** to
+the converter receive. The **RXD** pin can be left unconnected as this
+is only a one-way communication.
+
+- **USRP2:** Serial port located on the rear edge
+- **N210:** Serial port located on the left side
+
+\subsection usrp2_commprob_wireshark Monitor the host network traffic
+
+Use Wireshark to monitor packets sent to and received from the device.
+
+\section usrp2_addr Addressing the Device
+
+\subsection usrp2_addr_single Single device configuration
+
+In a single-device configuration, the USRP device must have a unique
+IPv4 address on the host computer. The USRP can be identified through
+its IPv4 address, resolvable hostname, or by other means. See the
+application notes on \ref page_identification.
+Please note that this addressing scheme should also be used with the **multi_usrp**
+interface.
+
+Example device address string representation for a USRP2 with IPv4
+address **192.168.10.2**:
+
+ addr=192.168.10.2
+
+\subsection usrp2_ Multiple device configuration
+
+In a multi-device configuration, each USRP device must have a unique
+IPv4 address on the host computer. The device address parameter keys
+must be suffixed with the device index. Each parameter key should be of
+the format \<key\>\<index\>. Use this addressing scheme with the uhd::usrp::multi_usrp
+interface.
+
+- The order in which devices are indexed corresponds to the indexing
+ of the transmit and receive channels.
+- The key indexing provides the same granularity of device
+ identification as in the single device case.
+
+Example device address string representation for 2 USRP2s with IPv4
+addresses **192.168.10.2** and **192.168.20.2**:
+
+ addr0=192.168.10.2, addr1=192.168.20.2
+
+\section usrp2_mimocable Using the MIMO Cable
+
+The MIMO cable allows two USRP devices to share reference clocks, time
+synchronization, and the Ethernet interface. One of the devices will
+sync its clock and time references to the MIMO cable. This device will
+be referred to as the slave, and the other device, the master.
+
+- The slave device acquires the clock and time references from the
+ master device.
+- The master and slave may be used individually or in a multi-device
+ configuration.
+- External clocking is optional and should only be supplied to the
+ master device.
+
+\subsection usrp2_mimocable_shared Shared Ethernet mode
+
+In shared Ethernet mode, only one device in the configuration can be
+attached to the Ethernet.
+
+- Clock reference, time reference, and data are communicated over the
+ MIMO cable.
+- Master and slave must have different IPv4 addresses in the same
+ subnet.
+
+\subsection usrp2_mimocable_dual Dual Ethernet mode
+
+In dual Ethernet mode, both devices in the configuration must be
+attached to the Ethernet.
+
+- Only clock reference and time reference are communicated over the
+ MIMO cable.
+- The master and slave must have different IPv4 addresses in different
+ subnets.
+
+\subsection usrp2_mimocable_cfgslave Configuring the slave
+
+In order for the slave to synchronize to the master over MIMO cable, the
+following clock configuration must be set on the slave device: :
+
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~{.cpp}
+ usrp->set_time_source("mimo", slave_index);
+ usrp->set_clock_source("mimo", slave_index);
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+\section usrp2_altstream Alternative stream destination
+
+It is possible to program the USRP device to send RX packets to an
+alternative IP/UDP destination.
+
+\subsection usrp2_altstream_subnet Set the subnet and gateway
+
+To use an alternative streaming destination, the device needs to be able
+to determine if the destination address is within its subnet, and ARP
+appropriately. Therefore, the user should ensure that subnet and gateway
+addresses have been programmed into the device's EEPROM.
+
+Run the following commands:
+
+ cd <install-path>/lib/uhd/utils
+ ./usrp_burn_mb_eeprom --args=<optional device args> --values="subnet=255.255.255.0, gateway=192.168.10.2"
+
+\subsection usrp2_altstream_rxstream Create a receive streamer
+
+Set the stream args "addr" and "port" values to the alternative
+destination. Packets will be sent to this destination when the user
+issues a stream command.
+
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~{.cpp}
+ //create a receive streamer, host type does not matter
+ uhd::stream_args_t stream_args("fc32");
+
+ //resolvable address and port for a remote udp socket
+ stream_args.args["addr"] = "192.168.10.42";
+ stream_args.args["port"] = "12345";
+
+ //create the streamer
+ uhd::rx_streamer::sptr rx_stream = usrp->get_rx_stream(stream_args);
+
+ //issue stream command
+ uhd::stream_cmd_t stream_cmd(uhd::stream_cmd_t::STREAM_MODE_NUM_SAMPS_AND_DONE);
+ stream_cmd.num_samps = total_num_samps;
+ stream_cmd.stream_now = true;
+ usrp->issue_stream_cmd(stream_cmd);
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+<b>Note:</b> Calling `recv()` on this streamer object should yield a timeout.
+
+\section usrp2_hw Hardware Setup Notes
+
+\subsection usrp2_hw_leds Front panel LEDs
+
+The LEDs on the front panel can be useful in debugging hardware and
+software issues. The LEDs reveal the following about the state of the
+device:
+
+- **LED A:** transmitting
+- **LED B:** MIMO cable link
+- **LED C:** receiving
+- **LED D:** firmware loaded
+- **LED E:** reference lock
+- **LED F:** CPLD loaded
+
+\subsection usrp2_hw_refclk Ref Clock - 10 MHz
+
+Using an external 10 MHz reference clock, a square wave will offer the
+best phase noise performance, but a sinusoid is acceptable. The
+reference clock requires the following power level:
+
+- **USRP2** 5 to 15 dBm
+- **N2XX** 0 to 15 dBm
+
+\subsection usrp2_hw_pps PPS - Pulse Per Second
+
+Using a PPS signal for timestamp synchronization requires a square wave
+signal with the following amplitude:
+
+- **USRP2** 5Vpp
+- **N2XX** 3.3 to 5Vpp
+
+Test the PPS input with the following app:
+
+- `<args>` are device address arguments (optional if only one USRP
+ device is on your machine)
+
+ cd <install-path>/lib/uhd/examples
+ ./test_pps_input --args=\<args\>
+
+\subsection usrp2_hw_gpsdo Internal GPSDO
+
+Please see \ref page_gpsdo for information on configuring and using the internal GPSDO.
+
+\section usrp2_misc Miscellaneous
+
+\subsection usrp2_misc_sensors Available Sensors
+
+The following sensors are available for the USRP2/N-Series motherboards;
+they can be queried through the API.
+
+- **mimo_locked** - clock reference locked over the MIMO cable
+- **ref_locked** - clock reference locked (internal/external)
+- other sensors are added when the GPSDO is enabled
+
+\subsection usrp2_misc_multirx Multiple RX channels
+
+There are two complete DDC chains in the FPGA. In the single channel
+case, only one chain is ever used. To receive from both channels, the
+user must set the **RX** subdevice specification. This hardware has only
+one daughterboard slot, which has been aptly named slot **A**.
+
+In the following example, a TVRX2 is installed. Channel 0 is sourced
+from subdevice **RX1**, and channel 1 is sourced from subdevice **RX2**
+(**RX1** and **RX2** are the antenna ports on the TVRX2 daughterboard):
+
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~{.cpp}
+ usrp->set_rx_subdev_spec("A:RX1 A:RX2");
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+*/
+// vim:ft=doxygen:
diff --git a/host/docs/usrp2.rst b/host/docs/usrp2.rst
index 361d98f01..1070a23fc 100644
--- a/host/docs/usrp2.rst
+++ b/host/docs/usrp2.rst
@@ -192,7 +192,7 @@ Run the following commands:
::
cd <install-path>/lib/uhd/utils
- ./usrp_burn_mb_eeprom --args=<optional device args> --key=ip-addr --val=192.168.10.3
+ ./usrp_burn_mb_eeprom --args=<optional device args> --values="ip-addr=192.168.10.3"
**Method 2 (Linux Only):**
This method assumes that you do not know the IP address of your USRP2.
@@ -360,8 +360,7 @@ Run the following commands:
::
cd <install-path>/lib/uhd/utils
- ./usrp_burn_mb_eeprom --args=<optional device args> --key=subnet --val=255.255.255.0
- ./usrp_burn_mb_eeprom --args=<optional device args> --key=gateway --val=192.168.10.1
+ ./usrp_burn_mb_eeprom --args=<optional device args> --values="subnet=255.255.255.0,gateway=192.168.10.1"
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Create a receive streamer
diff --git a/host/docs/usrp_b100.dox b/host/docs/usrp_b100.dox
new file mode 100644
index 000000000..c61d17f02
--- /dev/null
+++ b/host/docs/usrp_b100.dox
@@ -0,0 +1,96 @@
+/*! \page page_usrp_b100 USRP-B100 Series Device Manual
+
+\tableofcontents
+
+\section b100_features Comparative features list
+
+- Hardware Capabilities:
+ - 1 transceiver card slot
+ - External PPS reference input
+ - External 10 MHz reference input
+ - Configurable clock rate (defaults 64 MHz)
+- FPGA Capabilities:
+ - 1 RX DDC chain in FPGA
+ - 1 TX DUC chain in FPGA
+ - Timed commands in FPGA
+ - Timed sampling in FPGA
+ - sc8 and sc16 sample modes
+ - Up to 8 MHz of RF BW with 16-bit samples
+ - Up to 16 MHz of RF BW with 8-bit samples
+
+\section b100_imgs Specify a Non-standard Image
+
+UHD software will automatically select the USRP B100 images from the
+installed images package. The image selection can be overridden with the
+`--fpga=` and `--fw=` device address parameters.
+
+Example device address string representations to specify non-standard
+images:
+
+ fpga=usrp_b100_fpga_2rx.bin
+
+ -- OR --
+
+ fw=usrp_b100_fw.ihx
+
+\section b100_mcr Changing the Master Clock Rate
+
+The master clock rate of the B100 feeds both the FPGA DSP and the codec
+chip. Hundreds of rates between 32 MHz and 64 MHz are available. A few
+notable rates are:
+
+- **64 MHz:** maximum rate of the codec chip
+- **61.44 MHz:** good for UMTS/WCDMA applications
+- **52 MHz:** good for GSM applications
+
+\subsection b100_mcr_vcxo Set 61.44 MHz - uses external VCXO
+
+To use the 61.44 MHz clock rate, the USRP embedded will require one
+jumper to be moved, and X4 must be populated with a 61.44 MHz
+oscillator.
+
+- **J15** is a three pin header, move the jumper to (pin1, pin2)
+- **357LB3I061M4400** is the recommended oscillator for X4
+
+<b>Note:</b> See instructions below to communicate the desired clock rate
+into UHD software.
+
+\subsection b100_mcr_vco Set other rates - uses internal VCO
+
+To use other clock rates, the jumper will need to be in the default
+position.
+
+- **J15** is a three pin header, move the jumper to (pin2, pin3)
+
+To communicate the desired clock rate into UHD software, specify the
+special device address argument, where the key is
+**master_clock_rate** and the value is a rate in Hz. Example: :
+
+ uhd_usrp_probe --args="master_clock_rate=52e6"
+
+\section b100_hw Hardware setup notes
+
+\subsection b100_hw_leds Front panel LEDs
+
+The LEDs on the front panel can be useful in debugging hardware and
+software issues. The LEDs reveal the following about the state of the
+device:
+
+- **LED A:** transmitting
+- **LED B:** FPGA loaded
+- **LED C:** receiving
+- **LED D:** FPGA loaded
+- **LED E:** reference lock
+- **LED F:** board power
+
+\section b100_misc Miscellaneous
+
+\subsection b100_misc_sensors Available Sensors
+
+The following sensors are available; they can be queried through the
+API.
+
+- **ref_locked:** clock reference locked (internal/external)
+
+*/
+// vim:ft=doxygen:
diff --git a/host/docs/usrp_b100.rst b/host/docs/usrp_b100.rst
deleted file mode 100644
index 223ad5a90..000000000
--- a/host/docs/usrp_b100.rst
+++ /dev/null
@@ -1,107 +0,0 @@
-========================================================================
-UHD - USRP-B100 Series Device Manual
-========================================================================
-
-.. contents:: Table of Contents
-
-------------------------------------------------------------------------
-Comparative features list
-------------------------------------------------------------------------
-
-**Hardware Capabilities:**
- * 1 transceiver card slot
- * External PPS reference input
- * External 10 MHz reference input
- * Configurable clock rate (defaults 64 MHz)
-
-**FPGA Capabilities:**
- * 1 RX DDC chain in FPGA
- * 1 TX DUC chain in FPGA
- * Timed commands in FPGA
- * Timed sampling in FPGA
- * sc8 and sc16 sample modes
-
- * Up to 8 MHz of RF BW with 16-bit samples
- * Up to 16 MHz of RF BW with 8-bit samples
-
-------------------------------------------------------------------------
-Specify a Non-standard Image
-------------------------------------------------------------------------
-UHD software will automatically select the USRP B100 images from the installed images package.
-The image selection can be overridden with the **--fpga=** and **--fw=** device address parameters.
-
-Example device address string representations to specify non-standard images:
-
-::
-
- fpga=usrp_b100_fpga_2rx.bin
-
- -- OR --
-
- fw=usrp_b100_fw.ihx
-
-------------------------------------------------------------------------
-Changing the Master Clock Rate
-------------------------------------------------------------------------
-The master clock rate of the B100 feeds both the FPGA DSP and the codec chip.
-Hundreds of rates between 32 MHz and 64 MHz are available.
-A few notable rates are:
-
-* **64 MHz:** maximum rate of the codec chip
-* **61.44 MHz:** good for UMTS/WCDMA applications
-* **52 MHz:** good for GSM applications
-
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-Set 61.44 MHz - uses external VCXO
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-To use the 61.44 MHz clock rate, the USRP embedded will require one jumper to be moved,
-and X4 must be populated with a 61.44 MHz oscillator.
-
-* **J15** is a three pin header, move the jumper to (pin1, pin2)
-* **357LB3I061M4400** is the recommended oscillator for X4
-
-**Note:** See instructions below to communicate the desired clock rate into UHD software.
-
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-Set other rates - uses internal VCO
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-To use other clock rates, the jumper will need to be in the default position.
-
-* **J15** is a three pin header, move the jumper to (pin2, pin3)
-
-To communicate the desired clock rate into UHD software,
-specify the special device address argument,
-where the key is **master_clock_rate** and the value is a rate in Hz.
-Example:
-::
-
- uhd_usrp_probe --args="master_clock_rate=52e6"
-
-------------------------------------------------------------------------
-Hardware setup notes
-------------------------------------------------------------------------
-
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-Front panel LEDs
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-The LEDs on the front panel can be useful in debugging hardware and software issues.
-The LEDs reveal the following about the state of the device:
-
-* **LED A:** transmitting
-* **LED B:** FPGA loaded
-* **LED C:** receiving
-* **LED D:** FPGA loaded
-* **LED E:** reference lock
-* **LED F:** board power
-
-------------------------------------------------------------------------
-Miscellaneous
-------------------------------------------------------------------------
-
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-Available Sensors
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-The following sensors are available;
-they can be queried through the API.
-
-* **ref_locked:** clock reference locked (internal/external)
diff --git a/host/docs/usrp_b200.dox b/host/docs/usrp_b200.dox
new file mode 100644
index 000000000..93ea9b2c6
--- /dev/null
+++ b/host/docs/usrp_b200.dox
@@ -0,0 +1,167 @@
+/*! \page page_usrp_b200 USRP-B2x0 Series Device Manual
+
+\tableofcontents
+
+\section b200_features Comparative features list - B200
+
+- Hardware Capabilities:
+ - Integrated RF frontend (70 MHz - 6 GHz)
+ - External PPS reference input
+ - External 10 MHz reference input
+ - Configurable clock rate
+ - Internal GPSDO option
+ - B210 Only:
+ - MICTOR Debug Connector
+ - JTAG Connector
+- FPGA Capabilities:
+ - Timed commands in FPGA
+ - Timed sampling in FPGA
+
+\section b200_imgs Specify a Non-standard Image
+
+UHD software will automatically select the USRP B2X0 images from the
+installed images package. The image selection can be overridden with the
+`fpga` and `fw` device address parameters.
+
+Example device address string representations to specify non-standard
+images:
+
+ fpga=usrp_b200_fpga.bin
+
+ -- OR --
+
+ fw=usrp_b200_fw.hex
+
+\section b200_mcr Changing the Master Clock Rate
+
+The master clock rate feeds the RF frontends and the DSP chains. Users
+may select non-default clock rates to acheive integer decimations or
+interpolations in the DSP chains. The default master clock rate defaults
+to 32 MHz, but can be set to any rate between 5 MHz and 61.44 MHz.
+
+The user can set the master clock rate through the usrp API call
+uhd::usrp::multi_usrp::set_master_clock_rate(), or the clock rate can be set through the
+device arguments, which many applications take: :
+
+ uhd_usrp_probe --args="master_clock_rate=52e6"
+
+\section b200_fe RF Frontend Notes
+
+The B200 features an integrated RF frontend.
+
+\subsection b200_fe_tuning Frontend tuning
+
+The RF frontend has individually tunable receive and transmit chains. On
+the B200, there is one transmit and one receive RF frontend. On the
+B210, both transmit and receive can be used in a MIMO configuration. For
+the MIMO case, both receive frontends share the RX LO, and both transmit
+frontends share the TX LO. Each LO is tunable between 50 MHz and 6 GHz.
+
+\subsection b200_fe_gain Frontend gain
+
+All frontends have individual analog gain controls. The receive
+frontends have 73 dB of available gain; and the transmit frontends have
+89.5 dB of available gain. Gain settings are application specific, but
+it is recommended that users consider using at least half of the
+available gain to get reasonable dynamic range.
+
+\section Hardware Reference
+
+\subsection LED Indicators
+
+Below is a table of the LED indicators and their meanings:
+
+<table>
+ <tr>
+ <th>Component ID</th><th>Description</th><th>Details</th>
+ </tr>
+ <tr>
+ <td>LED600</td> <td>Power Indicator</td> <td>off = no power applied<br>
+ red = power applied (external or USB)</td>
+ </tr>
+ <tr>
+ <td>LED800</td> <td>Channel 2 RX2 Activity</td> <td>off = no power applied<br>
+ green = receiving</td>
+ </tr>
+ <tr>
+ <td>LED801</td> <td>Channel 2 TX/RX Activity</td> <td>off = no activity<br>
+ green = receiving<br>
+ red = transmitting<br>
+ orange = switching between transmitting and receiving</td>
+ </tr>
+ <tr>
+ <td>LED802</td> <td>Channel 1 TX/RX Activity</td> <td>off = no activity
+ green = receiving<br>
+ red = transmitting<br>
+ orange = switching between transmitting and receiving</td>
+ </tr>
+ <tr>
+ <td>LED803</td> <td>Channel 1 RX2 Activity</td> <td>off = no power applied<br>
+ green = receiving</td>
+ </tr>
+ <tr>
+ <td>LED100</td> <td>GPS lock indicator</td> <td>off = no lock<br>
+ green = lock</td>
+ </tr>
+</table>
+
+TX LED indicators are on when transimitting data and off when no samples are
+available to transmit. RX LED indicators are on when sending samples to the
+host and off when unable to do so. This means that TX/RX activity LED
+indicators will blink off in a temporary transmit underflow or receive overflow
+condition, indicating that the host is not sending or receiving samples fast
+enough. The host will be notified of the condition and output a "U" or "O" as
+well.
+
+\subsection External Connections
+
+Below is a table showing the external connections and respective power information:
+
+<table>
+<tr>
+ <th>Component ID</th> <th>Description</th> <th> Details</th>
+</tr>
+<tr>
+ <td>J601</td> <td>External Power</td> <td>6 V<br>3 A</td>
+</tr>
+<tr>
+ <td>J701</td> <td>USB Connector</td> <td>USB 3.0</td>
+</tr>
+<tr>
+ <td>J104</td> <td>External PPS Input</td> <td>1.8 V - 5 V</td>
+</tr>
+<tr>
+ <td>J101</td> <td>GPS Antenna</td> <td>GPSDO will supply nominal voltage to antenna.</td>
+</tr>
+<tr>
+ <td>J100</td> <td>External 10 MHz Input</td> <td>+15 dBm max</td
+</tr>
+<tr>
+ <td>J800</td> <td>RF B: TX/RX</td> <td>TX power +20dBm max<br>
+ RX power -15dBm max</td>
+</tr>
+<tr>
+ <td>J802</td> <td>RF B: RX2</td> <td>RX power -15dBm max</td>
+</tr>
+<tr>
+ <td>J803</td> <td>RF A: RX2</td> <td>RX power -15dBm max</td>
+</tr>
+<tr>
+ <td>J801</td> <td>RF A: TX/RX</td> <td>TX power +20dBm max<br>
+ RX power -15dBm max</td>
+</tr>
+</table>
+
+\subsection b200_switches On-Board Connectors and Switches
+
+Below is a table showing the on-board connectors and switches:
+
+Component ID | Description | Details
+--------------|----------------------------|----------------------------------------------------------
+ J502* | Mictor Connector | Interface to FPGA for I/O and inspection.
+ J503* | JTAG Header | Interface to FPGA for programming and debugging.
+ S700 | FX3 Hard Reset Switch | -
+
+*/
+
+// vim:ft=doxygen:
diff --git a/host/docs/usrp_b200.rst b/host/docs/usrp_b200.rst
deleted file mode 100644
index 327bbb6df..000000000
--- a/host/docs/usrp_b200.rst
+++ /dev/null
@@ -1,152 +0,0 @@
-========================================================================
-UHD - USRP-B2x0 Series Device Manual
-========================================================================
-
-.. contents:: Table of Contents
-
-------------------------------------------------------------------------
-Comparative features list - B200
-------------------------------------------------------------------------
-
-**Hardware Capabilities:**
- * Integrated RF frontend (70 MHz - 6 GHz)
- * External PPS reference input
- * External 10 MHz reference input
- * Configurable clock rate
- * Internal GPSDO option
- * B210 Only:
-
- * MICTOR Debug Connector
- * JTAG Connector
-
-**FPGA Capabilities:**
- * Timed commands in FPGA
- * Timed sampling in FPGA
-
-------------------------------------------------------------------------
-Specify a Non-standard Image
-------------------------------------------------------------------------
-UHD software will automatically select the USRP B2X0 images from the installed images package.
-The image selection can be overridden with the **fpga** and **fw** device address parameters.
-
-Example device address string representations to specify non-standard images:
-
-::
-
- fpga=usrp_b200_fpga.bin
-
- -- OR --
-
- fw=usrp_b200_fw.hex
-
-------------------------------------------------------------------------
-Changing the Master Clock Rate
-------------------------------------------------------------------------
-The master clock rate feeds the RF frontends and the DSP chains.
-Users may select non-default clock rates to acheive integer decimations or interpolations in the DSP chains.
-The default master clock rate defaults to 32 MHz, but can be set to any rate between 5 MHz and 61.44 MHz.
-
-The user can set the master clock rate through the usrp API call set_master_clock_rate(),
-or the clock rate can be set through the device arguments, which many applications take:
-::
-
- uhd_usrp_probe --args="master_clock_rate=52e6"
-
-------------------------------------------------------------------------
-RF Frontend Notes
-------------------------------------------------------------------------
-The B200 features and integrated RF frontend.
-
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-Frontend tuning
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-The RF frontend has individually tunable receive and transmit chains.
-On the B200, there is one transmit and one receive RF frontend.
-On the B210, both transmit and receive can be used in a MIMO configuration.
-For the MIMO case, both receive frontends share the RX LO,
-and both transmit frontends share the TX LO.
-Each LO is tunable between 50 MHz and 6 GHz.
-
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-Frontend gain
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-All frontends have individual analog gain controls.
-The receive frontends have 73 dB of available gain;
-and the transmit frontends have 89.5 dB of available gain.
-Gain settings are application specific,
-but it is recommended that users consider using at least
-half of the available gain to get reasonable dynamic range.
-
-------------------------------------------------------------------------
-Hardware Reference
-------------------------------------------------------------------------
-
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-LED Indicators
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-
-Below is a table of the LED indicators and their meanings:
-
-=============== ======================== ========================================================
-Component ID Description Details
-=============== ======================== ========================================================
- LED600 Power Indicator | off = no power applied
- | red = power applied (external or USB)
- LED800 Channel 2 RX2 Activity | off = no activity
- | green = receiving
- LED801 Channel 2 TX/RX Activity | off = no activity
- | green = receiving
- | red = transmitting
- | orange = switching between transmitting and receiving
- LED802 Channel 1 TX/RX Activity | off = no activity
- | green = receiving
- | red = transmitting
- | orange = switching between transmitting and receiving
- LED803 Channel 1 RX2 Activity | off = no activity
- | green = receiving
- LED100 GPS lock indicator | off = no lock
- | green = lock
-=============== ======================== ========================================================
-
-TX LED indicators are on when transimitting data and off when no samples are available to transmit. RX LED indicators are on when sending samples to the host and off when unable to do so. This means that TX/RX activity LED indicators will blink off in a temporary transmit underflow or receive overflow condition, indicating that the host is not sending or receiving samples fast enough. The host will be notified of the condition and output a "U" or "O" as well.
-
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-External Connections
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-
-Below is a table showing the external connections and respective power information:
-
-=============== ======================== ========================================================
-Component ID Description Details
-=============== ======================== ========================================================
- J601 External Power | 6 V
- | 3 A
- J701 USB Connector | USB 3.0
- J104 External PPS Input | 1.8 V - 5 V
- J101 GPS Antenna | GPSDO will supply nominal voltage to antenna.
- J100 External 10 MHz Input | +15 dBm max
- J800 RF B: TX/RX | TX power +20dBm max
- | RX power -15dBm max
- J802 RF B: RX2 | RX power -15dBm max
- J803 RF A: RX2 | RX power -15dBm max
- J801 RF A: TX/RX | TX power +20dBm max
- | RX power -15dBm max
-=============== ======================== ========================================================
-
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-On-Board Connectors and Switches
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-
-Below is a table showing the on-board connectors and switches:
-
-=============== ======================== ========================================================
-Component ID Description Details
-=============== ======================== ========================================================
- J502* Mictor Connector | Interface to FPGA for I/O and inspection.
- J503* JTAG Header | Interface to FPGA for programming and debugging.
- S700 FX3 Hard Reset Switch
-=============== ======================== ========================================================
-
-\* B210 Only
-
-
diff --git a/host/docs/usrp_e1x0.dox b/host/docs/usrp_e1x0.dox
new file mode 100644
index 000000000..c73e6ed42
--- /dev/null
+++ b/host/docs/usrp_e1x0.dox
@@ -0,0 +1,136 @@
+/*! \page page_usrp_e1x0 USRP-E1x0 Series Device Manual
+
+\tableofcontents
+
+\section e1x0_features Comparative features list
+
+- Hardware Capabilities:
+ - 1 transceiver card slot
+ - Internal PPS reference input
+ - Internal 10 MHz reference input
+ - Configurable clock rate (defaults to 64 MHz)
+ - Internal GPSDO option
+- FPGA Capabilities:
+ - 2 RX DDC chains in FPGA
+ - 1 TX DUC chain in FPGA
+ - Timed commands in FPGA
+ - Timed sampling in FPGA
+ - sc8 and sc16 sample modes
+ - Up to 8 MHz of RF BW with 16-bit samples
+ - Up to 16 MHz of RF BW with 8-bit samples
+
+\section e1x0_imgs Specify a Non-standard Image
+
+UHD software will automatically select the USRP-Embedded FPGA image from
+the installed images package. The FPGA image selection can be overridden
+with the `fpga` device address parameter.
+
+Example device address string representations to specify non-standard
+FPGA image:
+
+ fpga=usrp_e100_custom.bin
+
+\section e1x0_mcr Changing the Master Clock Rate
+
+The master clock rate of the USRP-Embedded feeds both the FPGA DSP and
+the codec chip. Hundreds of rates between 32 MHz and 64 MHz are
+available. A few notable rates are:
+
+- **64 MHz:** maximum rate of the codec chip
+- **61.44 MHz:** good for UMTS/WCDMA applications
+- **52 MHz:** good for GSM applications
+
+\subsection e1x0_mcr_extvcxo Set 61.44MHz - uses external VCXO
+
+To use the 61.44 MHz clock rate with the USRP-Embedded, two jumpers must
+be moved on the device.
+
+- **J16** is a two pin header; remove the jumper (or leave it on pin1
+ only).
+- **J15** is a three pin header; move the jumper to (pin1, pin2).
+
+**Note:** See instructions below to communicate the desired clock rate
+to UHD software.
+
+\subsection e1x0_intvco Set other rates - uses internal VCO
+
+To use other clock rates, the jumpers will need to be in the default
+position.
+
+- **J16** is a two pin header; move the jumper to (pin1, pin2).
+- **J15** is a three pin header; move the jumper to (pin2, pin3).
+
+To communicate the desired clock rate into UHD software, specify the a
+special device address argument, where the key is
+`master_clock_rate` and the value is a rate in Hz. Example:
+
+ uhd_usrp_probe --args="master_clock_rate=52e6"
+
+\section e1x0_clksync Clock Synchronization
+
+\subsection e1x0_clksync_ref Ref Clock - 10MHz
+
+The E1xx has a 10MHz TCXO which can be used to discipline the flexible
+clocking by selecting `REF_INT` for the uhd::clock_config_t.
+
+Alternately, an external 10MHz reference clock can be supplied by
+soldering a connector.
+
+- Connector **J10** (REF_IN) needs MCX connector **WM5541-ND** or
+ similar.
+- Square wave will offer the best phase noise performance, but
+ sinusoid is acceptable.
+- **Power level:** 0 to 15dBm
+- Select `REF_SMA` in uhd::clock_config_t.
+
+\subsection e1x0_clksync_pps PPS - Pulse Per Second
+
+An external PPS signal for timestamp synchronization can be supplied by
+soldering a connector.
+
+- Connector **J13** (PPS) needs MCX connector **WM5541-ND** or
+ similar.
+- Requires a square wave signal.
+- **Amplitude:** 3.3 to 5 Vpp
+
+Test the PPS input with the following app (`<args>` are device
+address arguments, optional if only one USRP device is on your machine):
+
+ cd <install-path>/lib/uhd/examples
+ ./test_pps_input --args=<args>
+
+\subsection e1x0_clksync_gpsdo Internal GPSDO
+
+Please see the \ref page_gpsdo for
+information on configuring and using the internal GPSDO.
+
+UHD software will always try to detect an installed GPSDO at runtime. It
+is not necessary to burn a special EEPROM value for GPSDO detection.
+
+\section e1x0_hw Hardware Setup Notes
+
+\subsection e1x0_hw_leds Front panel LEDs
+
+The LEDs on the front panel can be useful in debugging hardware and
+software issues. The LEDs reveal the following about the state of the
+device:
+
+- **LED A:** transmitting
+- **LED B:** PPS signal
+- **LED C:** receiving
+- **LED D:** FPGA loaded
+- **LED E:** reference lock
+- **LED F:** board power
+
+\section e1x0_misc Miscellaneous
+
+\subsection e1x0_misc_sensors Available Sensors
+
+The following sensors are available; they can be queried through the
+API.
+
+- **ref_locked:** clock reference locked (internal/external)
+- other sensors are added when the GPSDO is enabled
+
+*/
+// vim:ft=doxygen:
diff --git a/host/docs/usrp_e1x0.rst b/host/docs/usrp_e1x0.rst
deleted file mode 100644
index ea2d05a3c..000000000
--- a/host/docs/usrp_e1x0.rst
+++ /dev/null
@@ -1,156 +0,0 @@
-========================================================================
-UHD - USRP-E1x0 Series Device Manual
-========================================================================
-
-.. contents:: Table of Contents
-
-------------------------------------------------------------------------
-Comparative features list
-------------------------------------------------------------------------
-
-**Hardware Capabilities:**
- * 1 transceiver card slot
- * Internal PPS reference input
- * Internal 10 MHz reference input
- * Configurable clock rate (defaults to 64 MHz)
- * Internal GPSDO option
-
-**FPGA Capabilities:**
- * 2 RX DDC chains in FPGA
- * 1 TX DUC chain in FPGA
- * Timed commands in FPGA
- * Timed sampling in FPGA
- * sc8 and sc16 sample modes
-
- * Up to 8 MHz of RF BW with 16-bit samples
- * Up to 16 MHz of RF BW with 8-bit samples
-
-------------------------------------------------------------------------
-Specify a Non-standard Image
-------------------------------------------------------------------------
-UHD software will automatically select the USRP-Embedded FPGA image from the
-installed images package. The FPGA image selection can be overridden with the
-**fpga** device address parameter.
-
-Example device address string representations to specify non-standard FPGA
-image:
-
-::
-
- fpga=usrp_e100_custom.bin
-
-------------------------------------------------------------------------
-Changing the Master Clock Rate
-------------------------------------------------------------------------
-The master clock rate of the USRP-Embedded feeds both the FPGA DSP and the codec
-chip. Hundreds of rates between 32 MHz and 64 MHz are available. A few notable
-rates are:
-
-* **64 MHz:** maximum rate of the codec chip
-* **61.44 MHz:** good for UMTS/WCDMA applications
-* **52 MHz:** good for GSM applications
-
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-Set 61.44MHz - uses external VCXO
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-To use the 61.44 MHz clock rate with the USRP-Embedded, two jumpers must be moved
-on the device.
-
-* **J16** is a two pin header; remove the jumper (or leave it on pin1 only).
-* **J15** is a three pin header; move the jumper to (pin1, pin2).
-
-**Note:** See instructions below to communicate the desired clock rate to UHD software.
-
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-Set other rates - uses internal VCO
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-To use other clock rates, the jumpers will need to be in the default position.
-
-* **J16** is a two pin header; move the jumper to (pin1, pin2).
-* **J15** is a three pin header; move the jumper to (pin2, pin3).
-
-To communicate the desired clock rate into UHD software,
-specify the a special device address argument,
-where the key is **master_clock_rate** and the value is a rate in Hz.
-Example:
-::
-
- uhd_usrp_probe --args="master_clock_rate=52e6"
-
-------------------------------------------------------------------------
-Clock Synchronization
-------------------------------------------------------------------------
-
-
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-Ref Clock - 10MHz
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-The E1xx has a 10MHz TCXO which can be used to discipline the flexible clocking
-by selecting **REF_INT** for the **clock_config_t**.
-
-Alternately, an external 10MHz reference clock can be supplied by soldering
-a connector.
-
-* Connector **J10** (REF_IN) needs MCX connector **WM5541-ND** or similar.
-* Square wave will offer the best phase noise performance, but sinusoid is acceptable.
-* **Power level:** 0 to 15dBm
-* Select **REF_SMA** in **clock_config_t**.
-
-
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-PPS - Pulse Per Second
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-An external PPS signal for timestamp synchronization can be supplied by soldering
-a connector.
-
-* Connector **J13** (PPS) needs MCX connector **WM5541-ND** or similar.
-* Requires a square wave signal.
-* **Amplitude:** 3.3 to 5 Vpp
-
-Test the PPS input with the following app (**<args>** are device address
-arguments, optional if only one USRP device is on your machine):
-
-::
-
- cd <install-path>/lib/uhd/examples
- ./test_pps_input --args=<args>
-
-
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-Internal GPSDO
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-Please see the `Internal GPSDO Application Notes <./gpsdo.html>`_
-for information on configuring and using the internal GPSDO.
-
-UHD software will always try to detect an installed GPSDO at runtime.
-It is not necessary to burn a special EEPROM value for GPSDO detection.
-
-------------------------------------------------------------------------
-Hardware Setup Notes
-------------------------------------------------------------------------
-
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-Front panel LEDs
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-The LEDs on the front panel can be useful in debugging hardware and software
-issues. The LEDs reveal the following about the state of the device:
-
-* **LED A:** transmitting
-* **LED B:** PPS signal
-* **LED C:** receiving
-* **LED D:** FPGA loaded
-* **LED E:** reference lock
-* **LED F:** board power
-
-------------------------------------------------------------------------
-Miscellaneous
-------------------------------------------------------------------------
-
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-Available Sensors
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-The following sensors are available;
-they can be queried through the API.
-
-* **ref_locked:** clock reference locked (internal/external)
-* other sensors are added when the GPSDO is enabled
diff --git a/host/docs/usrp_n2xx_simple_net_burner.1 b/host/docs/usrp_n2xx_simple_net_burner.1
index ca63e5698..85538ee22 100644
--- a/host/docs/usrp_n2xx_simple_net_burner.1
+++ b/host/docs/usrp_n2xx_simple_net_burner.1
@@ -19,9 +19,9 @@ This program works best when only an IP address is specified.
.IP "Custom FPGA Filepath:"
--fpga=\fI"filepath"\fR
.IP "Don't burn firmware:"
---no_fw
+--no-fw
.IP "Don't burn FPGA:"
---no_fpga
+--no-fpga
.IP "Automatically reboot USRP device after burning"
--auto_reboot
.IP "List all USRP devices without burning"
@@ -41,7 +41,7 @@ GR-UHD documentation:
.LP
Other UHD programs:
.sp
-uhd_images_downloader(1) usrp2_card_burner(1) usrp_x3xx_fpga_burner(1)
+uhd_images_downloader(1) usrp2_card_burner(1) usrp_x3xx_fpga_burner(1) octoclock_firmware_burner(1)
.SH AUTHOR
This manual page was written by Nicholas Corgan
for the Debian project (but may be used by others).
diff --git a/host/docs/usrp_x3x0.dox b/host/docs/usrp_x3x0.dox
new file mode 100644
index 000000000..0b46f0d16
--- /dev/null
+++ b/host/docs/usrp_x3x0.dox
@@ -0,0 +1,627 @@
+/*! \page page_usrp_x3x0 X3x0 Series Device Manual
+
+\tableofcontents
+
+\section x3x0_feature_list Comparative features list
+
+- Hardware Capabilities:
+ - 2 transceiver card slots (can do 2x2 MIMO out of the box)
+ - Dual SFP+ Transceivers (can be used with 1 GigE, 10 GigE)
+ - PCI Express over cable (MXI) gen1 x4
+ - External PPS input & output
+ - External 10 MHz input & output
+ - Expandable via 2nd SFP+ interface
+ - Supported master clock rates: 200 MHz, 184.32 MHz, 120 MHz
+ - External GPIO Connector with UHD API control
+ - External USB Connection for built-in JTAG debugger
+ - Internal GPSDO option
+ - Kintex-7 FPGA (X310: XC7K410T, X300: XC7K325T)
+- FPGA Capabilities:
+ - 2 RX DDC chains in FPGA
+ - 2 TX DUC chain in FPGA
+ - Timed commands in FPGA
+ - Timed sampling in FPGA
+ - 16-bit and 8-bit sample modes (sc8 and sc16)
+ - Up to 120 MHz of RF bandwidth with 16-bit samples
+
+\section x3x0_getting_started Getting started
+
+This will run you through the first steps relevant to get your USRP X300/X310
+up and running. Here, we assume you will connect your USRP using Gigabit Ethernet (1GigE),
+as this interface is readily available in most computers. For 10 Gigabit Ethernet (10GigE) or
+PCI Express (PCIe), see the corresponding sections in this manual page.
+
+\subsection x3x0_getting_started_assembling Assembling the X300/X310 kit
+
+Before you can start using your USRP, you might have to assemble the hardware,
+if this has not yet happened. Make sure you are grounded (e.g. by touching a radiator)
+in order not to damage sensitive electronics through static discharge!
+
+1. Unscrew the top of your X300/X310 (there are 2 screws which can be easily loosened
+ using a small Phillips screwdriver).
+2. Insert the daughterboards by inserting them into the slots and optionally screwing
+ them onto the motherboard.
+3. Connect the RF connectors on the daughterboards to the front panel. In order to avoid
+ confusion, make sure the internal connections match the labels on the front panel (i.e.
+ TX/RX is connected to TX/RX).
+4. If you have purchased an internal GPSDO, follow the instructions on
+ \ref page_gpsdo_x3x0 to insert the GPSDO. Note that you
+ will need an external GPS antenna connected to the rear GPS ANT connector in order to
+ make use of GPS, although your USRP will still be usable without.
+5. Connect the 1 GigE SFP+ transceiver into the Ethernet port 0 and connect the X300/X310 with
+ your computer.
+6. Connect the power supply and switch on the USRP.
+
+\subsection x3x0_getting_started_connectivity Network Connectivity
+
+The next step is to make sure your computer can talk to the USRP. An otherwise unconfigured
+USRP device will have the IP address 192.168.10.2 when using 1GigE.
+It is recommended to directly connect your USRP to the computer at first,
+and to set the IP address on your machine to 192.168.10.1.
+See \ref x3x0_setup_network_host_interface on details how to change your machine's IP address.
+
+<b>Note</b>: If you are running an automatic IP configuration service such as Network Manager, make
+sure it is either deactivated or configured to not change the network device! This can, in extreme cases,
+lead to you bricking the USRP!
+
+If your network configuration is correct, running `uhd_find_devices` will find your USRP
+and print some information about it. You will also be able to ping the USRP by running:
+
+ ping 192.168.10.2
+
+on the command line. At this point, you should also run:
+
+ uhd_usrp_probe --args addr=192.168.10.2
+
+to make sure all of your components (daughterboards, GPSDO) are correctly detected and usable.
+
+\subsection x3x0_getting_started_fpga_update Updating the FPGA
+
+If the output from `uhd_find_devices` and `uhd_usrp_probe` didn't show any warnings, you
+can skip this step. However, if there were errors regarding the FPGA version compatibility
+number, you will have to update the FPGA image before you can start using your USRP.
+
+1. Download the current UHD images. You can use the `uhd_images_downloader` script provided
+ with UHD (see also \ref page_images).
+2. Use the `usrp_x3xx_fpga_burner` utility to update the FPGA image. On the command line, run:
+
+ usrp_x3xx_fpga_burner --addr=192.168.10.2 --type=HGS
+
+ If you have installed the images to a non-standard location, you might need to run (change the filename according to your device):
+
+ usrp_x3xx_fpga_burner --addr=192.168.10.2 --fpga-path <path_to_images>/usrp_x310_fpga_HGS.bit
+
+ The process of updating the FPGA image will take several minutes. Make sure the process of flashing the image does not get interrupted.
+
+See \ref x3x0_flash for more details.
+
+When your FPGA is up to date, power-cycle the device and re-run `uhd_usrp_probe`. There should
+be no more warnings at this point, and all components should be correctly detected. Your USRP is now
+ready for development!
+
+\section x3x0_hw Hardware Setup
+
+\subsection x3x0_hw_1gige Gigabit Ethernet (1 GigE)
+
+- Prior to installing the module, the host PC can remain powered on.
+- Plug a 1 Gigabit SFP Transceiver into Ethernet Port 0 on the USRP X300/X310 device.
+- Use the Ethernet cable to connect the SFP+ transciever on the device to the host computer. For maximum throughput, Ettus Research recommends that you connect each device to its own dedicated Gigabit Ethernet interface on the host computer.
+- Connect the AC/DC power supply to the device and plug the supply into a wall outlet.
+- The OS will automatically recognize the device (e.g. when running `uhd_find_devices`).
+
+\subsection x3x0_hw_10gige Ten Gigabit Ethernet (10 GigE)
+
+### Installing the Host Ethernet Interface
+
+Ettus Research recommends the Intel Ethernet Converged Network Adapter X520-DA2 interface for communication with the USRP X300/X310 device.
+Installation instructions for this interface are available on the official Intel website.
+
+### Installing the USRP X300/X310
+
+- Prior to installing the module, the host PC can remain powered on.
+- Use a 10 Gigabit SFP+ cable to connect Ethernet Port 1 on the USRP X300/X310 device to the host computer. For maximum throughput, Ettus Research recommends that you connect the device to its own dedicated Ten Gigabit, Ettus Research recommended Ethernet interface on the host computer.
+- Connect the AC/DC power supply to the device and plug the supply into a wall outlet.
+- The OS will automatically recognize the device (e.g. when running `uhd_find_devices`).
+
+The LEDs on the front panel can be useful in debugging hardware and software issues (see \ref x3x0_hw_fpanel)
+
+\subsection x3x0_hw_pcie PCI Express (Desktop)
+
+<b>Important Note: The USRP X-Series provides PCIe connectivity over MXI cable.
+We will use the 'MXI' nomenclature for the rest of this manual.</b>
+
+### Installing the PCIe Kernel Drivers
+
+In order to use the USRP X-Series on a PCIe-over-MXI connection, you need to
+install the NI RIO drivers on your system. Please follow the insructions here:
+\ref page_ni_rio_kernel
+
+### Installing the PCI Express Interface Kit
+
+Follow the instructions listed in the <a href="http://www.ni.com/pdf/manuals/371976c.pdf">Set Up Your MXI-Express x4 System</a>
+document to setup the NI PCIe-8371 module.
+
+### Installing the USRP X300/X310
+
+- Prior to installing the module, make sure that the PC is powered off.
+- Using a MXI-Express Cable connect the USRP X300/X310 to the NI PCIe-8371.
+- Connect the AC/DC power supply to the device and plug the supply into a wall outlet.
+- Power on the USRP X300/X310 device using the power switch located in the bottom-right corner of the front panel.
+- Power on the PC (The OS automatically recognizes the new device)
+
+<b>Note:</b> The USRP device is not hot-pluggable over PCI Express. Any connection changes with only be detected by your
+computer after a successful reboot.
+
+### Troubleshooting
+
+Two possible failure modes are your computer not booting when connected to your
+USRP device through MXI-Express, and Windows not properly discovering your
+devices (for example, there is a yellow exclamation point on a PCI to PCI
+bridge in Windows Device Manager, despite drivers for all devices being
+installed). These situations often are due to programming errors in PCI Express
+device configuration of the BIOS. To use this software, you need a MXI-Express
+device that supports Mode 1 operation.
+Refer to <a href="http://download.ni.com/support/softlib//PXI/MXIe%20Compatibility%20Software/1.5.0/readme.html#SupportedHardware">NI MXI-Express BIOS Compatibility Software Readme</a>
+for more information.
+
+The BIOS Compatibility Software can be downloaded for Windows from the <a href="http://www.ni.com/download/mxi-express-bios-compatibility-software-1.5/3764/en/"> MXI-Express BIOS Compatibility Software page</a>.
+
+\subsection x3x0_hw_pcie_laptop PCI Express (Laptop)
+
+<b>Important Note: The USRP X-Series provides PCIe connectivity over MXI cable
+We will use the 'MXI' nomenclature for the rest of this manual.</b>
+
+### Installing the PCIe Kernel Drivers
+
+In order to use the USRP X-Series on a PCIe-over-MXI connection, you need to
+install the NI RIO drivers on your system. Please follow the insructions here:
+\ref page_ni_rio_kernel
+
+### Installing the PCI Express Card
+
+Follow the instructions listed in the “Installing an NI ExpressCard-8360 Host Card” section of the
+<a href="http://www.ni.com/pdf/manuals/373259d.pdf#page=10">Set Up Your MXI-Express x1 System</a>
+document to setup the NI ExpressCard-8360B module.
+
+### Installing the USRP X300/X310
+
+Because a laptop computer is not grounded, follow this procedure to safely connect a laptop
+computer to your USRP device.
+
+- Connect the AC/DC power supply to the device and plug the supply into a wall outlet. Ensure that the USRP device is powered off.
+- Touch the NI ExpressCard-8360B and a metal part of the USRP device simultaneously. Do not install the NI ExpressCard-8360B into the laptop computer yet.
+- Connect the cable to the NI ExpressCard-8360B and USRP.
+- Plug the NI ExpressCard-8360B into an available ExpressCard slot. If your laptop computer is already running (or hibernating, suspended, etc.) when you install an NI ExpressCard-8360B, you must reboot to detect the USRP. Otherwise, the USRP is detected when you start your computer.
+
+\b Note: The USRP device is not hot-pluggable over PCI Express. Any connection changes will only be detected by your computer after a successful reboot.
+
+\section x3x0_jtag On-Board JTAG Programmer
+
+The USRP X3x0 includes an on-board JTAG programmer, built into the motherboard.
+To connect to this JTAG device, simply connect your computer to the USB JTAG
+port on the front of the X3x0 device. You may now use the JTAG programmer in
+the same way you would use any other, including:
+
+- <a href="http://www.xilinx.com/support/download/index.htm">Xilinx Programming Tools (ISE, iMPACT)</a>
+- <a href="http://www.xilinx.com/tools/cspro.htm">Xilinx Chipscope</a>
+- <a href="https://www.digilentinc.com/Products/Detail.cfm?NavPath=2,66,828&Prod=ADEPT2">Digilent ADEPT</a>
+
+In order to use the JTAG programmer with the Xilinx tools, the Digilent drivers and plugin have to be installed first.
+Although recent versions of ISE ship with the driver, it has to still be manually installed.
+
+\b Note: Sometimes the ISE shipped versions are newer than the ones available via Digilent's website. It is therefore advisable to
+use the ISE provided plugin and drivers.
+
+To install first locate your ISE installation path on a Linux system (default is `/opt/Xilinx/<Version>`):
+
+ sudo <ise install path>/ISE_DS/common/bin/lin64/digilent/install_digilent.sh
+
+Afterwards either reboot or force udev to reload its rules by:
+
+ sudo udevadm control --reload
+
+The USRP-X series device should now be usable with all the tools mentioned above.
+
+\section x3x0_load_fpga_imgs Load FPGA Images onto the Device
+
+The USRP-X Series device ships with a bitstream pre-programmed in the flash,
+which is automatically loaded onto the FPGA during device power-up. However,
+a new FPGA image can be configured over the PCI Express interface or the
+on-board USB-JTAG programmer. This process can be seen as a "one-time load", in
+that if you power-cycle the device, it will not retain the FPGA image.
+
+Please note that this process is *different* than replacing the FPGA image
+stored in the flash, which will then be automatically loaded the next time the
+device is reset.
+
+\subsection x3x0_load_fpga_imgs_fpga_flavours FPGA Image Flavors
+
+The USRP-X Series devices contains two SFP+ ports for the two Ethernet channels.
+Because the SFP+ ports support both 1 Gigabit (SFP) and 10 Gigabit (SFP+)
+transceivers, several FPGA images are shipped with UHD to determine the
+behavior of the above interfaces.
+
+|  FPGA Image Flavor  |  SFP+ Port 0 Interface |  SFP+ Port 1 Interface |
+|---------------------|------------------------|------------------------|
+|  HGS (Default)  |  1 Gigabit Ethernet |  10 Gigabit Ethernet   |
+|  XGS   |  10 Gigabit Ethernet |  10 Gigabit Ethernet   |
+
+FPGA images are shipped in 2 formats:
+
+- **LVBITX**: LabVIEW FPGA configuration bitstream format (for use over PCI Express and Ethernet)
+- **BIT**: Xilinx configuration bitstream format (for use over Ethernet and JTAG)
+
+To get the latest images, simply use the uhd_images_downloader script. On Unix systems, use this command:
+
+ sudo uhd_images_downloader
+
+On Windows, use:
+
+ <path_to_python.exe> <install-path>/bin/uhd_images_downloader.py
+
+
+\subsection x3x0_load_fpga_imgs_pcie Use PCI Express to load FPGA images
+
+UHD requires a valid LabVIEW FPGA configuration bitstream file (LVBITX) to use the USRP-X Series
+device over the PCI Express bus. LabVIEW FPGA is \b not required to use UHD with a USRP-X Series device.
+Because FPGA configuration is a part of normal operation over PCI Express, there is no setup required
+before running UHD.
+
+The \e fpga tag can be set in the optional device args passed to indicate the FPGA image flavor to UHD.
+If the above tag is specified, UHD will attempt to load the FPGA image with the requested flavor from the
+UHD images directory. If the tag is not specified, UHD will automatically detect the flavor of the image
+and attempt to load the corresponding configuration bitstream onto the device. Note that if UHD detects
+that the requested image is already loaded onto the FPGA then it will not reload it.
+
+\subsection x3x0_load_fpga_imgs_jtag Use JTAG to load FPGA images
+
+The USRP-X Series device features an on-board USB-JTAG programmer that can be accessed on the front-panel
+of the device. The iMPACT tool in the <a href="http://www.xilinx.com/support/download/index.htm">Xilinx Programming Tools (ISE, iMPACT)</a> package can be used to load an image over the JTAG interface. This can be useful for unbricking devices.
+
+If you have iMPACT installed, you can use the `impact_jtag_programmer.sh` tool to install images. Make sure your X3x0 is powered on and connected to your computer using the front panel USB JTAG connector (USB 2.0 is fine for this). Then run the tool:
+
+ <path_to_uhd_tools>/impact_jtag_programmer.sh --fpga-path=<fpga_image_path>
+
+\section x3x0_flash Load the Images onto the On-board Flash
+
+To change the FPGA image stored in the on-board flash, the USRP-X Series device
+can be reprogrammed over the network or PCI Express. Once you have programmed an
+image into the flash, that image will be automatically loaded on the FPGA
+during the device boot-up sequence.
+
+\b Note:
+Different hardware revisions require different FPGA images.
+Determine the revision number from the sticker on the rear of the device.
+If you are manually specifying an FPGA path, the utility will not try to
+detect your device information, and you will need to use this number to
+select which image to burn.
+
+\b Note:
+The burner utility will default to using the appropriate BIT file if no custom
+FPGA image path is specified, but it is compatible with BIN, BIT, and LVBITX
+images.
+
+\subsection x3x0_flash_burner_tool Use the burner tool over Ethernet
+
+ Automatic FPGA path, detect image type:
+ usrp_x3xx_fpga_burner --addr=<IP address>
+
+ Automatic FPGA path, select image type:
+ usrp_x3xx_fpga_burner --addr=<IP address> --type=<HGS or XGS>
+
+ Manual FPGA path:
+ usrp_x3xx_fpga_burner --addr=<IP address> --fpga-path=<path to FPGA image>
+
+\subsection x3x0_flash_burner_tool_pcie Use the burner tool over PCI Express
+
+ Automatic FPGA path, detect image type:
+ usrp_x3xx_fpga_burner --resource=<NI-RIO resource>
+
+ Automatic FPGA path, select image type:
+ usrp_x3xx_fpga_burner --resource=<NI-RIO resource> --type=<HGS or XGS>
+
+ Manual FPGA path:
+ usrp_x3xx_fpga_burner --resource=<NI-RIO resource> --fpga-path=<path to FPGA image>
+
+\subsection x3x0_flash_bricking Device recovery and bricking
+It is possible to put the device into an unusable state by loading bad images ("bricking").
+Fortunately, the USRP-X Series device can be loaded with a good image temporarily using the USB-JTAG interface.
+Once booted into the safe image, the user can once again load images onto the device over Ethernet or PCI Express.
+
+\section x3x0_setup_network Setup Networking
+The USRP-X Series only supports Gigabit and Ten Gigabit Ethernet and will not work with a 10/100 Mbps interface.
+
+<b>Please note that 10 Gigabit Ethernet defines the protocol, not necessary the
+medium. For example, you may use 10GigE over optical with optical SFP+
+transceiver modules.</b>
+
+\subsection x3x0_setup_network_host_interface Setup the host interface
+
+The USRP-X Series communicates at the IP/UDP layer over the Gigabit and Ten Gigabit Ethernet.
+The default IP address for the USRP X300/X310 device depends on the Ethernet Port and interface used.
+You must configure the host Ethernet interface with a static IP address on the same subnet as the connected
+device to enable communication, as shown in the following table:
+
+  Ethernet Interface | USRP Ethernet Port |  Default USRP IP Address |  Host Static IP Address | Host Static Subnet Mask | Address EEPROM key
+---------------------|-------------------------|--------------------------|-------------------------|-------------------------|-------------------
+  Gigabit  |  Port 0 (HGS Image) |  192.168.10.2 | 192.168.10.1 | 255.255.255.0 | `ip-addr0`
+  Ten Gigabit  |  Port 0 (XGS Image) |  192.168.30.2 | 192.168.30.1 | 255.255.255.0 | `ip-addr2`
+  Ten Gigabit  |  Port 1 (HGS/XGS Image) |  192.168.40.2 | 192.168.40.1 | 255.255.255.0 | `ip-addr3`
+
+As you can see, the X300/X310 actually stores different IP addresses, which all address the device differently: Each combination of Ethernet port and interface type (i.e., Gigabit or Ten Gigabit) has its own IP address. As an example, when addressing the device through 1 Gigabit Ethernet on its first port (Port 0), the relevant IP address is the one stored in the EEPROM with key `ip-addr0`, or 192.168.10.2 by default.
+
+See \ref x3x0cfg_hostpc_netcfg_ip on details how to change your machine's IP address and MTU size to work well with the X300.
+
+\subsection x3x0_setup_network_multidevs Multiple devices per host
+
+For maximum throughput, one Ethernet interface per USRP is recommended,
+although multiple devices may be connected via an Ethernet switch.
+In any case, each Ethernet interface should have its own subnet,
+and the corresponding USRP device should be assigned an address in that subnet.
+Example:
+
+### Configuration for USRP-X Series device 0:
+
+- Ethernet interface IPv4 address: `192.168.10.1`
+- Ethernet interface subnet mask: `255.255.255.0`
+- USRP-X Series device IPv4 address: `192.168.10.2`
+
+### Configuration for USRP-X Series device 1:
+
+- Ethernet interface IPv4 address: `192.168.110.1`
+- Ethernet interface subnet mask: `255.255.255.0`
+- USRP-X Series device IPv4 address: `192.168.110.2`
+
+\subsection x3x0_setup_change_ip Change the USRP's IP address
+
+You may need to change the USRP's IP address for several reasons:
+- to satisfy your particular network configuration
+- to use multiple USRP-X Series devices on the same host computer
+- to set a known IP address into USRP (in case you forgot)
+
+To change the USRP's IP address,
+you must know the current address of the USRP,
+and the network must be setup properly as described above.
+You must also know which IP address of the X300 you want to change, as identified by their address EEPROM key (e.g. `ip-addr0`, see the table above).
+Run the following commands:
+
+\b UNIX:
+
+ cd <install-path>/lib/uhd/utils
+ ./usrp_burn_mb_eeprom --args=<optional device args> --values="ip-addr0=192.168.10.3"
+
+\b Windows:
+
+ cd <install-path>\lib\uhd\utils
+ usrp_burn_mb_eeprom.exe --args=<optional device args> --values="ip-addr0=192.168.10.3"
+
+You must power-cycle the device before you can use this new address.
+
+\section x3x0_addressing Addressing the Device
+
+\subsection x3x0_addressing_singledev Single device configuration
+
+In a single-device configuration,
+the USRP device must have a unique IPv4 address on the host computer.
+The USRP can be identified through its IPv4 address, resolvable hostname, NI-RIO resource name or by other means.
+See the application notes on \ref page_identification.
+Use this addressing scheme with the uhd::usrp::multi_usrp interface (not a typo!).
+
+Example device address string representation for a USRP-X Series device with IPv4 address 192.168.10.2:
+
+ addr=192.168.10.2
+
+Example device address string representation for a USRP-X Series device with RIO resource name `RIO0` over PCI Express:
+
+ resource=RIO0
+
+\subsection x3x0_addressing_multidevcfg Multiple device configuration
+
+In a multi-device configuration,
+each USRP device must have a unique IPv4 address on the host computer.
+The device address parameter keys must be suffixed with the device index.
+Each parameter key should be of the format \<key\>\<index\>.
+Use this addressing scheme with the uhd::usrp::multi_usrp interface.
+
+- The order in which devices are indexed corresponds to the indexing of the transmit and receive channels.
+- The key indexing provides the same granularity of device identification as in the single device case.
+
+Example device address string representation for 2 USRPs with IPv4 addresses **192.168.10.2** and **192.168.20.2**:
+
+ addr0=192.168.10.2, addr1=192.168.20.2
+
+
+\section x3x0_comm_problems Communication Problems
+
+When setting up a development machine for the first time,
+you may have various difficulties communicating with the USRP device.
+The following tips are designed to help narrow down and diagnose the problem.
+
+\subsection x3x0_comm_problems_runtimeerr RuntimeError: no control response
+
+This is a common error that occurs when you have set the subnet of your network
+interface to a different subnet than the network interface of the USRP device. For
+example, if your network interface is set to **192.168.20.1**, and the USRP device is **192.168.10.2**
+(note the difference in the third numbers of the IP addresses), you
+will likely see a 'no control response' error message.
+
+Fixing this is simple - just set the your host PC's IP address to the same
+subnet as that of your USRP device. Instructions for setting your IP address are in the
+previous section of this documentation.
+
+\subsection x3x0_comm_problems_firewall Firewall issues
+
+When the IP address is not specified,
+the device discovery broadcasts UDP packets from each Ethernet interface.
+Many firewalls will block the replies to these broadcast packets.
+If disabling your system's firewall
+or specifying the IP address yields a discovered device,
+then your firewall may be blocking replies to UDP broadcast packets.
+If this is the case, we recommend that you disable the firewall
+or create a rule to allow all incoming packets with UDP source port **49152**.
+
+\subsection x3x0_comm_problems_ping Ping the device
+The USRP device will reply to ICMP echo requests ("ping").
+A successful ping response means that the device has booted properly
+and that it is using the expected IP address.
+
+ ping 192.168.10.2
+
+\subsection x3x0_comm_problems_not_enumerated USRP device not enumerated (Linux)
+
+UHD requires the RIO device manager service to be running in order to
+communicate with an X-Series USRP over PCIe. This service is installed as
+a part of the USRP RIO (or NI-USRP) installer. On Linux, the service is not
+started at system boot time, and is left to the user to control. To start it,
+run the following command:
+
+ sudo niusrprio_pcie start
+
+If the device still does not enumerate after starting the device manager, make sure that the host computer
+has successfully detected it. You can do so by running the following command:
+
+ lspci -k -d 1093:c4c4
+
+A device similar to the following should be detected:
+
+ $ lspci -k -d 1093:c4c4
+ 04:00.0 Signal processing controller: National Instruments ...
+ Subsystem: National Instruments Device 76ca
+ Kernel driver in use: niusrpriok_shipped
+
+- A USRP X300 should appear with 'Subsystem: National Instruments Device 7736'
+- A USRP X310 should appear with 'Subsystem: National Instruments Device 76ca'
+
+\subsection x3x0_comm_problems_not_enumerated_win USRP device not enumerated (Windows)
+
+UHD requires the RIO device manager service to be running in order to
+communicate with an X-Series USRP over PCIe.
+This service is installed as a part of the USRP RIO (or NI-USRP) installer. On Windows, it can be found in
+the **Services** section in the Control Panel and it is started at system boot time. To ensure that the
+service is indeed started, navigate to the Services tag in the Windows Task Manager and ensure that the
+status of **niusrpriorpc** is "Running".
+
+If the device still does not enumerate after starting the device manager, make sure that the host computer
+has successfully detected it. You can do so by checking if your device shows up in the Windows Device Manager.
+
+\subsection x3x0_comm_problems_monitor Monitor the host network traffic
+Use Wireshark to monitor packets sent to and received from the device.
+
+\subsection x3x0_comm_problems_leds Observe Ethernet port LEDs
+When there is network traffic arriving at the Ethernet port, LEDs will light up.
+You can use this to make sure the network connection is correctly set up, e.g.
+by pinging the USRP and making sure the LEDs start to blink.
+
+\section x3x0_hw Hardware Notes
+
+\subsection x3x0_hw_fpanel Front Panel
+
+\image html x3x0_fp_overlay.png "X3x0"
+
+- **JTAG**: USB connector for the on-board USB-JTAG programmer
+- **RF A Group**
+ + **TX/RX LED**: Indicates that data is streaming on the TX/RX channel on daughterboard A
+ + **RX2 LED**: Indicates that data is streaming on the RX2 channel on daughterboard A
+- **REF**: Indicates that the external Reference Clock is locked
+- **PPS**: Indicates a valid PPS signal by pulsing once per second
+- **AUX I/O**: Front panel GPIO connector.
+- **GPS**: Indicates that GPS reference is locked
+- **LINK**: Indicates that the host computer is communicating with the device (Activity)
+
+- **RF B Group**
+ + **TX/RX LED**: Indicates that data is streaming on the TX/RX channel on daughterboard B
+ + **RX2 LED**: Indicates that data is streaming on the RX2 channel on daughterboard B
+- **PWR**: Power switch
+
+\subsection x3x0_hw_rear_panel Rear Panel
+
+\image html x3x0_rp_overlay.png "X3x0 Rear Panel"
+
+- **PWR**: Connector for the USRP-X Series power supply
+- **1G/10G ETH**: SFP+ ports for Ethernet interfaces
+- **REF OUT**: Output port for the exported reference clock
+- **REF IN**: Reference clock input
+- **PCIe x4**: Connector for Cabled PCI Express link
+- **PPS/TRIG OUT**: Output port for the PPS signal
+- **PPS/TRIG IN**: Input port for the PPS signal
+- **GPS**: Connection for the GPS antenna
+
+\subsection x3x0_hw_x3x0_hw_ref10M Ref Clock - 10 MHz
+
+Using an external 10 MHz reference clock, a square wave will offer the best phase
+noise performance, but a sinusoid is acceptable. The power level of the reference clock cannot exceed +15 dBm.
+
+\subsection x3x0_hw_pps PPS - Pulse Per Second
+Using a PPS signal for timestamp synchronization requires a square wave signal with the following a 5Vpp amplitude.
+
+To test the PPS input, you can use the following tool from the UHD examples:
+
+- `<args>` are device address arguments (optional if only one USRP device is on your machine)
+
+ cd <install-path>/lib/uhd/examples
+ ./test_pps_input --args=\<args\>
+
+\subsection x3x0_hw_gpsdo Internal GPSDO
+
+Please see \ref page_gpsdo_x3x0 for information on configuring and using the internal GPSDO.
+
+\subsection x3x0_hw_gpio Front Panel GPIO
+
+### Connector
+
+\image html x3x0_gpio_conn.png "X3x0 GPIO Connector"
+
+### Pin Mapping
+
+- Pin 1: +3.3V
+- Pin 2: Data[0]
+- Pin 3: Data[1]
+- Pin 4: Data[2]
+- Pin 5: Data[3]
+- Pin 6: Data[4]
+- Pin 7: Data[5]
+- Pin 8: Data[6]
+- Pin 9: Data[7]
+- Pin 10: Data[8]
+- Pin 11: Data[9]
+- Pin 12: Data[10]
+- Pin 13: Data[11]
+- Pin 14: 0V
+- Pin 15: 0V
+
+
+Please see the \ref page_gpio_api for information on configuring and using the GPIO bus.
+
+\subsection x3x0_hw_chipscope Debugging custom FPGA designs with Xilinx Chipscope
+
+Xilinx chipscope allows for debugging custom FPGA designs similar to a logic analyzer.
+USRP-X series devices can be used with Xilinx chipscope using the onboard USB JTAG connector.
+
+Further information on how to use Chipscope can be found in the Xilinx Chipscope Pro Software and Cores User Guide (UG029).
+
+\section x3x0_misc Miscellaneous
+
+\subsection x3x0_misc_multirx Multiple RX channels
+
+There are two complete DDC and DUC DSP chains in the FPGA. In the single channel case,
+only one chain is ever used. To receive from both channels, the user must set the **RX** or **TX**
+subdevice specification.
+
+In the following example, a TVRX2 is installed.
+Channel 0 is sourced from subdevice **RX1**,
+and channel 1 is sourced from subdevice **RX2** (**RX1** and **RX2** are antenna connectors on the TVRX2 daughterboard).
+
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~{.cpp}
+usrp->set_rx_subdev_spec("A:RX1 A:RX2");
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+\subsection x3x0_misc_sensors Available Sensors
+
+The following sensors are available for the USRP-X Series motherboards;
+they can be queried through the API.
+
+- **ref_locked** - clock reference locked (internal/external)
+- Other sensors are added when the GPSDO is enabled
+
+*/
+// vim:ft=doxygen:
diff --git a/host/docs/usrp_x3x0.rst b/host/docs/usrp_x3x0.rst
deleted file mode 100644
index 7dd322dbf..000000000
--- a/host/docs/usrp_x3x0.rst
+++ /dev/null
@@ -1,747 +0,0 @@
-===============================
-UHD - X3x0 Series Device Manual
-===============================
-
-.. contents:: Table of Contents
-
--------------------------
-Comparative features list
--------------------------
-
-**Hardware Capabilities:**
- * 2 transceiver card slots (can do 2x2 MIMO out of the box)
- * Dual SFP+ Transceivers (can be used with 1 GigE, 10 GigE)
- * PCI Express over cable (MXI) gen1 x4
- * External PPS input & output
- * External 10 MHz input & output
- * Expandable via 2nd SFP+ interface
- * Supported master clock rates: 200 MHz, 184.32 MHz
- * External GPIO Connector with UHD API control
- * External USB Connection for built-in JTAG debugger
- * Internal GPSDO option
- * Kintex-7 FPGA (X310: XC7K410T, X300: XC7K325T)
-
-**FPGA Capabilities:**
- * 2 RX DDC chains in FPGA
- * 2 TX DUC chain in FPGA
- * Timed commands in FPGA
- * Timed sampling in FPGA
- * 16-bit and 8-bit sample modes (sc8 and sc16)
- * Up to 120 MHz of RF bandwidth with 16-bit samples
-
----------------
-Getting started
----------------
-
-This will run you through the first steps relevant to get your USRP X300/X310
-up and running. Here, we assume you will connect your USRP using Gigabit Ethernet (1GigE),
-as this interface is readily available in most computers. For 10 Gigabit Ethernet (10GigE) or
-PCI Express (PCIe), see the corresponding sections in this manual page.
-
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-Assembling the X300/X310 kit
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-
-Before you can start using your USRP, you might have to assemble the hardware,
-if this has not yet happened. Make sure you are grounded (e.g. by touching a radiator)
-in order not to damage sensitive electronics through static discharge!
-
-1. Unscrew the top of your X300/X310 (there are 2 screws which can be easily loosened
- using a small Phillips screwdriver).
-2. Insert the daughterboards by inserting them into the slots and optionally screwing
- them onto the motherboard.
-3. Connect the RF connectors on the daughterboards to the front panel. In order to avoid
- confusion, make sure the internal connections match the labels on the front panel (i.e.
- TX/RX is connected to TX/RX).
-4. If you have purchased an internal GPSDO, follow the instructions on
- `the internal GPSDO manual page <./gpsdo_x3x0.html>`_ to insert the GPSDO. Note that you
- will need an external GPS antenna connected to the rear GPS ANT connector in order to
- make use of GPS, although your USRP will still be usable without.
-5. Connect the 1 GigE SFP+ transceiver into the Ethernet port 0 and connect the X300/X310 with
- your computer.
-6. Connect the power supply and switch on the USRP.
-
-^^^^^^^^^^^^^^^^^^^^
-Network Connectivity
-^^^^^^^^^^^^^^^^^^^^
-
-The next step is to make sure your computer can talk to the USRP. An otherwise
-unconfigured USRP device will have the IP address 192.168.10.2 when using
-1GigE. It is recommended to directly connect your USRP to the computer at
-first, and to set the IP address on your machine to 192.168.10.1.
-
-See the `system configuration manual <./usrp_x3x0_config.html>`_ on details how
-to change your machine's IP address.
-
-**Note**: If you are running an automatic IP configuration service such as
-Network Manager, make sure it is either deactivated or configured to not manage
-the network interface! This can, in extreme cases, lead to you bricking the
-USRP!
-
-If your network configuration is correct, running ``uhd_find_devices`` will find your USRP
-and print some information about it. You will also be able to ping the USRP by running::
-
- ping 192.168.10.2
-
-on the command line. At this point, you should also run::
-
- uhd_usrp_probe --args addr=192.168.10.2
-
-to make sure all of your components (daughterboards, GPSDO) are correctly detected and usable.
-
-^^^^^^^^^^^^^^^^^^^^^^^^^
-Updating the FPGA Image
-^^^^^^^^^^^^^^^^^^^^^^^^^
-
-If the output from ``uhd_find_devices`` and ``uhd_usrp_probe`` didn't show any
-warnings, you can skip this step. However, if there were errors regarding the
-FPGA version compatibility number (compat number), you will have to upate the
-FPGA image before you can start using your USRP.
-
-1. Download the current UHD images. You can use the ``uhd_images_downloader`` script provided
- with UHD (see also `FPGA Image Flavors`_).
-2. Use the ``usrp_x3xx_fpga_burner`` utility to update the FPGA image. On the command line, run::
-
- usrp_x3xx_fpga_burner --addr=192.168.10.2 --type=HGS
-
- If you have installed the images to a non-standard location, you might need to run (change the filename according to your device)::
-
- usrp_x3xx_fpga_burner --addr=192.168.10.2 --fpga-path <path_to_images>/usrp_x310_fpga_HGS.bit
-
- The process of updating the FPGA image will take several minutes. Make sure the process of flashing the image does not get interrupted.
-
-See `Load the Images onto the On-board Flash`_ for more details.
-
-When your FPGA image is up to date, power-cycle the device and re-run
-``uhd_usrp_probe``. There should be no errors at this point, and all components
-should be correctly detected. Your USRP is now ready for development!
-
---------------
-Hardware Setup
---------------
-
-^^^^^^^^^^^^^^^^^^^^^^^^^
-Gigabit Ethernet (1 GigE)
-^^^^^^^^^^^^^^^^^^^^^^^^^
-
-Installing the USRP X300/X310
-:::::::::::::::::::::::::::::
-* Prior to installing the module, the host PC can remain powered on.
-* Plug a 1 Gigabit SFP Transceiver into Ethernet Port 0 on the USRP X300/X310 device.
-* Use the Ethernet cable to connect the SFP+ transciever on the device to the host computer. For maximum throughput, Ettus Research recommends that you connect each device to its own dedicated Gigabit Ethernet interface on the host computer.
-* Connect the AC/DC power supply to the device and plug the supply into a wall outlet.
-* The OS will automatically recognize the device (e.g. when running uhd_find_devices).
-
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-Ten Gigabit Ethernet (10 GigE)
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-
-Installing the Host Ethernet Interface
-::::::::::::::::::::::::::::::::::::::
-Ettus Research recommends the Intel Ethernet Converged Network Adapter X520-DA2 interface for communication with the USRP X300/X310 device.
-Installation instructions for this interface are available on the official Intel website.
-
-Installing the USRP X300/X310
-:::::::::::::::::::::::::::::
-* Prior to installing the module, the host PC can remain powered on.
-* Use a 10 Gigabit SFP+ cable to connect Ethernet Port 1 on the USRP X300/X310 device to the host computer. For maximum throughput, Ettus Research recommends that you connect the device to its own dedicated Ten Gigabit, Ettus Research recommended Ethernet interface on the host computer.
-* Connect the AC/DC power supply to the device and plug the supply into a wall outlet.
-* The OS will automatically recognize the device (e.g. when running uhd_find_devices).
-
-The LEDs on the front panel can be useful in debugging hardware and software issues (see Section "Front Panel")
-
-^^^^^^^^^^^^^^^^^^^^^
-PCI Express (Desktop)
-^^^^^^^^^^^^^^^^^^^^^
-*Important Note: The USRP X-Series provides PCIe connectivity over MXI cable.
-We will use the 'MXI' nomenclature for the rest of this manual.*
-
-Installing the PCI Express Interface Kit
-::::::::::::::::::::::::::::::::::::::::
-Follow the instructions listed in the `Set Up Your MXI-Express x4 System <http://www.ni.com/pdf/manuals/371976c.pdf>`_
-document to setup the NI PCIe-8371 module.
-
-Installing the USRP X300/X310
-:::::::::::::::::::::::::::::
-* Prior to installing the module, make sure that the PC is powered off.
-* Using a MXI-Express Cable connect the USRP X300/X310 to the NI PCIe-8371.
-* Connect the AC/DC power supply to the device and plug the supply into a wall outlet.
-* Power on the USRP X300/X310 device using the power switch located in the bottom-right corner of the front panel.
-* Power on the PC (The OS automatically recognizes the new device)
-
-NOTE: The USRP device is not hot-pluggable over PCI Express. Any connection changes with only be detected by your
-computer after a successful reboot.
-
-Troubleshooting
-:::::::::::::::
-Two possible failure modes are your computer not booting when connected to your
-USRP device through MXI-Express, and Windows not properly discovering your
-devices (for example, there is a yellow exclamation point on a PCI to PCI
-bridge in Windows Device Manager, despite drivers for all devices being
-installed). These situations often are due to programming errors in PCI Express
-device configuration of the BIOS. To use this software, you need a MXI-Express
-device that supports Mode 1 operation.
-Refer to `NI MXI-Express BIOS Compatibility Software Readme <http://download.ni.com/support/softlib//PXI/MXIe%20Compatibility%20Software/1.5.0/readme.html#SupportedHardware>`_
-for more information.
-
-The BIOS Compatibility Software can be downloaded for Windows from the `MXI-Express BIOS Compatibility Software <http://www.ni.com/download/mxi-express-bios-compatibility-software-1.5/3764/en/>`_ page
-
-^^^^^^^^^^^^^^^^^^^^
-PCI Express (Laptop)
-^^^^^^^^^^^^^^^^^^^^
-*Important Note: The USRP X-Series provides PCIe connectivity over MXI cable.
-We will use the 'MXI' nomenclature for the rest of this manual.*
-
-Installing the PCI Express Card
-:::::::::::::::::::::::::::::::
-Follow the instructions listed in the “Installing an NI ExpressCard-8360 Host Card” section of the
-`Set Up Your MXI-Express x1 System <http://www.ni.com/pdf/manuals/373259d.pdf#page=10>`_
-document to setup the NI ExpressCard-8360B module.
-
-Installing the USRP X300/X310
-:::::::::::::::::::::::::::::
-Because a laptop computer is not grounded, follow this procedure to safely connect a laptop
-computer to your USRP device.
-
-* Connect the AC/DC power supply to the device and plug the supply into a wall outlet. Ensure that the USRP device is powered off.
-* Touch the NI ExpressCard-8360B and a metal part of the USRP device simultaneously. Do not install the NI ExpressCard-8360B into the laptop computer yet.
-* Connect the cable to the NI ExpressCard-8360B and USRP.
-* Plug the NI ExpressCard-8360B into an available ExpressCard slot. If your laptop computer is already running (or hibernating, suspended, etc) when you install an NI ExpressCard-8360B, you must reboot to detect the USRP. Otherwise, the USRP is detected when you start your computer.
-
-NOTE: The USRP device is not hot-pluggable over PCI Express. Any connection changes will only be detected by your computer after a successful reboot.
-
---------------------------------
-On-Board JTAG Programmer
---------------------------------
-The USRP X3x0 includes an on-board JTAG programmer, built into the motherboard.
-To connect to this JTAG device, simply connect your computer to the USB JTAG
-port on the front of the X3x0 device. You may now use the JTAG programmer in
-the same way you would use any other, including:
-
-* `Xilinx Programming Tools (ISE, iMPACT) <http://www.xilinx.com/support/download/index.htm>`_
-* `Xilinx Chipscope <http://www.xilinx.com/tools/cspro.htm>`_
-* `Digilent ADEPT <https://www.digilentinc.com/Products/Detail.cfm?NavPath=2,66,828&Prod=ADEPT2>`_
-
-In order to use the JTAG programmer with the Xilinx tools, the Digilent drivers and plugin have to be installed first.
-Although recent versions of ISE ship with the driver, it has to still be manually installed.
-
-Note: Sometimes the ISE shipped versions are newer than the ones available via Digilent's website. It is therefore advisable to
-use the ISE provided plugin and drivers.
-
-To install first locate your ISE installation path (default is /opt/Xilinx/<Version>).
-
-**LINUX**
-::
-
- sudo <ise install path>/ISE_DS/common/bin/lin64/digilent/install_digilent.sh
-
-Afterwards either reboot or force udev to reload its rules by:
-::
-
- sudo udevadm control --reload
-
-The USRP-X series device should now be usable with all the tools mentioned above.
-
---------------------------------
-Load FPGA Images onto the Device
---------------------------------
-The USRP-X Series device ships with a bitstream pre-programmed in the flash,
-which is automatically loaded onto the FPGA during device power-up. However,
-a new FPGA image can be configured over the PCI Express interface or the
-on-board USB-JTAG programmer. This process can be seen as a "one-time load", in
-that if you power-cycle the device, it will not retain the FPGA image.
-
-Please note that this process is *different* than replacing the FPGA image
-stored in the flash, which will then be automatically loaded the next time the
-device is reset.
-
-^^^^^^^^^^^^^^^^^^
-FPGA Image Flavors
-^^^^^^^^^^^^^^^^^^
-The USRP-X Series devices contains two SFP+ ports for the two Ethernet channels.
-Because the SFP+ ports support both 1 Gigabit (SFP) and 10 Gigabit (SFP+)
-transceivers, several FPGA images are shipped with UHD to determine the
-behavior of the above interfaces.
-
-+---------------------+------------------------+------------------------+
-|  FPGA Image Flavor  |  SFP+ Port 0 Interface |  SFP+ Port 1 Interface |
-+=====================+========================+========================+
-|  HGS (Default)  |  1 Gigabit Ethernet |  10 Gigabit Ethernet   |
-+---------------------+------------------------+------------------------+
-|  XGS   |  10 Gigabit Ethernet |  10 Gigabit Ethernet   |
-+---------------------+------------------------+------------------------+
-
-FPGA images are shipped in 2 formats:
-
-* **LVBITX**: LabVIEW FPGA configuration bitstream format (for use over PCI Express and Ethernet)
-* **BIT**: Xilinx configuration bitstream format (for use over Ethernet and JTAG)
-
-To get the latest images, simply use the uhd_images_downloader script:
-
-**UNIX:**
-
-::
-
- sudo uhd_images_downloader
-
-**Windows:**
-
-::
-
- <path_to_python.exe> <install-path>/bin/uhd_images_downloader.py
-
-
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-Use PCI Express to load FPGA images
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-UHD requires a valid LabVIEW FPGA configuration bitstream file (LVBITX) to use the USRP-X Series
-device over the PCI Express bus. LabVIEW FPGA is **NOT** required to use UHD with a USRP-X Series device.
-Because FPGA configuration is a part of normal operation over PCI Express, there is no setup required
-before running UHD.
-
-The **fpga** tag can be set in the optional device args passed to indicate the FPGA image flavor to UHD.
-If the above tag is specified, UHD will attempt to load the FPGA image with the requested flavor from the
-UHD images directory. If the tag is not specified, UHD will automatically detect the flavor of the image
-and attempt to load the corresponding configuration bitstream onto the device. Note that if UHD detects
-that the requested image is already loaded onto the FPGA then it will not reload it.
-
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-Use JTAG to load FPGA images
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-The USRP-X Series device features an on-board USB-JTAG programmer that can be accessed on the front-panel
-of the device. The iMPACT tool in the `Xilinx Programming Tools <http://www.xilinx.com/support/download/index.htm>`_ package can be used to load an image over
-the JTAG interface. This can be useful for unbricking devices.
-
-If you have iMPACT installed, you can use the impact_jtag_programmer.sh tool to install images. Make sure your X3x0 is powered on and connected to your computer using the front panel USB JTAG connector (USB 2.0 is fine for this). Then run the tool:
-
-::
-
- <path_to_uhd_tools>/impact_jtag_programmer.sh --fpga-path=<fpga_image_path>
-
----------------------------------------
-Load the Images onto the On-board Flash
----------------------------------------
-To change the FPGA image stored in the on-board flash, the USRP-X Series device
-can be reprogrammed over the network or PCI Express. Once you have programmed an
-image into the flash, that image will be automatically loaded on the FPGA
-during the device boot-up sequence.
-
-**Note:**
-Different hardware revisions require different FPGA images.
-Determine the revision number from the sticker on the rear of the device.
-If you are manually specifying an FPGA path, the utility will not try to
-detect your device information, and you will need to use this number to
-select which image to burn.
-
-**Note:**
-The burner utility will default to using the appropriate BIT file if no custom
-FPGA image path is specified, but it is compatible with BIN, BIT, and LVBITX
-images.
-
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-Use the burner tool over Ethernet
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-::
-
- Automatic FPGA path, detect image type:
- usrp_x3xx_fpga_burner --addr=<IP address>
-
- Automatic FPGA path, select image type:
- usrp_x3xx_fpga_burner --addr=<IP address> --type=<HGS or XGS>
-
- Manual FPGA path:
- usrp_x3xx_fpga_burner --addr=<IP address> --fpga-path=<path to FPGA image>
-
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-Use the burner tool over PCI Express
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-::
-
- Automatic FPGA path, detect image type:
- usrp_x3xx_fpga_burner --resource=<NI-RIO resource>
-
- Automatic FPGA path, select image type:
- usrp_x3xx_fpga_burner --resource=<NI-RIO resource> --type=<HGS or XGS>
-
- Manual FPGA path:
- usrp_x3xx_fpga_burner --resource=<NI-RIO resource> --fpga-path=<path to FPGA image>
-
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-Device recovery and bricking
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-It is possible to put the device into an unusable state by loading bad images ("bricking").
-Fortunately, the USRP-X Series device can be loaded with a good image temporarily using the USB-JTAG interface.
-Once booted into the safe image, the user can once again load images onto the device over Ethernet or PCI Express.
-
-----------------
-Setup Networking
-----------------
-The USRP-X Series only supports Gigabit and Ten Gigabit Ethernet and will not work with a 10/100 Mbps interface.
-
-**Please note that 10 Gigabit Ethernet defines the protocol, not necessary the
-medium. For example, you may use 10GigE over optical with optical SFP+
-transceiver modules.**
-
-^^^^^^^^^^^^^^^^^^^^^^^^
-Setup the host interface
-^^^^^^^^^^^^^^^^^^^^^^^^
-The USRP-X Series communicates at the IP/UDP layer over the Gigabit and Ten Gigabit Ethernet.
-The default IP address for the USRP X300/X310 device depends on the Ethernet Port and interface used.
-You must configure the host Ethernet interface with a static IP address on the same subnet as the connected
-device to enable communication, as shown in the following table:
-
-+---------------+-------------------------+----------------+----------------+---------------+---------------+
-|  Ethernet  | USRP |  Default USRP  |  Host Static   | Host Static | Address |
-| Interface | Ethernet Port | IP Address | IP Address | Subnet Mask | EEPROM key |
-+===============+=========================+================+================+===============+===============+
-|  Gigabit  |  Port 0 (HGS Image) |  192.168.10.2 | 192.168.10.1 | 255.255.255.0 | ``ip-addr0`` |
-+---------------+-------------------------+----------------+----------------+---------------+---------------+
-|  Ten Gigabit  |  Port 0 (XGS Image) |  192.168.30.2 | 192.168.30.1 | 255.255.255.0 | ``ip-addr2`` |
-+---------------+-------------------------+----------------+----------------+---------------+---------------+
-|  Ten Gigabit  |  Port 1 (HGS/XGS Image) |  192.168.40.2 | 192.168.40.1 | 255.255.255.0 | ``ip-addr3`` |
-+---------------+-------------------------+----------------+----------------+---------------+---------------+
-
-As you can see, the X300/X310 actually stores different IP addresses, which all address the device differently: Each combination of Ethernet port and interface type (i.e., Gigabit or Ten Gigabit) has its own IP address. As an example, when addressing the device through 1 Gigabit Ethernet on its first port (Port 0), the relevant IP address is the one stored in the EEPROM with key ``ip-addr0``, or 192.168.10.2 by default.
-
-See the `system configuration manual <./usrp_x3x0_config.html>`_ on details
-how to change your machine's IP address and MTU size to work well with the X300.
-
-^^^^^^^^^^^^^^^^^^^^^^^^^
-Multiple devices per host
-^^^^^^^^^^^^^^^^^^^^^^^^^
-For maximum throughput, one Ethernet interface per USRP is recommended,
-although multiple devices may be connected via an Ethernet switch.
-In any case, each Ethernet interface should have its own subnet,
-and the corresponding USRP device should be assigned an address in that subnet.
-Example:
-
-**Configuration for USRP-X Series device 0:**
-
-* Ethernet interface IPv4 address: **192.168.10.1**
-* Ethernet interface subnet mask: **255.255.255.0**
-* USRP-X Series device IPv4 address: **192.168.10.2**
-
-**Configuration for USRP-X Series device 1:**
-
-* Ethernet interface IPv4 address: **192.168.110.1**
-* Ethernet interface subnet mask: **255.255.255.0**
-* USRP-X Series device IPv4 address: **192.168.110.2**
-
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-Change the USRP's IP address
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-You may need to change the USRP's IP address for several reasons:
-
-* to satisfy your particular network configuration
-* to use multiple USRP-X Series devices on the same host computer
-* to set a known IP address into USRP (in case you forgot)
-
-To change the USRP's IP address,
-you must know the current address of the USRP,
-and the network must be setup properly as described above.
-You must also know which IP address of the X300 you want to change, as identified by their address EEPROM key (e.g. ``ip-addr0``, see the table above).
-Run the following commands:
-
-**UNIX:**
-
-::
-
- cd <install-path>/lib/uhd/utils
- ./usrp_burn_mb_eeprom --args=<optional device args> --key=ip-addr0 --val=192.168.10.3
-
-**Windows:**
-
-::
-
- cd <install-path>\lib\uhd\utils
- usrp_burn_mb_eeprom.exe --args=<optional device args> --key=ip-addr0 --val=192.168.10.3
-
----------------------
-Addressing the Device
----------------------
-
-^^^^^^^^^^^^^^^^^^^^^^^^^^^
-Single device configuration
-^^^^^^^^^^^^^^^^^^^^^^^^^^^
-In a single-device configuration,
-the USRP device must have a unique IPv4 address on the host computer.
-The USRP can be identified through its IPv4 address, resolvable hostname, NI-RIO resource name or by other means.
-See the application notes on `device identification <./identification.html>`_.
-Use this addressing scheme with the **multi_usrp** interface (not a typo!).
-
-Example device address string representation for a USRP-X Series device with IPv4 address **192.168.10.2**:
-
-::
-
- addr=192.168.10.2
-
-Example device address string representation for a USRP-X Series device with RIO resource name **RIO0** over PCI Express:
-
-::
-
- resource=RIO0
-
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-Multiple device configuration
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-In a multi-device configuration,
-each USRP device must have a unique IPv4 address on the host computer.
-The device address parameter keys must be suffixed with the device index.
-Each parameter key should be of the format <key><index>.
-Use this addressing scheme with the **multi_usrp** interface.
-
-* The order in which devices are indexed corresponds to the indexing of the transmit and receive channels.
-* The key indexing provides the same granularity of device identification as in the single device case.
-
-Example device address string representation for 2 USRPs with IPv4 addresses **192.168.10.2** and **192.168.20.2**:
-
-::
-
- addr0=192.168.10.2, addr1=192.168.20.2
-
-
-----------------------
-Communication Problems
-----------------------
-When setting up a development machine for the first time,
-you may have various difficulties communicating with the USRP device.
-The following tips are designed to help narrow down and diagnose the problem.
-
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-RuntimeError: no control response
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-This is a common error that occurs when you have set the subnet of your network
-interface to a different subnet than the network interface of the USRP device. For
-example, if your network interface is set to **192.168.20.1**, and the USRP device is
-**192.168.10.2** (note the difference in the third numbers of the IP addresses), you
-will likely see a 'no control response' error message.
-
-Fixing this is simple - just set the your host PC's IP address to the same
-subnet as that of your USRP device. Instructions for setting your IP address are in the
-previous section of this documentation.
-
-^^^^^^^^^^^^^^^
-Firewall issues
-^^^^^^^^^^^^^^^
-When the IP address is not specified,
-the device discovery broadcasts UDP packets from each Ethernet interface.
-Many firewalls will block the replies to these broadcast packets.
-If disabling your system's firewall
-or specifying the IP address yields a discovered device,
-then your firewall may be blocking replies to UDP broadcast packets.
-If this is the case, we recommend that you disable the firewall
-or create a rule to allow all incoming packets with UDP source port **49152**.
-
-^^^^^^^^^^^^^^^
-Ping the device
-^^^^^^^^^^^^^^^
-The USRP device will reply to ICMP echo requests ("ping").
-A successful ping response means that the device has booted properly
-and that it is using the expected IP address.
-
-::
-
- ping 192.168.10.2
-
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-USRP device not enumerated (Linux)
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-UHD requires the RIO device manager service to be running in order to
-communicate with an X-Series USRP over PCIe. This service is installed as
-a part of the USRP RIO (or NI-USRP) installer. On Linux, the service is not
-started at system boot time, and is left to the user to control. To start it,
-run the following command:
-
-::
-
- sudo niusrprio_pcie start
-
-If the device still does not enumerate after starting the device manager, make sure that the host computer
-has successfully detected it. You can do so by running the following command:
-
-::
-
- lspci -k -d 1093:c4c4
-
-A device similar to the following should be detected:
-
-::
-
- $ lspci -k -d 1093:c4c4
- 04:00.0 Signal processing controller: National Instruments ...
- Subsystem: National Instruments Device 76ca
- Kernel driver in use: niusrpriok_shipped
-
-* A USRP X300 should appear with 'Subsystem: National Instruments Device 7736'
-* A USRP X310 should appear with 'Subsystem: National Instruments Device 76ca'
-
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-USRP device not enumerated (Windows)
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-UHD requires the RIO device manager service to be running in order to
-communicate with an X-Series USRP over PCIe.
-This service is installed as a part of the USRP RIO (or NI-USRP) installer. On Windows, it can be found in
-the **Services** section in the Control Panel and it is started at system boot time. To ensure that the
-service is indeed started, navigate to the Services tag in the Windows Task Manager and ensure that the
-status of **niusrpriorpc** is "Running".
-
-If the device still does not enumerate after starting the device manager, make sure that the host computer
-has successfully detected it. You can do so by checking if your device shows up in the Windows Device Manager.
-
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-Monitor the host network traffic
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-Use Wireshark to monitor packets sent to and received from the device.
-
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-Observe Ethernet port LEDs
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-When there is network traffic arriving at the Ethernet port, LEDs will light up.
-You can use this to make sure the network connection is correctly set up, e.g.
-by pinging the USRP and making sure the LEDs start to blink.
-
---------------
-Hardware Notes
---------------
-
-^^^^^^^^^^^
-Front Panel
-^^^^^^^^^^^
-
-.. image:: ./res/x3x0_fp_overlay.png
- :scale: 80%
- :align: left
-
-* **JTAG**: USB connector for the on-board USB-JTAG programmer
-* **RF A Group**
-
- * **TX/RX LED**: Indicates that data is streaming on the TX/RX channel on daughterboard A
- * **RX2 LED**: Indicates that data is streaming on the RX2 channel on daughterboard A
-
-* **REF**: Indicates that the external Reference Clock is locked
-* **PPS**: Indicates a valid PPS signal by pulsing once per second
-* **AUX I/O**: Front panel GPIO connector.
-* **GPS**: Indicates that GPS reference is locked
-* **LINK**: Indicates that the host computer is communicating with the device (Activity)
-
-* **RF B Group**
-
- * **TX/RX LED**: Indicates that data is streaming on the TX/RX channel on daughterboard B
- * **RX2 LED**: Indicates that data is streaming on the RX2 channel on daughterboard B
-
-* **PWR**: Power switch
-
-^^^^^^^^^^
-Rear Panel
-^^^^^^^^^^
-
-.. image:: ./res/x3x0_rp_overlay.png
- :scale: 80%
- :align: left
-
-
-* **PWR**: Connector for the USRP-X Series power supply
-* **1G/10G ETH**: SFP+ ports for Ethernet interfaces
-* **REF OUT**: Output port for the exported reference clock
-* **REF IN**: Reference clock input
-* **PCIe x4**: Connector for Cabled PCI Express link
-* **PPS/TRIG OUT**: Output port for the PPS signal
-* **PPS/TRIG IN**: Input port for the PPS signal
-* **GPS**: Connection for the GPS antenna
-
-^^^^^^^^^^^^^^^^^^
-Ref Clock - 10 MHz
-^^^^^^^^^^^^^^^^^^
-Using an external 10 MHz reference clock, a square wave will offer the best phase
-noise performance, but a sinusoid is acceptable. The power level of the reference clock cannot exceed +15 dBm.
-
-^^^^^^^^^^^^^^^^^^^^^^
-PPS - Pulse Per Second
-^^^^^^^^^^^^^^^^^^^^^^
-Using a PPS signal for timestamp synchronization requires a square wave signal with the following a 5Vpp amplitude.
-
-To test the PPS input, you can use the following tool from the UHD examples:
-
-* **<args>** are device address arguments (optional if only one USRP device is on your machine)
-
-::
-
- cd <install-path>/lib/uhd/examples
- ./test_pps_input --args=<args>
-
-^^^^^^^^^^^^^^
-Internal GPSDO
-^^^^^^^^^^^^^^
-Please see the `Internal GPSDO Application Notes <./gpsdo_x3x0.html>`_
-for information on configuring and using the internal GPSDO.
-
-^^^^^^^^^^^^^^^^
-Front Panel GPIO
-^^^^^^^^^^^^^^^^
-
-Connector
-:::::::::
-
-.. image:: ./res/x3x0_gpio_conn.png
- :scale: 75%
- :align: left
-
-Pin Mapping
-:::::::::::
-
-* Pin 1: +3.3V
-* Pin 2: Data[0]
-* Pin 3: Data[1]
-* Pin 4: Data[2]
-* Pin 5: Data[3]
-* Pin 6: Data[4]
-* Pin 7: Data[5]
-* Pin 8: Data[6]
-* Pin 9: Data[7]
-* Pin 10: Data[8]
-* Pin 11: Data[9]
-* Pin 12: Data[10]
-* Pin 13: Data[11]
-* Pin 14: 0V
-* Pin 15: 0V
-
-
-Please see the `GPIO API Notes <./gpio_api.html>`_ for information on configuring and using the GPIO bus.
-
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-Debugging custom FPGA designs with Xilinx Chipscope
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-
-Xilinx chipscope allows for debugging custom FPGA designs similar to a logic analyzer.
-USRP-X series devices can be used with Xilinx chipscope using the onboard USB JTAG connector.
-
-Further information on how to use Chipscope can be found in the Xilinx Chipscope Pro Software and Cores User Guide (UG029).
-
--------------
-Miscellaneous
--------------
-
-^^^^^^^^^^^^^^^^^^^^
-Multiple RX channels
-^^^^^^^^^^^^^^^^^^^^
-There are two complete DDC and DUC DSP chains in the FPGA. In the single channel case,
-only one chain is ever used. To receive from both channels, the user must set the **RX** or **TX**
-subdevice specification.
-
-In the following example, a TVRX2 is installed.
-Channel 0 is sourced from subdevice **RX1**,
-and channel 1 is sourced from subdevice **RX2** (**RX1** and **RX2** are antenna connectors on the TVRX2 daughterboard).
-
-::
-
- usrp->set_rx_subdev_spec("A:RX1 A:RX2");
-
-
-^^^^^^^^^^^^^^^^^
-Available Sensors
-^^^^^^^^^^^^^^^^^
-The following sensors are available for the USRP-X Series motherboards;
-they can be queried through the API.
-
-* **ref_locked** - clock reference locked (internal/external)
-* Other sensors are added when the GPSDO is enabled
diff --git a/host/docs/usrp_x3x0_config.dox b/host/docs/usrp_x3x0_config.dox
new file mode 100644
index 000000000..935e4cc1c
--- /dev/null
+++ b/host/docs/usrp_x3x0_config.dox
@@ -0,0 +1,277 @@
+/*! \page page_usrp_x3x0_config System Configuration for USRP X3x0 Series
+
+\tableofcontents
+
+\section x3x0cfg_hostpc Configuring your Host PC
+
+The USRP X3x0 is capable of delivering very fast sample rates to the
+host PC, and even high-powered desktops can have trouble keeping up at
+the higher rates. You can improve the performance of your host by
+configuring a number of settings that affect the performance of your
+computer.
+
+These are:
+
+- Kernel Version
+- Network Configuration
+- Power Management Configuration
+- Real-Time & Priority Scheduling
+- Building with ORC & Volk
+
+These items are covered in more detail, below.
+
+\subsection x3x0cfg_hostpc_kernel Kernel Version
+
+Performance issues may be encountered with Linux kernels earlier than
+3.11. Ettus Research strongly recommends using kernel version 3.11 or
+higher for high sample rates.
+
+\subsection x3x0cfg_hostpc_netcfg Network Configuration
+
+When using Ethernet interfaces to communicate with the device, it is
+necessary to configure a number of facets regarding your network
+connection.
+
+\subsubsection x3x0cfg_hostpc_netcfg_nwmgr Configuring NetworkManager
+
+Fedora and Ubuntu both use NetworkManager to manage network connections.
+Unfortunately, NetworkManager often tries to take control of a
+connection and will disconnect the interface.
+
+You should open your NetworkManager configuration and tell it to ignore
+the network interface you are using. **This is not the same as simply
+setting a static IP address.** You *must* tell NetworkManager to ignore
+the interface.
+
+\subsubsection x3x0cfg_hostpc_netcfg_ip Configuring the host's IP address
+
+On a Linux system, you can add a static IP address very easily by using the 'ip' command:
+
+ sudo ip addr add 192.168.10.1/24 dev <interface>
+
+Note that `<interface>` is usually something like `eth0`. You can discover the
+names of the network interfaces in your computer by running:
+
+ ip addr show
+
+\subsubsection x3x0cfg_hostpc_netcfg_sockbuff Configuring the Socket Buffers
+
+It is necessary to increase the maximum size of the socket buffers to
+avoid potential overflows and underruns at high sample rates. Add the
+following entries into /etc/sysctl.conf (root privileges required):
+
+ net.core.rmem_max=33554432
+ net.core.wmem_max=33554432
+
+Either restart the system or issue the following commands:
+
+ sudo sysctl -w net.core.rmem_max=33554432
+ sudo sysctl -w net.core.wmem_max=33554432
+
+\subsubsection x3x0cfg_hostpc_netcfg_mtu Configuring the MTU
+
+In order to achieve maximum performance, we recommend setting the MTU
+size to 9000 for 10 GigE and 1500 for 1 GigE. It is possible to use
+smaller MTUs, but this can affect performance. With some NICs, setting
+the MTU too high can also cause issues. To set the MTU to 9000, you can
+use the following command:
+
+ sudo ifconfig <interface> mtu 9000 # For 10 GigE
+ sudo ifconfig <interface> mtu 1500 # For 1 GigE
+
+Using these MTUs will set the frame sizes for UHD communication to 8000
+and 1472, respectively.
+
+In some cases, specifying the frame size manually by adding the argument
+`<send/recv>_frame_size=1472` can solve issues. Note that a frame
+size of 1472 will limit the available sampling rate, although this is
+not a problem on 1 GigE.
+
+\subsubsection x3x0cfg_hostpc_netcfg_firewall Configuring the Firewall
+
+Many Linux distributions come installed with a Firewall, by default. The
+Firewall will often interfere with your ability to communicate with your
+USRP. You should configure your firewall to "trust" the interface you
+are using. Setting this properly depends on your OS and firewall
+configuration method.
+
+When using UHD software, if an IP address for the USRP-X Series device is not specified,
+the software will use UDP broadcast packets to locate the USRP-X Series device.
+On some systems, the firewall will block UDP broadcast packets.
+It is recommended that you change or disable your firewall settings.
+
+\subsubsection x3x0cfg_hostpc_netcfg_if Interface Configuration File (Fedora)
+
+On Fedora systems, you can configure the network interface mostly from
+one place (with the exception of the socket buffers). Each interface on
+your system should have a file in:
+
+ /etc/sysconfig/network-scripts/
+
+As an example, if your 1GigE interface is "em1", your "ifcfg-em1"
+configuration file should look something like this, when configured for
+use with a USRP X3xx:
+
+ TYPE="Ethernet"
+ BOOTPROTO="none"
+ IPADDR0="192.168.10.1"
+ DEFROUTE="yes"
+ IPV4_FAILURE_FATAL="no"
+ IPV6INIT="no"
+ IPV6_FAILURE_FATAL="no"
+ NAME="em1"
+ UUID="<specific to your device>"
+ ONBOOT="no"
+ HWADDR"<specific to your device>"
+ PEERDNS="yes"
+ PEERROUTES="yes"
+ ZONE="trusted"
+ MTU="9000"
+ NM_MANAGED="no"
+
+The above file was generated and modified on a Fedora 20 system.
+
+\subsection x3x0cfg_hostpc_pwr Power Management
+
+Power management on the host system attempts to save power by reducing
+clock frequencies or even powering off devices while not in use. This
+can lead to significant performance issues when trying to operate at
+high sample rates. Ettus Research strongly recommends disabling all
+power management.
+
+\subsubsection x3x0cfg_hostpc_pwr_cpugov Setting the CPU Governors
+
+In Linux, the CPU governors dictate the frequency at which the CPU
+operates and attempt to reduce the CPU frequencies at certain times to
+save power. When running at high sample rates, reduction of CPU
+frequencies can cause significant performance issues. To prevent those
+issues, set the governor to "performance".
+
+\b Ubuntu:
+
+1. Install cpufrequtils:
+
+ sudo apt-get install cpufrequtils
+
+2. Edit `/etc/init.d/cpufrequtils` and set `GOVERNOR="performance"` on the
+ appropriate line (run as root):
+
+ sed s/^GOVERNOR=.*$/GOVERNOR=\"performance\"/g /etc/init.d/cpufrequtils > /etc/init.d/cpufrequtils
+
+3. Restart cpufrequtils:
+
+ sudo /etc/init.d/cpufrequtils restart
+
+\b Fedora:
+
+ sudo cpupower frequency-set -g performance
+
+\subsection x3x0cfg_hostpc_rtprio Real-Time & Priority Scheduling
+
+Enabling real-time and priority scheduling can improve the total
+processing throughput of your application. Priority scheduling should be
+enabled for UHD, and real-time scheduling can be enabled by your
+application.
+
+\subsubsection x3x0cfg_hostpc_rtprio_thread Thread Priority Scheduling with UHD
+
+For information regarding how to enable priority scheduling for UHD on
+your system, please see \ref page_general.
+
+\subsubsection x3x0cfg_hostpc_rtprio_app Real-Time Scheduling in your Application
+
+Please note that turning on real-time scheduling in your application
+**may lock up your computer** if the processor cannot keep up with the
+application. You should generally avoid using real-time scheduling
+unless you need to.
+
+Real-time scheduling is enabled via different methods depending on your
+application and operating system. In GNU Radio Companion, it can be
+turned on in each individual flowgraph.
+
+\subsection x3x0cfg_hostpc_volk Building with ORC & Volk
+
+Especially when running high-performance applications, processing
+performance can be dramatically improved by SIMD instructions. UHD uses
+ORC to provide SIMD capability, and GNU Radio includes a SIMD library
+called "Volk". These should both be used to guarantee optimum
+performance.
+
+\subsubsection x3x0cfg_hostpc_volk_orc Compiling UHD with ORC
+
+ORC, the <a href="http://code.entropywave.com/orc/">Oil Runtime Compiler</a>,
+is a third-party compiler that UHD uses to create efficient SIMD code for
+your particular computer. ORC is generally easily installed from your
+OS's package manager.
+
+On Fedora:
+
+ $ sudo yum update; sudo yum install orc-compiler orc-devel
+
+On Ubuntu:
+
+ $ sudo apt-get update; sudo apt-get install liborc-<version> liborc-<version>-dev
+
+After installing ORC, when building UHD from source, you should see
+"ORC" as one of the configured UHD components.
+
+ -- ######################################################
+ -- # UHD enabled components
+ -- ######################################################
+ -- * LibUHD
+ <cut for brevity>
+ -- * ORC
+
+\subsubsection x3x0cfg_hostpc_volk_volk Compiling GNURadio with Volk
+
+If you are using GNURadio to build applications, you should compile
+GNURadio with Volk. For instructions on how to do this,
+<a href="http://gnuradio.org/redmine/projects/gnuradio/wiki/Volk">refer to the GNURadio wiki</a>.
+
+\section x3x0cfg_hosthw Host PC Hardware Selection
+
+\subsection x3x0cfg_hosthw_mb Motherboard
+
+Testing has shown that some motherboards do not provide enough PCIe bus
+bandwidth to support higher sample rates. Motherboards with PCIe 3.0 are
+required and the PCIe architecture of the motherboard should be
+carefully considered. Slots with dedicated PCIe lanes should be used for
+PCIe or 10GbE cards that will be connected to the X3x0 device.
+
+\subsection x3x0cfg_hosthw_10gige 10GbE NIC
+
+Intel or Myricom 10GbE NICs are recommended. Mellanox, SolarFlare, and
+Chelsio 10GbE NICs are not currently recommended. The Ethernet card
+should be plugged into the slot that has the most direct connection with
+the CPU (PCIe lanes are not shared with another slot). Refer to the
+motherboard manual for more information on PCIe architecture.
+
+\section x3x0cfg_hosthw_troubleshooting Troubleshooting Performance Issues
+
+The output on the host console provides indicators of performance issues
+in the form of single upper-case letters. The following table lists the
+letters, their meanings, and possible causes:
+
+ Indicator |Meaning | Possible Causes
+ -----------|----------------------|---------------------------------------------------------------------------------
+ O |Overflow on RX |- Data is not being consumed by user's application fast enough.<br>- CPU governor or other power management not configured correctly.
+ D |Dropped packet on RX |- Network hardware failure. (Check host NIC, cable, switch, etc...)<br>- PCIe bus on host cannot sustain throughput. (Check ethtool -S \<interface\>).<br>- CPU governor or other power management not configured correctly.<br>- Frame size might not work with the current NIC's MTU.
+ U |Underflow on TX |- Samples are not being produced by user's application fast enough.<br>- CPU governor or other power management not configured correctly.
+ L |Late packet (usually on MIMO TX)|- Samples are not being produced by user's application fast enough.<br>- CPU governor or other power management not configured correctly.<br>- Incorrect/invalid time_spec provided.
+ S |Sequence error on TX |- Network hardware failure. (Check host NIC, cable, switch, etc...)<br>- Frame size might not work with the current NIC's MTU.
+
+\subsection x3x0cfg_hosthw_troubleshooting_eth Troubleshooting Ethernet Issues
+
+1. First, check `ifconfig <interface>` to see if there are any errors
+ reported on the interface. If there are errors, it is most likely a
+ network hardware problem.
+2. Next, check the output of `ethtool -S <interface>`. The output is
+ driver-specific, but may give important clues as to what may be
+ happening. For example, a high value on rx_missed_errors for an
+ Intel NIC indicates that the bus (i.e. PCIe) is not keeping up.
+3. Finally, Wireshark can be used to validate the traffic between the
+ host and device and make sure there is no unwanted traffic on the
+ interface.
+
+*/
+// vim:ft=doxygen:
diff --git a/host/docs/usrp_x3x0_config.rst b/host/docs/usrp_x3x0_config.rst
deleted file mode 100644
index 4be247b04..000000000
--- a/host/docs/usrp_x3x0_config.rst
+++ /dev/null
@@ -1,319 +0,0 @@
-========================================================================
-UHD - System Configuration for USRP X3x0 Series
-========================================================================
-
-.. contents:: Table of Contents
-
-------------------------------------------------------------------------
-Configuring your Host PC
-------------------------------------------------------------------------
-
-The USRP X3x0 is capable of delivering very fast sample rates to the host PC,
-and even high-powered desktops can have trouble keeping up at the higher rates.
-You can improve the performance of your host by configuring a number of
-settings that affect the performance of your computer.
-
-These are:
-
- * Kernel Version
- * Network Configuration
- * Power Management Configuration
- * Real-Time & Priority Scheduling
- * Building with ORC & Volk
-
-These items are covered in more detail, below.
-
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-Kernel Version
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-Performance issues may be encountered with Linux kernels earlier than 3.11.
-Ettus Research strongly recommends using kernel version 3.11 or higher for high
-sample rates.
-
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-Network Configuration
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-When using Ethernet interfaces to communicate with the device, it is necessary
-to configure a number of facets regarding your network connection.
-
-Configuring NetworkManager
--------------------------------------
-Fedora and Ubuntu both use NetworkManager to manage network connections.
-Unfortunately, NetworkManager often tries to take control of a connection and
-will disconnect the interface.
-
-You should open your NetworkManager configuration and tell it to ignore the
-network interface you are using. **This is not the same as simply setting
-a static IP address.** You *must* tell NetworkManager to ignore the interface.
-
-Changing the host's IP address
--------------------------------------
-
-On a Linux system, you can add a static IP address very easily by using the
-'ip' command:
-
-::
-
- sudo ip addr add 192.168.10.1/24 dev <interface>
-
-Note that **<interface>** is usually something like **eth0**. You can discover the
-names of the network interfaces in your computer by running:
-
-::
-
- ip addr show
-
-Configuring the Socket Buffers
--------------------------------------
-It is necessary to increase the maximum size of the socket buffers to avoid
-potential overflows and underruns at high sample rates. Add the following
-entries into /etc/sysctl.conf (root privileges required):
-
-::
-
- net.core.rmem_max=33554432
- net.core.wmem_max=33554432
-
-Either restart the system or issue the following commands:
-
-::
-
- sudo sysctl -w net.core.rmem_max=33554432
- sudo sysctl -w net.core.wmem_max=33554432
-
-
-Configuring the MTU
--------------------------------------
-In order to achieve maximum performance, we recommend setting the MTU size to
-9000 for 10 GigE and 1500 for 1 GigE. It is possible to use smaller MTUs, but this
-can affect performance. With some NICs, setting the MTU too high can also cause issues.
-To set the MTU to 9000, you can use the following command:
-
-::
-
- sudo ifconfig <interface> mtu 9000 # For 10 GigE
- sudo ifconfig <interface> mtu 1500 # For 1 GigE
-
-Using these MTUs will set the frame sizes for UHD communication to 8000 and 1472,
-respectively.
-
-In some cases, specifying the frame size manually by adding the argument
-"<send/recv>_frame_size=1472" can solve issues. Note that a frame size of 1472 will limit
-the available sampling rate, although this is not a problem on 1 GigE.
-
-
-Configuring the Firewall
--------------------------------------
-Many Linux distributions come installed with a Firewall, by default. The
-Firewall will often interfere with your ability to communicate with your USRP.
-You should configure your firewall to "trust" the interface you are using.
-Setting this properly depends on your OS and firewall configuration method.
-
-When using UHD software, if an IP address for the USRP-X Series device is not specified,
-the software will use UDP broadcast packets to locate the USRP-X Series device.
-On some systems, the firewall will block UDP broadcast packets.
-It is therefore recommended that you change or disable your firewall settings.
-
-Interface Configuration File (Fedora)
--------------------------------------
-On Fedora systems, you can configure the network interface mostly from one
-place (with the exception of the socket buffers). Each interface on your system
-should have a file in:
-
-::
-
- /etc/sysconfig/network-scripts/
-
-As an example, if your 1GigE interface is "em1", your "ifcfg-em1" configuration
-file should look something like this, when configured for use with a USRP X3xx:
-
-::
-
- TYPE="Ethernet"
- BOOTPROTO="none"
- IPADDR0="192.168.10.1"
- DEFROUTE="yes"
- IPV4_FAILURE_FATAL="no"
- IPV6INIT="no"
- IPV6_FAILURE_FATAL="no"
- NAME="em1"
- UUID="<specific to your device>"
- ONBOOT="no"
- HWADDR"<specific to your device>"
- PEERDNS="yes"
- PEERROUTES="yes"
- ZONE="trusted"
- MTU="9000"
- NM_MANAGED="no"
-
-The above file was generated and modified on a "Fedora 20" system.
-
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-Power Management
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-Power management on the host system attempts to save power by reducing clock
-frequencies or even powering off devices while not in use. This can lead to
-significant performance issues when trying to operate at high sample rates.
-Ettus Research strongly recommends disabling all power management.
-
-
-Setting the CPU Governors
--------------------------------------
-In Linux, the CPU governors dictate the frequency at which the CPU operates and
-attempt to reduce the CPU frequencies at certain times to save power. When
-running at high sample rates, reduction of CPU frequencies can cause
-significant performance issues. To prevent those issues, set the governor to
-"performance".
-
-**Ubuntu:**
-1. Install cpufrequtils:
-
-::
-
- sudo apt-get install cpufrequtils
-
-2. Edit /etc/init.d/cpufrequtils and set GOVERNOR="performance" on the appropriate line (run as root):
-
-::
-
- sed s/^GOVERNOR=.*$/GOVERNOR=\"performance\"/g /etc/init.d/cpufrequtils > /etc/init.d/cpufrequtils
-
-3. Restart cpufrequtils:
-
-::
-
- sudo /etc/init.d/cpufrequtils restart
-
-**Fedora:**
-
-::
-
- sudo cpupower frequency-set -g performance
-
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-Real-Time & Priority Scheduling
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-Enabling real-time and priority scheduling can improve the total processing
-throughput of your application. Priority scheduling should be enabled for UHD,
-and real-time scheduling can be enabled by your application.
-
-Thread Priority Scheduling with UHD
--------------------------------------
-For information regarding how to enable priority scheduling for UHD on your
-system, please see the `General UHD Notes <./general.html#threading-notes>`_.
-
-Real-Time Scheduling in your Application
-----------------------------------------
-Please note that turning on real-time scheduling in your application **may lock
-up your computer** if the processor cannot keep up with the application. You
-should generally avoid using real-time scheduling unless you need to.
-
-Real-time scheduling is enabled via different methods depending on your
-application and operating system. In GNU Radio Companion, it can be turned on in
-each individual flowgraph.
-
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-Building with ORC & Volk
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-Especially when running high-performance applications, processing performance
-can be dramatically improved by SIMD instructions. UHD uses ORC to provide SIMD
-capability, and GNU Radio includes a SIMD library called "Volk". These should
-both be used to guarantee optimum performance.
-
-Compiling UHD with ORC
--------------------------------------
-ORC, the `Oil Runtime Compiler <http://code.entropywave.com/orc/>`_, is
-a third-party compiler that UHD uses to create efficient SIMD code for your
-particular computer. ORC is generally easily installed from your OS's package
-manager.
-
-On Fedora:
-
-::
-
- $ sudo yum update; sudo yum install orc-compiler orc-devel
-
-On Ubuntu:
-
-::
-
- $ sudo apt-get update; sudo apt-get install liborc-<version> liborc-<version>-dev
-
-After installing ORC, when building UHD from source, you should see "ORC" as
-one of the configured UHD components.
-
-::
-
- -- ######################################################
- -- # UHD enabled components
- -- ######################################################
- -- * LibUHD
- <cut for brevity>
- -- * ORC
-
-Compiling GNURadio with Volk
--------------------------------------
-If you are using GNURadio to build applications, you should compile GNURadio
-with Volk. For instructions on how to do this, `refer to the GNURadio wiki
-<http://gnuradio.org/redmine/projects/gnuradio/wiki/Volk>`_.
-
-
-------------------------------------------------------------------------
-Host PC Hardware Selection
-------------------------------------------------------------------------
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-Motherboard
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-Testing has shown that some motherboards do not provide enough PCIe bus
-bandwidth to support higher sample rates. Motherboards with PCIe 3.0 are
-required and the PCIe architecture of the motherboard should be carefully
-considered. Slots with dedicated PCIe lanes should be used for PCIe or 10GbE
-cards that will be connected to the X3x0 device.
-
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-10GbE NIC
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-Intel or Myricom 10GbE NICs are recommended. Mellanox, SolarFlare, and Chelsio
-10GbE NICs are not currently recommended. The Ethernet card should be plugged
-into the slot that has the most direct connection with the CPU (PCIe lanes are
-not shared with another slot). Refer to the motherboard manual for more
-information on PCIe architecture.
-
-------------------------------------------------------------------------
-Troubleshooting Performance Issues
-------------------------------------------------------------------------
-The output on the host console provides indicators of performance issues in the
-form of single upper-case letters. The following table lists the letters,
-their meanings, and possible causes:
-
-========= ====================== ====================================================================
-Indicator Meaning Possible Causes
-========= ====================== ====================================================================
-O Overflow on RX - Data is not being consumed by user's application fast enough.
- - CPU governor or other power management not configured correctly.
-D Dropped packet on RX - Network hardware failure. (Check host NIC, cable, switch, etc...)
- - PCIe bus on host cannot sustain throughput. (Check ethtool -S <interface>).
- - CPU governor or other power management not configured correctly.
- - Frame size might not work with the current NIC's MTU.
-U Underflow on TX - Samples are not being produced by user's application fast enough.
- - CPU governor or other power management not configured correctly.
-L Late packet - Samples are not being produced by user's application fast enough.
- (usually on MIMO TX) - CPU governor or other power management not configured correctly.
- - Incorrect/invalid time_spec provided.
-S Sequence error on TX - Network hardware failure. (Check host NIC, cable, switch, etc...)
- - Frame size might not work with the current NIC's MTU.
-========= ====================== ====================================================================
-
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-Troubleshooting Ethernet Issues
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-1. First, check 'ifconfig <interface>' to see if there are any errors reported
- on the interface. If there are errors, it is most likely a network hardware
- problem.
-2. Next, check the output of 'ethtool -S <interface>'. The output is
- driver-specific, but may give important clues as to what may be happening.
- For example, a high value on rx_missed_errors for an Intel NIC indicates
- that the bus (i.e. PCIe) is not keeping up.
-3. Finally, Wireshark can be used to validate the traffic between the host and
- device and make sure there is no unwanted traffic on the interface.
-
diff --git a/host/docs/usrp_x3xx_fpga_burner.1 b/host/docs/usrp_x3xx_fpga_burner.1
index 5c1b085b7..f07e52401 100644
--- a/host/docs/usrp_x3xx_fpga_burner.1
+++ b/host/docs/usrp_x3xx_fpga_burner.1
@@ -47,7 +47,7 @@ GR-UHD documentation:
.LP
Other UHD programs:
.sp
-uhd_images_downloader(1) usrp2_card_burner(1) usrp_n2xx_simple_net_burner(1)
+uhd_images_downloader(1) usrp2_card_burner(1) usrp_n2xx_simple_net_burner(1) octoclock_firmware_burner(1)
.SH AUTHOR
This manual page was written by Nicholas Corgan
for the Debian project (but may be used by others).
diff --git a/host/examples/CMakeLists.txt b/host/examples/CMakeLists.txt
index 4f394bbef..1e6f2f013 100644
--- a/host/examples/CMakeLists.txt
+++ b/host/examples/CMakeLists.txt
@@ -1,5 +1,5 @@
#
-# Copyright 2010-2013 Ettus Research LLC
+# Copyright 2010-2014 Ettus Research LLC
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
@@ -39,6 +39,10 @@ SET(example_sources
fpgpio.cpp
)
+IF(ENABLE_OCTOCLOCK)
+ LIST(APPEND example_sources test_clock_synch.cpp)
+ENDIF(ENABLE_OCTOCLOCK)
+
#for each source: build an executable and install
FOREACH(example_source ${example_sources})
GET_FILENAME_COMPONENT(example_name ${example_source} NAME_WE)
diff --git a/host/examples/benchmark_rate.cpp b/host/examples/benchmark_rate.cpp
index 9e9aa67e9..03d8f3477 100644
--- a/host/examples/benchmark_rate.cpp
+++ b/host/examples/benchmark_rate.cpp
@@ -215,7 +215,7 @@ int UHD_SAFE_MAIN(int argc, char *argv[]){
//create a usrp device
std::cout << std::endl;
- uhd::device_addrs_t device_addrs = uhd::device::find(args);
+ uhd::device_addrs_t device_addrs = uhd::device::find(args, uhd::device::USRP);
if (not device_addrs.empty() and device_addrs.at(0).get("type", "") == "usrp1"){
std::cerr << "*** Warning! ***" << std::endl;
std::cerr << "Benchmark results will be inaccurate on USRP1 due to insufficient features.\n" << std::endl;
diff --git a/host/examples/test_clock_synch.cpp b/host/examples/test_clock_synch.cpp
new file mode 100644
index 000000000..7a4226345
--- /dev/null
+++ b/host/examples/test_clock_synch.cpp
@@ -0,0 +1,165 @@
+//
+// Copyright 2014 Ettus Research LLC
+//
+// This program is free software: you can redistribute it and/or modify
+// it under the terms of the GNU General Public License as published by
+// the Free Software Foundation, either version 3 of the License, or
+// (at your option) any later version.
+//
+// This program is distributed in the hope that it will be useful,
+// but WITHOUT ANY WARRANTY; without even the implied warranty of
+// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+// GNU General Public License for more details.
+//
+// You should have received a copy of the GNU General Public License
+// along with this program. If not, see <http://www.gnu.org/licenses/>.
+//
+
+#include <iostream>
+
+#include <boost/format.hpp>
+#include <boost/program_options.hpp>
+#include <boost/thread/thread.hpp>
+
+#include <uhd/device.hpp>
+#include <uhd/exception.hpp>
+#include <uhd/usrp_clock/multi_usrp_clock.hpp>
+#include <uhd/types/time_spec.hpp>
+#include <uhd/usrp/multi_usrp.hpp>
+#include <uhd/utils/safe_main.hpp>
+#include <uhd/utils/thread_priority.hpp>
+
+namespace po = boost::program_options;
+
+using namespace uhd::usrp_clock;
+using namespace uhd::usrp;
+
+void wait_for_pps(multi_usrp::sptr usrp, size_t chan, double timeout){
+ boost::uint32_t last_pps_time = usrp->get_time_last_pps(chan).get_full_secs();
+ boost::uint32_t system_time = uhd::time_spec_t::get_system_time().get_full_secs();
+ boost::uint32_t exit_time = system_time + timeout;
+ bool detected_pps = false;
+
+ //Otherwise, this would hang if the USRP doesn't detect any PPS
+ while(uhd::time_spec_t::get_system_time().get_full_secs() < exit_time){
+ boost::uint32_t time_now = usrp->get_time_last_pps(chan).get_full_secs();
+ if(last_pps_time < time_now){
+ detected_pps = true;
+ break;
+ }
+ else last_pps_time = time_now;
+ }
+ if(not detected_pps) throw uhd::runtime_error(str(boost::format("%s did not detect a PPS signal.")
+ % usrp->get_usrp_tx_info()["mboard_serial"]));
+
+}
+
+void get_usrp_time(multi_usrp::sptr usrp, size_t chan, std::vector<boost::uint32_t> *times){
+ wait_for_pps(usrp, chan, 2);
+ (*times)[chan] = usrp->get_time_now(chan).get_full_secs();
+}
+
+int UHD_SAFE_MAIN(int argc, char *argv[]){
+ uhd::set_thread_priority_safe();
+
+ //Variables to be set by command line options
+ std::string clock_args, usrp_args;
+ boost::uint32_t max_interval, num_tests;
+
+ //Set up program options
+ po::options_description desc("Allowed options");
+ desc.add_options()
+ ("help", "Display this help message")
+ ("clock-args", po::value<std::string>(&clock_args), "Clock device arguments")
+ ("usrp-args", po::value<std::string>(&usrp_args), "USRP device arguments")
+ ("max-interval", po::value<boost::uint32_t>(&max_interval)->default_value(10000), "Maximum interval between comparisons (in ms)")
+ ("num-tests", po::value<boost::uint32_t>(&num_tests)->default_value(10), "Number of times to compare device times")
+ ;
+ po::variables_map vm;
+ po::store(po::parse_command_line(argc, argv, desc), vm);
+ po::notify(vm);
+
+ //Print the help message
+ if (vm.count("help")){
+ std::cout << std::endl << "Test Clock Synchronization" << std::endl << std::endl;
+
+ std::cout << "This example shows how to use a clock device to" << std::endl
+ << "synchronize the time on multiple USRP devices." << std::endl << std::endl;
+
+ std::cout << desc << std::endl;
+ return EXIT_SUCCESS;
+ }
+
+ //Create a Multi-USRP-Clock device (currently OctoClock only)
+ std::cout << boost::format("\nCreating the Clock device with: %s") % clock_args << std::endl;
+ multi_usrp_clock::sptr clock = multi_usrp_clock::make(clock_args);
+
+ //Make sure Clock configuration is correct
+ if(clock->get_sensor("gps_detected").value == "false"){
+ throw uhd::runtime_error("No GPSDO detected on Clock.");
+ }
+ if(clock->get_sensor("using_ref").value != "internal"){
+ throw uhd::runtime_error("Clock must be using an internal reference.");
+ }
+
+ //Create a Multi-USRP device
+ std::cout << boost::format("\nCreating the USRP device with: %s") % usrp_args << std::endl;
+ multi_usrp::sptr usrp = multi_usrp::make(usrp_args);
+
+ //Store USRP device serials for useful output
+ std::vector<std::string> serials;
+ for(size_t ch = 0; ch < usrp->get_num_mboards(); ch++){
+ serials.push_back(usrp->get_usrp_tx_info(ch)["mboard_serial"]);
+ }
+
+ std::cout << std::endl << "Checking USRP devices for lock." << std::endl;
+ bool all_locked = true;
+ for(size_t ch = 0; ch < usrp->get_num_mboards(); ch++){
+ std::string ref_locked = usrp->get_mboard_sensor("ref_locked",ch).value;
+ std::cout << boost::format(" * %s: %s") % serials[ch] % ref_locked << std::endl;
+
+ if(ref_locked != "true") all_locked = false;
+ }
+ if(not all_locked) std::cout << std::endl << "WARNING: One or more devices not locked." << std::endl;
+
+ //Get GPS time to initially set USRP devices
+ std::cout << std::endl << "Querying Clock for time and setting USRP times..." << std::endl << std::endl;
+ boost::uint32_t clock_time = clock->get_time();
+ usrp->set_time_unknown_pps(uhd::time_spec_t(double(clock_time+2)));
+
+ //Wait for next PPS to start polling
+ wait_for_pps(usrp, 0, 2);
+
+ srand(time(NULL));
+
+ std::cout << boost::format("\nRunning %d comparisons at random intervals.") % num_tests << std::endl << std::endl;
+ boost::uint32_t num_matches = 0;
+ for(size_t i = 0; i < num_tests; i++){
+ //Wait random time before querying
+ boost::uint16_t wait_time = rand() % max_interval;
+ boost::this_thread::sleep(boost::posix_time::milliseconds(wait_time));
+
+ //Get all times before output
+ std::vector<boost::uint32_t> usrp_times(usrp->get_num_mboards());
+ boost::thread_group thread_group;
+ clock_time = clock->get_time();
+ for(size_t j = 0; j < usrp->get_num_mboards(); j++){
+ thread_group.create_thread(boost::bind(&get_usrp_time, usrp, j, &usrp_times));
+ }
+ //Wait for threads to complete
+ thread_group.join_all();
+
+ std::cout << boost::format("Comparison #%d") % (i+1) << std::endl;
+ bool all_match = true;
+ std::cout << boost::format(" * Clock time: %d") % clock_time << std::endl;
+ for(size_t j = 0; j < usrp->get_num_mboards(); j++){
+ std::cout << boost::format(" * %s time: %d") % serials[j] % usrp_times[j] << std::endl;
+ if(usrp_times[j] != clock_time) all_match = false;
+ }
+ if(all_match) num_matches++;
+ }
+
+ std::cout << std::endl << boost::format("Number of matches: %d/%d") % num_matches % num_tests << std::endl;
+
+ return EXIT_SUCCESS;
+}
diff --git a/host/examples/test_dboard_coercion.cpp b/host/examples/test_dboard_coercion.cpp
index e23390506..cf6c08359 100644
--- a/host/examples/test_dboard_coercion.cpp
+++ b/host/examples/test_dboard_coercion.cpp
@@ -362,7 +362,7 @@ int UHD_SAFE_MAIN(int argc, char *argv[]){
//Create a USRP device
std::cout << std::endl;
- uhd::device_addrs_t device_addrs = uhd::device::find(args);
+ uhd::device_addrs_t device_addrs = uhd::device::find(args, uhd::device::USRP);
std::cout << boost::format("Creating the USRP device with: %s...") % args << std::endl;
uhd::usrp::multi_usrp::sptr usrp = uhd::usrp::multi_usrp::make(args);
std::cout << std::endl << boost::format("Using Device: %s") % usrp->get_pp_string() << std::endl;
diff --git a/host/examples/transport_hammer.cpp b/host/examples/transport_hammer.cpp
index 3f233b2a5..32e344e3e 100644
--- a/host/examples/transport_hammer.cpp
+++ b/host/examples/transport_hammer.cpp
@@ -213,7 +213,7 @@ int UHD_SAFE_MAIN(int argc, char *argv[]){
//create a usrp device
std::cout << std::endl;
- uhd::device_addrs_t device_addrs = uhd::device::find(args);
+ uhd::device_addrs_t device_addrs = uhd::device::find(args, uhd::device::USRP);
if (not device_addrs.empty() and device_addrs.at(0).get("type", "") == "usrp1"){
std::cerr << "*** Warning! ***" << std::endl;
std::cerr << "Results will be inaccurate on USRP1 due to insufficient features.\n" << std::endl;
diff --git a/host/include/uhd/CMakeLists.txt b/host/include/uhd/CMakeLists.txt
index 2827cb826..318577b7c 100644
--- a/host/include/uhd/CMakeLists.txt
+++ b/host/include/uhd/CMakeLists.txt
@@ -1,5 +1,5 @@
-
-# Copyright 2010-2011,2013 Ettus Research LLC
+#
+# Copyright 2010-2011,2013-2014 Ettus Research LLC
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
@@ -15,10 +15,10 @@
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#
-
ADD_SUBDIRECTORY(transport)
ADD_SUBDIRECTORY(types)
ADD_SUBDIRECTORY(usrp)
+ADD_SUBDIRECTORY(usrp_clock)
ADD_SUBDIRECTORY(utils)
UHD_INSTALL(FILES
diff --git a/host/include/uhd/device.hpp b/host/include/uhd/device.hpp
index b54ffc5f7..5b4a2fe07 100644
--- a/host/include/uhd/device.hpp
+++ b/host/include/uhd/device.hpp
@@ -1,5 +1,5 @@
//
-// Copyright 2010-2011 Ettus Research LLC
+// Copyright 2010-2011,2014 Ettus Research LLC
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
@@ -32,8 +32,8 @@ namespace uhd{
class property_tree; //forward declaration
/*!
- * The usrp device interface represents the usrp hardware.
- * The api allows for discovery, configuration, and streaming.
+ * The device interface represents the hardware.
+ * The API allows for discovery, configuration, and streaming.
*/
class UHD_API device : boost::noncopyable{
@@ -42,6 +42,13 @@ public:
typedef boost::function<device_addrs_t(const device_addr_t &)> find_t;
typedef boost::function<sptr(const device_addr_t &)> make_t;
+ //! Device type, used as a filter in make
+ enum device_filter_t {
+ ANY,
+ USRP,
+ CLOCK
+ };
+
/*!
* Register a device into the discovery and factory system.
*
@@ -50,32 +57,35 @@ public:
*/
static void register_device(
const find_t &find,
- const make_t &make
+ const make_t &make,
+ const device_filter_t filter
);
/*!
- * \brief Find usrp devices attached to the host.
+ * \brief Find devices attached to the host.
*
* The hint device address should be used to narrow down the search
* to particular transport types and/or transport arguments.
*
* \param hint a partially (or fully) filled in device address
- * \return a vector of device addresses for all usrps on the system
+ * \param filter an optional filter to exclude USRP or clock devices
+ * \return a vector of device addresses for all devices on the system
*/
- static device_addrs_t find(const device_addr_t &hint);
+ static device_addrs_t find(const device_addr_t &hint, device_filter_t filter = ANY);
/*!
- * \brief Create a new usrp device from the device address hint.
+ * \brief Create a new device from the device address hint.
*
* The make routine will call find and pick one of the results.
* By default, the first result will be used to create a new device.
* Use the which parameter as an index into the list of results.
*
* \param hint a partially (or fully) filled in device address
+ * \param filter an optional filter to exclude USRP or clock devices
* \param which which address to use when multiple are found
* \return a shared pointer to a new device instance
*/
- static sptr make(const device_addr_t &hint, size_t which = 0);
+ static sptr make(const device_addr_t &hint, device_filter_t filter = ANY, size_t which = 0);
/*! \brief Make a new receive streamer from the streamer arguments
*
@@ -94,10 +104,14 @@ public:
//! Get access to the underlying property structure
uhd::property_tree::sptr get_tree(void) const;
+ //! Get device type
+ device_filter_t get_device_type() const;
+
#include <uhd/device_deprecated.ipp>
protected:
uhd::property_tree::sptr _tree;
+ device_filter_t _type;
};
} //namespace uhd
diff --git a/host/include/uhd/usrp_clock/CMakeLists.txt b/host/include/uhd/usrp_clock/CMakeLists.txt
new file mode 100644
index 000000000..7cd5aa9d3
--- /dev/null
+++ b/host/include/uhd/usrp_clock/CMakeLists.txt
@@ -0,0 +1,23 @@
+#
+# Copyright 2014 Ettus Research LLC
+#
+# This program is free software: you can redistribute it and/or modify
+# it under the terms of the GNU General Public License as published by
+# the Free Software Foundation, either version 3 of the License, or
+# (at your option) any later version.
+#
+# This program is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+# GNU General Public License for more details.
+#
+# You should have received a copy of the GNU General Public License
+# along with this program. If not, see <http://www.gnu.org/licenses/>.
+#
+
+UHD_INSTALL(FILES
+ octoclock_eeprom.hpp
+ multi_usrp_clock.hpp
+ DESTINATION ${INCLUDE_DIR}/uhd/octoclock
+ COMPONENT headers
+)
diff --git a/host/include/uhd/usrp_clock/multi_usrp_clock.hpp b/host/include/uhd/usrp_clock/multi_usrp_clock.hpp
new file mode 100644
index 000000000..0b50b32ae
--- /dev/null
+++ b/host/include/uhd/usrp_clock/multi_usrp_clock.hpp
@@ -0,0 +1,105 @@
+//
+// Copyright 2014 Ettus Research LLC
+//
+// This program is free software: you can redistribute it and/or modify
+// it under the terms of the GNU General Public License as published by
+// the Free Software Foundation, either version 3 of the License, or
+// (at your option) any later version.
+//
+// This program is distributed in the hope that it will be useful,
+// but WITHOUT ANY WARRANTY; without even the implied warranty of
+// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+// GNU General Public License for more details.
+//
+// You should have received a copy of the GNU General Public License
+// along with this program. If not, see <http://www.gnu.org/licenses/>.
+//
+
+#ifndef INCLUDED_UHD_MULTI_USRP_CLOCK_HPP
+#define INCLUDED_UHD_MULTI_USRP_CLOCK_HPP
+
+#include <string>
+#include <vector>
+
+#include <uhd/config.hpp>
+#include <uhd/device.hpp>
+#include <uhd/types/device_addr.hpp>
+#include <uhd/types/sensors.hpp>
+
+namespace uhd{ namespace usrp_clock{
+
+/*!
+ * The Multi-USRP-Clock device class:
+ *
+ * This class facilitates ease-of-use for must use-case scenarios when
+ * using clock devices with UHD. This class can be used with a
+ * single clock device or with multiple clock devices connected to the same
+ * host.
+ *
+ * To create a multi_usrp_clock out of a single USRP Clock:
+ *
+ * <pre>
+ * device_addr_t dev;
+ * dev["addr"] = 192.168.10.3;
+ * multi_usrp_clock::sptr clock = multi_usrp_clock::make(dev);
+ * </pre>
+ *
+ * To create a multi_usrp_clock out of multiple clock devices:
+ *
+ * <pre>
+ * device_addr_t dev;
+ * dev["addr0"] = 192.168.10.3;
+ * dev["addr1"] = 192.168.10.4;
+ * multi_usrp_clock::sptr clock = multi_usrp_clock::make(dev);
+ * </pre>
+ */
+class UHD_API multi_usrp_clock : boost::noncopyable {
+public:
+ typedef boost::shared_ptr<multi_usrp_clock> sptr;
+
+ /*!
+ * Make a new Multi-USRP-Clock from the given device address.
+ * \param dev_addr the device address
+ * \return a new Multi-USRP-Clock object
+ */
+ static sptr make(const device_addr_t &dev_addr);
+
+ /*!
+ * Return the underlying device.
+ * This allows direct access to the EEPROM and sensors.
+ * \return the device object within this Multi-USRP-Clock
+ */
+ virtual device::sptr get_device(void) = 0;
+
+ /*!
+ * Get a printable summary for this USRP Clock configuration.
+ * \return a printable string
+ */
+ virtual std::string get_pp_string(void) = 0;
+
+ //! Get the number of USRP Clocks in this configuration.
+ virtual size_t get_num_boards(void) = 0;
+
+ //! Get time from device
+ virtual boost::uint32_t get_time(size_t board = 0) = 0;
+
+ /*!
+ * Get a USRP Clock sensor value.
+ * \param name the name of the sensor
+ * \param board the board index (0 to M-1)
+ * \return a sensor value object
+ */
+ virtual sensor_value_t get_sensor(const std::string &name, size_t board = 0) = 0;
+
+ /*!
+ * Get a list of possible USRP Clock sensor names.
+ * \param board the board index (0 to M-1)
+ * \return a vector of sensor names
+ */
+ virtual std::vector<std::string> get_sensor_names(size_t board = 0) = 0;
+};
+
+} //namespace
+} //namespace
+
+#endif /* INCLUDED_UHD_MULTI_USRP_CLOCK_HPP */
diff --git a/host/include/uhd/usrp_clock/octoclock_eeprom.hpp b/host/include/uhd/usrp_clock/octoclock_eeprom.hpp
new file mode 100644
index 000000000..a521000dd
--- /dev/null
+++ b/host/include/uhd/usrp_clock/octoclock_eeprom.hpp
@@ -0,0 +1,61 @@
+//
+// Copyright 2014 Ettus Research LLC
+//
+// This program is free software: you can redistribute it and/or modify
+// it under the terms of the GNU General Public License as published by
+// the Free Software Foundation, either version 3 of the License, or
+// (at your option) any later version.
+//
+// This program is distributed in the hope that it will be useful,
+// but WITHOUT ANY WARRANTY; without even the implied warranty of
+// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+// GNU General Public License for more details.
+//
+// You should have received a copy of the GNU General Public License
+// along with this program. If not, see <http://www.gnu.org/licenses/>.
+//
+
+#ifndef INCLUDED_UHD_USRP_CLOCK_OCTOCLOCK_EEPROM_HPP
+#define INCLUDED_UHD_USRP_CLOCK_OCTOCLOCK_EEPROM_HPP
+
+#include <uhd/config.hpp>
+#include <uhd/transport/udp_simple.hpp>
+#include <uhd/types/dict.hpp>
+#include <string>
+
+namespace uhd{ namespace usrp_clock{
+
+/*!
+ * The OctoClock EEPROM object:
+ * Knows how to read and write the OctoClock EEPROM.
+ * The class inherits from a string, string dictionary.
+ * Use the dictionary interface to get and set values.
+ * Commit to the EEPROM to save changed settings.
+ */
+class UHD_API octoclock_eeprom_t : public uhd::dict<std::string, std::string>{
+public:
+ //! Make a new empty OctoClock EEPROM handler
+ octoclock_eeprom_t(void);
+
+ /*!
+ * Make a new OctoClock EEPROM handler.
+ * \param transport the UDP transport to the OctoClock
+ */
+ octoclock_eeprom_t(transport::udp_simple::sptr transport);
+
+ /*!
+ * Write the contents of this object to the EEPROM.
+ */
+ void commit() const;
+
+private:
+ transport::udp_simple::sptr xport;
+ void _load();
+ void _store() const;
+
+};
+
+} //namespace
+} //namespace
+
+#endif /* INCLUDED_UHD_USRP_CLOCK_OCTOCLOCK_EEPROM_HPP */
diff --git a/host/lib/CMakeLists.txt b/host/lib/CMakeLists.txt
index 4ca06af9a..eed8b642c 100644
--- a/host/lib/CMakeLists.txt
+++ b/host/lib/CMakeLists.txt
@@ -1,5 +1,5 @@
#
-# Copyright 2010-2013 Ettus Research LLC
+# Copyright 2010-2014 Ettus Research LLC
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
@@ -72,6 +72,7 @@ INCLUDE_SUBDIRECTORY(types)
INCLUDE_SUBDIRECTORY(convert)
INCLUDE_SUBDIRECTORY(transport)
INCLUDE_SUBDIRECTORY(usrp)
+INCLUDE_SUBDIRECTORY(usrp_clock)
INCLUDE_SUBDIRECTORY(utils)
########################################################################
diff --git a/host/lib/device.cpp b/host/lib/device.cpp
index ff5163f2d..bd7bf5637 100644
--- a/host/lib/device.cpp
+++ b/host/lib/device.cpp
@@ -1,5 +1,5 @@
//
-// Copyright 2010-2011 Ettus Research LLC
+// Copyright 2010-2011,2014 Ettus Research LLC
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
@@ -57,35 +57,38 @@ static size_t hash_device_addr(
/***********************************************************************
* Registration
**********************************************************************/
-typedef boost::tuple<device::find_t, device::make_t> dev_fcn_reg_t;
+typedef boost::tuple<device::find_t, device::make_t, device::device_filter_t> dev_fcn_reg_t;
// instantiate the device function registry container
UHD_SINGLETON_FCN(std::vector<dev_fcn_reg_t>, get_dev_fcn_regs)
void device::register_device(
const find_t &find,
- const make_t &make
+ const make_t &make,
+ const device_filter_t filter
){
UHD_LOGV(always) << "registering device" << std::endl;
- get_dev_fcn_regs().push_back(dev_fcn_reg_t(find, make));
+ get_dev_fcn_regs().push_back(dev_fcn_reg_t(find, make, filter));
}
/***********************************************************************
* Discover
**********************************************************************/
-device_addrs_t device::find(const device_addr_t &hint){
+device_addrs_t device::find(const device_addr_t &hint, device_filter_t filter){
boost::mutex::scoped_lock lock(_device_mutex);
device_addrs_t device_addrs;
BOOST_FOREACH(const dev_fcn_reg_t &fcn, get_dev_fcn_regs()){
try{
- device_addrs_t discovered_addrs = fcn.get<0>()(hint);
- device_addrs.insert(
- device_addrs.begin(),
- discovered_addrs.begin(),
- discovered_addrs.end()
- );
+ if(filter == ANY or fcn.get<2>() == filter){
+ device_addrs_t discovered_addrs = fcn.get<0>()(hint);
+ device_addrs.insert(
+ device_addrs.begin(),
+ discovered_addrs.begin(),
+ discovered_addrs.end()
+ );
+ }
}
catch(const std::exception &e){
UHD_MSG(error) << "Device discovery error: " << e.what() << std::endl;
@@ -98,16 +101,18 @@ device_addrs_t device::find(const device_addr_t &hint){
/***********************************************************************
* Make
**********************************************************************/
-device::sptr device::make(const device_addr_t &hint, size_t which){
+device::sptr device::make(const device_addr_t &hint, device_filter_t filter, size_t which){
boost::mutex::scoped_lock lock(_device_mutex);
typedef boost::tuple<device_addr_t, make_t> dev_addr_make_t;
std::vector<dev_addr_make_t> dev_addr_makers;
BOOST_FOREACH(const dev_fcn_reg_t &fcn, get_dev_fcn_regs()){
- BOOST_FOREACH(device_addr_t dev_addr, fcn.get<0>()(hint)){
- //append the discovered address and its factory function
- dev_addr_makers.push_back(dev_addr_make_t(dev_addr, fcn.get<1>()));
+ if(filter == ANY or fcn.get<2>() == filter){
+ BOOST_FOREACH(device_addr_t dev_addr, fcn.get<0>()(hint)){
+ //append the discovered address and its factory function
+ dev_addr_makers.push_back(dev_addr_make_t(dev_addr, fcn.get<1>()));
+ }
}
}
@@ -159,3 +164,7 @@ device::get_tree(void) const
{
return _tree;
}
+
+device::device_filter_t device::get_device_type() const {
+ return _type;
+}
diff --git a/host/lib/usrp/b100/b100_impl.cpp b/host/lib/usrp/b100/b100_impl.cpp
index baf2b6ae3..26b0a5aea 100644
--- a/host/lib/usrp/b100/b100_impl.cpp
+++ b/host/lib/usrp/b100/b100_impl.cpp
@@ -1,5 +1,5 @@
//
-// Copyright 2012-2013 Ettus Research LLC
+// Copyright 2012-2014 Ettus Research LLC
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
@@ -137,7 +137,7 @@ static device::sptr b100_make(const device_addr_t &device_addr){
}
UHD_STATIC_BLOCK(register_b100_device){
- device::register_device(&b100_find, &b100_make);
+ device::register_device(&b100_find, &b100_make, device::USRP);
}
/***********************************************************************
@@ -148,6 +148,7 @@ b100_impl::b100_impl(const device_addr_t &device_addr){
b100_impl_constructor_begin:
initialization_count++;
+ _type = device::USRP;
_tree = property_tree::make();
//extract the FPGA path for the B100
diff --git a/host/lib/usrp/b200/CMakeLists.txt b/host/lib/usrp/b200/CMakeLists.txt
index 3d8aad052..a08c4bd03 100644
--- a/host/lib/usrp/b200/CMakeLists.txt
+++ b/host/lib/usrp/b200/CMakeLists.txt
@@ -30,5 +30,6 @@ IF(ENABLE_B200)
${CMAKE_CURRENT_SOURCE_DIR}/b200_iface.cpp
${CMAKE_CURRENT_SOURCE_DIR}/b200_io_impl.cpp
${CMAKE_CURRENT_SOURCE_DIR}/b200_uart.cpp
+ ${CMAKE_CURRENT_SOURCE_DIR}/b200_cores.cpp
)
ENDIF(ENABLE_B200)
diff --git a/host/lib/usrp/b200/b200_cores.cpp b/host/lib/usrp/b200/b200_cores.cpp
new file mode 100644
index 000000000..19e637ef4
--- /dev/null
+++ b/host/lib/usrp/b200/b200_cores.cpp
@@ -0,0 +1,83 @@
+//
+// Copyright 2013-2014 Ettus Research LLC
+//
+// This program is free software: you can redistribute it and/or modify
+// it under the terms of the GNU General Public License as published by
+// the Free Software Foundation, either version 3 of the License, or
+// (at your option) any later version.
+//
+// This program is distributed in the hope that it will be useful,
+// but WITHOUT ANY WARRANTY; without even the implied warranty of
+// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+// GNU General Public License for more details.
+//
+// You should have received a copy of the GNU General Public License
+// along with this program. If not, see <http://www.gnu.org/licenses/>.
+//
+
+#include "b200_cores.hpp"
+#include "b200_regs.hpp"
+#include "b200_impl.hpp"
+
+b200_local_spi_core::b200_local_spi_core(
+ uhd::wb_iface::sptr iface,
+ perif_t default_perif) :
+ _spi_core(spi_core_3000::make(iface, TOREG(SR_CORE_SPI), RB32_CORE_SPI)),
+ _current_perif(default_perif),
+ _last_perif(default_perif)
+{
+ change_perif(default_perif);
+}
+
+boost::uint32_t b200_local_spi_core::transact_spi(
+ int which_slave,
+ const uhd::spi_config_t &config,
+ boost::uint32_t data,
+ size_t num_bits,
+ bool readback)
+{
+ boost::mutex::scoped_lock lock(_mutex);
+ return _spi_core->transact_spi(which_slave, config, data, num_bits, readback);
+}
+
+void b200_local_spi_core::change_perif(perif_t perif)
+{
+ boost::mutex::scoped_lock lock(_mutex);
+ _last_perif = _current_perif;
+ _current_perif = perif;
+
+ switch (_current_perif) {
+ case CODEC:
+ _spi_core->set_divider(B200_BUS_CLOCK_RATE/AD9361_SPI_RATE);
+ break;
+ case PLL:
+ _spi_core->set_divider(B200_BUS_CLOCK_RATE/ADF4001_SPI_RATE);
+ break;
+ }
+}
+
+void b200_local_spi_core::restore_perif()
+{
+ change_perif(_last_perif);
+}
+
+b200_ref_pll_ctrl::b200_ref_pll_ctrl(b200_local_spi_core::sptr spi) :
+ uhd::usrp::adf4001_ctrl(spi, ADF4001_SLAVENO),
+ _spi(spi)
+{
+}
+
+void b200_ref_pll_ctrl::set_lock_to_ext_ref(bool external)
+{
+ _spi->change_perif(b200_local_spi_core::PLL);
+ adf4001_ctrl::set_lock_to_ext_ref(external);
+ _spi->restore_perif();
+}
+
+
+b200_local_spi_core::sptr b200_local_spi_core::make(
+ uhd::wb_iface::sptr iface, b200_local_spi_core::perif_t default_perif)
+{
+ return sptr(new b200_local_spi_core(iface, default_perif));
+}
+
diff --git a/host/lib/usrp/b200/b200_cores.hpp b/host/lib/usrp/b200/b200_cores.hpp
new file mode 100644
index 000000000..8a8900412
--- /dev/null
+++ b/host/lib/usrp/b200/b200_cores.hpp
@@ -0,0 +1,66 @@
+//
+// Copyright 2013-2014 Ettus Research LLC
+//
+// This program is free software: you can redistribute it and/or modify
+// it under the terms of the GNU General Public License as published by
+// the Free Software Foundation, either version 3 of the License, or
+// (at your option) any later version.
+//
+// This program is distributed in the hope that it will be useful,
+// but WITHOUT ANY WARRANTY; without even the implied warranty of
+// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+// GNU General Public License for more details.
+//
+// You should have received a copy of the GNU General Public License
+// along with this program. If not, see <http://www.gnu.org/licenses/>.
+//
+
+#ifndef INCLUDED_B200_CORES_HPP
+#define INCLUDED_B200_CORES_HPP
+
+#include "spi_core_3000.hpp"
+#include "adf4001_ctrl.hpp"
+#include <boost/thread/mutex.hpp>
+
+class b200_local_spi_core : boost::noncopyable, public uhd::spi_iface {
+
+public:
+ typedef boost::shared_ptr<b200_local_spi_core> sptr;
+
+ enum perif_t {
+ CODEC, PLL
+ };
+
+ b200_local_spi_core(uhd::wb_iface::sptr iface, perif_t default_perif);
+
+ virtual boost::uint32_t transact_spi(
+ int which_slave,
+ const uhd::spi_config_t &config,
+ boost::uint32_t data,
+ size_t num_bits,
+ bool readback);
+
+ void change_perif(perif_t perif);
+ void restore_perif();
+
+ static sptr make(uhd::wb_iface::sptr iface, perif_t default_perif = CODEC);
+
+private:
+ spi_core_3000::sptr _spi_core;
+ perif_t _current_perif;
+ perif_t _last_perif;
+ boost::mutex _mutex;
+};
+
+class b200_ref_pll_ctrl : public uhd::usrp::adf4001_ctrl {
+public:
+ typedef boost::shared_ptr<b200_ref_pll_ctrl> sptr;
+
+ b200_ref_pll_ctrl(b200_local_spi_core::sptr spi);
+ void set_lock_to_ext_ref(bool external);
+
+private:
+ b200_local_spi_core::sptr _spi;
+};
+
+#endif /* INCLUDED_B200_CORES_HPP */
diff --git a/host/lib/usrp/b200/b200_iface.hpp b/host/lib/usrp/b200/b200_iface.hpp
index 20b4a7a89..18d058386 100644
--- a/host/lib/usrp/b200/b200_iface.hpp
+++ b/host/lib/usrp/b200/b200_iface.hpp
@@ -35,8 +35,7 @@ static const std::string B200_FW_FILE_NAME = "usrp_b200_fw.hex";
static const std::string B200_FPGA_FILE_NAME = "usrp_b200_fpga.bin";
static const std::string B210_FPGA_FILE_NAME = "usrp_b210_fpga.bin";
-class UHD_API b200_iface: boost::noncopyable, public virtual uhd::i2c_iface,
- public ad9361_ctrl_iface_type {
+class UHD_API b200_iface: boost::noncopyable, public virtual uhd::i2c_iface {
public:
typedef boost::shared_ptr<b200_iface> sptr;
diff --git a/host/lib/usrp/b200/b200_impl.cpp b/host/lib/usrp/b200/b200_impl.cpp
index bf5fdd251..7c85176ef 100644
--- a/host/lib/usrp/b200/b200_impl.cpp
+++ b/host/lib/usrp/b200/b200_impl.cpp
@@ -31,6 +31,7 @@
#include <boost/thread/thread.hpp>
#include <boost/lexical_cast.hpp>
#include <boost/functional/hash.hpp>
+#include <boost/make_shared.hpp>
#include <cstdio>
#include <ctime>
#include <cmath>
@@ -146,7 +147,7 @@ static device::sptr b200_make(const device_addr_t &device_addr)
UHD_STATIC_BLOCK(register_b200_device)
{
- device::register_device(&b200_find, &b200_make);
+ device::register_device(&b200_find, &b200_make, device::USRP);
}
/***********************************************************************
@@ -155,6 +156,7 @@ UHD_STATIC_BLOCK(register_b200_device)
b200_impl::b200_impl(const device_addr_t &device_addr)
{
_tree = property_tree::make();
+ _type = device::USRP;
const fs_path mb_path = "/mboards/0";
//try to match the given device address with something on the USB bus
@@ -338,10 +340,17 @@ b200_impl::b200_impl(const device_addr_t &device_addr)
_demux = recv_packet_demuxer_3000::make(_data_transport);
////////////////////////////////////////////////////////////////////
+ // create time and clock control objects
+ ////////////////////////////////////////////////////////////////////
+ _spi_iface = b200_local_spi_core::make(_local_ctrl);
+ _adf4001_iface = boost::make_shared<b200_ref_pll_ctrl>(_spi_iface);
+
+ ////////////////////////////////////////////////////////////////////
// Init codec - turns on clocks
////////////////////////////////////////////////////////////////////
UHD_MSG(status) << "Initialize CODEC control..." << std::endl;
- _codec_ctrl = ad9361_ctrl::make(_iface);
+ _codec_ctrl = ad9361_ctrl::make(
+ ad9361_ctrl_transport::make_software_spi(AD9361_B200, _spi_iface, AD9361_SLAVENO));
this->reset_codec_dcm();
////////////////////////////////////////////////////////////////////
@@ -404,13 +413,6 @@ b200_impl::b200_impl(const device_addr_t &device_addr)
}
_codec_ctrl->data_port_loopback(false);
- ////////////////////////////////////////////////////////////////////
- // create time and clock control objects
- ////////////////////////////////////////////////////////////////////
- _spi_iface = spi_core_3000::make(_local_ctrl, TOREG(SR_CORE_SPI), RB32_CORE_SPI);
- _spi_iface->set_divider(B200_BUS_CLOCK_RATE/ADF4001_SPI_RATE);
- _adf4001_iface = boost::shared_ptr<adf4001_ctrl>(new adf4001_ctrl(_spi_iface, ADF4001_SLAVENO));
-
//register time now and pps onto available radio cores
_tree->create<time_spec_t>(mb_path / "time" / "now")
.publish(boost::bind(&time_core_3000::get_time_now, _radio_perifs[0].time64));
diff --git a/host/lib/usrp/b200/b200_impl.hpp b/host/lib/usrp/b200/b200_impl.hpp
index c3508c550..5177e295f 100644
--- a/host/lib/usrp/b200/b200_impl.hpp
+++ b/host/lib/usrp/b200/b200_impl.hpp
@@ -20,6 +20,7 @@
#include "b200_iface.hpp"
#include "b200_uart.hpp"
+#include "b200_cores.hpp"
#include "ad9361_ctrl.hpp"
#include "adf4001_ctrl.hpp"
#include "rx_vita_core_3000.hpp"
@@ -44,9 +45,9 @@
#include <uhd/transport/bounded_buffer.hpp>
#include <boost/weak_ptr.hpp>
#include "recv_packet_demuxer_3000.hpp"
-static const boost::uint8_t B200_FW_COMPAT_NUM_MAJOR = 0x04;
+static const boost::uint8_t B200_FW_COMPAT_NUM_MAJOR = 0x05;
static const boost::uint8_t B200_FW_COMPAT_NUM_MINOR = 0x00;
-static const boost::uint16_t B200_FPGA_COMPAT_NUM = 0x03;
+static const boost::uint16_t B200_FPGA_COMPAT_NUM = 0x04;
static const double B200_BUS_CLOCK_RATE = 100e6;
static const double B200_DEFAULT_TICK_RATE = 32e6;
static const boost::uint32_t B200_GPSDO_ST_NONE = 0x83;
@@ -100,7 +101,7 @@ private:
b200_iface::sptr _iface;
radio_ctrl_core_3000::sptr _local_ctrl;
ad9361_ctrl::sptr _codec_ctrl;
- spi_core_3000::sptr _spi_iface;
+ b200_local_spi_core::sptr _spi_iface;
boost::shared_ptr<uhd::usrp::adf4001_ctrl> _adf4001_iface;
uhd::gps_ctrl::sptr _gps;
diff --git a/host/lib/usrp/b200/b200_regs.hpp b/host/lib/usrp/b200/b200_regs.hpp
index c64066b27..dc8a6b0dc 100644
--- a/host/lib/usrp/b200/b200_regs.hpp
+++ b/host/lib/usrp/b200/b200_regs.hpp
@@ -52,7 +52,9 @@ localparam RB64_TIME_PPS = 16;
localparam RB64_CODEC_READBACK = 24;
//pll constants
+static const int AD9361_SLAVENO = (1 << 0);
static const int ADF4001_SLAVENO = (1 << 1);
+static const double AD9361_SPI_RATE = 1e6;
static const double ADF4001_SPI_RATE = 10e3; //slow for large time constant on spi lines
/* ATR Control Bits */
diff --git a/host/lib/usrp/common/CMakeLists.txt b/host/lib/usrp/common/CMakeLists.txt
index b99464873..b40c16121 100644
--- a/host/lib/usrp/common/CMakeLists.txt
+++ b/host/lib/usrp/common/CMakeLists.txt
@@ -27,13 +27,22 @@ IF(ENABLE_USB)
ENDIF(ENABLE_USB)
INCLUDE_DIRECTORIES(${CMAKE_CURRENT_SOURCE_DIR})
+INCLUDE_DIRECTORIES("${CMAKE_CURRENT_SOURCE_DIR}/ad9361_driver")
LIBUHD_APPEND_SOURCES(
${CMAKE_CURRENT_SOURCE_DIR}/adf4001_ctrl.cpp
${CMAKE_CURRENT_SOURCE_DIR}/adf435x_common.cpp
${CMAKE_CURRENT_SOURCE_DIR}/ad9361_ctrl.cpp
+ ${CMAKE_CURRENT_SOURCE_DIR}/ad9361_driver/ad9361_impl.c
+ ${CMAKE_CURRENT_SOURCE_DIR}/ad9361_platform_uhd.cpp
+ ${CMAKE_CURRENT_SOURCE_DIR}/ad9361_client.cpp
${CMAKE_CURRENT_SOURCE_DIR}/apply_corrections.cpp
${CMAKE_CURRENT_SOURCE_DIR}/validate_subdev_spec.cpp
${CMAKE_CURRENT_SOURCE_DIR}/recv_packet_demuxer.cpp
${CMAKE_CURRENT_SOURCE_DIR}/fifo_ctrl_excelsior.cpp
)
+
+SET_SOURCE_FILES_PROPERTIES(
+ ${CMAKE_CURRENT_SOURCE_DIR}/ad9361_driver/ad9361_impl.c
+ PROPERTIES LANGUAGE CXX
+) \ No newline at end of file
diff --git a/host/lib/usrp/common/ad9361_client.cpp b/host/lib/usrp/common/ad9361_client.cpp
new file mode 100644
index 000000000..c0cc61585
--- /dev/null
+++ b/host/lib/usrp/common/ad9361_client.cpp
@@ -0,0 +1,56 @@
+//
+// Copyright 2014 Ettus Research LLC
+//
+
+#include <ad9361_client.h>
+
+double ad9361_client_get_band_edge(ad9361_product_t product, frequency_band_t band)
+{
+ switch (product) {
+ default:
+ switch (band) {
+ case AD9361_RX_BAND0: return 2.2e9;
+ case AD9361_RX_BAND1: return 4.0e9;
+ case AD9361_TX_BAND0: return 2.5e9;
+ default: return 0;
+ }
+ }
+}
+
+clocking_mode_t ad9361_client_get_clocking_mode(ad9361_product_t product)
+{
+ switch (product) {
+ case AD9361_B200:
+ return AD9361_XTAL_N_CLK_PATH;
+ default:
+ return AD9361_XTAL_N_CLK_PATH;
+ }
+}
+
+digital_interface_mode_t ad9361_client_get_digital_interface_mode(ad9361_product_t product)
+{
+ switch (product) {
+ case AD9361_B200: return AD9361_DDR_FDD_LVCMOS;
+ default: return AD9361_DDR_FDD_LVCMOS;
+ }
+}
+
+digital_interface_delays_t ad9361_client_get_digital_interface_timing(ad9361_product_t product)
+{
+ digital_interface_delays_t delays;
+ switch (product) {
+ case AD9361_B200:
+ delays.rx_clk_delay = 0;
+ delays.rx_data_delay = 0xF;
+ delays.tx_clk_delay = 0;
+ delays.tx_data_delay = 0xF;
+ break;
+ default:
+ delays.rx_clk_delay = 0;
+ delays.rx_data_delay = 0;
+ delays.tx_clk_delay = 0;
+ delays.tx_data_delay = 0;
+ break;
+ }
+ return delays;
+}
diff --git a/host/lib/usrp/common/ad9361_ctrl.cpp b/host/lib/usrp/common/ad9361_ctrl.cpp
index 10496f2a9..4cdfaa6e1 100644
--- a/host/lib/usrp/common/ad9361_ctrl.cpp
+++ b/host/lib/usrp/common/ad9361_ctrl.cpp
@@ -1,42 +1,169 @@
//
-// Copyright 2012-2013 Ettus Research LLC
-//
-// This program is free software: you can redistribute it and/or modify
-// it under the terms of the GNU General Public License as published by
-// the Free Software Foundation, either version 3 of the License, or
-// (at your option) any later version.
-//
-// This program is distributed in the hope that it will be useful,
-// but WITHOUT ANY WARRANTY; without even the implied warranty of
-// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-// GNU General Public License for more details.
-//
-// You should have received a copy of the GNU General Public License
-// along with this program. If not, see <http://www.gnu.org/licenses/>.
+// Copyright 2014 Ettus Research LLC
//
#include "ad9361_ctrl.hpp"
#include "ad9361_transaction.h"
+#include "ad9361_dispatch.h"
+#include <ad9361_platform.h>
#include <uhd/exception.hpp>
#include <uhd/types/ranges.hpp>
#include <uhd/utils/msg.hpp>
+#include <uhd/types/serial.hpp>
#include <boost/thread/mutex.hpp>
#include <boost/format.hpp>
#include <cstring>
+#include <boost/utility.hpp>
+#include <boost/function.hpp>
+
+using namespace uhd;
+
+/***********************************************************************
+ * AD9361 IO Implementation Classes
+ **********************************************************************/
+
+class ad9361_io_spi : public ad9361_io
+{
+public:
+ ad9361_io_spi(uhd::spi_iface::sptr spi_iface, uint32_t slave_num) :
+ _spi_iface(spi_iface), _slave_num(slave_num) { }
+
+ uint8_t peek8(uint32_t reg)
+ {
+ uhd::spi_config_t config;
+ config.mosi_edge = uhd::spi_config_t::EDGE_FALL;
+ config.miso_edge = uhd::spi_config_t::EDGE_FALL; //TODO (Ashish): FPGA SPI workaround. This should be EDGE_RISE
+
+ uint32_t rd_word = AD9361_SPI_READ_CMD |
+ ((uint32_t(reg) << AD9361_SPI_ADDR_SHIFT) & AD9361_SPI_ADDR_MASK);
+
+ uint32_t val = (_spi_iface->read_spi(_slave_num, config, rd_word, AD9361_SPI_NUM_BITS));
+ val &= 0xFF;
+
+ return static_cast<uint8_t>(val);
+ }
+
+ void poke8(uint32_t reg, uint8_t val)
+ {
+ uhd::spi_config_t config;
+ config.mosi_edge = uhd::spi_config_t::EDGE_FALL;
+ config.miso_edge = uhd::spi_config_t::EDGE_FALL; //TODO (Ashish): FPGA SPI workaround. This should be EDGE_RISE
+
+ uint32_t wr_word = AD9361_SPI_WRITE_CMD |
+ ((uint32_t(reg) << AD9361_SPI_ADDR_SHIFT) & AD9361_SPI_ADDR_MASK) |
+ ((uint32_t(val) << AD9361_SPI_DATA_SHIFT) & AD9361_SPI_DATA_MASK);
+ _spi_iface->write_spi(_slave_num, config, wr_word, AD9361_SPI_NUM_BITS);
+
+ //TODO (Ashish): Is this necessary? The FX3 firmware does it right now but for
+ //networked devices, it makes writes blocking which will considerably slow down the programming
+ peek8(reg);
+ }
+private:
+ uhd::spi_iface::sptr _spi_iface;
+ uint32_t _slave_num;
+
+ static const uint32_t AD9361_SPI_WRITE_CMD = 0x00800000;
+ static const uint32_t AD9361_SPI_READ_CMD = 0x00000000;
+ static const uint32_t AD9361_SPI_ADDR_MASK = 0x003FFF00;
+ static const uint32_t AD9361_SPI_ADDR_SHIFT = 8;
+ static const uint32_t AD9361_SPI_DATA_MASK = 0x000000FF;
+ static const uint32_t AD9361_SPI_DATA_SHIFT = 0;
+ static const uint32_t AD9361_SPI_NUM_BITS = 24;
+};
+
+/***********************************************************************
+ * AD9361 Transport Implementation Classes
+ **********************************************************************/
+
+//----------------------------------------------------------------------
+//Over a zero-copy device transport
+//----------------------------------------------------------------------
+class ad9361_ctrl_transport_zc_impl : public ad9361_ctrl_transport
+{
+public:
+ ad9361_ctrl_transport_zc_impl(uhd::transport::zero_copy_if::sptr xport)
+ {
+ _xport = xport;
+ }
+
+ void ad9361_transact(const unsigned char in_buff[AD9361_DISPATCH_PACKET_SIZE], unsigned char out_buff[AD9361_DISPATCH_PACKET_SIZE])
+ {
+ {
+ uhd::transport::managed_send_buffer::sptr buff = _xport->get_send_buff(10.0);
+ if (not buff or buff->size() < AD9361_DISPATCH_PACKET_SIZE) throw std::runtime_error("ad9361_ctrl_over_zc send timeout");
+ std::memcpy(buff->cast<void *>(), in_buff, AD9361_DISPATCH_PACKET_SIZE);
+ buff->commit(AD9361_DISPATCH_PACKET_SIZE);
+ }
+ {
+ uhd::transport::managed_recv_buffer::sptr buff = _xport->get_recv_buff(10.0);
+ if (not buff or buff->size() < AD9361_DISPATCH_PACKET_SIZE) throw std::runtime_error("ad9361_ctrl_over_zc recv timeout");
+ std::memcpy(out_buff, buff->cast<const void *>(), AD9361_DISPATCH_PACKET_SIZE);
+ }
+ }
+
+ uint64_t get_device_handle()
+ {
+ return 0; //Unused for zero-copy transport because chip class is in FW
+ }
+
+private:
+ uhd::transport::zero_copy_if::sptr _xport;
+};
-//! compat strnlen for platforms that dont have it
-static size_t my_strnlen(const char *str, size_t max)
+//----------------------------------------------------------------------
+//Over a software transport
+//----------------------------------------------------------------------
+class ad9361_ctrl_transport_sw_spi_impl : public ad9361_ctrl_transport
{
- const char *end = (const char *)std::memchr((const void *)str, 0, max);
- if (end == NULL) return max;
- return (size_t)(end - str);
+public:
+ ad9361_ctrl_transport_sw_spi_impl(
+ ad9361_product_t product,
+ uhd::spi_iface::sptr spi_iface,
+ boost::uint32_t slave_num) :
+ _io_iface(spi_iface, slave_num)
+ {
+ _device.product = product;
+ _device.io_iface = reinterpret_cast<void*>(&_io_iface);
+ }
+
+ void ad9361_transact(const unsigned char in_buff[AD9361_DISPATCH_PACKET_SIZE], unsigned char out_buff[AD9361_DISPATCH_PACKET_SIZE])
+ {
+ ad9361_dispatch((const char*)in_buff, (char*)out_buff);
+ }
+
+ uint64_t get_device_handle()
+ {
+ return reinterpret_cast<uint64_t>(reinterpret_cast<void*>(&_device));
+ }
+
+private:
+ ad9361_device_t _device;
+ ad9361_io_spi _io_iface;
+};
+
+//----------------------------------------------------------------------
+// Make an instance of the AD9361 Transport
+//----------------------------------------------------------------------
+ad9361_ctrl_transport::sptr ad9361_ctrl_transport::make_zero_copy(uhd::transport::zero_copy_if::sptr xport)
+{
+ return sptr(new ad9361_ctrl_transport_zc_impl(xport));
}
-using namespace uhd;
+ad9361_ctrl_transport::sptr ad9361_ctrl_transport::make_software_spi(
+ ad9361_product_t product,
+ uhd::spi_iface::sptr spi_iface,
+ boost::uint32_t slave_num)
+{
+ return sptr(new ad9361_ctrl_transport_sw_spi_impl(product, spi_iface, slave_num));
+}
-struct ad9361_ctrl_impl : public ad9361_ctrl
+/***********************************************************************
+ * AD9361 Software API Class
+ **********************************************************************/
+class ad9361_ctrl_impl : public ad9361_ctrl
{
- ad9361_ctrl_impl(ad9361_ctrl_iface_sptr iface):
+public:
+ ad9361_ctrl_impl(ad9361_ctrl_transport::sptr iface):
_iface(iface), _seq(0)
{
ad9361_transaction_t request;
@@ -129,17 +256,21 @@ struct ad9361_ctrl_impl : public ad9361_ctrl
boost::mutex::scoped_lock lock(_mutex);
//declare in/out buffers
- unsigned char in_buff[64] = {};
- unsigned char out_buff[64] = {};
+ unsigned char in_buff[AD9361_DISPATCH_PACKET_SIZE] = {};
+ unsigned char out_buff[AD9361_DISPATCH_PACKET_SIZE] = {};
//copy the input transaction
std::memcpy(in_buff, &request, sizeof(request));
-
+
//fill in other goodies
ad9361_transaction_t *in = (ad9361_transaction_t *)in_buff;
+ in->handle = _iface->get_device_handle();
in->version = AD9361_TRANSACTION_VERSION;
in->sequence = _seq++;
+ //initialize error message to "no error"
+ std::memset(in->error_msg, 0, AD9361_TRANSACTION_MAX_ERROR_MSG);
+
//transact
_iface->ad9361_transact(in_buff, out_buff);
ad9361_transaction_t *out = (ad9361_transaction_t *)out_buff;
@@ -157,17 +288,24 @@ struct ad9361_ctrl_impl : public ad9361_ctrl
return *out;
}
- ad9361_ctrl_iface_sptr _iface;
- size_t _seq;
- boost::mutex _mutex;
+private:
+ //! compat strnlen for platforms that dont have it
+ static size_t my_strnlen(const char *str, size_t max)
+ {
+ const char *end = (const char *)std::memchr((const void *)str, 0, max);
+ if (end == NULL) return max;
+ return (size_t)(end - str);
+ }
+ ad9361_ctrl_transport::sptr _iface;
+ size_t _seq;
+ boost::mutex _mutex;
};
-
-/***********************************************************************
- * Make an instance of the implementation
- **********************************************************************/
-ad9361_ctrl::sptr ad9361_ctrl::make(ad9361_ctrl_iface_sptr iface)
+//----------------------------------------------------------------------
+// Make an instance of the AD9361 Control interface
+//----------------------------------------------------------------------
+ad9361_ctrl::sptr ad9361_ctrl::make(ad9361_ctrl_transport::sptr iface)
{
return sptr(new ad9361_ctrl_impl(iface));
}
diff --git a/host/lib/usrp/common/ad9361_ctrl.hpp b/host/lib/usrp/common/ad9361_ctrl.hpp
index 098b5dae8..4a920a73f 100644
--- a/host/lib/usrp/common/ad9361_ctrl.hpp
+++ b/host/lib/usrp/common/ad9361_ctrl.hpp
@@ -1,79 +1,62 @@
//
-// Copyright 2012-2013 Ettus Research LLC
-//
-// This program is free software: you can redistribute it and/or modify
-// it under the terms of the GNU General Public License as published by
-// the Free Software Foundation, either version 3 of the License, or
-// (at your option) any later version.
-//
-// This program is distributed in the hope that it will be useful,
-// but WITHOUT ANY WARRANTY; without even the implied warranty of
-// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-// GNU General Public License for more details.
-//
-// You should have received a copy of the GNU General Public License
-// along with this program. If not, see <http://www.gnu.org/licenses/>.
+// Copyright 2014 Ettus Research LLC
//
#ifndef INCLUDED_AD9361_CTRL_HPP
#define INCLUDED_AD9361_CTRL_HPP
#include <uhd/transport/zero_copy.hpp>
-#include <uhd/types/serial.hpp>
#include <uhd/types/ranges.hpp>
+#include <uhd/types/serial.hpp>
#include <boost/shared_ptr.hpp>
-#include <boost/utility.hpp>
-#include <boost/function.hpp>
-#include <vector>
+#include <ad9361_device.h>
#include <string>
-
+#include <stdint.h>
#include "ad9361_transaction.h"
-
static const double AD9361_CLOCK_RATE_MAX = 61.44e6;
static const double AD9361_1_CHAN_CLOCK_RATE_MAX = AD9361_CLOCK_RATE_MAX;
static const double AD9361_2_CHAN_CLOCK_RATE_MAX = (AD9361_1_CHAN_CLOCK_RATE_MAX / 2);
-
-struct ad9361_ctrl_iface_type
+/***********************************************************************
+ * AD9361 Transport Interface
+ **********************************************************************/
+class ad9361_io
{
- virtual void ad9361_transact(const unsigned char in_buff[AD9361_DISPATCH_PACKET_SIZE], unsigned char out_buff[AD9361_DISPATCH_PACKET_SIZE]) = 0;
+public:
+ virtual uint8_t peek8(uint32_t reg) = 0;
+ virtual void poke8(uint32_t reg, uint8_t val) = 0;
};
-typedef boost::shared_ptr<ad9361_ctrl_iface_type> ad9361_ctrl_iface_sptr;
-
-struct ad9361_ctrl_over_zc : ad9361_ctrl_iface_type
+/***********************************************************************
+ * AD9361 Transport Interface
+ **********************************************************************/
+class ad9361_ctrl_transport
{
- ad9361_ctrl_over_zc(uhd::transport::zero_copy_if::sptr xport)
- {
- _xport = xport;
- }
+public:
+ typedef boost::shared_ptr<ad9361_ctrl_transport> sptr;
- void ad9361_transact(const unsigned char in_buff[AD9361_DISPATCH_PACKET_SIZE], unsigned char out_buff[AD9361_DISPATCH_PACKET_SIZE])
- {
- {
- uhd::transport::managed_send_buffer::sptr buff = _xport->get_send_buff(10.0);
- if (not buff or buff->size() < AD9361_DISPATCH_PACKET_SIZE) throw std::runtime_error("ad9361_ctrl_over_zc send timeout");
- std::memcpy(buff->cast<void *>(), in_buff, AD9361_DISPATCH_PACKET_SIZE);
- buff->commit(AD9361_DISPATCH_PACKET_SIZE);
- }
- {
- uhd::transport::managed_recv_buffer::sptr buff = _xport->get_recv_buff(10.0);
- if (not buff or buff->size() < AD9361_DISPATCH_PACKET_SIZE) throw std::runtime_error("ad9361_ctrl_over_zc recv timeout");
- std::memcpy(out_buff, buff->cast<const void *>(), AD9361_DISPATCH_PACKET_SIZE);
- }
- }
+ virtual uint64_t get_device_handle() = 0;
+ virtual void ad9361_transact(const unsigned char in_buff[AD9361_DISPATCH_PACKET_SIZE], unsigned char out_buff[AD9361_DISPATCH_PACKET_SIZE]) = 0;
- uhd::transport::zero_copy_if::sptr _xport;
+ static ad9361_ctrl_transport::sptr make_zero_copy(
+ uhd::transport::zero_copy_if::sptr xport);
+ static ad9361_ctrl_transport::sptr make_software_spi(
+ ad9361_product_t product,
+ uhd::spi_iface::sptr spi_iface,
+ boost::uint32_t slave_num);
};
-
-class ad9361_ctrl : boost::noncopyable{
+/***********************************************************************
+ * AD9361 Control Interface
+ **********************************************************************/
+class ad9361_ctrl : public boost::noncopyable
+{
public:
typedef boost::shared_ptr<ad9361_ctrl> sptr;
//! make a new codec control object
- static sptr make(ad9361_ctrl_iface_sptr iface);
+ static sptr make(ad9361_ctrl_transport::sptr iface);
//! Get a list of gain names for RX or TX
static std::vector<std::string> get_gain_names(const std::string &/*which*/)
diff --git a/host/lib/usrp/common/ad9361_driver/ad9361_client.h b/host/lib/usrp/common/ad9361_driver/ad9361_client.h
new file mode 100644
index 000000000..300fdb2a5
--- /dev/null
+++ b/host/lib/usrp/common/ad9361_driver/ad9361_client.h
@@ -0,0 +1,59 @@
+//
+// Copyright 2014 Ettus Research LLC
+//
+
+#ifndef INCLUDED_AD9361_CLIENT_SETTINGS_H
+#define INCLUDED_AD9361_CLIENT_SETTINGS_H
+
+#include <stdint.h>
+#include <ad9361_device.h>
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+/*!
+ * Frequency band settings
+ */
+typedef enum {
+ AD9361_RX_BAND0,
+ AD9361_RX_BAND1,
+ AD9361_TX_BAND0
+} frequency_band_t;
+
+double ad9361_client_get_band_edge(ad9361_product_t product, frequency_band_t band);
+
+/*!
+ * Clocking mode
+ */
+typedef enum {
+ AD9361_XTAL_P_CLK_PATH,
+ AD9361_XTAL_N_CLK_PATH
+} clocking_mode_t;
+
+clocking_mode_t ad9361_client_get_clocking_mode(ad9361_product_t product);
+
+/*!
+ * Digital interface specific
+ */
+typedef enum {
+ AD9361_DDR_FDD_LVCMOS,
+ AD9361_DDR_FDD_LVDS
+} digital_interface_mode_t;
+
+digital_interface_mode_t ad9361_client_get_digital_interface_mode(ad9361_product_t product);
+
+typedef struct {
+ uint8_t rx_clk_delay;
+ uint8_t rx_data_delay;
+ uint8_t tx_clk_delay;
+ uint8_t tx_data_delay;
+} digital_interface_delays_t;
+
+digital_interface_delays_t ad9361_client_get_digital_interface_timing(ad9361_product_t product);
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* INCLUDED_AD9361_CLIENT_SETTINGS_H */
diff --git a/host/lib/usrp/common/ad9361_driver/ad9361_device.h b/host/lib/usrp/common/ad9361_driver/ad9361_device.h
new file mode 100644
index 000000000..0cb4b32a4
--- /dev/null
+++ b/host/lib/usrp/common/ad9361_driver/ad9361_device.h
@@ -0,0 +1,53 @@
+//
+// Copyright 2014 Ettus Research LLC
+//
+
+#ifndef INCLUDED_AD9361_CHIP_H
+#define INCLUDED_AD9361_CHIP_H
+
+#include <stdint.h>
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+typedef enum {
+ AD9361_GENERIC, AD9361_B200
+} ad9361_product_t;
+
+////////////////////////////////////////////////////////////
+// shadow registers
+typedef struct {
+ uint8_t vcodivs;
+ uint8_t inputsel;
+ uint8_t rxfilt;
+ uint8_t txfilt;
+ uint8_t bbpll;
+ uint8_t bbftune_config;
+ uint8_t bbftune_mode;
+} ad9361_chip_regs_t;
+
+////////////////////////////////////////////////////////////
+// other private data fields for VRQ handler
+typedef struct {
+ //Product
+ ad9361_product_t product;
+ //Intermediate state
+ double rx_freq, tx_freq, req_rx_freq, req_tx_freq;
+ double baseband_bw, bbpll_freq, adcclock_freq;
+ double req_clock_rate, req_coreclk;
+ uint16_t rx_bbf_tunediv;
+ uint8_t curr_gain_table;
+ uint32_t rx1_gain, rx2_gain, tx1_gain, tx2_gain;
+ int32_t tfir_factor;
+ //Register soft-copies
+ ad9361_chip_regs_t regs;
+ //IO Interface
+ void* io_iface;
+} ad9361_device_t;
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* INCLUDED_AD9361_CHIP_H */
diff --git a/host/lib/usrp/common/ad9361_driver/ad9361_dispatch.h b/host/lib/usrp/common/ad9361_driver/ad9361_dispatch.h
new file mode 100644
index 000000000..552405763
--- /dev/null
+++ b/host/lib/usrp/common/ad9361_driver/ad9361_dispatch.h
@@ -0,0 +1,24 @@
+//
+// Copyright 2014 Ettus Research LLC
+//
+
+#ifndef INCLUDED_AD9361_DISPATCH_H
+#define INCLUDED_AD9361_DISPATCH_H
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+#include <ad9361_transaction.h>
+
+extern void ad9361_dispatch(const char* request, char* response);
+
+typedef void (*msgfn)(const char*, ...);
+
+extern void ad9361_set_msgfn(msgfn pfn);
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* INCLUDED_AD9361_DISPATCH_H */
diff --git a/host/lib/usrp/common/ad9361_driver/ad9361_filter_taps.h b/host/lib/usrp/common/ad9361_driver/ad9361_filter_taps.h
new file mode 100644
index 000000000..2b4374025
--- /dev/null
+++ b/host/lib/usrp/common/ad9361_driver/ad9361_filter_taps.h
@@ -0,0 +1,71 @@
+//
+// Copyright 2014 Ettus Research LLC
+//
+
+#ifndef INCLUDED_AD9361_FILTER_TAPS_HPP
+#define INCLUDED_AD9361_FILTER_TAPS_HPP
+
+/* A default 128-tap filter that can be used for generic circumstances. */
+/* static uint16_t default_128tap_coeffs[] = {
+ 0x0001,0xfff1,0xffcf,0xffc0,0xffe8,0x0020,0x001a,0xffe3,
+ 0xffe1,0x001f,0x0028,0xffdf,0xffcc,0x0024,0x0043,0xffdb,
+ 0xffac,0x0026,0x0068,0xffdb,0xff80,0x0022,0x009a,0xffe2,
+ 0xff47,0x0017,0x00db,0xfff3,0xfeff,0xffff,0x012b,0x0013,
+ 0xfea5,0xffd7,0x0190,0x0046,0xfe35,0xff97,0x020e,0x0095,
+ 0xfda7,0xff36,0x02ae,0x010d,0xfcf0,0xfea1,0x0383,0x01c6,
+ 0xfbf3,0xfdb6,0x04b7,0x02f8,0xfa6d,0xfc1a,0x06be,0x0541,
+ 0xf787,0xf898,0x0b60,0x0b6d,0xee88,0xea40,0x2786,0x7209
+};
+*/
+
+/* The below pair of filters is from ADI and "optimized for a 10MHz LTE application". */
+/*
+static uint16_t lte10mhz_rx_coeffs[] = {
+ 0xffe2,0x0042,0x0024,0x0095,0x0056,0x004d,0xffcf,0xffb7,
+ 0xffb1,0x0019,0x0059,0x006a,0x0004,0xff9d,0xff72,0xffd4,
+ 0x0063,0x00b7,0x0062,0xffac,0xff21,0xff59,0x0032,0x0101,
+ 0x00f8,0x0008,0xfeea,0xfeac,0xffa3,0x0117,0x01b5,0x00d0,
+ 0xff05,0xfdea,0xfe9e,0x00ba,0x026f,0x0215,0xffb5,0xfd4a,
+ 0xfd18,0xffa0,0x02de,0x03dc,0x0155,0xfd2a,0xfb0d,0xfd54,
+ 0x0287,0x062f,0x048a,0xfe37,0xf862,0xf8c1,0x004d,0x0963,
+ 0x0b88,0x02a4,0xf3e7,0xebdd,0xf5f8,0x1366,0x3830,0x518b
+};
+
+static uint16_t lte10mhz_tx_coeffs[] = {
+ 0xfffb,0x0000,0x0004,0x0017,0x0024,0x0028,0x0013,0xfff3,
+ 0xffdc,0xffe5,0x000b,0x0030,0x002e,0xfffe,0xffc4,0xffb8,
+ 0xfff0,0x0045,0x0068,0x002b,0xffb6,0xff72,0xffad,0x0047,
+ 0x00b8,0x0088,0xffc8,0xff1c,0xff33,0x001a,0x0110,0x0124,
+ 0x0019,0xfec8,0xfe74,0xff9a,0x0156,0x0208,0x00d3,0xfe9b,
+ 0xfd68,0xfe96,0x015d,0x033f,0x0236,0xfecd,0xfc00,0xfcb5,
+ 0x00d7,0x04e5,0x04cc,0xffd5,0xf9fe,0xf8fb,0xfef2,0x078c,
+ 0x0aae,0x036d,0xf5c0,0xed89,0xf685,0x12af,0x36a4,0x4faa
+};
+*/
+
+
+/* 127 tap Halfband designed with: round(2^16 * halfgen4(0.9/4,32)) (center tap tweaked to 32767) */
+static int16_t hb127_coeffs[] = {
+ -0,0,1,-0,-2,0,3,-0,-5,0,8,-0,-11,0,17,-0,-24,0,33,-0,-45,0,61,-0,-80,0,104,-0,-134,0,169,-0,
+ -213,0,264,-0,-327,0,401,-0,-489,0,595,-0,-724,0,880,-0,-1075,0,1323,-0,-1652,0,2114,-0,-2819,0,4056,-0,-6883,0,20837,32767,
+ 20837,0,-6883,-0,4056,0,-2819,-0,2114,0,-1652,-0,1323,0,-1075,-0,880,0,-724,-0,595,0,-489,-0,401,0,-327,-0,264,0,-213,-0,
+ 169,0,-134,-0,104,0,-80,-0,61,0,-45,-0,33,0,-24,-0,17,0,-11,-0,8,0,-5,-0,3,0,-2,-0,1,0,-0, 0 };
+
+/* 95 tap Halfband designed with: round(2^16 * halfgen4(0.9/4,24)) (center tap tweaked to 32767) */
+static int16_t hb95_coeffs[] = {
+ -4,0,8,-0,-14,0,23,-0,-36,0,52,-0,-75,0,104,-0,-140,0,186,-0,-243,0,314,-0,-400,0,505,-0,-634,0,793,-0,
+ -993,0,1247,-0,-1585,0,2056,-0,-2773,0,4022,-0,-6862,0,20830,32767,20830,0,-6862,-0,4022,0,-2773,-0,2056,0,-1585,-0,1247,0,-993,-0,
+ 793,0,-634,-0,505,0,-400,-0,314,0,-243,-0,186,0,-140,-0,104,0,-75,-0,52,0,-36,-0,23,0,-14,-0,8,0,-4,0};
+
+/* 63 tap Halfband designed with: round(2^16 * halfgen4(0.9/4,16)) (center tap tweaked to 32767) */
+static int16_t hb63_coeffs[] = {
+ -58,0,83,-0,-127,0,185,-0,-262,0,361,-0,-488,0,648,-0,-853,0,1117,-0,-1466,0,1954,-0,-2689,0,3960,-0,-6825,0,20818,32767,
+ 20818,0,-6825,-0,3960,0,-2689,-0,1954,0,-1466,-0,1117,0,-853,-0,648,0,-488,-0,361,0,-262,-0,185,0,-127,-0,83,0,-58,0};
+
+/* 47 tap Halfband designed with: round(2^16 * halfgen4(0.85/4,12)) (center tap tweaked to 32767) */
+static int16_t hb47_coeffs[] = {
+ -50,0,98,-0,-181,0,307,-0,-489,0,747,-0,-1109,0,1628,-0,-2413,0,3750,-0,-6693,0,20773,32767,20773,0,-6693,-0,3750,0,-2413,-0,
+ 1628,0,-1109,-0,747,0,-489,-0,307,0,-181,-0,98,0,-50,0};
+
+
+#endif // INCLUDED_AD9361_FILTER_TAPS_HPP
diff --git a/host/lib/usrp/common/ad9361_driver/ad9361_gain_tables.h b/host/lib/usrp/common/ad9361_driver/ad9361_gain_tables.h
new file mode 100644
index 000000000..d38efd11d
--- /dev/null
+++ b/host/lib/usrp/common/ad9361_driver/ad9361_gain_tables.h
@@ -0,0 +1,95 @@
+//
+// Copyright 2014 Ettus Research LLC
+//
+
+#ifndef INCLUDED_AD9361_GAIN_TABLES_HPP
+#define INCLUDED_AD9361_GAIN_TABLES_HPP
+
+uint8_t gain_table_sub_1300mhz[77][5] = { {0,0x00,0x00,0x20,1},
+ {1,0x00,0x00,0x00,0}, {2,0x00,0x00,0x00,0}, {3,0x00,0x01,0x00,0},
+ {4,0x00,0x02,0x00,0}, {5,0x00,0x03,0x00,0}, {6,0x00,0x04,0x00,0},
+ {7,0x00,0x05,0x00,0}, {8,0x01,0x03,0x20,1}, {9,0x01,0x04,0x00,0},
+ {10,0x01,0x05,0x00,0}, {11,0x01,0x06,0x00,0}, {12,0x01,0x07,0x00,0},
+ {13,0x01,0x08,0x00,0}, {14,0x01,0x09,0x00,0}, {15,0x01,0x0A,0x00,0},
+ {16,0x01,0x0B,0x00,0}, {17,0x01,0x0C,0x00,0}, {18,0x01,0x0D,0x00,0},
+ {19,0x01,0x0E,0x00,0}, {20,0x02,0x09,0x20,1}, {21,0x02,0x0A,0x00,0},
+ {22,0x02,0x0B,0x00,0}, {23,0x02,0x0C,0x00,0}, {24,0x02,0x0D,0x00,0},
+ {25,0x02,0x0E,0x00,0}, {26,0x02,0x0F,0x00,0}, {27,0x02,0x10,0x00,0},
+ {28,0x02,0x2B,0x20,1}, {29,0x02,0x2C,0x00,0}, {30,0x04,0x27,0x20,1},
+ {31,0x04,0x28,0x00,0}, {32,0x04,0x29,0x00,0}, {33,0x04,0x2A,0x00,0},
+ {34,0x04,0x2B,0x00,1}, {35,0x24,0x21,0x20,0}, {36,0x24,0x22,0x00,1},
+ {37,0x44,0x20,0x20,0}, {38,0x44,0x21,0x00,0}, {39,0x44,0x22,0x00,0},
+ {40,0x44,0x23,0x00,0}, {41,0x44,0x24,0x00,0}, {42,0x44,0x25,0x00,0},
+ {43,0x44,0x26,0x00,0}, {44,0x44,0x27,0x00,0}, {45,0x44,0x28,0x00,0},
+ {46,0x44,0x29,0x00,0}, {47,0x44,0x2A,0x00,0}, {48,0x44,0x2B,0x00,0},
+ {49,0x44,0x2C,0x00,0}, {50,0x44,0x2D,0x00,0}, {51,0x44,0x2E,0x00,0},
+ {52,0x44,0x2F,0x00,0}, {53,0x44,0x30,0x00,0}, {54,0x44,0x31,0x00,0},
+ {55,0x64,0x2E,0x20,1}, {56,0x64,0x2F,0x00,0}, {57,0x64,0x30,0x00,0},
+ {58,0x64,0x31,0x00,0}, {59,0x64,0x32,0x00,0}, {60,0x64,0x33,0x00,0},
+ {61,0x64,0x34,0x00,0}, {62,0x64,0x35,0x00,0}, {63,0x64,0x36,0x00,0},
+ {64,0x64,0x37,0x00,0}, {65,0x64,0x38,0x00,0}, {66,0x65,0x38,0x20,1},
+ {67,0x66,0x38,0x20,1}, {68,0x67,0x38,0x20,1}, {69,0x68,0x38,0x20,1},
+ {70,0x69,0x38,0x20,1}, {71,0x6A,0x38,0x20,1}, {72,0x6B,0x38,0x20,1},
+ {73,0x6C,0x38,0x20,1}, {74,0x6D,0x38,0x20,1}, {75,0x6E,0x38,0x20,1},
+ {76,0x6F,0x38,0x20,1}};
+
+
+uint8_t gain_table_1300mhz_to_4000mhz[77][5] = { {0,0x00,0x00,0x20,1},
+ {1,0x00,0x00,0x00,0}, {2,0x00,0x00,0x00,0}, {3,0x00,0x01,0x00,0},
+ {4,0x00,0x02,0x00,0}, {5,0x00,0x03,0x00,0}, {6,0x00,0x04,0x00,0},
+ {7,0x00,0x05,0x00,0}, {8,0x01,0x03,0x20,1}, {9,0x01,0x04,0x00,0},
+ {10,0x01,0x05,0x00,0}, {11,0x01,0x06,0x00,0}, {12,0x01,0x07,0x00,0},
+ {13,0x01,0x08,0x00,0}, {14,0x01,0x09,0x00,0}, {15,0x01,0x0A,0x00,0},
+ {16,0x01,0x0B,0x00,0}, {17,0x01,0x0C,0x00,0}, {18,0x01,0x0D,0x00,0},
+ {19,0x01,0x0E,0x00,0}, {20,0x02,0x09,0x20,1}, {21,0x02,0x0A,0x00,0},
+ {22,0x02,0x0B,0x00,0}, {23,0x02,0x0C,0x00,0}, {24,0x02,0x0D,0x00,0},
+ {25,0x02,0x0E,0x00,0}, {26,0x02,0x0F,0x00,0}, {27,0x02,0x10,0x00,0},
+ {28,0x02,0x2B,0x20,1}, {29,0x02,0x2C,0x00,0}, {30,0x04,0x28,0x20,1},
+ {31,0x04,0x29,0x00,0}, {32,0x04,0x2A,0x00,0}, {33,0x04,0x2B,0x00,0},
+ {34,0x24,0x20,0x20,0}, {35,0x24,0x21,0x00,1}, {36,0x44,0x20,0x20,0},
+ {37,0x44,0x21,0x00,1}, {38,0x44,0x22,0x00,0}, {39,0x44,0x23,0x00,0},
+ {40,0x44,0x24,0x00,0}, {41,0x44,0x25,0x00,0}, {42,0x44,0x26,0x00,0},
+ {43,0x44,0x27,0x00,0}, {44,0x44,0x28,0x00,0}, {45,0x44,0x29,0x00,0},
+ {46,0x44,0x2A,0x00,0}, {47,0x44,0x2B,0x00,0}, {48,0x44,0x2C,0x00,0},
+ {49,0x44,0x2D,0x00,0}, {50,0x44,0x2E,0x00,0}, {51,0x44,0x2F,0x00,0},
+ {52,0x44,0x30,0x00,0}, {53,0x44,0x31,0x00,0}, {54,0x44,0x32,0x00,0},
+ {55,0x64,0x2E,0x20,1}, {56,0x64,0x2F,0x00,0}, {57,0x64,0x30,0x00,0},
+ {58,0x64,0x31,0x00,0}, {59,0x64,0x32,0x00,0}, {60,0x64,0x33,0x00,0},
+ {61,0x64,0x34,0x00,0}, {62,0x64,0x35,0x00,0}, {63,0x64,0x36,0x00,0},
+ {64,0x64,0x37,0x00,0}, {65,0x64,0x38,0x00,0}, {66,0x65,0x38,0x20,1},
+ {67,0x66,0x38,0x20,1}, {68,0x67,0x38,0x20,1}, {69,0x68,0x38,0x20,1},
+ {70,0x69,0x38,0x20,1}, {71,0x6A,0x38,0x20,1}, {72,0x6B,0x38,0x20,1},
+ {73,0x6C,0x38,0x20,1}, {74,0x6D,0x38,0x20,1}, {75,0x6E,0x38,0x20,1},
+ {76,0x6F,0x38,0x20,1}};
+
+
+uint8_t gain_table_4000mhz_to_6000mhz[77][5] = { {0,0x00,0x00,0x20,1},
+ {1,0x00,0x00,0x00,0}, {2,0x00,0x00,0x00,0}, {3,0x00,0x00,0x00,0},
+ {4,0x00,0x00,0x00,0}, {5,0x00,0x01,0x00,0}, {6,0x00,0x02,0x00,0},
+ {7,0x00,0x03,0x00,0}, {8,0x01,0x01,0x20,1}, {9,0x01,0x02,0x00,0},
+ {10,0x01,0x03,0x00,0}, {11,0x01,0x04,0x20,1}, {12,0x01,0x05,0x00,0},
+ {13,0x01,0x06,0x00,0}, {14,0x01,0x07,0x00,0}, {15,0x01,0x08,0x00,0},
+ {16,0x01,0x09,0x00,0}, {17,0x01,0x0A,0x00,0}, {18,0x01,0x0B,0x00,0},
+ {19,0x01,0x0C,0x00,0}, {20,0x02,0x08,0x20,1}, {21,0x02,0x09,0x00,0},
+ {22,0x02,0x0A,0x00,0}, {23,0x02,0x0B,0x20,1}, {24,0x02,0x0C,0x00,0},
+ {25,0x02,0x0D,0x00,0}, {26,0x02,0x0E,0x00,0}, {27,0x02,0x0F,0x00,0},
+ {28,0x02,0x2A,0x20,1}, {29,0x02,0x2B,0x00,0}, {30,0x04,0x27,0x20,1},
+ {31,0x04,0x28,0x00,0}, {32,0x04,0x29,0x00,0}, {33,0x04,0x2A,0x00,0},
+ {34,0x04,0x2B,0x00,0}, {35,0x04,0x2C,0x00,0}, {36,0x04,0x2D,0x00,0},
+ {37,0x24,0x20,0x20,1}, {38,0x24,0x21,0x00,0}, {39,0x24,0x22,0x00,0},
+ {40,0x44,0x20,0x20,1}, {41,0x44,0x21,0x00,0}, {42,0x44,0x22,0x00,0},
+ {43,0x44,0x23,0x00,0}, {44,0x44,0x24,0x00,0}, {45,0x44,0x25,0x00,0},
+ {46,0x44,0x26,0x00,0}, {47,0x44,0x27,0x00,0}, {48,0x44,0x28,0x00,0},
+ {49,0x44,0x29,0x00,0}, {50,0x44,0x2A,0x00,0}, {51,0x44,0x2B,0x00,0},
+ {52,0x44,0x2C,0x00,0}, {53,0x44,0x2D,0x00,0}, {54,0x44,0x2E,0x00,0},
+ {55,0x64,0x2E,0x20,1}, {56,0x64,0x2F,0x00,0}, {57,0x64,0x30,0x00,0},
+ {58,0x64,0x31,0x00,0}, {59,0x64,0x32,0x00,0}, {60,0x64,0x33,0x00,0},
+ {61,0x64,0x34,0x00,0}, {62,0x64,0x35,0x00,0}, {63,0x64,0x36,0x00,0},
+ {64,0x64,0x37,0x00,0}, {65,0x64,0x38,0x00,0}, {66,0x65,0x38,0x20,1},
+ {67,0x66,0x38,0x20,1}, {68,0x67,0x38,0x20,1}, {69,0x68,0x38,0x20,1},
+ {70,0x69,0x38,0x20,1}, {71,0x6A,0x38,0x20,1}, {72,0x6B,0x38,0x20,1},
+ {73,0x6C,0x38,0x20,1}, {74,0x6D,0x38,0x20,1}, {75,0x6E,0x38,0x20,1},
+ {76,0x6F,0x38,0x20,1}};
+
+
+#endif /* INCLUDED_AD9361_GAIN_TABLES_HPP */
diff --git a/host/lib/usrp/common/ad9361_driver/ad9361_impl.c b/host/lib/usrp/common/ad9361_driver/ad9361_impl.c
new file mode 100644
index 000000000..fab906e6f
--- /dev/null
+++ b/host/lib/usrp/common/ad9361_driver/ad9361_impl.c
@@ -0,0 +1,1999 @@
+//
+// Copyright 2014 Ettus Research LLC
+//
+
+#include <stdarg.h>
+#include <stdio.h>
+#ifdef __cplusplus
+#include <string.h>
+static int lround(double dbl) { return static_cast<int>(dbl+0.5); }
+using namespace std;
+#else
+#include <stdbool.h>
+#include <math.h>
+#endif
+#include <iostream>
+#include <ad9361_transaction.h>
+#include "ad9361_filter_taps.h"
+#include "ad9361_gain_tables.h"
+#include "ad9361_synth_lut.h"
+#include "ad9361_dispatch.h"
+#include "ad9361_platform.h" //Platform specific operations
+#include "ad9361_client.h" //Client (product) specific settings
+#include "ad9361_device.h"
+
+#define AD9361_MIN(a, b) (((a) < (b)) ? (a) : (b))
+#define AD9361_MAX(a, b) (((a) > (b)) ? (a) : (b))
+
+////////////////////////////////////////////////////////////
+
+static void fake_msg(const char* str, ...)
+{
+ (void) str;
+}
+
+static msgfn _msgfn = fake_msg;
+
+//extern void msg(const char* str, ...); External object must provide this symbol
+#define msg (_msgfn)
+
+void ad9361_set_msgfn(msgfn pfn)
+{
+ _msgfn = pfn;
+}
+
+////////////////////////////////////////////////////////////
+#define AD9361_MAX_GAIN 89.75
+
+#define DOUBLE_PI 3.14159265359
+#define DOUBLE_LN_2 0.693147181
+
+#define RX_TYPE 0
+#define TX_TYPE 1
+
+////////////////////////////////////////////////////////////
+// the following macros evaluate to a compile time constant
+// macros By Tom Torfs - donated to the public domain
+
+/* turn a numeric literal into a hex constant
+(avoids problems with leading zeroes)
+8-bit constants max value 0x11111111, always fits in unsigned long
+*/
+#define HEX__(n) 0x##n##LU
+
+/* 8-bit conversion function */
+#define B8__(x) ((x&0x0000000FLU)?1:0) \
++((x&0x000000F0LU)?2:0) \
++((x&0x00000F00LU)?4:0) \
++((x&0x0000F000LU)?8:0) \
++((x&0x000F0000LU)?16:0) \
++((x&0x00F00000LU)?32:0) \
++((x&0x0F000000LU)?64:0) \
++((x&0xF0000000LU)?128:0)
+
+/* *** user macros *** */
+
+/* for upto 8-bit binary constants */
+#define B8(d) ((unsigned char)B8__(HEX__(d)))
+
+double set_gain(uint64_t handle, int which, int n, const double value);
+void set_active_chains(uint64_t handle, bool tx1, bool tx2, bool rx1, bool rx2);
+/***********************************************************************
+ * Placeholders, unused, or test functions
+ **********************************************************************/
+static char *tmp_req_buffer;
+void post_err_msg( const char* error)
+{
+ msg("[AD9361 error] %s", error);
+ if (!tmp_req_buffer)
+ return;
+
+ ad9361_transaction_t *request = (ad9361_transaction_t *)tmp_req_buffer;
+ strncpy(request->error_msg, error, (AD9361_TRANSACTION_MAX_ERROR_MSG + 1)); // '+ 1' as length excludes terminating NUL
+ request->error_msg[AD9361_TRANSACTION_MAX_ERROR_MSG] = '\0'; // If string was too long, NUL will not be copied, so force one just in case
+}
+
+/* Make AD9361 output its test tone. */
+void output_test_tone(ad9361_device_t* device) {
+ /* Output a 480 kHz tone at 800 MHz */
+ write_ad9361_reg(device, 0x3F4, 0x0B);
+ write_ad9361_reg(device, 0x3FC, 0xFF);
+ write_ad9361_reg(device, 0x3FD, 0xFF);
+ write_ad9361_reg(device, 0x3FE, 0x3F);
+}
+
+/* Turn on/off AD9361's TX port --> RX port loopback. */
+void data_port_loopback(uint64_t handle, const int on) {
+ ad9361_device_t* device = get_ad9361_device(handle);
+ msg("[data_port_loopback] Enabled: %d", on);
+ write_ad9361_reg(device, 0x3F5, (on ? 0x01 : 0x00));
+}
+
+/* This is a simple comparison for very large double-precision floating
+ * point numbers. It is used to prevent re-tunes for frequencies that are
+ * the same but not 'exactly' because of data precision issues. */
+// TODO: see if we can avoid the need for this function
+int freq_is_nearly_equal(double a, double b) {
+ return AD9361_MAX(a,b) - AD9361_MIN(a,b) < 1;
+}
+
+/***********************************************************************
+ * Filter functions
+ **********************************************************************/
+
+/* This function takes in the calculated maximum number of FIR taps, and
+ * returns a number of taps that makes AD9361 happy. */
+int get_num_taps(int max_num_taps) {
+
+ int num_taps = 0;
+ int num_taps_list[] = {16, 32, 48, 64, 80, 96, 112, 128};
+ int i;
+ for(i = 1; i < 8; i++) {
+ if(max_num_taps >= num_taps_list[i]) {
+ continue;
+ } else {
+ num_taps = num_taps_list[i - 1];
+ break;
+ }
+ } if(num_taps == 0) { num_taps = 128; }
+
+ return num_taps;
+}
+
+/* Program either the RX or TX FIR filter.
+ *
+ * The process is the same for both filters, but the function must be told
+ * how many taps are in the filter, and given a vector of the taps
+ * themselves. */
+
+void program_fir_filter(ad9361_device_t* device, int which, int num_taps, uint16_t *coeffs) {
+ uint16_t base;
+
+ /* RX and TX filters use largely identical sets of programming registers.
+ Select the appropriate bank of registers here. */
+ if(which == RX_TYPE) {
+ base = 0x0f0;
+ } else {
+ base = 0x060;
+ }
+
+ /* Encode number of filter taps for programming register */
+ uint8_t reg_numtaps = (((num_taps / 16) - 1) & 0x07) << 5;
+
+ /* Turn on the filter clock. */
+ write_ad9361_reg(device, base+5, reg_numtaps | 0x1a);
+ ad9361_msleep(1);
+
+ /* Zero the unused taps just in case they have stale data */
+ int addr;
+ for(addr=num_taps; addr < 128; addr++) {
+ write_ad9361_reg(device, base+0, addr);
+ write_ad9361_reg(device, base+1, 0x0);
+ write_ad9361_reg(device, base+2, 0x0);
+ write_ad9361_reg(device, base+5, reg_numtaps | 0x1e);
+ write_ad9361_reg(device, base+4, 0x00);
+ write_ad9361_reg(device, base+4, 0x00);
+ }
+
+ /* Iterate through indirect programming of filter coeffs using ADI recomended procedure */
+ for(addr=0; addr < num_taps; addr++) {
+ write_ad9361_reg(device, base+0, addr);
+ write_ad9361_reg(device, base+1, (coeffs[addr]) & 0xff);
+ write_ad9361_reg(device, base+2, (coeffs[addr] >> 8) & 0xff);
+ write_ad9361_reg(device, base+5, reg_numtaps | 0x1e);
+ write_ad9361_reg(device, base+4, 0x00);
+ write_ad9361_reg(device, base+4, 0x00);
+ }
+
+ /* UG-671 states (page 25) (paraphrased and clarified):
+ " After the table has been programmed, write to register BASE+5 with the write bit D2 cleared and D1 high.
+ Then, write to register BASE+5 again with D1 clear, thus ensuring that the write bit resets internally
+ before the clock stops. Wait 4 sample clock periods after setting D2 high while that data writes into the table"
+ */
+
+ write_ad9361_reg(device, base+5, reg_numtaps | 0x1A);
+ if(which == RX_TYPE) {
+ write_ad9361_reg(device, base+5, reg_numtaps | 0x18);
+ write_ad9361_reg(device, base+6, 0x02); /* Also turn on -6dB Rx gain here, to stop filter overfow.*/
+ } else {
+ write_ad9361_reg(device, base+5, reg_numtaps | 0x19); /* Also turn on -6dB Tx gain here, to stop filter overfow.*/
+ }
+}
+
+
+
+/* Program the RX FIR Filter. */
+void setup_rx_fir(ad9361_device_t* device, int total_num_taps) {
+ int num_taps = total_num_taps;
+#ifdef __cplusplus
+ uint16_t* coeffs = new uint16_t[num_taps];
+#else
+ uint16_t coeffs[num_taps];
+#endif
+ int i;
+ for(i = 0; i < num_taps; i++) {
+ switch(num_taps) {
+ case 128: coeffs[i] = (uint16_t)hb127_coeffs[i]; break;
+ case 96: coeffs[i] = (uint16_t)hb95_coeffs[i]; break;
+ case 64: coeffs[i] = (uint16_t)hb63_coeffs[i]; break;
+ case 48: coeffs[i] = (uint16_t)hb47_coeffs[i]; break;
+ default: post_err_msg("Unsupported number of Rx FIR taps.");
+ }
+ }
+
+ program_fir_filter(device, RX_TYPE, total_num_taps, coeffs);
+#ifdef __cplusplus
+ delete[] coeffs;
+#endif
+}
+
+/* Program the TX FIR Filter. */
+void setup_tx_fir(ad9361_device_t* device, int total_num_taps) {
+ int num_taps = total_num_taps;
+#ifdef __cplusplus
+ uint16_t* coeffs = new uint16_t[num_taps];
+#else
+ uint16_t coeffs[num_taps];
+#endif
+ int i;
+ for(i = 0; i < num_taps; i++) {
+ switch(num_taps) {
+ case 128: coeffs[i] = (uint16_t)hb127_coeffs[i]; break;
+ case 96: coeffs[i] = (uint16_t)hb95_coeffs[i]; break;
+ case 64: coeffs[i] = (uint16_t)hb63_coeffs[i]; break;
+ case 48: coeffs[i] = (uint16_t)hb47_coeffs[i]; break;
+ default: post_err_msg("Unsupported number of Tx FIR taps.");
+ }
+ }
+
+ program_fir_filter(device, TX_TYPE, total_num_taps, coeffs);
+#ifdef __cplusplus
+ delete[] coeffs;
+#endif
+}
+
+/***********************************************************************
+ * Calibration functions
+ ***********************************************************************/
+
+/* Calibrate and lock the BBPLL.
+ *
+ * This function should be called anytime the BBPLL is tuned. */
+void calibrate_lock_bbpll(ad9361_device_t* device) {
+ write_ad9361_reg(device, 0x03F, 0x05); // Start the BBPLL calibration
+ write_ad9361_reg(device, 0x03F, 0x01); // Clear the 'start' bit
+
+ /* Increase BBPLL KV and phase margin. */
+ write_ad9361_reg(device, 0x04c, 0x86);
+ write_ad9361_reg(device, 0x04d, 0x01);
+ write_ad9361_reg(device, 0x04d, 0x05);
+
+ /* Wait for BBPLL lock. */
+ int count = 0;
+ while(!(read_ad9361_reg(device, 0x05e) & 0x80)) {
+ if(count > 1000) {
+ post_err_msg("BBPLL not locked");
+ break;
+ }
+
+ count++;
+ ad9361_msleep(2);
+ }
+}
+
+/* Calibrate the synthesizer charge pumps.
+ *
+ * Technically, this calibration only needs to be done once, at device
+ * initialization. */
+void calibrate_synth_charge_pumps(ad9361_device_t* device) {
+ /* If this function ever gets called, and the ENSM isn't already in the
+ * ALERT state, then something has gone horribly wrong. */
+ if((read_ad9361_reg(device, 0x017) & 0x0F) != 5) {
+ post_err_msg("AD9361 not in ALERT during cal");
+ }
+
+ /* Calibrate the RX synthesizer charge pump. */
+ int count = 0;
+ write_ad9361_reg(device, 0x23d, 0x04);
+ while(!(read_ad9361_reg(device, 0x244) & 0x80)) {
+ if(count > 5) {
+ post_err_msg("RX charge pump cal failure");
+ break;
+ }
+
+ count++;
+ ad9361_msleep(1);
+ }
+ write_ad9361_reg(device, 0x23d, 0x00);
+
+ /* Calibrate the TX synthesizer charge pump. */
+ count = 0;
+ write_ad9361_reg(device, 0x27d, 0x04);
+ while(!(read_ad9361_reg(device, 0x284) & 0x80)) {
+ if(count > 5) {
+ post_err_msg("TX charge pump cal failure");
+ break;
+ }
+
+ count++;
+ ad9361_msleep(1);
+ }
+ write_ad9361_reg(device, 0x27d, 0x00);
+}
+
+/* Calibrate the analog BB RX filter.
+ *
+ * Note that the filter calibration depends heavily on the baseband
+ * bandwidth, so this must be re-done after any change to the RX sample
+ * rate. */
+double calibrate_baseband_rx_analog_filter(ad9361_device_t* device) {
+ /* For filter tuning, baseband BW is half the complex BW, and must be
+ * between 28e6 and 0.2e6. */
+ double bbbw = device->baseband_bw / 2.0;
+ if(bbbw > 28e6) {
+ bbbw = 28e6;
+ } else if (bbbw < 0.20e6) {
+ bbbw = 0.20e6;
+ }
+
+ double rxtune_clk = ((1.4 * bbbw * 2 *
+ DOUBLE_PI) / DOUBLE_LN_2);
+
+ device->rx_bbf_tunediv = AD9361_MIN(511, ad9361_ceil_to_int(device->bbpll_freq / rxtune_clk));
+
+ device->regs.bbftune_config = (device->regs.bbftune_config & 0xFE) \
+ | ((device->rx_bbf_tunediv >> 8) & 0x0001);
+
+ double bbbw_mhz = bbbw / 1e6;
+
+ double temp = ((bbbw_mhz - ad9361_floor_to_int(bbbw_mhz)) * 1000) / 7.8125;
+ uint8_t bbbw_khz = (uint8_t) AD9361_MIN(127, (ad9361_floor_to_int(temp + 0.5)));
+
+ /* Set corner frequencies and dividers. */
+ write_ad9361_reg(device, 0x1fb, (uint8_t)(bbbw_mhz));
+ write_ad9361_reg(device, 0x1fc, bbbw_khz);
+ write_ad9361_reg(device, 0x1f8, (device->rx_bbf_tunediv & 0x00FF));
+ write_ad9361_reg(device, 0x1f9, device->regs.bbftune_config);
+
+ /* RX Mix Voltage settings - only change with apps engineer help. */
+ write_ad9361_reg(device, 0x1d5, 0x3f);
+ write_ad9361_reg(device, 0x1c0, 0x03);
+
+ /* Enable RX1 & RX2 filter tuners. */
+ write_ad9361_reg(device, 0x1e2, 0x02);
+ write_ad9361_reg(device, 0x1e3, 0x02);
+
+ /* Run the calibration! */
+ int count = 0;
+ write_ad9361_reg(device, 0x016, 0x80);
+ while(read_ad9361_reg(device, 0x016) & 0x80) {
+ if(count > 100) {
+ post_err_msg("RX baseband filter cal FAILURE");
+ break;
+ }
+
+ count++;
+ ad9361_msleep(1);
+ }
+
+ /* Disable RX1 & RX2 filter tuners. */
+ write_ad9361_reg(device, 0x1e2, 0x03);
+ write_ad9361_reg(device, 0x1e3, 0x03);
+
+ return bbbw;
+}
+
+/* Calibrate the analog BB TX filter.
+ *
+ * Note that the filter calibration depends heavily on the baseband
+ * bandwidth, so this must be re-done after any change to the TX sample
+ * rate. */
+double calibrate_baseband_tx_analog_filter(ad9361_device_t* device) {
+ /* For filter tuning, baseband BW is half the complex BW, and must be
+ * between 28e6 and 0.2e6. */
+ double bbbw = device->baseband_bw / 2.0;
+ if(bbbw > 20e6) {
+ bbbw = 20e6;
+ } else if (bbbw < 0.625e6) {
+ bbbw = 0.625e6;
+ }
+
+ double txtune_clk = ((1.6 * bbbw * 2 *
+ DOUBLE_PI) / DOUBLE_LN_2);
+
+ uint16_t txbbfdiv = AD9361_MIN(511, (ad9361_ceil_to_int(device->bbpll_freq / txtune_clk)));
+
+ device->regs.bbftune_mode = (device->regs.bbftune_mode & 0xFE) \
+ | ((txbbfdiv >> 8) & 0x0001);
+
+ /* Program the divider values. */
+ write_ad9361_reg(device, 0x0d6, (txbbfdiv & 0x00FF));
+ write_ad9361_reg(device, 0x0d7, device->regs.bbftune_mode);
+
+ /* Enable the filter tuner. */
+ write_ad9361_reg(device, 0x0ca, 0x22);
+
+ /* Calibrate! */
+ int count = 0;
+ write_ad9361_reg(device, 0x016, 0x40);
+ while(read_ad9361_reg(device, 0x016) & 0x40) {
+ if(count > 100) {
+ post_err_msg("TX baseband filter cal FAILURE");
+ break;
+ }
+
+ count++;
+ ad9361_msleep(1);
+ }
+
+ /* Disable the filter tuner. */
+ write_ad9361_reg(device, 0x0ca, 0x26);
+
+ return bbbw;
+}
+
+/* Calibrate the secondary TX filter.
+ *
+ * This filter also depends on the TX sample rate, so if a rate change is
+ * made, the previous calibration will no longer be valid. */
+void calibrate_secondary_tx_filter(ad9361_device_t* device) {
+ /* For filter tuning, baseband BW is half the complex BW, and must be
+ * between 20e6 and 0.53e6. */
+ double bbbw = device->baseband_bw / 2.0;
+ if(bbbw > 20e6) {
+ bbbw = 20e6;
+ } else if (bbbw < 0.53e6) {
+ bbbw = 0.53e6;
+ }
+
+ double bbbw_mhz = bbbw / 1e6;
+
+ /* Start with a resistor value of 100 Ohms. */
+ int res = 100;
+
+ /* Calculate target corner frequency. */
+ double corner_freq = 5 * bbbw_mhz * 2 * DOUBLE_PI;
+
+ /* Iterate through RC values to determine correct combination. */
+ int cap = 0;
+ int i;
+ for(i = 0; i <= 3; i++) {
+ cap = (ad9361_floor_to_int(0.5 + (( 1 / ((corner_freq * res) * 1e6)) * 1e12))) - 12;
+
+ if(cap <= 63) {
+ break;
+ }
+
+ res = res * 2;
+ }
+ if(cap > 63) {
+ cap = 63;
+ }
+
+ uint8_t reg0d0, reg0d1, reg0d2;
+
+ /* Translate baseband bandwidths to register settings. */
+ if((bbbw_mhz * 2) <= 9) {
+ reg0d0 = 0x59;
+ } else if(((bbbw_mhz * 2) > 9) && ((bbbw_mhz * 2) <= 24)) {
+ reg0d0 = 0x56;
+ } else if((bbbw_mhz * 2) > 24) {
+ reg0d0 = 0x57;
+ } else {
+ post_err_msg("Cal2ndTxFil: INVALID_CODE_PATH bad bbbw_mhz");
+ reg0d0 = 0x00;
+ }
+
+ /* Translate resistor values to register settings. */
+ if(res == 100) {
+ reg0d1 = 0x0c;
+ } else if(res == 200) {
+ reg0d1 = 0x04;
+ } else if(res == 400) {
+ reg0d1 = 0x03;
+ } else if(res == 800) {
+ reg0d1 = 0x01;
+ } else {
+ reg0d1 = 0x0c;
+ }
+
+ reg0d2 = cap;
+
+ /* Program the above-calculated values. Sweet. */
+ write_ad9361_reg(device, 0x0d2, reg0d2);
+ write_ad9361_reg(device, 0x0d1, reg0d1);
+ write_ad9361_reg(device, 0x0d0, reg0d0);
+}
+
+/* Calibrate the RX TIAs.
+ *
+ * Note that the values in the TIA register, after calibration, vary with
+ * the RX gain settings. */
+void calibrate_rx_TIAs(ad9361_device_t* device) {
+
+ uint8_t reg1eb = read_ad9361_reg(device, 0x1eb) & 0x3F;
+ uint8_t reg1ec = read_ad9361_reg(device, 0x1ec) & 0x7F;
+ uint8_t reg1e6 = read_ad9361_reg(device, 0x1e6) & 0x07;
+ uint8_t reg1db = 0x00;
+ uint8_t reg1dc = 0x00;
+ uint8_t reg1dd = 0x00;
+ uint8_t reg1de = 0x00;
+ uint8_t reg1df = 0x00;
+
+ /* For calibration, baseband BW is half the complex BW, and must be
+ * between 28e6 and 0.2e6. */
+ double bbbw = device->baseband_bw / 2.0;
+ if(bbbw > 20e6) {
+ bbbw = 20e6;
+ } else if (bbbw < 0.20e6) {
+ bbbw = 0.20e6;
+ }
+ double ceil_bbbw_mhz = ad9361_ceil_to_int(bbbw / 1e6);
+
+ /* Do some crazy resistor and capacitor math. */
+ int Cbbf = (reg1eb * 160) + (reg1ec * 10) + 140;
+ int R2346 = 18300 * (reg1e6 & 0x07);
+ double CTIA_fF = (Cbbf * R2346 * 0.56) / 3500;
+
+ /* Translate baseband BW to register settings. */
+ if(ceil_bbbw_mhz <= 3) {
+ reg1db = 0xe0;
+ } else if((ceil_bbbw_mhz > 3) && (ceil_bbbw_mhz <= 10)) {
+ reg1db = 0x60;
+ } else if(ceil_bbbw_mhz > 10) {
+ reg1db = 0x20;
+ } else {
+ post_err_msg("CalRxTias: INVALID_CODE_PATH bad bbbw_mhz");
+ }
+
+ if(CTIA_fF > 2920) {
+ reg1dc = 0x40;
+ reg1de = 0x40;
+
+ uint8_t temp = (uint8_t) AD9361_MIN(127, (ad9361_floor_to_int(0.5 + ((CTIA_fF - 400.0) / 320.0))));
+ reg1dd = temp;
+ reg1df = temp;
+ } else {
+ uint8_t temp = (uint8_t) ad9361_floor_to_int(0.5 + ((CTIA_fF - 400.0) / 40.0)) + 0x40;
+ reg1dc = temp;
+ reg1de = temp;
+ reg1dd = 0;
+ reg1df = 0;
+ }
+
+ /* w00t. Settings calculated. Program them and roll out. */
+ write_ad9361_reg(device, 0x1db, reg1db);
+ write_ad9361_reg(device, 0x1dd, reg1dd);
+ write_ad9361_reg(device, 0x1df, reg1df);
+ write_ad9361_reg(device, 0x1dc, reg1dc);
+ write_ad9361_reg(device, 0x1de, reg1de);
+}
+
+/* Setup the AD9361 ADC.
+ *
+ * There are 40 registers that control the ADC's operation, most of the
+ * values of which must be derived mathematically, dependent on the current
+ * setting of the BBPLL. Note that the order of calculation is critical, as
+ * some of the 40 registers depend on the values in others. */
+void setup_adc(ad9361_device_t* device) {
+ double bbbw_mhz = (((device->bbpll_freq / 1e6) / device->rx_bbf_tunediv) * DOUBLE_LN_2) \
+ / (1.4 * 2 * DOUBLE_PI);
+
+ /* For calibration, baseband BW is half the complex BW, and must be
+ * between 28e6 and 0.2e6. */
+ if(bbbw_mhz > 28) {
+ bbbw_mhz = 28;
+ } else if (bbbw_mhz < 0.20) {
+ bbbw_mhz = 0.20;
+ }
+
+ uint8_t rxbbf_c3_msb = read_ad9361_reg(device, 0x1eb) & 0x3F;
+ uint8_t rxbbf_c3_lsb = read_ad9361_reg(device, 0x1ec) & 0x7F;
+ uint8_t rxbbf_r2346 = read_ad9361_reg(device, 0x1e6) & 0x07;
+
+ double fsadc = device->adcclock_freq / 1e6;
+
+ /* Sort out the RC time constant for our baseband bandwidth... */
+ double rc_timeconst = 0.0;
+ if(bbbw_mhz < 18) {
+ rc_timeconst = (1 / ((1.4 * 2 * DOUBLE_PI) \
+ * (18300 * rxbbf_r2346)
+ * ((160e-15 * rxbbf_c3_msb)
+ + (10e-15 * rxbbf_c3_lsb) + 140e-15)
+ * (bbbw_mhz * 1e6)));
+ } else {
+ rc_timeconst = (1 / ((1.4 * 2 * DOUBLE_PI) \
+ * (18300 * rxbbf_r2346)
+ * ((160e-15 * rxbbf_c3_msb)
+ + (10e-15 * rxbbf_c3_lsb) + 140e-15)
+ * (bbbw_mhz * 1e6) * (1 + (0.01 * (bbbw_mhz - 18)))));
+ }
+
+ double scale_res = ad9361_sqrt(1 / rc_timeconst);
+ double scale_cap = ad9361_sqrt(1 / rc_timeconst);
+
+ double scale_snr = (device->adcclock_freq < 80e6) ? 1.0 : 1.584893192;
+ double maxsnr = 640 / 160;
+
+ /* Calculate the values for all 40 settings registers.
+ *
+ * DO NOT TOUCH THIS UNLESS YOU KNOW EXACTLY WHAT YOU ARE DOING. kthx.*/
+ uint8_t data[40];
+ data[0] = 0; data[1] = 0; data[2] = 0; data[3] = 0x24;
+ data[4] = 0x24; data[5] = 0; data[6] = 0;
+ data[7] = (uint8_t) AD9361_MIN(124, (ad9361_floor_to_int(-0.5
+ + (80.0 * scale_snr * scale_res
+ * AD9361_MIN(1.0, ad9361_sqrt(maxsnr * fsadc / 640.0))))));
+ double data007 = data[7];
+ data[8] = (uint8_t) AD9361_MIN(255, (ad9361_floor_to_int(0.5
+ + ((20.0 * (640.0 / fsadc) * ((data007 / 80.0))
+ / (scale_res * scale_cap))))));
+ data[10] = (uint8_t) AD9361_MIN(127, (ad9361_floor_to_int(-0.5 + (77.0 * scale_res
+ * AD9361_MIN(1.0, ad9361_sqrt(maxsnr * fsadc / 640.0))))));
+ double data010 = data[10];
+ data[9] = (uint8_t) AD9361_MIN(127, (ad9361_floor_to_int(0.8 * data010)));
+ data[11] = (uint8_t) AD9361_MIN(255, (ad9361_floor_to_int(0.5
+ + (20.0 * (640.0 / fsadc) * ((data010 / 77.0)
+ / (scale_res * scale_cap))))));
+ data[12] = (uint8_t) AD9361_MIN(127, (ad9361_floor_to_int(-0.5
+ + (80.0 * scale_res * AD9361_MIN(1.0,
+ ad9361_sqrt(maxsnr * fsadc / 640.0))))));
+ double data012 = data[12];
+ data[13] = (uint8_t) AD9361_MIN(255, (ad9361_floor_to_int(-1.5
+ + (20.0 * (640.0 / fsadc) * ((data012 / 80.0)
+ / (scale_res * scale_cap))))));
+ data[14] = 21 * (uint8_t)(ad9361_floor_to_int(0.1 * 640.0 / fsadc));
+ data[15] = (uint8_t) AD9361_MIN(127, (1.025 * data007));
+ double data015 = data[15];
+ data[16] = (uint8_t) AD9361_MIN(127, (ad9361_floor_to_int((data015
+ * (0.98 + (0.02 * AD9361_MAX(1.0,
+ (640.0 / fsadc) / maxsnr)))))));
+ data[17] = data[15];
+ data[18] = (uint8_t) AD9361_MIN(127, (0.975 * (data010)));
+ double data018 = data[18];
+ data[19] = (uint8_t) AD9361_MIN(127, (ad9361_floor_to_int((data018
+ * (0.98 + (0.02 * AD9361_MAX(1.0,
+ (640.0 / fsadc) / maxsnr)))))));
+ data[20] = data[18];
+ data[21] = (uint8_t) AD9361_MIN(127, (0.975 * data012));
+ double data021 = data[21];
+ data[22] = (uint8_t) AD9361_MIN(127, (ad9361_floor_to_int((data021
+ * (0.98 + (0.02 * AD9361_MAX(1.0,
+ (640.0 / fsadc) / maxsnr)))))));
+ data[23] = data[21];
+ data[24] = 0x2e;
+ data[25] = (uint8_t)(ad9361_floor_to_int(128.0 + AD9361_MIN(63.0,
+ 63.0 * (fsadc / 640.0))));
+ data[26] = (uint8_t)(ad9361_floor_to_int(AD9361_MIN(63.0, 63.0 * (fsadc / 640.0)
+ * (0.92 + (0.08 * (640.0 / fsadc))))));
+ data[27] = (uint8_t)(ad9361_floor_to_int(AD9361_MIN(63.0,
+ 32.0 * ad9361_sqrt(fsadc / 640.0))));
+ data[28] = (uint8_t)(ad9361_floor_to_int(128.0 + AD9361_MIN(63.0,
+ 63.0 * (fsadc / 640.0))));
+ data[29] = (uint8_t)(ad9361_floor_to_int(AD9361_MIN(63.0,
+ 63.0 * (fsadc / 640.0)
+ * (0.92 + (0.08 * (640.0 / fsadc))))));
+ data[30] = (uint8_t)(ad9361_floor_to_int(AD9361_MIN(63.0,
+ 32.0 * ad9361_sqrt(fsadc / 640.0))));
+ data[31] = (uint8_t)(ad9361_floor_to_int(128.0 + AD9361_MIN(63.0,
+ 63.0 * (fsadc / 640.0))));
+ data[32] = (uint8_t)(ad9361_floor_to_int(AD9361_MIN(63.0,
+ 63.0 * (fsadc / 640.0) * (0.92
+ + (0.08 * (640.0 / fsadc))))));
+ data[33] = (uint8_t)(ad9361_floor_to_int(AD9361_MIN(63.0,
+ 63.0 * ad9361_sqrt(fsadc / 640.0))));
+ data[34] = (uint8_t) AD9361_MIN(127, (ad9361_floor_to_int(64.0
+ * ad9361_sqrt(fsadc / 640.0))));
+ data[35] = 0x40;
+ data[36] = 0x40;
+ data[37] = 0x2c;
+ data[38] = 0x00;
+ data[39] = 0x00;
+
+ /* Program the registers! */
+ int i;
+ for(i=0; i<40; i++) {
+ write_ad9361_reg(device, 0x200+i, data[i]);
+ }
+
+}
+
+/* Calibrate the baseband DC offset.
+ *
+ * Note that this function is called from within the TX quadrature
+ * calibration function! */
+void calibrate_baseband_dc_offset(ad9361_device_t* device) {
+ write_ad9361_reg(device, 0x193, 0x3f); // Calibration settings
+ write_ad9361_reg(device, 0x190, 0x0f); // Set tracking coefficient
+ //write_ad9361_reg(device, 0x190, /*0x0f*//*0xDF*/0x80*1 | 0x40*1 | (16+8/*+4*/)); // Set tracking coefficient: don't *4 counter, do decim /4, increased gain shift
+ write_ad9361_reg(device, 0x194, 0x01); // More calibration settings
+
+ /* Start that calibration, baby. */
+ int count = 0;
+ write_ad9361_reg(device, 0x016, 0x01);
+ while(read_ad9361_reg(device, 0x016) & 0x01) {
+ if(count > 100) {
+ post_err_msg("Baseband DC Offset Calibration Failure");
+ break;
+ }
+
+ count++;
+ ad9361_msleep(5);
+ }
+}
+
+/* Calibrate the RF DC offset.
+ *
+ * Note that this function is called from within the TX quadrature
+ * calibration function. */
+void calibrate_rf_dc_offset(ad9361_device_t* device) {
+ /* Some settings are frequency-dependent. */
+ if(device->rx_freq < 4e9) {
+ write_ad9361_reg(device, 0x186, 0x32); // RF DC Offset count
+ write_ad9361_reg(device, 0x187, 0x24);
+ write_ad9361_reg(device, 0x188, 0x05);
+ } else {
+ write_ad9361_reg(device, 0x186, 0x28); // RF DC Offset count
+ write_ad9361_reg(device, 0x187, 0x34);
+ write_ad9361_reg(device, 0x188, 0x06);
+ }
+
+ write_ad9361_reg(device, 0x185, 0x20); // RF DC Offset wait count
+ write_ad9361_reg(device, 0x18b, 0x83);
+ write_ad9361_reg(device, 0x189, 0x30);
+
+ /* Run the calibration! */
+ int count = 0;
+ write_ad9361_reg(device, 0x016, 0x02);
+ while(read_ad9361_reg(device, 0x016) & 0x02) {
+ if(count > 100) {
+ post_err_msg("RF DC Offset Calibration Failure");
+ break;
+ }
+
+ count++;
+ ad9361_msleep(50);
+ }
+}
+
+/* Start the RX quadrature calibration.
+ *
+ * Note that we are using AD9361's 'tracking' feature for RX quadrature
+ * calibration, so once it starts it continues to free-run during operation.
+ * It should be re-run for large frequency changes. */
+void calibrate_rx_quadrature(ad9361_device_t* device) {
+ /* Configure RX Quadrature calibration settings. */
+ write_ad9361_reg(device, 0x168, 0x03); // Set tone level for cal
+ write_ad9361_reg(device, 0x16e, 0x25); // RX Gain index to use for cal
+ write_ad9361_reg(device, 0x16a, 0x75); // Set Kexp phase
+ write_ad9361_reg(device, 0x16b, 0x15); // Set Kexp amplitude
+ write_ad9361_reg(device, 0x169, 0xcf); // Continuous tracking mode
+ write_ad9361_reg(device, 0x18b, 0xad);
+}
+
+/* TX quadtrature calibration routine.
+ *
+ * The TX quadrature needs to be done twice, once for each TX chain, with
+ * only one register change in between. Thus, this function enacts the
+ * calibrations, and it is called from calibrate_tx_quadrature. */
+void tx_quadrature_cal_routine(ad9361_device_t* device) {
+
+ /* This is a weird process, but here is how it works:
+ * 1) Read the calibrated NCO frequency bits out of 0A3.
+ * 2) Write the two bits to the RX NCO freq part of 0A0.
+ * 3) Re-read 0A3 to get bits [5:0] because maybe they changed?
+ * 4) Update only the TX NCO freq bits in 0A3.
+ * 5) Profit (I hope). */
+ uint8_t reg0a3 = read_ad9361_reg(device, 0x0a3);
+ uint8_t nco_freq = (reg0a3 & 0xC0);
+ write_ad9361_reg(device, 0x0a0, 0x15 | (nco_freq >> 1));
+ reg0a3 = read_ad9361_reg(device, 0x0a3);
+ write_ad9361_reg(device, 0x0a3, (reg0a3 & 0x3F) | nco_freq);
+
+ /* It is possible to reach a configuration that won't operate correctly,
+ * where the two test tones used for quadrature calibration are outside
+ * of the RX BBF, and therefore don't make it to the ADC. We will check
+ * for that scenario here. */
+ double max_cal_freq = (((device->baseband_bw * device->tfir_factor) * ((nco_freq >> 6) + 1)) / 32) * 2;
+ double bbbw = device->baseband_bw / 2.0; // bbbw represents the one-sided BW
+ if(bbbw > 28e6) {
+ bbbw = 28e6;
+ } else if (bbbw < 0.20e6) {
+ bbbw = 0.20e6;
+ }
+ if (max_cal_freq > bbbw )
+ post_err_msg("max_cal_freq > bbbw");
+
+ write_ad9361_reg(device, 0x0a1, 0x7B); // Set tracking coefficient
+ write_ad9361_reg(device, 0x0a9, 0xff); // Cal count
+ write_ad9361_reg(device, 0x0a2, 0x7f); // Cal Kexp
+ write_ad9361_reg(device, 0x0a5, 0x01); // Cal magnitude threshold VVVV
+ write_ad9361_reg(device, 0x0a6, 0x01);
+
+ /* The gain table index used for calibration must be adjusted for the
+ * mid-table to get a TIA index = 1 and LPF index = 0. */
+ if((device->rx_freq >= 1300e6) && (device->rx_freq < 4000e6)) {
+ write_ad9361_reg(device, 0x0aa, 0x22); // Cal gain table index
+ } else {
+ write_ad9361_reg(device, 0x0aa, 0x25); // Cal gain table index
+ }
+
+ write_ad9361_reg(device, 0x0a4, 0xf0); // Cal setting conut
+ write_ad9361_reg(device, 0x0ae, 0x00); // Cal LPF gain index (split mode)
+
+ /* First, calibrate the baseband DC offset. */
+ calibrate_baseband_dc_offset(device);
+
+ /* Second, calibrate the RF DC offset. */
+ calibrate_rf_dc_offset(device);
+
+ /* Now, calibrate the TX quadrature! */
+ int count = 0;
+ write_ad9361_reg(device, 0x016, 0x10);
+ while(read_ad9361_reg(device, 0x016) & 0x10) {
+ if(count > 100) {
+ post_err_msg("TX Quadrature Calibration Failure");
+ break;
+ }
+
+ count++;
+ ad9361_msleep(10);
+ }
+}
+
+/* Run the TX quadrature calibration.
+ *
+ * Note that from within this function we are also triggering the baseband
+ * and RF DC calibrations. */
+void calibrate_tx_quadrature(ad9361_device_t* device) {
+ /* Make sure we are, in fact, in the ALERT state. If not, something is
+ * terribly wrong in the driver execution flow. */
+ if((read_ad9361_reg(device, 0x017) & 0x0F) != 5) {
+ post_err_msg("TX Quad Cal started, but not in ALERT");
+ }
+
+ /* Turn off free-running and continuous calibrations. Note that this
+ * will get turned back on at the end of the RX calibration routine. */
+ write_ad9361_reg(device, 0x169, 0xc0);
+
+ /* This calibration must be done in a certain order, and for both TX_A
+ * and TX_B, separately. Store the original setting so that we can
+ * restore it later. */
+ uint8_t orig_reg_inputsel = device->regs.inputsel;
+
+ /***********************************************************************
+ * TX1/2-A Calibration
+ **********************************************************************/
+ device->regs.inputsel = device->regs.inputsel & 0xBF;
+ write_ad9361_reg(device, 0x004, device->regs.inputsel);
+
+ tx_quadrature_cal_routine(device);
+
+ /***********************************************************************
+ * TX1/2-B Calibration
+ **********************************************************************/
+ device->regs.inputsel = device->regs.inputsel | 0x40;
+ write_ad9361_reg(device, 0x004, device->regs.inputsel);
+
+ tx_quadrature_cal_routine(device);
+
+ /***********************************************************************
+ * fin
+ **********************************************************************/
+ device->regs.inputsel = orig_reg_inputsel;
+ write_ad9361_reg(device, 0x004, orig_reg_inputsel);
+}
+
+
+/***********************************************************************
+ * Other Misc Setup Functions
+ ***********************************************************************/
+
+/* Program the mixer gain table.
+ *
+ * Note that this table is fixed for all frequency settings. */
+void program_mixer_gm_subtable(ad9361_device_t* device) {
+ uint8_t gain[] = {0x78, 0x74, 0x70, 0x6C, 0x68, 0x64, 0x60, 0x5C, 0x58,
+ 0x54, 0x50, 0x4C, 0x48, 0x30, 0x18, 0x00};
+ uint8_t gm[] = {0x00, 0x0D, 0x15, 0x1B, 0x21, 0x25, 0x29, 0x2C, 0x2F,
+ 0x31, 0x33, 0x34, 0x35, 0x3A, 0x3D, 0x3E};
+
+ /* Start the clock. */
+ write_ad9361_reg(device, 0x13f, 0x02);
+
+ /* Program the GM Sub-table. */
+ int i;
+ for(i = 15; i >= 0; i--) {
+ write_ad9361_reg(device, 0x138, i);
+ write_ad9361_reg(device, 0x139, gain[(15 - i)]);
+ write_ad9361_reg(device, 0x13A, 0x00);
+ write_ad9361_reg(device, 0x13B, gm[(15 - i)]);
+ write_ad9361_reg(device, 0x13F, 0x06);
+ write_ad9361_reg(device, 0x13C, 0x00);
+ write_ad9361_reg(device, 0x13C, 0x00);
+ }
+
+ /* Clear write bit and stop clock. */
+ write_ad9361_reg(device, 0x13f, 0x02);
+ write_ad9361_reg(device, 0x13C, 0x00);
+ write_ad9361_reg(device, 0x13C, 0x00);
+ write_ad9361_reg(device, 0x13f, 0x00);
+}
+
+/* Program the gain table.
+ *
+ * There are three different gain tables for different frequency ranges! */
+void program_gain_table(ad9361_device_t* device) {
+
+ /* Figure out which gain table we should be using for our current
+ * frequency band. */
+ uint8_t (*gain_table)[5] = NULL;
+ uint8_t new_gain_table;
+ if(device->rx_freq < 1300e6) {
+ gain_table = gain_table_sub_1300mhz;
+ new_gain_table = 1;
+ } else if(device->rx_freq < 4e9) {
+ gain_table = gain_table_1300mhz_to_4000mhz;
+ new_gain_table = 2;
+ } else if(device->rx_freq <= 6e9) {
+ gain_table = gain_table_4000mhz_to_6000mhz;
+ new_gain_table = 3;
+ } else {
+ post_err_msg("Wrong _rx_freq value");
+ new_gain_table = 1;
+ }
+
+ /* Only re-program the gain table if there has been a band change. */
+ if(device->curr_gain_table == new_gain_table) {
+ return;
+ } else {
+ device->curr_gain_table = new_gain_table;
+ }
+
+ /* Okay, we have to program a new gain table. Sucks, brah. Start the
+ * gain table clock. */
+ write_ad9361_reg(device, 0x137, 0x1A);
+
+ /* IT'S PROGRAMMING TIME. */
+ uint8_t index = 0;
+ for(; index < 77; index++) {
+ write_ad9361_reg(device, 0x130, index);
+ write_ad9361_reg(device, 0x131, gain_table[index][1]);
+ write_ad9361_reg(device, 0x132, gain_table[index][2]);
+ write_ad9361_reg(device, 0x133, gain_table[index][3]);
+ write_ad9361_reg(device, 0x137, 0x1E);
+ write_ad9361_reg(device, 0x134, 0x00);
+ write_ad9361_reg(device, 0x134, 0x00);
+ }
+
+ /* Everything above the 77th index is zero. */
+ for(; index < 91; index++) {
+ write_ad9361_reg(device, 0x130, index);
+ write_ad9361_reg(device, 0x131, 0x00);
+ write_ad9361_reg(device, 0x132, 0x00);
+ write_ad9361_reg(device, 0x133, 0x00);
+ write_ad9361_reg(device, 0x137, 0x1E);
+ write_ad9361_reg(device, 0x134, 0x00);
+ write_ad9361_reg(device, 0x134, 0x00);
+ }
+
+ /* Clear the write bit and stop the gain clock. */
+ write_ad9361_reg(device, 0x137, 0x1A);
+ write_ad9361_reg(device, 0x134, 0x00);
+ write_ad9361_reg(device, 0x134, 0x00);
+ write_ad9361_reg(device, 0x137, 0x00);
+}
+
+/* Setup gain control registers.
+ *
+ * This really only needs to be done once, at initialization. */
+void setup_gain_control(ad9361_device_t* device)
+{
+ write_ad9361_reg(device, 0x0FA, 0xE0); // Gain Control Mode Select
+ write_ad9361_reg(device, 0x0FB, 0x08); // Table, Digital Gain, Man Gain Ctrl
+ write_ad9361_reg(device, 0x0FC, 0x23); // Incr Step Size, ADC Overrange Size
+ write_ad9361_reg(device, 0x0FD, 0x4C); // Max Full/LMT Gain Table Index
+ write_ad9361_reg(device, 0x0FE, 0x44); // Decr Step Size, Peak Overload Time
+ write_ad9361_reg(device, 0x100, 0x6F); // Max Digital Gain
+ write_ad9361_reg(device, 0x104, 0x2F); // ADC Small Overload Threshold
+ write_ad9361_reg(device, 0x105, 0x3A); // ADC Large Overload Threshold
+ write_ad9361_reg(device, 0x107, 0x31); // Large LMT Overload Threshold
+ write_ad9361_reg(device, 0x108, 0x39); // Small LMT Overload Threshold
+ write_ad9361_reg(device, 0x109, 0x23); // Rx1 Full/LMT Gain Index
+ write_ad9361_reg(device, 0x10A, 0x58); // Rx1 LPF Gain Index
+ write_ad9361_reg(device, 0x10B, 0x00); // Rx1 Digital Gain Index
+ write_ad9361_reg(device, 0x10C, 0x23); // Rx2 Full/LMT Gain Index
+ write_ad9361_reg(device, 0x10D, 0x18); // Rx2 LPF Gain Index
+ write_ad9361_reg(device, 0x10E, 0x00); // Rx2 Digital Gain Index
+ write_ad9361_reg(device, 0x114, 0x30); // Low Power Threshold
+ write_ad9361_reg(device, 0x11A, 0x27); // Initial LMT Gain Limit
+ write_ad9361_reg(device, 0x081, 0x00); // Tx Symbol Gain Control
+}
+
+/* Setup the RX or TX synthesizers.
+ *
+ * This setup depends on a fixed look-up table, which is stored in an
+ * included header file. The table is indexed based on the passed VCO rate.
+ */
+void setup_synth(ad9361_device_t* device, int which, double vcorate) {
+ /* The vcorates in the vco_index array represent lower boundaries for
+ * rates. Once we find a match, we use that index to look-up the rest of
+ * the register values in the LUT. */
+ int vcoindex = 0;
+ int i;
+ for(i = 0; i < 53; i++) {
+ vcoindex = i;
+ if(vcorate > vco_index[i]) {
+ break;
+ }
+ }
+
+ if (vcoindex > 53)
+ post_err_msg("vcoindex > 53");
+
+ /* Parse the values out of the LUT based on our calculated index... */
+ uint8_t vco_output_level = synth_cal_lut[vcoindex][0];
+ uint8_t vco_varactor = synth_cal_lut[vcoindex][1];
+ uint8_t vco_bias_ref = synth_cal_lut[vcoindex][2];
+ uint8_t vco_bias_tcf = synth_cal_lut[vcoindex][3];
+ uint8_t vco_cal_offset = synth_cal_lut[vcoindex][4];
+ uint8_t vco_varactor_ref = synth_cal_lut[vcoindex][5];
+ uint8_t charge_pump_curr = synth_cal_lut[vcoindex][6];
+ uint8_t loop_filter_c2 = synth_cal_lut[vcoindex][7];
+ uint8_t loop_filter_c1 = synth_cal_lut[vcoindex][8];
+ uint8_t loop_filter_r1 = synth_cal_lut[vcoindex][9];
+ uint8_t loop_filter_c3 = synth_cal_lut[vcoindex][10];
+ uint8_t loop_filter_r3 = synth_cal_lut[vcoindex][11];
+
+ /* ... annnd program! */
+ if(which == RX_TYPE) {
+ write_ad9361_reg(device, 0x23a, 0x40 | vco_output_level);
+ write_ad9361_reg(device, 0x239, 0xC0 | vco_varactor);
+ write_ad9361_reg(device, 0x242, vco_bias_ref | (vco_bias_tcf << 3));
+ write_ad9361_reg(device, 0x238, (vco_cal_offset << 3));
+ write_ad9361_reg(device, 0x245, 0x00);
+ write_ad9361_reg(device, 0x251, vco_varactor_ref);
+ write_ad9361_reg(device, 0x250, 0x70);
+ write_ad9361_reg(device, 0x23b, 0x80 | charge_pump_curr);
+ write_ad9361_reg(device, 0x23e, loop_filter_c1 | (loop_filter_c2 << 4));
+ write_ad9361_reg(device, 0x23f, loop_filter_c3 | (loop_filter_r1 << 4));
+ write_ad9361_reg(device, 0x240, loop_filter_r3);
+ } else if(which == TX_TYPE) {
+ write_ad9361_reg(device, 0x27a, 0x40 | vco_output_level);
+ write_ad9361_reg(device, 0x279, 0xC0 | vco_varactor);
+ write_ad9361_reg(device, 0x282, vco_bias_ref | (vco_bias_tcf << 3));
+ write_ad9361_reg(device, 0x278, (vco_cal_offset << 3));
+ write_ad9361_reg(device, 0x285, 0x00);
+ write_ad9361_reg(device, 0x291, vco_varactor_ref);
+ write_ad9361_reg(device, 0x290, 0x70);
+ write_ad9361_reg(device, 0x27b, 0x80 | charge_pump_curr);
+ write_ad9361_reg(device, 0x27e, loop_filter_c1 | (loop_filter_c2 << 4));
+ write_ad9361_reg(device, 0x27f, loop_filter_c3 | (loop_filter_r1 << 4));
+ write_ad9361_reg(device, 0x280, loop_filter_r3);
+ } else {
+ post_err_msg("[setup_synth] INVALID_CODE_PATH");
+ }
+}
+
+
+/* Tune the baseband VCO.
+ *
+ * This clock signal is what gets fed to the ADCs and DACs. This function is
+ * not exported outside of this file, and is invoked based on the rate
+ * fed to the public set_clock_rate function. */
+double tune_bbvco(ad9361_device_t* device, const double rate) {
+ msg("[tune_bbvco] rate=%.10f", rate);
+
+ /* Let's not re-tune to the same frequency over and over... */
+ if(freq_is_nearly_equal(rate, device->req_coreclk)) {
+ return device->adcclock_freq;
+ }
+
+ device->req_coreclk = rate;
+
+ const double fref = 40e6;
+ const int modulus = 2088960;
+ const double vcomax = 1430e6;
+ const double vcomin = 672e6;
+ double vcorate;
+ int vcodiv;
+
+ /* Iterate over VCO dividers until appropriate divider is found. */
+ int i = 1;
+ for(; i <= 6; i++) {
+ vcodiv = 1 << i;
+ vcorate = rate * vcodiv;
+
+ if(vcorate >= vcomin && vcorate <= vcomax) break;
+ }
+ if(i == 7)
+ post_err_msg("tune_bbvco: wrong vcorate");
+
+ msg("[tune_bbvco] vcodiv=%d vcorate=%.10f", vcodiv, vcorate);
+
+ /* Fo = Fref * (Nint + Nfrac / mod) */
+ int nint = vcorate / fref;
+ msg("[tune_bbvco] (nint)=%.10f", (vcorate / fref));
+ int nfrac = lround(((vcorate / fref) - (double)nint) * (double)modulus);
+ msg("[tune_bbvco] (nfrac)=%.10f", (((vcorate / fref) - (double)nint) * (double)modulus));
+ msg("[tune_bbvco] nint=%d nfrac=%d", nint, nfrac);
+ double actual_vcorate = fref * ((double)nint + ((double)nfrac / (double)modulus));
+
+ /* Scale CP current according to VCO rate */
+ const double icp_baseline = 150e-6;
+ const double freq_baseline = 1280e6;
+ double icp = icp_baseline * (actual_vcorate / freq_baseline);
+ int icp_reg = (icp / 25e-6) - 1;
+
+ write_ad9361_reg(device, 0x045, 0x00); // REFCLK / 1 to BBPLL
+ write_ad9361_reg(device, 0x046, icp_reg & 0x3F); // CP current
+ write_ad9361_reg(device, 0x048, 0xe8); // BBPLL loop filters
+ write_ad9361_reg(device, 0x049, 0x5b); // BBPLL loop filters
+ write_ad9361_reg(device, 0x04a, 0x35); // BBPLL loop filters
+
+ write_ad9361_reg(device, 0x04b, 0xe0);
+ write_ad9361_reg(device, 0x04e, 0x10); // Max accuracy
+
+ write_ad9361_reg(device, 0x043, nfrac & 0xFF); // Nfrac[7:0]
+ write_ad9361_reg(device, 0x042, (nfrac >> 8) & 0xFF); // Nfrac[15:8]
+ write_ad9361_reg(device, 0x041, (nfrac >> 16) & 0xFF); // Nfrac[23:16]
+ write_ad9361_reg(device, 0x044, nint); // Nint
+
+ calibrate_lock_bbpll(device);
+
+ device->regs.bbpll = (device->regs.bbpll & 0xF8) | i;
+
+ device->bbpll_freq = actual_vcorate;
+ device->adcclock_freq = (actual_vcorate / vcodiv);
+
+ return device->adcclock_freq;
+}
+
+/* This function re-programs all of the gains in the system.
+ *
+ * Because the gain values match to different gain indices based on the
+ * current operating band, this function can be called to update all gain
+ * settings to the appropriate index after a re-tune. */
+void program_gains(uint64_t handle) {
+ ad9361_device_t* device = get_ad9361_device(handle);
+ set_gain(handle, RX_TYPE,1, device->rx1_gain);
+ set_gain(handle, RX_TYPE,2, device->rx2_gain);
+ set_gain(handle, TX_TYPE,1, device->tx1_gain);
+ set_gain(handle, TX_TYPE,2, device->tx2_gain);
+}
+
+/* This is the internal tune function, not available for a host call.
+ *
+ * Calculate the VCO settings for the requested frquency, and then either
+ * tune the RX or TX VCO. */
+double tune_helper(ad9361_device_t* device, int which, const double value) {
+
+ /* The RFPLL runs from 6 GHz - 12 GHz */
+ const double fref = 80e6;
+ const int modulus = 8388593;
+ const double vcomax = 12e9;
+ const double vcomin = 6e9;
+ double vcorate;
+ int vcodiv;
+
+ /* Iterate over VCO dividers until appropriate divider is found. */
+ int i;
+ for(i = 0; i <= 6; i++) {
+ vcodiv = 2 << i;
+ vcorate = value * vcodiv;
+ if(vcorate >= vcomin && vcorate <= vcomax) break;
+ }
+ if(i == 7)
+ post_err_msg("RFVCO can't find valid VCO rate!");
+
+ int nint = vcorate / fref;
+ int nfrac = ((vcorate / fref) - nint) * modulus;
+
+ double actual_vcorate = fref * (nint + (double)(nfrac)/modulus);
+ double actual_lo = actual_vcorate / vcodiv;
+
+ if(which == RX_TYPE) {
+
+ device->req_rx_freq = value;
+
+ /* Set band-specific settings. */
+ if(value < ad9361_client_get_band_edge(device->product, AD9361_RX_BAND0)) {
+ device->regs.inputsel = (device->regs.inputsel & 0xC0) | 0x30;
+ } else if((value >= ad9361_client_get_band_edge(device->product, AD9361_RX_BAND0)) &&
+ (value < ad9361_client_get_band_edge(device->product, AD9361_RX_BAND1))) {
+ device->regs.inputsel = (device->regs.inputsel & 0xC0) | 0x0C;
+ } else if((value >= ad9361_client_get_band_edge(device->product, AD9361_RX_BAND1)) &&
+ (value <= 6e9)) {
+ device->regs.inputsel = (device->regs.inputsel & 0xC0) | 0x03;
+ } else {
+ post_err_msg("[tune_helper] INVALID_CODE_PATH");
+ }
+
+ write_ad9361_reg(device, 0x004, device->regs.inputsel);
+
+ /* Store vcodiv setting. */
+ device->regs.vcodivs = (device->regs.vcodivs & 0xF0) | (i & 0x0F);
+
+ /* Setup the synthesizer. */
+ setup_synth(device, RX_TYPE, actual_vcorate);
+
+ /* Tune!!!! */
+ write_ad9361_reg(device, 0x233, nfrac & 0xFF);
+ write_ad9361_reg(device, 0x234, (nfrac >> 8) & 0xFF);
+ write_ad9361_reg(device, 0x235, (nfrac >> 16) & 0xFF);
+ write_ad9361_reg(device, 0x232, (nint >> 8) & 0xFF);
+ write_ad9361_reg(device, 0x231, nint & 0xFF);
+ write_ad9361_reg(device, 0x005, device->regs.vcodivs);
+
+ /* Lock the PLL! */
+ ad9361_msleep(2);
+ if((read_ad9361_reg(device, 0x247) & 0x02) == 0) {
+ post_err_msg("RX PLL NOT LOCKED");
+ }
+
+ device->rx_freq = actual_lo;
+
+ return actual_lo;
+
+ } else {
+
+ device->req_tx_freq = value;
+
+ /* Set band-specific settings. */
+ if(value < ad9361_client_get_band_edge(device->product, AD9361_TX_BAND0)) {
+ device->regs.inputsel = device->regs.inputsel | 0x40;
+ } else if((value >= ad9361_client_get_band_edge(device->product, AD9361_TX_BAND0)) &&
+ (value <= 6e9)) {
+ device->regs.inputsel = device->regs.inputsel & 0xBF;
+ } else {
+ post_err_msg("[tune_helper] INVALID_CODE_PATH");
+ }
+
+ write_ad9361_reg(device, 0x004, device->regs.inputsel);
+
+ /* Store vcodiv setting. */
+ device->regs.vcodivs = (device->regs.vcodivs & 0x0F) | ((i & 0x0F) << 4);
+
+ /* Setup the synthesizer. */
+ setup_synth(device, TX_TYPE, actual_vcorate);
+
+ /* Tune it, homey. */
+ write_ad9361_reg(device, 0x273, nfrac & 0xFF);
+ write_ad9361_reg(device, 0x274, (nfrac >> 8) & 0xFF);
+ write_ad9361_reg(device, 0x275, (nfrac >> 16) & 0xFF);
+ write_ad9361_reg(device, 0x272, (nint >> 8) & 0xFF);
+ write_ad9361_reg(device, 0x271, nint & 0xFF);
+ write_ad9361_reg(device, 0x005, device->regs.vcodivs);
+
+ /* Lock the PLL! */
+ ad9361_msleep(2);
+ if((read_ad9361_reg(device, 0x287) & 0x02) == 0) {
+ post_err_msg("TX PLL NOT LOCKED");
+ }
+
+ device->tx_freq = actual_lo;
+
+ return actual_lo;
+ }
+}
+
+/* Configure the various clock / sample rates in the RX and TX chains.
+ *
+ * Functionally, this function configures AD9361's RX and TX rates. For
+ * a requested TX & RX rate, it sets the interpolation & decimation filters,
+ * and tunes the VCO that feeds the ADCs and DACs.
+ */
+double setup_rates(ad9361_device_t* device, const double rate) {
+
+ /* If we make it into this function, then we are tuning to a new rate.
+ * Store the new rate. */
+ device->req_clock_rate = rate;
+
+ /* Set the decimation and interpolation values in the RX and TX chains.
+ * This also switches filters in / out. Note that all transmitters and
+ * receivers have to be turned on for the calibration portion of
+ * bring-up, and then they will be switched out to reflect the actual
+ * user-requested antenna selections. */
+ int divfactor = 0;
+ device->tfir_factor = 0;
+ if(rate < 0.33e6) {
+ // RX1 + RX2 enabled, 3, 2, 2, 4
+ device->regs.rxfilt = B8( 11101111 ) ;
+
+ // TX1 + TX2 enabled, 3, 2, 2, 4
+ device->regs.txfilt = B8( 11101111 ) ;
+
+ divfactor = 48;
+ device->tfir_factor = 2;
+ } else if(rate < 0.66e6) {
+ // RX1 + RX2 enabled, 2, 2, 2, 4
+ device->regs.rxfilt = B8( 11011111 ) ;
+
+ // TX1 + TX2 enabled, 2, 2, 2, 4
+ device->regs.txfilt = B8( 11011111 ) ;
+
+ divfactor = 32;
+ device->tfir_factor = 2;
+ } else if(rate <= 20e6) {
+ // RX1 + RX2 enabled, 2, 2, 2, 2
+ device->regs.rxfilt = B8( 11011110 ) ;
+
+ // TX1 + TX2 enabled, 2, 2, 2, 2
+ device->regs.txfilt = B8( 11011110 ) ;
+
+ divfactor = 16;
+ device->tfir_factor = 2;
+ } else if((rate > 20e6) && (rate < 23e6)) {
+ // RX1 + RX2 enabled, 3, 2, 2, 2
+ device->regs.rxfilt = B8( 11101110 ) ;
+
+ // TX1 + TX2 enabled, 3, 1, 2, 2
+ device->regs.txfilt = B8( 11100110 ) ;
+
+ divfactor = 24;
+ device->tfir_factor = 2;
+ } else if((rate >= 23e6) && (rate < 41e6)) {
+ // RX1 + RX2 enabled, 2, 2, 2, 2
+ device->regs.rxfilt = B8( 11011110 ) ;
+
+ // TX1 + TX2 enabled, 1, 2, 2, 2
+ device->regs.txfilt = B8( 11001110 ) ;
+
+ divfactor = 16;
+ device->tfir_factor = 2;
+ } else if((rate >= 41e6) && (rate <= 56e6)) {
+ // RX1 + RX2 enabled, 3, 1, 2, 2
+ device->regs.rxfilt = B8( 11100110 ) ;
+
+ // TX1 + TX2 enabled, 3, 1, 1, 2
+ device->regs.txfilt = B8( 11100010 ) ;
+
+ divfactor = 12;
+ device->tfir_factor = 2;
+ } else if((rate > 56e6) && (rate <= 61.44e6)) {
+ // RX1 + RX2 enabled, 3, 1, 1, 2
+ device->regs.rxfilt = B8( 11100010 ) ;
+
+ // TX1 + TX2 enabled, 3, 1, 1, 1
+ device->regs.txfilt = B8( 11100001 ) ;
+
+ divfactor = 6;
+ device->tfir_factor = 1;
+ } else {
+ // should never get in here
+ post_err_msg("[setup_rates] INVALID_CODE_PATH");
+ }
+
+ msg("[setup_rates] divfactor=%d", divfactor);
+
+ /* Tune the BBPLL to get the ADC and DAC clocks. */
+ const double adcclk = tune_bbvco(device, rate * divfactor);
+ double dacclk = adcclk;
+
+ /* The DAC clock must be <= 336e6, and is either the ADC clock or 1/2 the
+ * ADC clock.*/
+ if(adcclk > 336e6) {
+ /* Make the DAC clock = ADC/2, and bypass the TXFIR. */
+ device->regs.bbpll = device->regs.bbpll | 0x08;
+ dacclk = adcclk / 2.0;
+ } else {
+ device->regs.bbpll = device->regs.bbpll & 0xF7;
+ }
+
+ /* Set the dividers / interpolators in AD9361. */
+ write_ad9361_reg(device, 0x002, device->regs.txfilt);
+ write_ad9361_reg(device, 0x003, device->regs.rxfilt);
+ write_ad9361_reg(device, 0x004, device->regs.inputsel);
+ write_ad9361_reg(device, 0x00A, device->regs.bbpll);
+
+ msg("[setup_rates] adcclk=%f", adcclk);
+ device->baseband_bw = (adcclk / divfactor);
+
+ /*
+ The Tx & Rx FIR calculate 16 taps per clock cycle. This limits the number of available taps to the ratio of DAC_CLK/ADC_CLK
+ to the input data rate multiplied by 16. For example, if the input data rate is 25 MHz and DAC_CLK is 100 MHz,
+ then the ratio of DAC_CLK to the input data rate is 100/25 or 4. In this scenario, the total number of taps available is 64.
+
+ Also, whilst the Rx FIR filter always has memory available for 128 taps, the Tx FIR Filter can only support a maximum length of 64 taps
+ in 1x interpolation mode, and 128 taps in 2x & 4x modes.
+ */
+ const int max_tx_taps = AD9361_MIN(AD9361_MIN((16 * (int)((dacclk / rate) + 0.5)), 128),
+ (device->tfir_factor==1) ? 64 : 128);
+ const int max_rx_taps = AD9361_MIN((16 * (int)((adcclk / rate) + 0.5)), 128);
+
+ const int num_tx_taps = get_num_taps(max_tx_taps);
+ const int num_rx_taps = get_num_taps(max_rx_taps);
+
+ setup_tx_fir(device, num_tx_taps);
+ setup_rx_fir(device, num_rx_taps);
+
+ return device->baseband_bw;
+}
+
+/***********************************************************************
+ * Publicly exported functions to host calls
+ **********************************************************************/
+void init_ad9361(uint64_t handle) {
+ ad9361_device_t* device = get_ad9361_device(handle);
+ /* Initialize shadow registers. */
+ device->regs.vcodivs = 0x00;
+ device->regs.inputsel = 0x30;
+ device->regs.rxfilt = 0x00;
+ device->regs.txfilt = 0x00;
+ device->regs.bbpll = 0x02;
+ device->regs.bbftune_config = 0x1e;
+ device->regs.bbftune_mode = 0x1e;
+
+ /* Initialize private VRQ fields. */
+ device->rx_freq = 0.0;
+ device->tx_freq = 0.0;
+ device->req_rx_freq = 0.0;
+ device->req_tx_freq = 0.0;
+ device->baseband_bw = 0.0;
+ device->req_clock_rate = 0.0;
+ device->req_coreclk = 0.0;
+ device->bbpll_freq = 0.0;
+ device->adcclock_freq = 0.0;
+ device->rx_bbf_tunediv = 0;
+ device->curr_gain_table = 0;
+ device->rx1_gain = 0;
+ device->rx2_gain = 0;
+ device->tx1_gain = 0;
+ device->tx2_gain = 0;
+
+ /* Reset the device. */
+ write_ad9361_reg(device, 0x000,0x01);
+ write_ad9361_reg(device, 0x000,0x00);
+ ad9361_msleep(20);
+
+ /* There is not a WAT big enough for this. */
+ write_ad9361_reg(device, 0x3df, 0x01);
+
+ write_ad9361_reg(device, 0x2a6, 0x0e); // Enable master bias
+ write_ad9361_reg(device, 0x2a8, 0x0e); // Set bandgap trim
+
+ /* Set RFPLL ref clock scale to REFCLK * 2 */
+ write_ad9361_reg(device, 0x2ab, 0x07);
+ write_ad9361_reg(device, 0x2ac, 0xff);
+
+ /* Enable clocks. */
+ switch (ad9361_client_get_clocking_mode(device->product)) {
+ case AD9361_XTAL_N_CLK_PATH: {
+ write_ad9361_reg(device, 0x009, 0x17);
+ } break;
+
+ case AD9361_XTAL_P_CLK_PATH: {
+ write_ad9361_reg(device, 0x009, 0x07);
+ write_ad9361_reg(device, 0x292, 0x08);
+ write_ad9361_reg(device, 0x293, 0x80);
+ write_ad9361_reg(device, 0x294, 0x00);
+ write_ad9361_reg(device, 0x295, 0x14);
+ } break;
+
+ default:
+ post_err_msg("NOT IMPLEMENTED");
+ }
+ ad9361_msleep(20);
+
+ /* Tune the BBPLL, write TX and RX FIRS. */
+ setup_rates(device, 50e6);
+
+ /* Setup data ports (FDD dual port DDR):
+ * FDD dual port DDR CMOS no swap.
+ * Force TX on one port, RX on the other. */
+ switch (ad9361_client_get_digital_interface_mode(device->product)) {
+ case AD9361_DDR_FDD_LVCMOS: {
+ write_ad9361_reg(device, 0x010, 0xc8);
+ write_ad9361_reg(device, 0x011, 0x00);
+ write_ad9361_reg(device, 0x012, 0x02);
+ } break;
+
+ case AD9361_DDR_FDD_LVDS: {
+ write_ad9361_reg(device, 0x010, 0xcc);
+ write_ad9361_reg(device, 0x011, 0x00);
+ write_ad9361_reg(device, 0x012, 0x10);
+
+ //LVDS Specific
+ write_ad9361_reg(device, 0x03C, 0x23);
+ write_ad9361_reg(device, 0x03D, 0xFF);
+ write_ad9361_reg(device, 0x03E, 0x0F);
+ } break;
+
+ default:
+ post_err_msg("NOT IMPLEMENTED");
+ }
+
+ /* Data delay for TX and RX data clocks */
+ digital_interface_delays_t timing = ad9361_client_get_digital_interface_timing(device->product);
+ uint8_t rx_delays = ((timing.rx_clk_delay & 0xF) << 4) | (timing.rx_data_delay & 0xF);
+ uint8_t tx_delays = ((timing.tx_clk_delay & 0xF) << 4) | (timing.tx_data_delay & 0xF);
+ write_ad9361_reg(device, 0x006, rx_delays);
+ write_ad9361_reg(device, 0x007, tx_delays);
+
+ /* Setup AuxDAC */
+ write_ad9361_reg(device, 0x018, 0x00); // AuxDAC1 Word[9:2]
+ write_ad9361_reg(device, 0x019, 0x00); // AuxDAC2 Word[9:2]
+ write_ad9361_reg(device, 0x01A, 0x00); // AuxDAC1 Config and Word[1:0]
+ write_ad9361_reg(device, 0x01B, 0x00); // AuxDAC2 Config and Word[1:0]
+ write_ad9361_reg(device, 0x022, 0x4A); // Invert Bypassed LNA
+ write_ad9361_reg(device, 0x023, 0xFF); // AuxDAC Manaul/Auto Control
+ write_ad9361_reg(device, 0x026, 0x00); // AuxDAC Manual Select Bit/GPO Manual Select
+ write_ad9361_reg(device, 0x030, 0x00); // AuxDAC1 Rx Delay
+ write_ad9361_reg(device, 0x031, 0x00); // AuxDAC1 Tx Delay
+ write_ad9361_reg(device, 0x032, 0x00); // AuxDAC2 Rx Delay
+ write_ad9361_reg(device, 0x033, 0x00); // AuxDAC2 Tx Delay
+
+ /* Setup AuxADC */
+ write_ad9361_reg(device, 0x00B, 0x00); // Temp Sensor Setup (Offset)
+ write_ad9361_reg(device, 0x00C, 0x00); // Temp Sensor Setup (Temp Window)
+ write_ad9361_reg(device, 0x00D, 0x03); // Temp Sensor Setup (Periodic Measure)
+ write_ad9361_reg(device, 0x00F, 0x04); // Temp Sensor Setup (Decimation)
+ write_ad9361_reg(device, 0x01C, 0x10); // AuxADC Setup (Clock Div)
+ write_ad9361_reg(device, 0x01D, 0x01); // AuxADC Setup (Decimation/Enable)
+
+ /* Setup control outputs. */
+ write_ad9361_reg(device, 0x035, 0x07);
+ write_ad9361_reg(device, 0x036, 0xFF);
+
+ /* Setup GPO */
+ write_ad9361_reg(device, 0x03a, 0x27); //set delay register
+ write_ad9361_reg(device, 0x020, 0x00); // GPO Auto Enable Setup in RX and TX
+ write_ad9361_reg(device, 0x027, 0x03); // GPO Manual and GPO auto value in ALERT
+ write_ad9361_reg(device, 0x028, 0x00); // GPO_0 RX Delay
+ write_ad9361_reg(device, 0x029, 0x00); // GPO_1 RX Delay
+ write_ad9361_reg(device, 0x02A, 0x00); // GPO_2 RX Delay
+ write_ad9361_reg(device, 0x02B, 0x00); // GPO_3 RX Delay
+ write_ad9361_reg(device, 0x02C, 0x00); // GPO_0 TX Delay
+ write_ad9361_reg(device, 0x02D, 0x00); // GPO_1 TX Delay
+ write_ad9361_reg(device, 0x02E, 0x00); // GPO_2 TX Delay
+ write_ad9361_reg(device, 0x02F, 0x00); // GPO_3 TX Delay
+
+ write_ad9361_reg(device, 0x261, 0x00); // RX LO power
+ write_ad9361_reg(device, 0x2a1, 0x00); // TX LO power
+ write_ad9361_reg(device, 0x248, 0x0b); // en RX VCO LDO
+ write_ad9361_reg(device, 0x288, 0x0b); // en TX VCO LDO
+ write_ad9361_reg(device, 0x246, 0x02); // pd RX cal Tcf
+ write_ad9361_reg(device, 0x286, 0x02); // pd TX cal Tcf
+ write_ad9361_reg(device, 0x249, 0x8e); // rx vco cal length
+ write_ad9361_reg(device, 0x289, 0x8e); // rx vco cal length
+ write_ad9361_reg(device, 0x23b, 0x80); // set RX MSB?, FIXME 0x89 magic cp
+ write_ad9361_reg(device, 0x27b, 0x80); // "" TX //FIXME 0x88 see above
+ write_ad9361_reg(device, 0x243, 0x0d); // set rx prescaler bias
+ write_ad9361_reg(device, 0x283, 0x0d); // "" TX
+
+ write_ad9361_reg(device, 0x23d, 0x00); // Clear half VCO cal clock setting
+ write_ad9361_reg(device, 0x27d, 0x00); // Clear half VCO cal clock setting
+
+ /* The order of the following process is EXTREMELY important. If the
+ * below functions are modified at all, device initialization and
+ * calibration might be broken in the process! */
+
+ write_ad9361_reg(device, 0x015, 0x04); // dual synth mode, synth en ctrl en
+ write_ad9361_reg(device, 0x014, 0x05); // use SPI for TXNRX ctrl, to ALERT, TX on
+ write_ad9361_reg(device, 0x013, 0x01); // enable ENSM
+ ad9361_msleep(1);
+
+ calibrate_synth_charge_pumps(device);
+
+ tune_helper(device, RX_TYPE, 800e6);
+ tune_helper(device, TX_TYPE, 850e6);
+
+ program_mixer_gm_subtable(device);
+ program_gain_table(device);
+ setup_gain_control(device);
+
+ calibrate_baseband_rx_analog_filter(device);
+ calibrate_baseband_tx_analog_filter(device);
+ calibrate_rx_TIAs(device);
+ calibrate_secondary_tx_filter(device);
+
+ setup_adc(device);
+
+ calibrate_tx_quadrature(device);
+ calibrate_rx_quadrature(device);
+
+ // cals done, set PPORT config
+ switch (ad9361_client_get_digital_interface_mode(device->product)) {
+ case AD9361_DDR_FDD_LVCMOS: {
+ write_ad9361_reg(device, 0x012, 0x02);
+ } break;
+
+ case AD9361_DDR_FDD_LVDS: {
+ write_ad9361_reg(device, 0x012, 0x10);
+ } break;
+
+ default:
+ post_err_msg("NOT IMPLEMENTED");
+ }
+
+ write_ad9361_reg(device, 0x013, 0x01); // Set ENSM FDD bit
+ write_ad9361_reg(device, 0x015, 0x04); // dual synth mode, synth en ctrl en
+
+ /* Default TX attentuation to 10dB on both TX1 and TX2 */
+ write_ad9361_reg(device, 0x073, 0x00);
+ write_ad9361_reg(device, 0x074, 0x00);
+ write_ad9361_reg(device, 0x075, 0x00);
+ write_ad9361_reg(device, 0x076, 0x00);
+
+ /* Setup RSSI Measurements */
+ write_ad9361_reg(device, 0x150, 0x0E); // RSSI Measurement Duration 0, 1
+ write_ad9361_reg(device, 0x151, 0x00); // RSSI Measurement Duration 2, 3
+ write_ad9361_reg(device, 0x152, 0xFF); // RSSI Weighted Multiplier 0
+ write_ad9361_reg(device, 0x153, 0x00); // RSSI Weighted Multiplier 1
+ write_ad9361_reg(device, 0x154, 0x00); // RSSI Weighted Multiplier 2
+ write_ad9361_reg(device, 0x155, 0x00); // RSSI Weighted Multiplier 3
+ write_ad9361_reg(device, 0x156, 0x00); // RSSI Delay
+ write_ad9361_reg(device, 0x157, 0x00); // RSSI Wait
+ write_ad9361_reg(device, 0x158, 0x0D); // RSSI Mode Select
+ write_ad9361_reg(device, 0x15C, 0x67); // Power Measurement Duration
+
+ /* Turn on the default RX & TX chains. */
+ set_active_chains(handle, true, false, false, false);
+
+ /* Set TXers & RXers on (only works in FDD mode) */
+ write_ad9361_reg(device, 0x014, 0x21);
+}
+
+
+/* This function sets the RX / TX rate between AD9361 and the FPGA, and
+ * thus determines the interpolation / decimation required in the FPGA to
+ * achieve the user's requested rate.
+ *
+ * This is the only clock setting function that is exposed to the outside. */
+double set_clock_rate(uint64_t handle, const double req_rate) {
+ ad9361_device_t* device = get_ad9361_device(handle);
+
+ if(req_rate > 61.44e6) {
+ post_err_msg("Requested master clock rate outside range");
+ }
+
+ msg("[set_clock_rate] req_rate=%.10f", req_rate);
+
+ /* UHD has a habit of requesting the same rate like four times when it
+ * starts up. This prevents that, and any bugs in user code that request
+ * the same rate over and over. */
+ if(freq_is_nearly_equal(req_rate, device->req_clock_rate)) {
+ return device->baseband_bw;
+ }
+
+ /* We must be in the SLEEP / WAIT state to do this. If we aren't already
+ * there, transition the ENSM to State 0. */
+ uint8_t current_state = read_ad9361_reg(device, 0x017) & 0x0F;
+ switch(current_state) {
+ case 0x05:
+ /* We are in the ALERT state. */
+ write_ad9361_reg(device, 0x014, 0x21);
+ ad9361_msleep(5);
+ write_ad9361_reg(device, 0x014, 0x00);
+ break;
+
+ case 0x0A:
+ /* We are in the FDD state. */
+ write_ad9361_reg(device, 0x014, 0x00);
+ break;
+
+ default:
+ post_err_msg("[set_clock_rate:1] AD9361 in unknown state");
+ break;
+ };
+
+ /* Store the current chain / antenna selections so that we can restore
+ * them at the end of this routine; all chains will be enabled from
+ * within setup_rates for calibration purposes. */
+ uint8_t orig_tx_chains = device->regs.txfilt & 0xC0;
+ uint8_t orig_rx_chains = device->regs.rxfilt & 0xC0;
+
+ /* Call into the clock configuration / settings function. This is where
+ * all the hard work gets done. */
+ double rate = setup_rates(device, req_rate);
+
+ msg("[set_clock_rate] rate=%.10f", rate);
+
+ /* Transition to the ALERT state and calibrate everything. */
+ write_ad9361_reg(device, 0x015, 0x04); //dual synth mode, synth en ctrl en
+ write_ad9361_reg(device, 0x014, 0x05); //use SPI for TXNRX ctrl, to ALERT, TX on
+ write_ad9361_reg(device, 0x013, 0x01); //enable ENSM
+ ad9361_msleep(1);
+
+ calibrate_synth_charge_pumps(device);
+
+ tune_helper(device, RX_TYPE, device->rx_freq);
+ tune_helper(device, TX_TYPE, device->tx_freq);
+
+ program_mixer_gm_subtable(device);
+ program_gain_table(device);
+ setup_gain_control(device);
+ program_gains(handle);
+
+ calibrate_baseband_rx_analog_filter(device);
+ calibrate_baseband_tx_analog_filter(device);
+ calibrate_rx_TIAs(device);
+ calibrate_secondary_tx_filter(device);
+
+ setup_adc(device);
+
+ calibrate_tx_quadrature(device);
+ calibrate_rx_quadrature(device);
+
+ // cals done, set PPORT config
+ switch (ad9361_client_get_digital_interface_mode(device->product)) {
+ case AD9361_DDR_FDD_LVCMOS: {
+ write_ad9361_reg(device, 0x012, 0x02);
+ } break;
+
+ case AD9361_DDR_FDD_LVDS: {
+ write_ad9361_reg(device, 0x012, 0x10);
+ } break;
+
+ default:
+ post_err_msg("NOT IMPLEMENTED");
+ }
+ write_ad9361_reg(device, 0x013, 0x01); // Set ENSM FDD bit
+ write_ad9361_reg(device, 0x015, 0x04); // dual synth mode, synth en ctrl en
+
+ /* End the function in the same state as the entry state. */
+ switch(current_state) {
+ case 0x05:
+ /* We are already in ALERT. */
+ break;
+
+ case 0x0A:
+ /* Transition back to FDD, and restore the original antenna
+ * / chain selections. */
+ device->regs.txfilt = (device->regs.txfilt & 0x3F) | orig_tx_chains;
+ device->regs.rxfilt = (device->regs.rxfilt & 0x3F) | orig_rx_chains;
+
+ write_ad9361_reg(device, 0x002, device->regs.txfilt);
+ write_ad9361_reg(device, 0x003, device->regs.rxfilt);
+ write_ad9361_reg(device, 0x014, 0x21);
+ break;
+
+ default:
+ post_err_msg("[set_clock_rate:2] AD9361 in unknown state");
+ break;
+ };
+
+ return rate;
+}
+
+
+/* Set which of the four TX / RX chains provided by AD9361 are active.
+ *
+ * AD9361 provides two sets of chains, Side A and Side B. Each side
+ * provides one TX antenna, and one RX antenna. The B200 maintains the USRP
+ * standard of providing one antenna connection that is both TX & RX, and
+ * one that is RX-only - for each chain. Thus, the possible antenna and
+ * chain selections are:
+ *
+ * B200 Antenna AD9361 Side AD9361 Chain
+ * -------------------------------------------------------------------
+ * TX / RX1 Side A TX1 (when switched to TX)
+ * TX / RX1 Side A RX1 (when switched to RX)
+ * RX1 Side A RX1
+ *
+ * TX / RX2 Side B TX2 (when switched to TX)
+ * TX / RX2 Side B RX2 (when switched to RX)
+ * RX2 Side B RX2
+ */
+void set_active_chains(uint64_t handle, bool tx1, bool tx2, bool rx1, bool rx2) {
+ ad9361_device_t* device = get_ad9361_device(handle);
+
+ /* Clear out the current active chain settings. */
+ device->regs.txfilt = device->regs.txfilt & 0x3F;
+ device->regs.rxfilt = device->regs.rxfilt & 0x3F;
+
+ /* Turn on the different chains based on the passed parameters. */
+ if(tx1) { device->regs.txfilt = device->regs.txfilt | 0x40; }
+ if(tx2) { device->regs.txfilt = device->regs.txfilt | 0x80; }
+ if(rx1) { device->regs.rxfilt = device->regs.rxfilt | 0x40; }
+ if(rx2) { device->regs.rxfilt = device->regs.rxfilt | 0x80; }
+
+ /* Check for FDD state */
+ uint8_t set_back_to_fdd = 0;
+ uint8_t ensm_state = read_ad9361_reg(device, 0x017) & 0x0F;
+ if (ensm_state == 0xA) // FDD
+ {
+ /* Put into ALERT state (via the FDD flush state). */
+ write_ad9361_reg(device, 0x014, 0x01);
+ set_back_to_fdd = 1;
+ }
+
+ /* Wait for FDD flush state to complete (if necessary) */
+ while (ensm_state == 0xA || ensm_state == 0xB)
+ ensm_state = read_ad9361_reg(device, 0x017) & 0x0F;
+
+ /* Turn on / off the chains. */
+ write_ad9361_reg(device, 0x002, device->regs.txfilt);
+ write_ad9361_reg(device, 0x003, device->regs.rxfilt);
+
+ /* Put back into FDD state if necessary */
+ if (set_back_to_fdd)
+ write_ad9361_reg(device, 0x014, 0x21);
+}
+
+/* Tune the RX or TX frequency.
+ *
+ * This is the publicly-accessible tune function. It makes sure the tune
+ * isn't a redundant request, and if not, passes it on to the class's
+ * internal tune function.
+ *
+ * After tuning, it runs any appropriate calibrations. */
+double tune(uint64_t handle, int which, const double value) {
+ ad9361_device_t* device = get_ad9361_device(handle);
+
+ if(which == RX_TYPE) {
+ if(freq_is_nearly_equal(value, device->req_rx_freq)) {
+ return device->rx_freq;
+ }
+
+ } else if(which == TX_TYPE) {
+ if(freq_is_nearly_equal(value, device->req_tx_freq)) {
+ return device->tx_freq;
+ }
+
+ } else {
+ post_err_msg("[tune] INVALID_CODE_PATH");
+ }
+
+ /* If we aren't already in the ALERT state, we will need to return to
+ * the FDD state after tuning. */
+ int not_in_alert = 0;
+ if((read_ad9361_reg(device, 0x017) & 0x0F) != 5) {
+ /* Force the device into the ALERT state. */
+ not_in_alert = 1;
+ write_ad9361_reg(device, 0x014, 0x01);
+ }
+
+ /* Tune the RF VCO! */
+ double tune_freq = tune_helper(device, which, value);
+
+ /* Run any necessary calibrations / setups */
+ if(which == RX_TYPE) {
+ program_gain_table(device);
+ }
+
+ /* Update the gain settings. */
+ program_gains(handle);
+
+ /* Run the calibration algorithms. */
+ calibrate_tx_quadrature(device);
+ calibrate_rx_quadrature(device);
+
+ /* If we were in the FDD state, return it now. */
+ if(not_in_alert) {
+ write_ad9361_reg(device, 0x014, 0x21);
+ }
+
+ return tune_freq;
+}
+
+/* Set the gain of RX1, RX2, TX1, or TX2.
+ *
+ * Note that the 'value' passed to this function is the actual gain value,
+ * _not_ the gain index. This is the opposite of the eval software's GUI!
+ * Also note that the RX chains are done in terms of gain, and the TX chains
+ * are done in terms of attenuation. */
+double set_gain(uint64_t handle, int which, int n, const double value) {
+ ad9361_device_t* device = get_ad9361_device(handle);
+
+ if(which == RX_TYPE) {
+ /* Indexing the gain tables requires an offset from the requested
+ * amount of total gain in dB:
+ * < 1300MHz: dB + 5
+ * >= 1300MHz and < 4000MHz: dB + 3
+ * >= 4000MHz and <= 6000MHz: dB + 14
+ */
+ int gain_offset = 0;
+ if(device->rx_freq < 1300e6) {
+ gain_offset = 5;
+ } else if(device->rx_freq < 4000e6) {
+ gain_offset = 3;
+ } else {
+ gain_offset = 14;
+ }
+
+ int gain_index = value + gain_offset;
+
+ /* Clip the gain values to the proper min/max gain values. */
+ if(gain_index > 76) gain_index = 76;
+ if(gain_index < 0) gain_index = 0;
+
+ if(n == 1) {
+ device->rx1_gain = value;
+ write_ad9361_reg(device, 0x109, gain_index);
+ } else {
+ device->rx2_gain = value;
+ write_ad9361_reg(device, 0x10c, gain_index);
+ }
+
+ return gain_index - gain_offset;
+ } else {
+ /* Setting the below bits causes a change in the TX attenuation word
+ * to immediately take effect. */
+ write_ad9361_reg(device, 0x077, 0x40);
+ write_ad9361_reg(device, 0x07c, 0x40);
+
+ /* Each gain step is -0.25dB. Calculate the attenuation necessary
+ * for the requested gain, convert it into gain steps, then write
+ * the attenuation word. Max gain (so zero attenuation) is 89.75. */
+ double atten = AD9361_MAX_GAIN - value;
+ int attenreg = atten * 4;
+ if(n == 1) {
+ device->tx1_gain = value;
+ write_ad9361_reg(device, 0x073, attenreg & 0xFF);
+ write_ad9361_reg(device, 0x074, (attenreg >> 8) & 0x01);
+ } else {
+ device->tx2_gain = value;
+ write_ad9361_reg(device, 0x075, attenreg & 0xFF);
+ write_ad9361_reg(device, 0x076, (attenreg >> 8) & 0x01);
+ }
+ return AD9361_MAX_GAIN - ((double)(attenreg)/ 4);
+ }
+}
+
+/* This function is responsible to dispatch the vendor request call
+ * to the proper handler
+ */
+
+void ad9361_dispatch(const char* vrb, char* vrb_out)
+{
+ memcpy(vrb_out, vrb, AD9361_DISPATCH_PACKET_SIZE); //copy request to response memory
+ tmp_req_buffer = vrb_out;
+
+ //////////////////////////////////////////////
+
+ double ret_val = 0.0;
+ int mask = 0;
+
+ const ad9361_transaction_t *request = (const ad9361_transaction_t *)vrb;
+ ad9361_transaction_t *response = (ad9361_transaction_t *)vrb_out;
+
+ //msg("[dispatch_vrq] action=%d", request->action);
+ //msg("[dispatch_vrq] action=%f", (double)request->action);
+
+ switch (request->action) {
+ case AD9361_ACTION_ECHO:
+ break; // nothing to do
+ case AD9361_ACTION_INIT:
+ init_ad9361(request->handle);
+ break;
+ case AD9361_ACTION_SET_RX1_GAIN:
+ ret_val = set_gain(request->handle,RX_TYPE,1,ad9361_double_unpack(request->value.gain));
+ ad9361_double_pack(ret_val, response->value.gain);
+ break;
+ case AD9361_ACTION_SET_TX1_GAIN:
+ ret_val = set_gain(request->handle,TX_TYPE,1,ad9361_double_unpack(request->value.gain));
+ ad9361_double_pack(ret_val, response->value.gain);
+ break;
+ case AD9361_ACTION_SET_RX2_GAIN:
+ ret_val = set_gain(request->handle,RX_TYPE,2,ad9361_double_unpack(request->value.gain));
+ ad9361_double_pack(ret_val, response->value.gain);
+ break;
+ case AD9361_ACTION_SET_TX2_GAIN:
+ ret_val = set_gain(request->handle,TX_TYPE,2,ad9361_double_unpack(request->value.gain));
+ ad9361_double_pack(ret_val, response->value.gain);
+ break;
+ case AD9361_ACTION_SET_RX_FREQ:
+ ret_val = tune(request->handle,RX_TYPE, ad9361_double_unpack(request->value.freq));
+ ad9361_double_pack(ret_val, response->value.freq);
+ break;
+ case AD9361_ACTION_SET_TX_FREQ:
+ ret_val = tune(request->handle,TX_TYPE, ad9361_double_unpack(request->value.freq));
+ ad9361_double_pack(ret_val, response->value.freq);
+ break;
+ case AD9361_ACTION_SET_CODEC_LOOP:
+ data_port_loopback(request->handle,request->value.codec_loop != 0);
+ break;
+ case AD9361_ACTION_SET_CLOCK_RATE:
+ ret_val = set_clock_rate(request->handle,ad9361_double_unpack(request->value.rate));
+ ad9361_double_pack(ret_val, response->value.rate);
+ break;
+ case AD9361_ACTION_SET_ACTIVE_CHAINS:
+ mask = request->value.enable_mask;
+ set_active_chains(request->handle,mask & 1, mask & 2, mask & 4, mask & 8);
+ break;
+ default:
+ post_err_msg("[ad9361_dispatch] NOT IMPLEMENTED");
+ break;
+ }
+}
diff --git a/host/lib/usrp/common/ad9361_driver/ad9361_platform.h b/host/lib/usrp/common/ad9361_driver/ad9361_platform.h
new file mode 100644
index 000000000..0444f3159
--- /dev/null
+++ b/host/lib/usrp/common/ad9361_driver/ad9361_platform.h
@@ -0,0 +1,64 @@
+//
+// Copyright 2014 Ettus Research LLC
+//
+
+#ifndef INCLUDED_AD9361_PLATFORM_H
+#define INCLUDED_AD9361_PLATFORM_H
+
+#include <stdint.h>
+#include "ad9361_device.h"
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+/*!
+ * Get chip class from handle
+ */
+ad9361_device_t* get_ad9361_device(uint64_t handle);
+
+/*!
+ * Write a register in the AD9361 space
+ */
+void write_ad9361_reg(ad9361_device_t* device, uint32_t reg, uint8_t val);
+
+/*!
+ * Read a register from the AD9361 space
+ */
+uint8_t read_ad9361_reg(ad9361_device_t* device, uint32_t reg);
+
+/*!
+ * Millisecond sleep
+ */
+void ad9361_msleep(const uint32_t millis);
+
+/*!
+ * Pack a double into 2 uint32s
+ */
+void ad9361_double_pack(const double input, uint32_t output[2]);
+
+/*!
+ * Unpack 2 uint32s into a double
+ */
+double ad9361_double_unpack(const uint32_t input[2]);
+
+/*!
+ * Compute the square root of val
+ */
+double ad9361_sqrt(double val);
+
+/*!
+ * Compute the floor of val
+ */
+int ad9361_floor_to_int(double val);
+
+/*!
+ * Compute the ceil of val
+ */
+int ad9361_ceil_to_int(double val);
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* INCLUDED_AD9361_PLATFORM_H */
diff --git a/host/lib/usrp/common/ad9361_driver/ad9361_synth_lut.h b/host/lib/usrp/common/ad9361_driver/ad9361_synth_lut.h
new file mode 100644
index 000000000..cb320e1f4
--- /dev/null
+++ b/host/lib/usrp/common/ad9361_driver/ad9361_synth_lut.h
@@ -0,0 +1,135 @@
+//
+// Copyright 2014 Ettus Research LLC
+//
+
+#ifndef INCLUDED_AD9361_SYNTH_LUT_HPP
+#define INCLUDED_AD9361_SYNTH_LUT_HPP
+
+
+double vco_index[53] = {12605000000, 12245000000, 11906000000, 11588000000,
+ 11288000000, 11007000000, 10742000000, 10492000000,
+ 10258000000, 10036000000, 9827800000, 9631100000,
+ 9445300000, 9269800000, 9103600000, 8946300000,
+ 8797000000, 8655300000, 8520600000, 8392300000,
+ 8269900000, 8153100000, 8041400000, 7934400000,
+ 7831800000, 7733200000, 7638400000, 7547100000,
+ 7459000000, 7374000000, 7291900000, 7212400000,
+ 7135500000, 7061000000, 6988700000, 6918600000,
+ 6850600000, 6784600000, 6720500000, 6658200000,
+ 6597800000, 6539200000, 6482300000, 6427000000,
+ 6373400000, 6321400000, 6270900000, 6222000000,
+ 6174500000, 6128400000, 6083600000, 6040100000,
+ 5997700000};
+
+int synth_cal_lut[53][12] = { {10, 0, 4, 0, 15, 8, 8, 13, 4, 13, 15, 9},
+ {10, 0, 4, 0, 15, 8, 9, 13, 4, 13, 15, 9},
+ {10, 0, 4, 0, 15, 8, 10, 13, 4, 13, 15, 9},
+ {10, 0, 4, 0, 15, 8, 11, 13, 4, 13, 15, 9},
+ {10, 0, 4, 0, 15, 8, 11, 13, 4, 13, 15, 9},
+ {10, 0, 4, 0, 14, 8, 12, 13, 4, 13, 15, 9},
+ {10, 0, 4, 0, 14, 8, 13, 13, 4, 13, 15, 9},
+ {10, 0, 5, 1, 14, 9, 13, 13, 4, 13, 15, 9},
+ {10, 0, 5, 1, 14, 9, 14, 13, 4, 13, 15, 9},
+ {10, 0, 5, 1, 14, 9, 15, 13, 4, 13, 15, 9},
+ {10, 0, 5, 1, 14, 9, 15, 13, 4, 13, 15, 9},
+ {10, 0, 5, 1, 13, 9, 16, 13, 4, 13, 15, 9},
+ {10, 0, 5, 1, 13, 9, 17, 13, 4, 13, 15, 9},
+ {10, 0, 5, 1, 13, 9, 18, 13, 4, 13, 15, 9},
+ {10, 0, 5, 1, 13, 9, 18, 13, 4, 13, 15, 9},
+ {10, 0, 5, 1, 13, 9, 19, 13, 4, 13, 15, 9},
+ {10, 1, 6, 1, 15, 11, 14, 13, 4, 13, 15, 9},
+ {10, 1, 6, 1, 15, 11, 14, 13, 4, 13, 15, 9},
+ {10, 1, 6, 1, 15, 11, 15, 13, 4, 13, 15, 9},
+ {10, 1, 6, 1, 15, 11, 15, 13, 4, 13, 15, 9},
+ {10, 1, 6, 1, 15, 11, 16, 13, 4, 13, 15, 9},
+ {10, 1, 6, 1, 15, 11, 16, 13, 4, 13, 15, 9},
+ {10, 1, 6, 1, 15, 11, 17, 13, 4, 13, 15, 9},
+ {10, 1, 6, 1, 15, 11, 17, 13, 4, 13, 15, 9},
+ {10, 1, 6, 1, 15, 11, 18, 13, 4, 13, 15, 9},
+ {10, 1, 6, 1, 15, 11, 18, 13, 4, 13, 15, 9},
+ {10, 1, 6, 1, 15, 11, 19, 13, 4, 13, 15, 9},
+ {10, 1, 6, 1, 15, 11, 19, 13, 4, 13, 15, 9},
+ {10, 1, 6, 1, 15, 11, 20, 13, 4, 13, 15, 9},
+ {10, 1, 7, 2, 15, 12, 20, 13, 4, 13, 15, 9},
+ {10, 1, 7, 2, 15, 12, 21, 13, 4, 13, 15, 9},
+ {10, 1, 7, 2, 15, 12, 21, 13, 4, 13, 15, 9},
+ {10, 1, 7, 2, 15, 14, 22, 13, 4, 13, 15, 9},
+ {10, 1, 7, 2, 15, 14, 22, 13, 4, 13, 15, 9},
+ {10, 1, 7, 2, 15, 14, 23, 13, 4, 13, 15, 9},
+ {10, 1, 7, 2, 15, 14, 23, 13, 4, 13, 15, 9},
+ {10, 1, 7, 2, 15, 14, 24, 13, 4, 13, 15, 9},
+ {10, 1, 7, 2, 15, 14, 24, 13, 4, 13, 15, 9},
+ {10, 1, 7, 2, 15, 14, 25, 13, 4, 13, 15, 9},
+ {10, 1, 7, 2, 15, 14, 25, 13, 4, 13, 15, 9},
+ {10, 1, 7, 2, 15, 14, 26, 13, 4, 13, 15, 9},
+ {10, 1, 7, 2, 15, 14, 26, 13, 4, 13, 15, 9},
+ {10, 1, 7, 2, 15, 14, 27, 13, 4, 13, 15, 9},
+ {10, 1, 7, 2, 15, 14, 27, 13, 4, 13, 15, 9},
+ {10, 3, 7, 3, 15, 12, 18, 13, 4, 13, 15, 9},
+ {10, 3, 7, 3, 15, 12, 18, 13, 4, 13, 15, 9},
+ {10, 3, 7, 3, 15, 12, 18, 13, 4, 13, 15, 9},
+ {10, 3, 7, 3, 15, 12, 19, 13, 4, 13, 15, 9},
+ {10, 3, 7, 3, 15, 12, 19, 13, 4, 13, 15, 9},
+ {10, 3, 7, 3, 15, 12, 19, 13, 4, 13, 15, 9},
+ {10, 3, 7, 3, 15, 12, 19, 13, 4, 13, 15, 9},
+ {10, 3, 7, 3, 15, 12, 20, 13, 4, 13, 15, 9},
+ {10, 3, 7, 3, 15, 12, 20, 13, 4, 13, 15, 9}};
+
+
+#if 0 /* This is the table for a 40MHz RFPLL Reference */
+int synth_cal_lut[53][12] = { {10, 0, 4, 0, 15, 8, 8, 12, 3, 14, 15, 11},
+ {10, 0, 4, 0, 15, 8, 9, 12, 3, 14, 15, 11},
+ {10, 0, 4, 0, 15, 8, 9, 12, 3, 14, 15, 11},
+ {10, 0, 4, 0, 15, 8, 10, 12, 3, 14, 15, 11},
+ {10, 0, 4, 0, 15, 8, 11, 12, 3, 14, 15, 11},
+ {10, 0, 4, 0, 15, 8, 11, 12, 3, 14, 15, 11},
+ {10, 0, 4, 0, 14, 8, 12, 12, 3, 14, 15, 11},
+ {10, 0, 5, 1, 14, 9, 13, 12, 3, 14, 15, 11},
+ {10, 0, 5, 1, 14, 9, 13, 12, 3, 14, 15, 11},
+ {10, 0, 5, 1, 14, 9, 14, 12, 3, 14, 15, 11},
+ {10, 0, 5, 1, 14, 9, 15, 12, 3, 14, 15, 11},
+ {10, 0, 5, 1, 14, 9, 15, 12, 3, 14, 15, 11},
+ {10, 0, 5, 1, 14, 9, 16, 12, 3, 14, 15, 11},
+ {10, 0, 5, 1, 14, 9, 17, 12, 3, 14, 15, 11},
+ {10, 0, 5, 1, 14, 9, 17, 12, 3, 14, 15, 11},
+ {10, 0, 5, 1, 14, 9, 18, 12, 3, 14, 15, 11},
+ {10, 1, 6, 1, 15, 11, 13, 12, 3, 14, 15, 11},
+ {10, 1, 6, 1, 15, 11, 14, 12, 3, 14, 15, 11},
+ {10, 1, 6, 1, 15, 11, 14, 12, 3, 14, 15, 11},
+ {10, 1, 6, 1, 15, 11, 15, 12, 3, 14, 15, 11},
+ {10, 1, 6, 1, 15, 11, 15, 12, 3, 14, 15, 11},
+ {10, 1, 6, 1, 15, 11, 16, 12, 3, 14, 15, 11},
+ {10, 1, 6, 1, 15, 11, 16, 12, 3, 14, 15, 11},
+ {10, 1, 6, 1, 15, 11, 17, 12, 3, 14, 15, 11},
+ {10, 1, 6, 1, 15, 11, 17, 12, 3, 14, 15, 11},
+ {10, 1, 6, 1, 15, 11, 17, 12, 3, 14, 15, 11},
+ {10, 1, 6, 1, 15, 11, 18, 12, 3, 14, 15, 11},
+ {10, 1, 6, 1, 15, 11, 18, 12, 3, 14, 15, 11},
+ {10, 1, 6, 1, 15, 11, 19, 12, 3, 14, 15, 11},
+ {10, 1, 7, 2, 15, 12, 19, 12, 3, 14, 15, 11},
+ {10, 1, 7, 2, 15, 12, 20, 12, 3, 14, 15, 11},
+ {10, 1, 7, 2, 15, 12, 20, 12, 3, 14, 15, 11},
+ {10, 1, 7, 2, 15, 14, 21, 12, 3, 14, 15, 11},
+ {10, 1, 7, 2, 15, 14, 21, 12, 3, 14, 15, 11},
+ {10, 1, 7, 2, 15, 14, 22, 12, 3, 14, 15, 11},
+ {10, 1, 7, 2, 15, 14, 22, 12, 3, 14, 15, 11},
+ {10, 1, 7, 2, 15, 14, 23, 12, 3, 14, 15, 11},
+ {10, 1, 7, 2, 15, 14, 23, 12, 3, 14, 15, 11},
+ {10, 1, 7, 2, 15, 14, 24, 12, 3, 14, 15, 11},
+ {10, 1, 7, 2, 15, 14, 24, 12, 3, 14, 15, 11},
+ {10, 1, 7, 2, 15, 14, 25, 12, 3, 14, 15, 11},
+ {10, 1, 7, 2, 15, 14, 25, 12, 3, 14, 15, 11},
+ {10, 1, 7, 2, 15, 14, 26, 12, 3, 14, 15, 11},
+ {10, 1, 7, 2, 15, 14, 26, 12, 3, 14, 15, 11},
+ {10, 3, 7, 3, 15, 12, 17, 12, 3, 14, 15, 11},
+ {10, 3, 7, 3, 15, 12, 17, 12, 3, 14, 15, 11},
+ {10, 3, 7, 3, 15, 12, 17, 12, 3, 14, 15, 11},
+ {10, 3, 7, 3, 15, 12, 18, 12, 3, 14, 15, 11},
+ {10, 3, 7, 3, 15, 12, 18, 12, 3, 14, 15, 11},
+ {10, 3, 7, 3, 15, 12, 18, 12, 3, 14, 15, 11},
+ {10, 3, 7, 3, 15, 12, 18, 12, 3, 14, 15, 11},
+ {10, 3, 7, 3, 15, 12, 19, 12, 3, 14, 15, 11},
+ {10, 3, 7, 3, 15, 12, 19, 12, 3, 14, 15, 11} };
+#endif
+
+#endif /* INCLUDED_AD9361_SYNTH_LUT_HPP */
diff --git a/host/lib/usrp/common/ad9361_transaction.h b/host/lib/usrp/common/ad9361_driver/ad9361_transaction.h
index 693f32e41..06541d2ee 100644
--- a/host/lib/usrp/common/ad9361_transaction.h
+++ b/host/lib/usrp/common/ad9361_driver/ad9361_transaction.h
@@ -1,18 +1,5 @@
//
-// Copyright 2013 Ettus Research LLC
-//
-// This program is free software: you can redistribute it and/or modify
-// it under the terms of the GNU General Public License as published by
-// the Free Software Foundation, either version 3 of the License, or
-// (at your option) any later version.
-//
-// This program is distributed in the hope that it will be useful,
-// but WITHOUT ANY WARRANTY; without even the implied warranty of
-// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-// GNU General Public License for more details.
-//
-// You should have received a copy of the GNU General Public License
-// along with this program. If not, see <http://www.gnu.org/licenses/>.
+// Copyright 2014 Ettus Research LLC
//
#ifndef INCLUDED_AD9361_TRANSACTION_H
@@ -25,8 +12,8 @@ extern "C" {
#endif
//various constants
-#define AD9361_TRANSACTION_VERSION 0x4
-#define AD9361_DISPATCH_PACKET_SIZE 64
+#define AD9361_TRANSACTION_VERSION 0x5
+#define AD9361_DISPATCH_PACKET_SIZE 64
//action types
#define AD9361_ACTION_ECHO 0
@@ -41,28 +28,6 @@ extern "C" {
#define AD9361_ACTION_SET_CLOCK_RATE 9
#define AD9361_ACTION_SET_ACTIVE_CHAINS 10
-typedef union
-{
- double d;
- uint32_t x[2];
-} ad9361_double_union_t;
-
-static inline void ad9361_double_pack(const double input, uint32_t output[2])
-{
- ad9361_double_union_t p = {};
- p.d = input;
- output[0] = p.x[0];
- output[1] = p.x[1];
-}
-
-static inline double ad9361_double_unpack(const uint32_t input[2])
-{
- ad9361_double_union_t p = {};
- p.x[0] = input[0];
- p.x[1] = input[1];
- return p.d;
-}
-
typedef struct
{
//version is expected to be AD9361_TRANSACTION_VERSION
@@ -72,6 +37,9 @@ typedef struct
//sequence number - increment every call for sanity
uint32_t sequence;
+ //location info for the ad9361 chip class
+ uint64_t handle;
+
//action tells us what to do, see AD9361_ACTION_*
uint32_t action;
diff --git a/host/lib/usrp/common/ad9361_platform_uhd.cpp b/host/lib/usrp/common/ad9361_platform_uhd.cpp
new file mode 100644
index 000000000..10ea67345
--- /dev/null
+++ b/host/lib/usrp/common/ad9361_platform_uhd.cpp
@@ -0,0 +1,86 @@
+//
+// Copyright 2014 Ettus Research LLC
+//
+
+#include <uhd/utils/msg.hpp>
+#include <cmath>
+#include <cstdlib>
+#include <cstring>
+#include <stdint.h>
+#include <ad9361_platform.h>
+#include "ad9361_ctrl.hpp"
+#include <stdio.h>
+#include <boost/date_time/posix_time/posix_time.hpp>
+#include <boost/thread/thread.hpp>
+
+//If the platform for the AD9361 driver is UHD (host) then the handle is simply
+//a pointer to a device class instance
+ad9361_device_t* get_ad9361_device(uint64_t handle)
+{
+ return reinterpret_cast<ad9361_device_t*>(reinterpret_cast<void*>(handle));
+}
+
+uint8_t read_ad9361_reg(ad9361_device_t* device, uint32_t reg)
+{
+ if (device && device->io_iface) {
+ //If the platform for the AD9361 driver is UHD (host) then the io_iface is
+ //a pointer to a ad9361_io implementation
+ ad9361_io* io_iface = reinterpret_cast<ad9361_io*>(device->io_iface);
+ return io_iface->peek8(reg);
+ } else {
+ return 0;
+ }
+}
+
+void write_ad9361_reg(ad9361_device_t* device, uint32_t reg, uint8_t val)
+{
+ if (device && device->io_iface) {
+ //If the platform for the AD9361 driver is UHD (host) then the io_iface is
+ //a pointer to a ad9361_io implementation
+ ad9361_io* io_iface = reinterpret_cast<ad9361_io*>(device->io_iface);
+ io_iface->poke8(reg, val);
+ }
+}
+
+typedef union
+{
+ double d;
+ uint32_t x[2];
+} ad9361_double_union_t;
+
+void ad9361_double_pack(const double input, uint32_t output[2])
+{
+ ad9361_double_union_t p = {};
+ p.d = input;
+ output[0] = p.x[0];
+ output[1] = p.x[1];
+}
+
+double ad9361_double_unpack(const uint32_t input[2])
+{
+ ad9361_double_union_t p = {};
+ p.x[0] = input[0];
+ p.x[1] = input[1];
+ return p.d;
+}
+
+double ad9361_sqrt(double val)
+{
+ return std::sqrt(val);
+}
+
+void ad9361_msleep(const uint32_t millis)
+{
+ boost::this_thread::sleep(boost::posix_time::milliseconds(millis));
+}
+
+int ad9361_floor_to_int(double val)
+{
+ return static_cast<int>(std::floor(val));
+}
+
+int ad9361_ceil_to_int(double val)
+{
+ return static_cast<int>(std::ceil(val));
+}
+
diff --git a/host/lib/usrp/common/adf4001_ctrl.cpp b/host/lib/usrp/common/adf4001_ctrl.cpp
index 46171c7ce..a7510c272 100644
--- a/host/lib/usrp/common/adf4001_ctrl.cpp
+++ b/host/lib/usrp/common/adf4001_ctrl.cpp
@@ -93,7 +93,7 @@ boost::uint32_t adf4001_regs_t::get_reg(boost::uint8_t addr) {
}
-adf4001_ctrl::adf4001_ctrl(spi_core_3000::sptr _spi, int slaveno):
+adf4001_ctrl::adf4001_ctrl(uhd::spi_iface::sptr _spi, int slaveno):
spi_iface(_spi),
slaveno(slaveno)
{
diff --git a/host/lib/usrp/common/adf4001_ctrl.hpp b/host/lib/usrp/common/adf4001_ctrl.hpp
index a16cff3fa..9ea3caf1a 100644
--- a/host/lib/usrp/common/adf4001_ctrl.hpp
+++ b/host/lib/usrp/common/adf4001_ctrl.hpp
@@ -123,12 +123,11 @@ public:
class adf4001_ctrl {
public:
-
- adf4001_ctrl(spi_core_3000::sptr _spi, int slaveno);
+ adf4001_ctrl(uhd::spi_iface::sptr _spi, int slaveno);
void set_lock_to_ext_ref(bool external);
private:
- spi_core_3000::sptr spi_iface;
+ uhd::spi_iface::sptr spi_iface;
int slaveno;
spi_config_t spi_config;
adf4001_regs_t adf4001_regs;
diff --git a/host/lib/usrp/e100/e100_impl.cpp b/host/lib/usrp/e100/e100_impl.cpp
index b49ba64a2..e59df7708 100644
--- a/host/lib/usrp/e100/e100_impl.cpp
+++ b/host/lib/usrp/e100/e100_impl.cpp
@@ -1,5 +1,5 @@
//
-// Copyright 2010-2012 Ettus Research LLC
+// Copyright 2010-2012,2014 Ettus Research LLC
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
@@ -96,7 +96,7 @@ static device::sptr e100_make(const device_addr_t &device_addr){
}
UHD_STATIC_BLOCK(register_e100_device){
- device::register_device(&e100_find, &e100_make);
+ device::register_device(&e100_find, &e100_make, device::USRP);
}
static const uhd::dict<std::string, std::string> model_to_fpga_file_name = boost::assign::map_list_of
@@ -109,6 +109,7 @@ static const uhd::dict<std::string, std::string> model_to_fpga_file_name = boost
**********************************************************************/
e100_impl::e100_impl(const uhd::device_addr_t &device_addr){
_tree = property_tree::make();
+ _type = device::USRP;
//read the eeprom so we can determine the hardware
_dev_i2c_iface = e100_ctrl::make_dev_i2c_iface(E100_I2C_DEV_NODE);
diff --git a/host/lib/usrp/multi_usrp.cpp b/host/lib/usrp/multi_usrp.cpp
index c13d3efba..388cf03fa 100644
--- a/host/lib/usrp/multi_usrp.cpp
+++ b/host/lib/usrp/multi_usrp.cpp
@@ -246,7 +246,7 @@ static double derive_freq_from_xx_subdev_and_dsp(
class multi_usrp_impl : public multi_usrp{
public:
multi_usrp_impl(const device_addr_t &addr){
- _dev = device::make(addr);
+ _dev = device::make(addr, device::USRP);
_tree = _dev->get_tree();
}
diff --git a/host/lib/usrp/usrp1/usrp1_impl.cpp b/host/lib/usrp/usrp1/usrp1_impl.cpp
index 0ba2e1e4a..709092e42 100644
--- a/host/lib/usrp/usrp1/usrp1_impl.cpp
+++ b/host/lib/usrp/usrp1/usrp1_impl.cpp
@@ -1,5 +1,5 @@
//
-// Copyright 2010-2012 Ettus Research LLC
+// Copyright 2010-2012,2014 Ettus Research LLC
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
@@ -139,7 +139,7 @@ static device::sptr usrp1_make(const device_addr_t &device_addr){
}
UHD_STATIC_BLOCK(register_usrp1_device){
- device::register_device(&usrp1_find, &usrp1_make);
+ device::register_device(&usrp1_find, &usrp1_make, device::USRP);
}
/***********************************************************************
@@ -147,6 +147,7 @@ UHD_STATIC_BLOCK(register_usrp1_device){
**********************************************************************/
usrp1_impl::usrp1_impl(const device_addr_t &device_addr){
UHD_MSG(status) << "Opening a USRP1 device..." << std::endl;
+ _type = device::USRP;
//extract the FPGA path for the USRP1
std::string usrp1_fpga_image = find_image_path(
diff --git a/host/lib/usrp/usrp2/usrp2_impl.cpp b/host/lib/usrp/usrp2/usrp2_impl.cpp
index d96a8ab7d..93885fbd3 100644
--- a/host/lib/usrp/usrp2/usrp2_impl.cpp
+++ b/host/lib/usrp/usrp2/usrp2_impl.cpp
@@ -1,5 +1,5 @@
//
-// Copyright 2010-2012 Ettus Research LLC
+// Copyright 2010-2012,2014 Ettus Research LLC
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
@@ -200,7 +200,7 @@ static device::sptr usrp2_make(const device_addr_t &device_addr){
}
UHD_STATIC_BLOCK(register_usrp2_device){
- device::register_device(&usrp2_find, &usrp2_make);
+ device::register_device(&usrp2_find, &usrp2_make, device::USRP);
}
/***********************************************************************
@@ -368,6 +368,7 @@ usrp2_impl::usrp2_impl(const device_addr_t &_device_addr){
// create controller objects and initialize the properties tree
////////////////////////////////////////////////////////////////////
_tree = property_tree::make();
+ _type = device::USRP;
_tree->create<std::string>("/name").set("USRP2 / N-Series Device");
for (size_t mbi = 0; mbi < device_args.size(); mbi++){
diff --git a/host/lib/usrp/x300/x300_impl.cpp b/host/lib/usrp/x300/x300_impl.cpp
index 1b651065d..d5eacc3ea 100644
--- a/host/lib/usrp/x300/x300_impl.cpp
+++ b/host/lib/usrp/x300/x300_impl.cpp
@@ -326,7 +326,7 @@ static device::sptr x300_make(const device_addr_t &device_addr)
UHD_STATIC_BLOCK(register_x300_device)
{
- device::register_device(&x300_find, &x300_make);
+ device::register_device(&x300_find, &x300_make, device::USRP);
}
static void x300_load_fw(wb_iface::sptr fw_reg_ctrl, const std::string &file_name)
@@ -355,6 +355,7 @@ static void x300_load_fw(wb_iface::sptr fw_reg_ctrl, const std::string &file_nam
x300_impl::x300_impl(const uhd::device_addr_t &dev_addr)
{
UHD_MSG(status) << "X300 initialization sequence..." << std::endl;
+ _type = device::USRP;
_async_md.reset(new async_md_type(1000/*messages deep*/));
_tree = uhd::property_tree::make();
_tree->create<std::string>("/name").set("X-Series Device");
diff --git a/host/lib/usrp_clock/CMakeLists.txt b/host/lib/usrp_clock/CMakeLists.txt
new file mode 100644
index 000000000..8a58aa9ac
--- /dev/null
+++ b/host/lib/usrp_clock/CMakeLists.txt
@@ -0,0 +1,26 @@
+#
+# Copyright 2011-2014 Ettus Research LLC
+#
+# This program is free software: you can redistribute it and/or modify
+# it under the terms of the GNU General Public License as published by
+# the Free Software Foundation, either version 3 of the License, or
+# (at your option) any later version.
+#
+# This program is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+# GNU General Public License for more details.
+#
+# You should have received a copy of the GNU General Public License
+# along with this program. If not, see <http://www.gnu.org/licenses/>.
+#
+
+########################################################################
+# This file included, use CMake directory variables
+########################################################################
+
+LIBUHD_APPEND_SOURCES(
+ ${CMAKE_CURRENT_SOURCE_DIR}/multi_usrp_clock.cpp
+)
+
+INCLUDE_SUBDIRECTORY(octoclock)
diff --git a/host/lib/usrp_clock/multi_usrp_clock.cpp b/host/lib/usrp_clock/multi_usrp_clock.cpp
new file mode 100644
index 000000000..77489e13b
--- /dev/null
+++ b/host/lib/usrp_clock/multi_usrp_clock.cpp
@@ -0,0 +1,93 @@
+//
+// Copyright 2010-2013 Ettus Research LLC
+//
+// This program is free software: you can redistribute it and/or modify
+// it under the terms of the GNU General Public License as published by
+// the Free Software Foundation, either version 3 of the License, or
+// (at your option) any later version.
+//
+// This program is distributed in the hope that it will be useful,
+// but WITHOUT ANY WARRANTY; without even the implied warranty of
+// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+// GNU General Public License for more details.
+//
+// You should have received a copy of the GNU General Public License
+// along with this program. If not, see <http://www.gnu.org/licenses/>.
+//
+
+#include <uhd/property_tree.hpp>
+#include <uhd/usrp_clock/multi_usrp_clock.hpp>
+#include <uhd/usrp_clock/octoclock_eeprom.hpp>
+
+#include <uhd/utils/msg.hpp>
+#include <uhd/exception.hpp>
+#include <uhd/utils/log.hpp>
+#include <boost/assign/list_of.hpp>
+#include <boost/foreach.hpp>
+#include <boost/format.hpp>
+
+using namespace uhd;
+using namespace uhd::usrp_clock;
+
+/***********************************************************************
+ * Multi USRP Clock implementation
+ **********************************************************************/
+class multi_usrp_clock_impl : public multi_usrp_clock{
+public:
+ multi_usrp_clock_impl(const device_addr_t &addr){
+ _dev = device::make(addr, device::CLOCK);
+ _tree = _dev->get_tree();
+ }
+
+ device::sptr get_device(void){
+ return _dev;
+ }
+
+ std::string get_pp_string(void){
+ std::string buff = str(boost::format("%s USRP Clock Device\n")
+ % ((get_num_boards() > 1) ? "Multi" : "Single")
+ );
+ for(size_t i = 0; i < get_num_boards(); i++){
+ buff += str(boost::format(" Board %s\n") % i);
+ buff += str(boost::format(" Reference: %s\n")
+ % (get_sensor("using_ref", i).value)
+ );
+ }
+
+ return buff;
+ }
+
+ size_t get_num_boards(void){
+ return _tree->list("/mboards").size();
+ }
+
+ boost::uint32_t get_time(size_t board){
+ std::string board_str = str(boost::format("/mboards/%d") % board);
+
+ return _tree->access<boost::uint32_t>(board_str / "time").get();
+ }
+
+ sensor_value_t get_sensor(const std::string &name, size_t board){
+ std::string board_str = str(boost::format("/mboards/%d") % board);
+
+ return _tree->access<sensor_value_t>(board_str / "sensors" / name).get();
+ }
+
+ std::vector<std::string> get_sensor_names(size_t board){
+ std::string board_str = str(boost::format("/mboards/%d") % board);
+
+ return _tree->list(board_str / "sensors");
+ }
+
+private:
+ device::sptr _dev;
+ property_tree::sptr _tree;
+};
+
+/***********************************************************************
+ * Multi USRP Clock factory function
+ **********************************************************************/
+multi_usrp_clock::sptr multi_usrp_clock::make(const device_addr_t &dev_addr){
+ UHD_LOG << "multi_usrp_clock::make with args " << dev_addr.to_pp_string() << std::endl;
+ return sptr(new multi_usrp_clock_impl(dev_addr));
+}
diff --git a/host/lib/usrp_clock/octoclock/CMakeLists.txt b/host/lib/usrp_clock/octoclock/CMakeLists.txt
new file mode 100644
index 000000000..e363bb9da
--- /dev/null
+++ b/host/lib/usrp_clock/octoclock/CMakeLists.txt
@@ -0,0 +1,33 @@
+#
+# Copyright 2011-2014 Ettus Research LLC
+#
+# This program is free software: you can redistribute it and/or modify
+# it under the terms of the GNU General Public License as published by
+# the Free Software Foundation, either version 3 of the License, or
+# (at your option) any later version.
+#
+# This program is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+# GNU General Public License for more details.
+#
+# You should have received a copy of the GNU General Public License
+# along with this program. If not, see <http://www.gnu.org/licenses/>.
+#
+
+########################################################################
+# This file included, use CMake directory variables
+########################################################################
+
+########################################################################
+# Conditionally configure the OctoClock support
+########################################################################
+LIBUHD_REGISTER_COMPONENT("OctoClock" ENABLE_OCTOCLOCK ON "ENABLE_LIBUHD" OFF)
+
+IF(ENABLE_OCTOCLOCK)
+ LIBUHD_APPEND_SOURCES(
+ ${CMAKE_CURRENT_SOURCE_DIR}/octoclock_eeprom.cpp
+ ${CMAKE_CURRENT_SOURCE_DIR}/octoclock_impl.cpp
+ ${CMAKE_CURRENT_SOURCE_DIR}/octoclock_uart.cpp
+ )
+ENDIF(ENABLE_OCTOCLOCK)
diff --git a/host/lib/usrp_clock/octoclock/common.h b/host/lib/usrp_clock/octoclock/common.h
new file mode 100644
index 000000000..96acbb30f
--- /dev/null
+++ b/host/lib/usrp_clock/octoclock/common.h
@@ -0,0 +1,149 @@
+/*
+ * Copyright 2014 Ettus Research LLC
+ *
+ * This program is free software: you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation, either version 3 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program. If not, see <http://www.gnu.org/licenses/>.
+ */
+
+#ifndef _OCTOCLOCK_COMMON_H_
+#define _OCTOCLOCK_COMMON_H_
+
+#include <stdint.h>
+
+/*
+ * C++ macros used for code cleanliness and extern "C" declaration.
+ */
+#ifdef __cplusplus
+
+#define UHD_OCTOCLOCK_SEND_AND_RECV(xport, pkt_code, pkt_out, len, data) pkt_out.proto_ver = OCTOCLOCK_FW_COMPAT_NUM; \
+ pkt_out.code = pkt_code; \
+ xport->send(boost::asio::buffer(&pkt_out, sizeof(octoclock_packet_t))); \
+ len = xport->recv(boost::asio::buffer(data), 2);
+
+#define UHD_OCTOCLOCK_PACKET_MATCHES(pkt_code, pkt_out, pkt_in, len) (len > offsetof(octoclock_packet_t, data) and \
+ pkt_in->sequence == pkt_out.sequence and \
+ pkt_in->code == pkt_code)
+
+extern "C" {
+#endif
+
+/*
+ * This code is used by both the C firmware and C++ host driver, so
+ * only valid C code should go in this section.
+ */
+
+//These values are placed in the octoclock_packet_t.proto_ver field
+#define OCTOCLOCK_BOOTLOADER_PROTO_VER 1234
+#define OCTOCLOCK_FW_COMPAT_NUM 2
+
+//UDP ports assigned for different tasks
+#define OCTOCLOCK_UDP_CTRL_PORT 50000
+#define OCTOCLOCK_UDP_GPSDO_PORT 50001
+#define OCTOCLOCK_UDP_FW_PORT 50002
+#define OCTOCLOCK_UDP_EEPROM_PORT 50003
+
+typedef enum {
+ NO_CODE,
+
+ OCTOCLOCK_QUERY_CMD,
+ OCTOCLOCK_QUERY_ACK,
+
+ SEND_EEPROM_CMD,
+ SEND_EEPROM_ACK,
+ BURN_EEPROM_CMD,
+ BURN_EEPROM_SUCCESS_ACK,
+ BURN_EEPROM_FAILURE_ACK,
+ CLEAR_EEPROM_CMD,
+ CLEAR_EEPROM_ACK,
+
+ SEND_STATE_CMD,
+ SEND_STATE_ACK,
+
+ RESET_CMD,
+ RESET_ACK,
+
+ HOST_SEND_TO_GPSDO_CMD,
+ HOST_SEND_TO_GPSDO_ACK,
+ SEND_POOLSIZE_CMD,
+ SEND_POOLSIZE_ACK,
+ SEND_CACHE_STATE_CMD,
+ SEND_CACHE_STATE_ACK,
+ SEND_GPSDO_CACHE_CMD,
+ SEND_GPSDO_CACHE_ACK,
+
+ PREPARE_FW_BURN_CMD,
+ FW_BURN_READY_ACK,
+ FILE_TRANSFER_CMD,
+ FILE_TRANSFER_ACK,
+ READ_FW_CMD,
+ READ_FW_ACK,
+ FINALIZE_BURNING_CMD,
+ FINALIZE_BURNING_ACK,
+} packet_code_t;
+
+typedef enum {
+ NO_REF,
+ INTERNAL,
+ EXTERNAL
+} ref_t;
+
+typedef enum {
+ UP,
+ DOWN
+} switch_pos_t;
+
+#pragma pack(push,1)
+
+// Structure of values in EEPROM, starting in location 0
+typedef struct {
+ uint8_t mac_addr[6];
+ uint32_t ip_addr;
+ uint32_t dr_addr;
+ uint32_t netmask;
+ uint8_t serial[10];
+ uint8_t name[10];
+ uint8_t revision;
+} octoclock_fw_eeprom_t;
+
+typedef struct {
+ uint8_t external_detected;
+ uint8_t gps_detected;
+ uint8_t which_ref;
+ uint8_t switch_pos;
+} octoclock_state_t;
+
+typedef struct {
+ uint8_t num_wraps;
+ uint8_t pos;
+} gpsdo_cache_state_t;
+
+typedef struct {
+ uint32_t proto_ver;
+ uint32_t sequence;
+ uint8_t code;
+ union {
+ uint16_t len;
+ gpsdo_cache_state_t state;
+ uint16_t poolsize;
+ uint16_t addr;
+ };
+ uint8_t data[256];
+} octoclock_packet_t;
+
+#pragma pack(pop)
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* _OCTOCLOCK_COMMON_H_ */
diff --git a/host/lib/usrp_clock/octoclock/octoclock_eeprom.cpp b/host/lib/usrp_clock/octoclock/octoclock_eeprom.cpp
new file mode 100644
index 000000000..6d54cac70
--- /dev/null
+++ b/host/lib/usrp_clock/octoclock/octoclock_eeprom.cpp
@@ -0,0 +1,184 @@
+//
+// Copyright 2014 Ettus Research LLC
+//
+// This program is free software: you can redistribute it and/or modify
+// it under the terms of the GNU General Public License as published by
+// the Free Software Foundation, either version 3 of the License, or
+// (at your option) any later version.
+//
+// This program is distributed in the hope that it will be useful,
+// but WITHOUT ANY WARRANTY; without even the implied warranty of
+// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+// GNU General Public License for more details.
+//
+// You should have received a copy of the GNU General Public License
+// along with this program. If not, see <http://www.gnu.org/licenses/>.
+//
+
+#include <uhd/exception.hpp>
+#include <uhd/usrp_clock/octoclock_eeprom.hpp>
+#include <uhd/transport/udp_simple.hpp>
+#include <uhd/usrp/mboard_eeprom.hpp>
+#include <uhd/types/mac_addr.hpp>
+#include <uhd/utils/byteswap.hpp>
+#include <boost/assign/list_of.hpp>
+#include <boost/asio.hpp>
+#include <boost/lexical_cast.hpp>
+#include <boost/foreach.hpp>
+
+#include <iostream>
+
+#include "common.h"
+
+typedef boost::asio::ip::address_v4 ip_v4;
+
+using namespace uhd;
+using namespace uhd::usrp_clock;
+using namespace uhd::transport;
+
+/***********************************************************************
+ * Utility functions
+ **********************************************************************/
+
+//! A wrapper around std::copy that takes ranges instead of iterators.
+template<typename RangeSrc, typename RangeDst> inline
+void byte_copy(const RangeSrc &src, RangeDst &dst){
+ std::copy(boost::begin(src), boost::end(src), boost::begin(dst));
+}
+
+//! create a string from a byte vector, return empty if invalid ascii
+static const std::string bytes_to_string(const byte_vector_t &bytes){
+ std::string out;
+ BOOST_FOREACH(boost::uint8_t byte, bytes){
+ if (byte < 32 or byte > 127) return out;
+ out += byte;
+ }
+ return out;
+}
+
+/***********************************************************************
+ * Implementation
+ **********************************************************************/
+void octoclock_eeprom_t::_load(){
+ boost::uint32_t octoclock_data[udp_simple::mtu];
+ const octoclock_packet_t *pkt_in = reinterpret_cast<const octoclock_packet_t*>(octoclock_data);
+ const octoclock_fw_eeprom_t *eeprom_in = reinterpret_cast<const octoclock_fw_eeprom_t*>(pkt_in->data);
+
+ octoclock_packet_t pkt_out;
+ pkt_out.sequence = uhd::htonx<boost::uint32_t>(std::rand());
+ size_t len = 0;
+
+ UHD_OCTOCLOCK_SEND_AND_RECV(xport, SEND_EEPROM_CMD, pkt_out, len, octoclock_data);
+ if(UHD_OCTOCLOCK_PACKET_MATCHES(SEND_EEPROM_ACK, pkt_out, pkt_in, len)){
+ //MAC address
+ byte_vector_t mac_bytes(eeprom_in->mac_addr, eeprom_in->mac_addr+6);
+ (*this)["mac-addr"] = mac_addr_t::from_bytes(mac_bytes).to_string();
+
+ //IP address
+ boost::uint32_t ip_addr = uhd::htonx<boost::uint32_t>(eeprom_in->ip_addr);
+ ip_v4::bytes_type ip_addr_bytes;
+ memcpy(&ip_addr_bytes, &ip_addr, 4);
+ (*this)["ip-addr"] = ip_v4(ip_addr_bytes).to_string();
+
+ //Default router
+ boost::uint32_t dr_addr = uhd::htonx<boost::uint32_t>(eeprom_in->dr_addr);
+ ip_v4::bytes_type dr_addr_bytes;
+ memcpy(&dr_addr_bytes, &dr_addr, 4);
+ (*this)["gateway"] = ip_v4(dr_addr_bytes).to_string();
+
+ //Netmask
+ boost::uint32_t netmask = uhd::htonx<boost::uint32_t>(eeprom_in->netmask);
+ ip_v4::bytes_type netmask_bytes;
+ memcpy(&netmask_bytes, &netmask, 4);
+ (*this)["netmask"] = ip_v4(netmask_bytes).to_string();
+
+ //Serial
+ std::string raw_serial((char*)eeprom_in->serial, 10);
+ byte_vector_t serial_bytes(raw_serial.begin(), raw_serial.end());
+ (*this)["serial"] = bytes_to_string(serial_bytes);
+
+ //Name
+ std::string raw_name((char*)eeprom_in->name, 10);
+ byte_vector_t name_bytes(raw_name.begin(), raw_name.end());
+ (*this)["name"] = bytes_to_string(name_bytes);
+
+ //Revision
+ (*this)["revision"] = boost::lexical_cast<std::string>(int(eeprom_in->revision));
+ }
+ else throw uhd::runtime_error("Error loading OctoClock EEPROM.");
+}
+
+void octoclock_eeprom_t::_store() const {
+ boost::uint32_t octoclock_data[udp_simple::mtu];
+ const octoclock_packet_t *pkt_in = reinterpret_cast<const octoclock_packet_t *>(octoclock_data);
+
+ octoclock_packet_t pkt_out;
+ pkt_out.sequence = uhd::htonx<boost::uint32_t>(std::rand());
+ pkt_out.len = sizeof(octoclock_fw_eeprom_t);
+ size_t len = 0;
+
+ octoclock_fw_eeprom_t *eeprom_out = reinterpret_cast<octoclock_fw_eeprom_t *>(&pkt_out.data);
+ memset(eeprom_out, 0xFF, sizeof(octoclock_fw_eeprom_t));
+
+ //MAC address
+ if((*this).has_key("mac-addr")){
+ byte_copy(mac_addr_t::from_string((*this)["mac-addr"]).to_bytes(), eeprom_out->mac_addr);
+ }
+
+ //IP address
+ if((*this).has_key("ip-addr")){
+ ip_v4::bytes_type ip_addr_bytes = ip_v4::from_string((*this)["ip-addr"]).to_bytes();
+ memcpy(&eeprom_out->ip_addr, &ip_addr_bytes, 4);
+ eeprom_out->ip_addr = uhd::htonx<boost::uint32_t>(eeprom_out->ip_addr);
+ }
+
+ //Default router
+ if((*this).has_key("gateway")){
+ ip_v4::bytes_type dr_addr_bytes = ip_v4::from_string((*this)["gateway"]).to_bytes();
+ memcpy(&eeprom_out->dr_addr, &dr_addr_bytes, 4);
+ eeprom_out->dr_addr = uhd::htonx<boost::uint32_t>(eeprom_out->dr_addr);
+ }
+
+ //Netmask
+ if((*this).has_key("netmask")){
+ ip_v4::bytes_type netmask_bytes = ip_v4::from_string((*this)["netmask"]).to_bytes();
+ memcpy(&eeprom_out->netmask, &netmask_bytes, 4);
+ eeprom_out->netmask = uhd::htonx<boost::uint32_t>(eeprom_out->netmask);
+ }
+
+ //Serial
+ if((*this).has_key("serial")){
+ byte_copy(byte_vector_t((*this)["serial"].begin(), (*this)["serial"].end()), eeprom_out->serial);
+ }
+
+ //Name
+ if((*this).has_key("name")){
+ byte_copy(byte_vector_t((*this)["name"].begin(), (*this)["name"].end()), eeprom_out->name);
+ }
+
+ //Revision
+ if((*this).has_key("revision")){
+ eeprom_out->revision = (*this)["revision"][0]-'0';
+ }
+
+ UHD_OCTOCLOCK_SEND_AND_RECV(xport, BURN_EEPROM_CMD, pkt_out, len, octoclock_data);
+ if(not UHD_OCTOCLOCK_PACKET_MATCHES(BURN_EEPROM_SUCCESS_ACK, pkt_out, pkt_in, len))
+ throw uhd::runtime_error("Error writing to OctoClock EEPROM.");
+}
+
+/***********************************************************************
+ * Implementation of OctoClock EEPROM
+ **********************************************************************/
+octoclock_eeprom_t::octoclock_eeprom_t(void){
+ /* NOP */
+}
+
+octoclock_eeprom_t::octoclock_eeprom_t(udp_simple::sptr transport){
+ xport = transport;
+ _load();
+}
+
+void octoclock_eeprom_t::commit() const{
+ if(!xport) throw uhd::runtime_error("There is no set device communication.");
+ _store();
+}
diff --git a/host/lib/usrp_clock/octoclock/octoclock_impl.cpp b/host/lib/usrp_clock/octoclock/octoclock_impl.cpp
new file mode 100644
index 000000000..add5d7931
--- /dev/null
+++ b/host/lib/usrp_clock/octoclock/octoclock_impl.cpp
@@ -0,0 +1,436 @@
+//
+// Copyright 2014 Ettus Research LLC
+//
+// This program is free software: you can redistribute it and/or modify
+// it under the terms of the GNU General Public License as published by
+// the Free Software Foundation, either version 3 of the License, or
+// (at your option) any later version.
+//
+// This program is distributed in the hope that it will be useful,
+// but WITHOUT ANY WARRANTY; without even the implied warranty of
+// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+// GNU General Public License for more details.
+//
+// You should have received a copy of the GNU General Public License
+// along with this program. If not, see <http://www.gnu.org/licenses/>.
+//
+
+#include <iostream>
+
+#include <boost/asio.hpp>
+#include <boost/assign.hpp>
+#include <boost/cstdint.hpp>
+#include <boost/filesystem.hpp>
+#include <boost/foreach.hpp>
+#include <boost/format.hpp>
+#include <boost/thread.hpp>
+
+#include <uhd/device.hpp>
+#include <uhd/exception.hpp>
+#include <uhd/transport/udp_simple.hpp>
+#include <uhd/transport/if_addrs.hpp>
+#include <uhd/types/dict.hpp>
+#include <uhd/usrp/gps_ctrl.hpp>
+#include <uhd/usrp_clock/octoclock_eeprom.hpp>
+#include <uhd/utils/byteswap.hpp>
+#include <uhd/utils/images.hpp>
+#include <uhd/utils/msg.hpp>
+#include <uhd/utils/paths.hpp>
+#include <uhd/utils/static.hpp>
+
+#include "octoclock_impl.hpp"
+#include "octoclock_uart.hpp"
+#include "common.h"
+
+using namespace uhd;
+using namespace uhd::usrp_clock;
+using namespace uhd::transport;
+namespace asio = boost::asio;
+namespace fs = boost::filesystem;
+
+/***********************************************************************
+ * Discovery
+ **********************************************************************/
+device_addrs_t octoclock_find(const device_addr_t &hint){
+ //Handle the multi-device discovery
+ device_addrs_t hints = separate_device_addr(hint);
+ if (hints.size() > 1){
+ device_addrs_t found_devices;
+ std::string error_msg;
+ BOOST_FOREACH(const device_addr_t &hint_i, hints){
+ device_addrs_t found_devices_i = octoclock_find(hint_i);
+ if (found_devices_i.size() != 1) error_msg += str(boost::format(
+ "Could not resolve device hint \"%s\" to a single device."
+ ) % hint_i.to_string());
+ else found_devices.push_back(found_devices_i[0]);
+ }
+ if (found_devices.empty()) return device_addrs_t();
+ if (not error_msg.empty()) throw uhd::value_error(error_msg);
+ return device_addrs_t(1, combine_device_addrs(found_devices));
+ }
+
+ //Initialize the hint for a single device case
+ UHD_ASSERT_THROW(hints.size() <= 1);
+ hints.resize(1); //In case it was empty
+ device_addr_t _hint = hints[0];
+ device_addrs_t octoclock_addrs;
+
+ //return an empty list of addresses when type is set to non-usrp2
+ if (hint.has_key("type") and hint["type"].find("octoclock") == std::string::npos) return octoclock_addrs;
+
+ //Return an empty list of addresses when a resource is specified,
+ //since a resource is intended for a different, non-USB, device.
+ if (hint.has_key("resource")) return octoclock_addrs;
+
+ //If no address was specified, send a broadcast on each interface
+ if (not _hint.has_key("addr")){
+ BOOST_FOREACH(const if_addrs_t &if_addrs, get_if_addrs()){
+ //avoid the loopback device
+ if (if_addrs.inet == asio::ip::address_v4::loopback().to_string()) continue;
+
+ //create a new hint with this broadcast address
+ device_addr_t new_hint = hint;
+ new_hint["addr"] = if_addrs.bcast;
+
+ //call discover with the new hint and append results
+ device_addrs_t new_octoclock_addrs = octoclock_find(new_hint);
+ octoclock_addrs.insert(octoclock_addrs.begin(),
+ new_octoclock_addrs.begin(), new_octoclock_addrs.end()
+ );
+ }
+ return octoclock_addrs;
+ }
+
+ //Create a UDP transport to communicate
+ udp_simple::sptr udp_transport = udp_simple::make_broadcast(
+ _hint["addr"],
+ BOOST_STRINGIZE(OCTOCLOCK_UDP_CTRL_PORT)
+ );
+
+ //Send a query packet
+ octoclock_packet_t pkt_out;
+ pkt_out.proto_ver = OCTOCLOCK_FW_COMPAT_NUM;
+ pkt_out.sequence = uhd::htonx<boost::uint32_t>(std::rand());
+ pkt_out.len = 0;
+ pkt_out.code = OCTOCLOCK_QUERY_CMD;
+ try{
+ udp_transport->send(boost::asio::buffer(&pkt_out, sizeof(pkt_out)));
+ }
+ catch(const std::exception &ex){
+ UHD_MSG(error) << "OctoClock network discovery error - " << ex.what() << std::endl;
+ }
+ catch(...){
+ UHD_MSG(error) << "OctoClock network discovery unknown error" << std::endl;
+ }
+
+ boost::uint8_t octoclock_data[udp_simple::mtu];
+ const octoclock_packet_t *pkt_in = reinterpret_cast<octoclock_packet_t*>(octoclock_data);
+
+ while(true){
+ size_t len = udp_transport->recv(asio::buffer(octoclock_data), 2);
+ if(UHD_OCTOCLOCK_PACKET_MATCHES(OCTOCLOCK_QUERY_ACK, pkt_out, pkt_in, len)){
+ device_addr_t new_addr;
+ new_addr["type"] = (pkt_in->proto_ver == OCTOCLOCK_FW_COMPAT_NUM) ? "octoclock"
+ : "octoclock-bootloader";
+ new_addr["addr"] = udp_transport->get_recv_addr();
+
+ //Attempt direct communication with OctoClock
+ udp_simple::sptr ctrl_xport = udp_simple::make_connected(
+ new_addr["addr"],
+ BOOST_STRINGIZE(OCTOCLOCK_UDP_CTRL_PORT)
+ );
+ UHD_OCTOCLOCK_SEND_AND_RECV(ctrl_xport, OCTOCLOCK_QUERY_CMD, pkt_out, len, octoclock_data);
+ if(UHD_OCTOCLOCK_PACKET_MATCHES(OCTOCLOCK_QUERY_ACK, pkt_out, pkt_in, len)){
+ //If the OctoClock is in its bootloader, don't ask for details
+ if(pkt_in->proto_ver == OCTOCLOCK_BOOTLOADER_PROTO_VER){
+ octoclock_addrs.push_back(new_addr);
+ }
+ else{
+ octoclock_eeprom_t oc_eeprom(ctrl_xport);
+ new_addr["name"] = oc_eeprom["name"];
+ new_addr["serial"] = oc_eeprom["serial"];
+
+ //Filter based on optional keys (if any)
+ if(
+ (not _hint.has_key("name") or (_hint["name"] == new_addr["name"])) and
+ (not _hint.has_key("serial") or (_hint["serial"] == new_addr["serial"]))
+ ){
+ octoclock_addrs.push_back(new_addr);
+ }
+ }
+ }
+ else continue;
+ }
+
+ if(len == 0) break;
+ }
+
+ return octoclock_addrs;
+}
+
+device::sptr octoclock_make(const device_addr_t &device_addr){
+ return device::sptr(new octoclock_impl(device_addr));
+}
+
+UHD_STATIC_BLOCK(register_octoclock_device){
+ device::register_device(&octoclock_find, &octoclock_make, device::CLOCK);
+}
+
+/***********************************************************************
+ * Structors
+ **********************************************************************/
+octoclock_impl::octoclock_impl(const device_addr_t &_device_addr){
+ UHD_MSG(status) << "Opening an OctoClock device..." << std::endl;
+ _type = device::CLOCK;
+ device_addrs_t device_args = separate_device_addr(_device_addr);
+ _sequence = std::rand();
+
+ ////////////////////////////////////////////////////////////////////
+ // Initialize the property tree
+ ////////////////////////////////////////////////////////////////////
+ _tree = property_tree::make();
+ _tree->create<std::string>("/name").set("OctoClock Device");
+
+ for(size_t oci = 0; oci < device_args.size(); oci++){
+ const device_addr_t device_args_i = device_args[oci];
+ const std::string addr = device_args_i["addr"];
+ //Can't make a device out of an OctoClock in bootloader state
+ if(device_args_i["type"] == "octoclock-bootloader"){
+ throw uhd::runtime_error(str(boost::format(
+ "\n\nThis device is in its bootloader state and cannot be used by UHD.\n"
+ "This may mean the firmware on the device has been corrupted and will\n"
+ "need to be burned again.\n\n"
+ "%s\n"
+ ) % _get_images_help_message(addr)));
+ }
+
+ const std::string oc = boost::lexical_cast<std::string>(oci);
+
+ ////////////////////////////////////////////////////////////////////
+ // Set up UDP transports
+ ////////////////////////////////////////////////////////////////////
+ _oc_dict[oc].ctrl_xport = udp_simple::make_connected(addr, BOOST_STRINGIZE(OCTOCLOCK_UDP_CTRL_PORT));
+ _oc_dict[oc].gpsdo_xport = udp_simple::make_connected(addr, BOOST_STRINGIZE(OCTOCLOCK_UDP_GPSDO_PORT));
+
+ const fs_path oc_path = "/mboards/" + oc;
+ _tree->create<std::string>(oc_path / "name").set("OctoClock");
+
+ ////////////////////////////////////////////////////////////////////
+ // Check the firmware compatibility number
+ ////////////////////////////////////////////////////////////////////
+ boost::uint32_t fw_version = _get_fw_version(oc);
+ if(fw_version != OCTOCLOCK_FW_COMPAT_NUM){
+ throw uhd::runtime_error(str(boost::format(
+ "\n\nPlease update your OctoClock's firmware.\n"
+ "Expected firmware compatibility number %d, but got %d:\n"
+ "The firmware build is not compatible with the host code build.\n\n"
+ "%s\n"
+ ) % int(OCTOCLOCK_FW_COMPAT_NUM) % int(fw_version) % _get_images_help_message(addr)));
+ }
+ _tree->create<std::string>(oc_path / "fw_version").set(boost::lexical_cast<std::string>(int(fw_version)));
+
+ ////////////////////////////////////////////////////////////////////
+ // Set up EEPROM
+ ////////////////////////////////////////////////////////////////////
+ _oc_dict[oc].eeprom = octoclock_eeprom_t(_oc_dict[oc].ctrl_xport);
+ _tree->create<octoclock_eeprom_t>(oc_path / "eeprom")
+ .set(_oc_dict[oc].eeprom)
+ .subscribe(boost::bind(&octoclock_impl::_set_eeprom, this, oc, _1));
+
+ ////////////////////////////////////////////////////////////////////
+ // Initialize non-GPSDO sensors
+ ////////////////////////////////////////////////////////////////////
+ _tree->create<boost::uint32_t>(oc_path / "time")
+ .publish(boost::bind(&octoclock_impl::_get_time, this, oc));
+ _tree->create<sensor_value_t>(oc_path / "sensors/ext_ref_detected")
+ .publish(boost::bind(&octoclock_impl::_ext_ref_detected, this, oc));
+ _tree->create<sensor_value_t>(oc_path / "sensors/gps_detected")
+ .publish(boost::bind(&octoclock_impl::_gps_detected, this, oc));
+ _tree->create<sensor_value_t>(oc_path / "sensors/using_ref")
+ .publish(boost::bind(&octoclock_impl::_which_ref, this, oc));
+ _tree->create<sensor_value_t>(oc_path / "sensors/switch_pos")
+ .publish(boost::bind(&octoclock_impl::_switch_pos, this, oc));
+
+ ////////////////////////////////////////////////////////////////////
+ // Check reference and GPSDO
+ ////////////////////////////////////////////////////////////////////
+ std::string asterisk = (device_args.size() > 1) ? " * " : "";
+
+ if(device_args.size() > 1){
+ UHD_MSG(status) << std::endl << "Checking status of " << addr << ":" << std::endl;
+ }
+ UHD_MSG(status) << boost::format("%sDetecting internal GPSDO...") % asterisk << std::flush;
+
+ _get_state(oc);
+ if(_oc_dict[oc].state.gps_detected){
+ try{
+ _oc_dict[oc].gps = gps_ctrl::make(octoclock_make_uart_iface(_oc_dict[oc].gpsdo_xport));
+
+ if(_oc_dict[oc].gps and _oc_dict[oc].gps->gps_detected()){
+ BOOST_FOREACH(const std::string &name, _oc_dict[oc].gps->get_sensors()){
+ _tree->create<sensor_value_t>(oc_path / "sensors" / name)
+ .publish(boost::bind(&gps_ctrl::get_sensor, _oc_dict[oc].gps, name));
+ }
+ }
+ else{
+ //If GPSDO communication failed, set gps_detected to false
+ _oc_dict[oc].state.gps_detected = 0;
+ UHD_MSG(warning) << "Device reports that it has a GPSDO, but we cannot communicate with it." << std::endl;
+ std::cout << std::endl;
+ }
+ }
+ catch(std::exception &e){
+ UHD_MSG(error) << "An error occurred making GPSDO control: " << e.what() << std::endl;
+ }
+ }
+ else UHD_MSG(status) << "No GPSDO found" << std::endl;
+ UHD_MSG(status) << boost::format("%sDetecting external reference...%s") % asterisk
+ % _ext_ref_detected(oc).value
+ << std::endl;
+ UHD_MSG(status) << boost::format("%sDetecting switch position...%s") % asterisk
+ % _switch_pos(oc).value
+ << std::endl;
+ std::string ref = _which_ref(oc).value;
+ if(ref == "none") UHD_MSG(status) << boost::format("%sDevice is not using any reference") % asterisk << std::endl;
+ else UHD_MSG(status) << boost::format("%sDevice is using %s reference") % asterisk
+ % _which_ref(oc).value
+ << std::endl;
+ }
+}
+
+rx_streamer::sptr octoclock_impl::get_rx_stream(UHD_UNUSED(const stream_args_t &args)){
+ throw uhd::not_implemented_error("This function is incompatible with this device.");
+}
+
+tx_streamer::sptr octoclock_impl::get_tx_stream(UHD_UNUSED(const stream_args_t &args)){
+ throw uhd::not_implemented_error("This function is incompatible with this device.");
+}
+
+bool octoclock_impl::recv_async_msg(UHD_UNUSED(uhd::async_metadata_t&), UHD_UNUSED(double)){
+ throw uhd::not_implemented_error("This function is incompatible with this device.");
+}
+
+void octoclock_impl::_set_eeprom(const std::string &oc, const octoclock_eeprom_t &oc_eeprom){
+ /*
+ * The OctoClock needs a full octoclock_eeprom_t so as to not erase
+ * what it currently has in the EEPROM, so store the relevant values
+ * from the user's input and send that instead.
+ */
+ BOOST_FOREACH(const std::string &key, oc_eeprom.keys()){
+ if(_oc_dict[oc].eeprom.has_key(key)) _oc_dict[oc].eeprom[key] = oc_eeprom[key];
+ }
+ _oc_dict[oc].eeprom.commit();
+}
+
+boost::uint32_t octoclock_impl::_get_fw_version(const std::string &oc){
+ octoclock_packet_t pkt_out;
+ pkt_out.sequence = _sequence++;
+ pkt_out.len = 0;
+ size_t len;
+
+ boost::uint8_t octoclock_data[udp_simple::mtu];
+ const octoclock_packet_t *pkt_in = reinterpret_cast<octoclock_packet_t*>(octoclock_data);
+
+ UHD_OCTOCLOCK_SEND_AND_RECV(_oc_dict[oc].ctrl_xport, OCTOCLOCK_QUERY_CMD, pkt_out, len, octoclock_data);
+ if(UHD_OCTOCLOCK_PACKET_MATCHES(OCTOCLOCK_QUERY_ACK, pkt_out, pkt_in, len)){
+ return pkt_in->proto_ver;
+ }
+ else throw uhd::runtime_error("Failed to retrive firmware version from OctoClock.");
+}
+
+void octoclock_impl::_get_state(const std::string &oc){
+ octoclock_packet_t pkt_out;
+ pkt_out.sequence = _sequence++;
+ pkt_out.len = 0;
+ size_t len = 0;
+
+ boost::uint8_t octoclock_data[udp_simple::mtu];
+ const octoclock_packet_t *pkt_in = reinterpret_cast<octoclock_packet_t*>(octoclock_data);
+
+ UHD_OCTOCLOCK_SEND_AND_RECV(_oc_dict[oc].ctrl_xport, SEND_STATE_CMD, pkt_out, len, octoclock_data);
+ if(UHD_OCTOCLOCK_PACKET_MATCHES(SEND_STATE_ACK, pkt_out, pkt_in, len)){
+ const octoclock_state_t *state = reinterpret_cast<const octoclock_state_t*>(pkt_in->data);
+ _oc_dict[oc].state = *state;
+ }
+ else throw uhd::runtime_error("Failed to retrieve state information from OctoClock.");
+}
+
+uhd::dict<ref_t, std::string> _ref_strings = boost::assign::map_list_of
+ (NO_REF, "none")
+ (INTERNAL, "internal")
+ (EXTERNAL, "external")
+;
+
+uhd::dict<switch_pos_t, std::string> _switch_pos_strings = boost::assign::map_list_of
+ (UP, "Prefer internal")
+ (DOWN, "Prefer external")
+;
+
+sensor_value_t octoclock_impl::_ext_ref_detected(const std::string &oc){
+ _get_state(oc);
+
+ return sensor_value_t("External reference detected", (_oc_dict[oc].state.external_detected > 0),
+ "true", "false");
+}
+
+sensor_value_t octoclock_impl::_gps_detected(const std::string &oc){
+ //Don't check, this shouldn't change once device is turned on
+
+ return sensor_value_t("GPSDO detected", (_oc_dict[oc].state.gps_detected > 0),
+ "true", "false");
+}
+
+sensor_value_t octoclock_impl::_which_ref(const std::string &oc){
+ _get_state(oc);
+
+ if(not _ref_strings.has_key(ref_t(_oc_dict[oc].state.which_ref))){
+ throw uhd::runtime_error("Invalid reference detected.");
+ }
+
+ return sensor_value_t("Using reference", _ref_strings[ref_t(_oc_dict[oc].state.which_ref)], "");
+}
+
+sensor_value_t octoclock_impl::_switch_pos(const std::string &oc){
+ _get_state(oc);
+
+ if(not _switch_pos_strings.has_key(switch_pos_t(_oc_dict[oc].state.switch_pos))){
+ throw uhd::runtime_error("Invalid switch position detected.");
+ }
+
+ return sensor_value_t("Switch position", _switch_pos_strings[switch_pos_t(_oc_dict[oc].state.switch_pos)], "");
+}
+
+boost::uint32_t octoclock_impl::_get_time(const std::string &oc){
+ if(_oc_dict[oc].state.gps_detected){
+ std::string time_str = _oc_dict[oc].gps->get_sensor("gps_time").value;
+ return boost::lexical_cast<boost::uint32_t>(time_str);
+ }
+ else throw uhd::runtime_error("This device cannot return a time.");
+}
+
+std::string octoclock_impl::_get_images_help_message(const std::string &addr){
+ const std::string image_name = "octoclock_r4_fw.bin";
+
+ //Check to see if image is in default location
+ std::string image_location;
+ try{
+ image_location = uhd::find_image_path(image_name);
+ }
+ catch(const std::exception &e){
+ return str(boost::format("Could not find %s in your images path.\n%s")
+ % image_name
+ % uhd::print_images_error());
+ }
+
+ //Get escape character
+ #ifdef UHD_PLATFORM_WIN32
+ const std::string ml = "^\n ";
+ #else
+ const std::string ml = "\\\n ";
+ #endif
+
+ //Get burner command
+ const std::string burner_path = (fs::path(uhd::get_pkg_path()) / "bin" / "octoclock_firmware_burner").string();
+ const std::string burner_cmd = str(boost::format("%s %s--addr=\"%s\"") % burner_path % ml % addr);
+ return str(boost::format("%s\n%s") % uhd::print_images_error() % burner_cmd);
+}
diff --git a/host/lib/usrp_clock/octoclock/octoclock_impl.hpp b/host/lib/usrp_clock/octoclock/octoclock_impl.hpp
new file mode 100644
index 000000000..ab45cd5f0
--- /dev/null
+++ b/host/lib/usrp_clock/octoclock/octoclock_impl.hpp
@@ -0,0 +1,80 @@
+//
+// Copyright 2014 Ettus Research LLC
+//
+// This program is free software: you can redistribute it and/or modify
+// it under the terms of the GNU General Public License as published by
+// the Free Software Foundation, either version 3 of the License, or
+// (at your option) any later version.
+//
+// This program is distributed in the hope that it will be useful,
+// but WITHOUT ANY WARRANTY; without even the implied warranty of
+// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+// GNU General Public License for more details.
+//
+// You should have received a copy of the GNU General Public License
+// along with this program. If not, see <http://www.gnu.org/licenses/>.
+//
+
+#ifndef INCLUDED_OCTOCLOCK_IMPL_HPP
+#define INCLUDED_OCTOCLOCK_IMPL_HPP
+
+#include <boost/shared_ptr.hpp>
+#include <boost/thread.hpp>
+
+#include <uhd/device.hpp>
+#include <uhd/stream.hpp>
+#include <uhd/usrp/gps_ctrl.hpp>
+#include <uhd/usrp_clock/octoclock_eeprom.hpp>
+#include <uhd/types/device_addr.hpp>
+#include <uhd/types/dict.hpp>
+#include <uhd/types/sensors.hpp>
+
+#include "common.h"
+
+/*!
+ * OctoClock implementation guts
+ */
+class octoclock_impl : public uhd::device{
+public:
+ octoclock_impl(const uhd::device_addr_t &);
+ ~octoclock_impl(void) {};
+
+ uhd::rx_streamer::sptr get_rx_stream(const uhd::stream_args_t &args);
+
+ uhd::tx_streamer::sptr get_tx_stream(const uhd::stream_args_t &args);
+
+ bool recv_async_msg(uhd::async_metadata_t&, double);
+
+private:
+ struct oc_container_type{
+ uhd::usrp_clock::octoclock_eeprom_t eeprom;
+ octoclock_state_t state;
+ uhd::transport::udp_simple::sptr ctrl_xport;
+ uhd::transport::udp_simple::sptr gpsdo_xport;
+ uhd::gps_ctrl::sptr gps;
+ };
+ uhd::dict<std::string, oc_container_type> _oc_dict;
+ boost::uint32_t _sequence;
+
+ void _set_eeprom(const std::string &oc, const uhd::usrp_clock::octoclock_eeprom_t &oc_eeprom);
+
+ boost::uint32_t _get_fw_version(const std::string &oc);
+
+ void _get_state(const std::string &oc);
+
+ uhd::sensor_value_t _ext_ref_detected(const std::string &oc);
+
+ uhd::sensor_value_t _gps_detected(const std::string &oc);
+
+ uhd::sensor_value_t _which_ref(const std::string &oc);
+
+ uhd::sensor_value_t _switch_pos(const std::string &oc);
+
+ boost::uint32_t _get_time(const std::string &oc);
+
+ std::string _get_images_help_message(const std::string &addr);
+
+ boost::mutex _device_mutex;
+};
+
+#endif /* INCLUDED_OCTOCLOCK_IMPL_HPP */
diff --git a/host/lib/usrp_clock/octoclock/octoclock_uart.cpp b/host/lib/usrp_clock/octoclock/octoclock_uart.cpp
new file mode 100644
index 000000000..eb3f40d9c
--- /dev/null
+++ b/host/lib/usrp_clock/octoclock/octoclock_uart.cpp
@@ -0,0 +1,162 @@
+//
+// Copyright 2014 Ettus Research LLC
+//
+// This program is free software: you can redistribute it and/or modify
+// it under the terms of the GNU General Public License as published by
+// the Free Software Foundation, either version 3 of the License, or
+// (at your option) any later version.
+//
+// This program is distributed in the hope that it will be useful,
+// but WITHOUT ANY WARRANTY; without even the implied warranty of
+// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+// GNU General Public License for more details.
+//
+// You should have received a copy of the GNU General Public License
+// along with this program. If not, see <http://www.gnu.org/licenses/>.
+//
+
+#include <iostream>
+#include <string>
+#include <string.h>
+
+#include <boost/algorithm/string.hpp>
+#include <boost/asio.hpp>
+#include <boost/cstdint.hpp>
+#include <boost/format.hpp>
+#include <boost/thread/thread.hpp>
+
+#include <uhd/exception.hpp>
+#include <uhd/utils/byteswap.hpp>
+
+#include "common.h"
+#include "octoclock_uart.hpp"
+
+namespace asio = boost::asio;
+using namespace uhd::transport;
+
+#define NUM_WRAPS_EQUAL (_state.num_wraps == _device_state.num_wraps)
+#define POS_EQUAL (_state.pos == _device_state.pos)
+#define STATES_EQUAL (NUM_WRAPS_EQUAL && POS_EQUAL)
+#define LOCAL_STATE_AHEAD (_state.num_wraps > _device_state.num_wraps || \
+ (NUM_WRAPS_EQUAL && _state.pos > _device_state.pos))
+
+namespace uhd{
+ octoclock_uart_iface::octoclock_uart_iface(udp_simple::sptr udp): uart_iface(){
+ _udp = udp;
+ _state.num_wraps = 0;
+ _state.pos = 0;
+ _device_state.num_wraps = 0;
+ _device_state.pos = 0;
+ size_t len = 0;
+
+ //Get pool size from device
+ octoclock_packet_t pkt_out;
+ pkt_out.sequence = uhd::htonx<boost::uint16_t>(std::rand());
+ pkt_out.len = 0;
+
+ boost::uint8_t octoclock_data[udp_simple::mtu];
+ const octoclock_packet_t *pkt_in = reinterpret_cast<octoclock_packet_t*>(octoclock_data);
+
+ UHD_OCTOCLOCK_SEND_AND_RECV(_udp, SEND_POOLSIZE_CMD, pkt_out, len, octoclock_data);
+ if(UHD_OCTOCLOCK_PACKET_MATCHES(SEND_POOLSIZE_ACK, pkt_out, pkt_in, len)){
+ _poolsize = pkt_in->poolsize;
+ _cache.resize(_poolsize);
+ }
+ else throw uhd::runtime_error("Failed to communicate with GPSDO.");
+ }
+
+ void octoclock_uart_iface::write_uart(const std::string &buf){
+ std::string to_send = boost::algorithm::replace_all_copy(buf, "\n", "\r\n");
+ size_t len = 0;
+
+ octoclock_packet_t pkt_out;
+ pkt_out.sequence = uhd::htonx<boost::uint32_t>(std::rand());
+ pkt_out.len = to_send.size();
+ memcpy(pkt_out.data, to_send.c_str(), to_send.size());
+
+ boost::uint8_t octoclock_data[udp_simple::mtu];
+ const octoclock_packet_t *pkt_in = reinterpret_cast<octoclock_packet_t*>(octoclock_data);
+
+ UHD_OCTOCLOCK_SEND_AND_RECV(_udp, HOST_SEND_TO_GPSDO_CMD, pkt_out, len, octoclock_data);
+ if(not UHD_OCTOCLOCK_PACKET_MATCHES(HOST_SEND_TO_GPSDO_ACK, pkt_out, pkt_in, len)){
+ throw uhd::runtime_error("Failed to send commands to GPSDO.");
+ }
+ }
+
+ std::string octoclock_uart_iface::read_uart(double timeout){
+ std::string result;
+
+ boost::system_time exit_time = boost::get_system_time() + boost::posix_time::milliseconds(long(timeout*1e3));
+
+ while(boost::get_system_time() < exit_time){
+ _update_cache();
+
+ for(char ch = _getchar(); ch != -1; ch = _getchar()){
+ if(ch == '\r') continue; //Skip carriage returns
+ _rxbuff += ch;
+
+ //If newline found, return string
+ if(ch == '\n'){
+ result = _rxbuff;
+ _rxbuff.clear();
+ return result;
+ }
+ }
+ boost::this_thread::sleep(boost::posix_time::milliseconds(1));
+ }
+
+ return result;
+ }
+
+ void octoclock_uart_iface::_update_cache(){
+ octoclock_packet_t pkt_out;
+ pkt_out.len = 0;
+ size_t len = 0;
+
+ boost::uint8_t octoclock_data[udp_simple::mtu];
+ const octoclock_packet_t *pkt_in = reinterpret_cast<octoclock_packet_t*>(octoclock_data);
+
+ if(STATES_EQUAL or LOCAL_STATE_AHEAD){
+ pkt_out.sequence++;
+ UHD_OCTOCLOCK_SEND_AND_RECV(_udp, SEND_GPSDO_CACHE_CMD, pkt_out, len, octoclock_data);
+ if(UHD_OCTOCLOCK_PACKET_MATCHES(SEND_GPSDO_CACHE_ACK, pkt_out, pkt_in, len)){
+ memcpy(&_cache[0], pkt_in->data, _poolsize);
+ _device_state = pkt_in->state;
+ }
+
+ boost::uint8_t delta_wraps = (_device_state.num_wraps - _state.num_wraps);
+ if(delta_wraps > 1 or
+ ((delta_wraps == 1) and (_device_state.pos >= _state.pos))){
+
+ _state.pos = (_device_state.pos+1) % _poolsize;
+ _state.num_wraps = (_device_state.num_wraps-1);
+
+ while((_cache[_state.pos] != '\n') and (_state.pos != _device_state.pos)){
+ _state.pos = (_state.pos+1) % _poolsize;
+ //We may have wrapped around locally
+ if(_state.pos == 0) _state.num_wraps++;
+ }
+ _state.pos = (_state.pos+1) % _poolsize;
+ //We may have wrapped around locally
+ if(_state.pos == 0) _state.num_wraps++;
+ }
+ }
+ }
+
+ char octoclock_uart_iface::_getchar(){
+ if(LOCAL_STATE_AHEAD){
+ return -1;
+ }
+
+ char ch = _cache[_state.pos];
+ _state.pos = ((_state.pos+1) % _poolsize);
+ //We may have wrapped around locally
+ if(_state.pos == 0) _state.num_wraps++;
+
+ return ch;
+ }
+
+ uart_iface::sptr octoclock_make_uart_iface(udp_simple::sptr udp){
+ return uart_iface::sptr(new octoclock_uart_iface(udp));
+ }
+}
diff --git a/host/lib/usrp_clock/octoclock/octoclock_uart.hpp b/host/lib/usrp_clock/octoclock/octoclock_uart.hpp
new file mode 100644
index 000000000..05d1bb121
--- /dev/null
+++ b/host/lib/usrp_clock/octoclock/octoclock_uart.hpp
@@ -0,0 +1,57 @@
+//
+// Copyright 2014 Ettus Research LLC
+//
+// This program is free software: you can redistribute it and/or modify
+// it under the terms of the GNU General Public License as published by
+// the Free Software Foundation, either version 3 of the License, or
+// (at your option) any later version.
+//
+// This program is distributed in the hope that it will be useful,
+// but WITHOUT ANY WARRANTY; without even the uart_ifaceied warranty of
+// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+// GNU General Public License for more details.
+//
+// You should have received a copy of the GNU General Public License
+// along with this program. If not, see <http://www.gnu.org/licenses/>.
+//
+
+#ifndef INCLUDED_OCTOCLOCK_UART_HPP
+#define INCLUDED_OCTOCLOCK_UART_HPP
+
+#include <vector>
+
+#include <uhd/transport/udp_simple.hpp>
+#include <uhd/types/serial.hpp>
+
+/*!
+ * The OctoClock doesn't take UART input per se but reads a specific
+ * packet type and sends the string from there through its own serial
+ * functions.
+ */
+namespace uhd{
+class octoclock_uart_iface : public uhd::uart_iface{
+public:
+ octoclock_uart_iface(uhd::transport::udp_simple::sptr udp);
+ ~octoclock_uart_iface(void) {};
+
+ void write_uart(const std::string &buf);
+ std::string read_uart(double timeout);
+
+private:
+ uhd::transport::udp_simple::sptr _udp;
+
+ boost::uint16_t _poolsize;
+ gpsdo_cache_state_t _state;
+ gpsdo_cache_state_t _device_state;
+ std::vector<boost::uint8_t> _cache;
+ std::string _rxbuff;
+
+ void _update_cache();
+ char _getchar();
+};
+
+uart_iface::sptr octoclock_make_uart_iface(uhd::transport::udp_simple::sptr udp);
+
+}
+
+#endif /* INCLUDED_OCTOCLOCK_UART_HPP */
diff --git a/host/utils/CMakeLists.txt b/host/utils/CMakeLists.txt
index 7604a7d37..11bb2488a 100644
--- a/host/utils/CMakeLists.txt
+++ b/host/utils/CMakeLists.txt
@@ -1,5 +1,5 @@
#
-# Copyright 2010-2013 Ettus Research LLC
+# Copyright 2010-2014 Ettus Research LLC
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
@@ -62,8 +62,25 @@ IF(ENABLE_USB)
)
INCLUDE_DIRECTORIES(${LIBUSB_INCLUDE_DIRS})
# Additional include directories for b2xx_fx3_utils
- INCLUDE_DIRECTORIES(${CMAKE_CURRENT_SOURCE_DIR}/../lib/usrp/b200 ${CMAKE_CURRENT_SOURCE_DIR}/../lib/usrp/common)
+ INCLUDE_DIRECTORIES(
+ ${CMAKE_CURRENT_SOURCE_DIR}/../lib/usrp/b200
+ ${CMAKE_CURRENT_SOURCE_DIR}/../lib/usrp/common
+ ${CMAKE_CURRENT_SOURCE_DIR}/../lib/usrp/common/ad9361_driver)
ENDIF(ENABLE_USB)
+IF(ENABLE_OCTOCLOCK)
+ LIST(APPEND util_share_sources
+ octoclock_burn_eeprom.cpp
+ )
+
+ SET(octoclock_burner_sources
+ octoclock_firmware_burner.cpp
+ ihexcvt.cpp
+ )
+
+ ADD_EXECUTABLE(octoclock_firmware_burner ${octoclock_burner_sources})
+ TARGET_LINK_LIBRARIES(octoclock_firmware_burner uhd ${Boost_LIBRARIES})
+ UHD_INSTALL(TARGETS octoclock_firmware_burner RUNTIME DESTINATION ${RUNTIME_DIR} COMPONENT utilities)
+ENDIF(ENABLE_OCTOCLOCK)
IF(LINUX AND ENABLE_USB)
UHD_INSTALL(FILES
diff --git a/host/utils/fx2_init_eeprom.cpp b/host/utils/fx2_init_eeprom.cpp
index 701092a5d..5711b73e0 100644
--- a/host/utils/fx2_init_eeprom.cpp
+++ b/host/utils/fx2_init_eeprom.cpp
@@ -1,5 +1,5 @@
//
-// Copyright 2010 Ettus Research LLC
+// Copyright 2010,2014 Ettus Research LLC
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
@@ -72,7 +72,7 @@ int UHD_SAFE_MAIN(int argc, char *argv[]){
//find and create a control transport to do the writing.
- uhd::device_addrs_t found_addrs = uhd::device::find(device_addr);
+ uhd::device_addrs_t found_addrs = uhd::device::find(device_addr, uhd::device::USRP);
if (found_addrs.size() == 0){
std::cerr << "No USRP devices found" << std::endl;
@@ -82,7 +82,7 @@ int UHD_SAFE_MAIN(int argc, char *argv[]){
for (size_t i = 0; i < found_addrs.size(); i++){
std::cout << "Writing EEPROM data..." << std::endl;
//uhd::device_addrs_t devs = uhd::device::find(found_addrs[i]);
- uhd::device::sptr dev = uhd::device::make(found_addrs[i]);
+ uhd::device::sptr dev = uhd::device::make(found_addrs[i], uhd::device::USRP);
uhd::property_tree::sptr tree = dev->get_tree();
tree->access<std::string>("/mboards/0/load_eeprom").set(vm["image"].as<std::string>());
}
diff --git a/host/utils/ihexcvt.cpp b/host/utils/ihexcvt.cpp
new file mode 100644
index 000000000..0605ee61c
--- /dev/null
+++ b/host/utils/ihexcvt.cpp
@@ -0,0 +1,250 @@
+/* IHexCvt - Intel HEX File <=> Binary Converter (C++)
+ Copyright (C) 2014 Ali Nakisaee
+
+This program is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 2 of the License, or
+(at your option) any later version.
+
+
+This program is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+GNU General Public License for more details.
+
+
+You should have received a copy of the GNU General Public License along
+with this program; if not, write to the Free Software Foundation, Inc.,
+51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.*/
+
+//Include needed stuff from C++
+#include <iostream>
+#include <fstream>
+#include <string>
+
+//... and also from C
+#include <stdio.h>
+
+#include <boost/filesystem.hpp>
+
+#include <uhd/exception.hpp>
+#include "ihexcvt.hpp"
+
+//Avoid repeating 'std::':
+using namespace std;
+
+//The following function reads a hexadecimal number from a text file.
+template <class T>
+static bool ReadValueFromHex(ifstream& InputFile, T& outCh, unsigned char* ApplyChecksum)
+{
+ char V, L;
+ T X = 0;
+ outCh = 0;
+
+ //Get the characters one by one.
+ //Remember: These values are big-endian.
+ //Remember: Every two hex characters (0-9/A-F) indicate ONE byte.
+ for (size_t i = 0; i < 2 * sizeof(T); i++)
+ {
+ InputFile.get( V );
+ if (InputFile.fail())
+ return false;
+
+ X <<= 4;
+ if (V >= '0' && V <= '9')
+ L = (V - '0');
+ else if (V >= 'a' && V <= 'f')
+ L = (V - 'a' + 10);
+ else if (V >= 'A' && V <= 'F')
+ L = (V - 'A' + 10);
+ else
+ return false;
+ X |= L;
+
+ //Apply this character to the checksum
+ if (ApplyChecksum && i % 2 == 1) *ApplyChecksum += X & 0xFF;
+ }
+
+ //Return...
+ outCh = X;
+ return true;
+}
+
+//The following function writes a hexadecimal number from a text file.
+template <class T>
+static bool WriteHexValue(ofstream& OutFile, T Value, unsigned char* CalcChecksum)
+{
+ unsigned char V0 = 0;
+ char C;
+
+ //Remember: These values are big-endian.
+ for (size_t i = 0; i < sizeof(T); i++)
+ {
+ //Get byte #i from the value.
+ V0 = (Value >> ((sizeof(T) - i - 1) * 8)) & 0xFF;
+
+ //Extract the high nibble (4-bits)
+ if ((V0 & 0xF0) <= 0x90)
+ C = (V0 >> 4) + '0';
+ else
+ C = (V0 >> 4) + ('A' - 10);
+ OutFile.put( C );
+
+ //Extract the low nibble (4-bits)
+ if ((V0 & 0xF) <= 0x9)
+ C = (V0 & 0xF) + '0';
+ else
+ C = (V0 & 0xF) + ('A' - 10);
+ OutFile.put( C );
+
+ //Calculate the checksum
+ if (CalcChecksum) *CalcChecksum += V0;
+ }
+ return true;
+}
+
+//Skip any incoming whitespaces
+static void SkipWhitespace(ifstream& InputFile)
+{
+ for (;;)
+ {
+ char C;
+ InputFile.get(C);
+ if (InputFile.eof() || InputFile.fail()) break;
+ if (!(C == '\n' || C == '\r' || C == ' ' || C == '\t' || C == '\v'))
+ {
+ InputFile.putback(C);
+ break;
+ }
+ }
+}
+
+//The function responsible for conversion from HEX files to BINary.
+void Hex2Bin(const char* SrcName, const char* DstName, bool IgnoreChecksum)
+{
+ ifstream Src(SrcName);
+ if (Src.bad())
+ {
+ throw uhd::runtime_error("Could not convert Intel .hex file to binary.");
+ }
+
+ ofstream Dst(DstName, ios_base::binary);
+ if (Dst.bad())
+ {
+ throw uhd::runtime_error("Could not convert Intel .hex file to binary.");
+ }
+
+ char Ch;
+ int LineIdx = 1;
+
+ unsigned char ByteCount;
+ unsigned short AddressLow;
+ unsigned short Extra;
+ unsigned long ExtraL;
+ unsigned long AddressOffset = 0;
+ unsigned char RecordType;
+ unsigned char Data[255];
+ unsigned char CurChecksum;
+ unsigned char FileChecksum;
+ bool EOFMarker = false;
+ bool EOFWarn = false;
+
+ for ( ;; )
+ {
+ Src.get(Ch);
+ if (Src.eof())
+ break;
+ if (EOFMarker && !EOFWarn)
+ {
+ throw uhd::runtime_error("Could not convert Intel .hex file to binary.");
+ }
+ if (Ch != ':') goto genericErr;
+
+ CurChecksum = 0;
+ if (!ReadValueFromHex( Src, ByteCount, &CurChecksum )) goto genericErr;
+ if (!ReadValueFromHex( Src, AddressLow, &CurChecksum )) goto genericErr;
+ if (!ReadValueFromHex( Src, RecordType, &CurChecksum )) goto genericErr;
+
+ switch (RecordType)
+ {
+ case 0x00: //Data record
+ for (int i = 0; i < ByteCount; i++)
+ if (!ReadValueFromHex( Src, Data[i], &CurChecksum )) goto genericErr;
+ break;
+ case 0x01: //End Marker
+ if ( ByteCount != 0 )
+ {
+ goto onErrExit;
+ }
+ EOFMarker = true;
+ break;
+ case 0x02: //Extended Segment Address
+ if ( ByteCount != 2 || AddressLow != 0 )
+ {
+ goto onErrExit;
+ }
+ if (!ReadValueFromHex( Src, Extra, &CurChecksum )) goto genericErr;
+ AddressOffset = (unsigned long)Extra << 4;
+ break;
+ case 0x03: //Start Segment Address
+ if ( ByteCount != 4 || AddressLow != 0 )
+ {
+ goto onErrExit;
+ }
+ if (!ReadValueFromHex( Src, ExtraL, &CurChecksum )) goto genericErr;
+ break;
+ case 0x04: //Extended Linear Address
+ if ( ByteCount != 2 || AddressLow != 0 )
+ {
+ goto onErrExit;
+ }
+ if (!ReadValueFromHex( Src, Extra, &CurChecksum )) goto genericErr;
+ AddressOffset = (unsigned long)Extra << 16;
+ break;
+ case 0x05: //Start Linear Address
+ if ( ByteCount != 4 || AddressLow != 0 )
+ {
+ goto onErrExit;
+ }
+ if (!ReadValueFromHex( Src, ExtraL, &CurChecksum )) goto genericErr;
+ break;
+ }
+
+ //Verify checksum
+ CurChecksum = (~(CurChecksum & 0xFF) + 1) & 0xFF;
+ if (!ReadValueFromHex( Src, FileChecksum, NULL )) goto genericErr;
+ if (CurChecksum != FileChecksum)
+ {
+ if (!IgnoreChecksum) goto onErrExit;
+ }
+
+ //Put Data
+ if (RecordType == 0x00)
+ {
+ Dst.seekp( AddressLow + AddressOffset );
+ for (int i = 0; i < ByteCount; i++)
+ {
+ Dst.put( Data[i] );
+ }
+ }
+
+ //Skip any white space
+ SkipWhitespace( Src );
+
+ LineIdx++;
+ }
+
+ Dst << flush;
+ Dst.close();
+
+ return;
+
+genericErr:
+ throw uhd::runtime_error("Invalid Intel .hex file detected.");
+
+onErrExit:
+ Dst.close();
+ Src.close();
+ boost::filesystem::remove(DstName);
+ throw uhd::runtime_error("Could not convert Intel .hex file to binary.");
+}
diff --git a/host/utils/ihexcvt.hpp b/host/utils/ihexcvt.hpp
new file mode 100644
index 000000000..d577ece1f
--- /dev/null
+++ b/host/utils/ihexcvt.hpp
@@ -0,0 +1,22 @@
+//
+// Copyright 2014 Ettus Research LLC
+//
+// This program is free software: you can redistribute it and/or modify
+// it under the terms of the GNU General Public License as published by
+// the Free Software Foundation, either version 3 of the License, or
+// (at your option) any later version.
+//
+// This program is distributed in the hope that it will be useful,
+// but WITHOUT ANY WARRANTY; without even the implied warranty of
+// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+// GNU General Public License for more details.
+//
+// You should have received a copy of the GNU General Public License
+// along with this program. If not, see <http://www.gnu.org/licenses/>.
+//
+#ifndef _IHEXCVT_HPP_
+#define _IHEXCVT_HPP_
+
+void Hex2Bin(const char* SrcName, const char* DstName, bool IgnoreChecksum);
+
+#endif /* _IHEXCVT_HPP_ */
diff --git a/host/utils/octoclock_burn_eeprom.cpp b/host/utils/octoclock_burn_eeprom.cpp
new file mode 100644
index 000000000..033a8f499
--- /dev/null
+++ b/host/utils/octoclock_burn_eeprom.cpp
@@ -0,0 +1,95 @@
+//
+// Copyright 2014 Ettus Research LLC
+//
+// This program is free software: you can redistribute it and/or modify
+// it under the terms of the GNU General Public License as published by
+// the Free Software Foundation, either version 3 of the License, or
+// (at your option) any later version.
+//
+// This program is distributed in the hope that it will be useful,
+// but WITHOUT ANY WARRANTY; without even the implied warranty of
+// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+// GNU General Public License for more details.
+//
+// You should have received a copy of the GNU General Public License
+// along with this program. If not, see <http://www.gnu.org/licenses/>.
+//
+
+#include <uhd/device.hpp>
+#include <uhd/utils/safe_main.hpp>
+#include <uhd/usrp_clock/octoclock_eeprom.hpp>
+#include <uhd/property_tree.hpp>
+#include <uhd/types/device_addr.hpp>
+#include <boost/algorithm/string.hpp>
+#include <boost/program_options.hpp>
+#include <boost/format.hpp>
+#include <iostream>
+#include <vector>
+
+namespace po = boost::program_options;
+
+using namespace uhd;
+using namespace uhd::usrp_clock;
+
+int UHD_SAFE_MAIN(int argc, char *argv[]){
+ std::string args, input_str, key, val;
+
+ po::options_description desc("Allowed options");
+ desc.add_options()
+ ("help", "help message")
+ ("args", po::value<std::string>(&args)->default_value(""), "device address args [default = \"\"]")
+ ("values", po::value<std::string>(&input_str), "keys+values to read/write, separate multiple by \",\"")
+ ("read-all", "Read all motherboard EEPROM values without writing")
+ ;
+
+ po::variables_map vm;
+ po::store(po::parse_command_line(argc, argv, desc), vm);
+ po::notify(vm);
+
+ //print the help message
+ if (vm.count("help") or (not vm.count("values") and not vm.count("read-all"))){
+ std::cout << boost::format("OctoClock Burn EEPROM %s") % desc << std::endl;
+ std::cout << boost::format(
+ "Omit the value argument to perform a readback,\n"
+ "Or specify a new value to burn into the EEPROM.\n"
+ ) << std::endl;
+ return EXIT_FAILURE;
+ }
+
+ std::cout << "Creating OctoClock device from args: " + args << std::endl;
+ device::sptr oc = device::make(args, device::CLOCK);
+ property_tree::sptr tree = oc->get_tree();
+ octoclock_eeprom_t oc_eeprom = tree->access<octoclock_eeprom_t>("/mboards/0/eeprom").get();
+ std::cout << std::endl;
+
+ std::vector<std::string> keys_vec, vals_vec;
+ if(vm.count("read-all")) keys_vec = oc_eeprom.keys(); //Leaving vals_vec empty will force utility to only read
+ else if(vm.count("values")){
+ //uhd::device_addr_t properly parses input values
+ device_addr_t vals(input_str);
+ keys_vec = vals.keys();
+ vals_vec = vals.vals();
+ }
+ else throw std::runtime_error("Must specify --values or --read-all option!");
+
+ std::cout << "Fetching current settings from EEPROM..." << std::endl;
+ for(size_t i = 0; i < keys_vec.size(); i++){
+ if (not oc_eeprom.has_key(keys_vec[i])){
+ std::cerr << boost::format("Cannot find value for EEPROM[\"%s\"]") % keys_vec[i] << std::endl;
+ return EXIT_FAILURE;
+ }
+ std::cout << boost::format(" EEPROM [\"%s\"] is \"%s\"") % keys_vec[i] % oc_eeprom[keys_vec[i]] << std::endl;
+ }
+ if(!vm.count("read-all")){
+ std::cout << std::endl;
+ for(size_t i = 0; i < vals_vec.size(); i++){
+ if(vals_vec[i] != ""){
+ oc_eeprom[keys_vec[i]] = vals_vec[i];
+ std::cout << boost::format("Setting EEPROM [\"%s\"] to \"%s\"...") % keys_vec[i] % vals_vec[i] << std::endl;
+ }
+ }
+ tree->access<octoclock_eeprom_t>("/mboards/0/eeprom").set(oc_eeprom);
+ }
+ std::cout << std::endl << "Power-cycle your device to allow any changes to take effect." << std::endl;
+ return EXIT_SUCCESS;
+}
diff --git a/host/utils/octoclock_firmware_burner.cpp b/host/utils/octoclock_firmware_burner.cpp
new file mode 100644
index 000000000..bc91f22f9
--- /dev/null
+++ b/host/utils/octoclock_firmware_burner.cpp
@@ -0,0 +1,351 @@
+//
+// Copyright 2014 Ettus Research LLC
+//
+// This program is free software: you can redistribute it and/or modify
+// it under the terms of the GNU General Public License as published by
+// the Free Software Foundation, either version 3 of the License, or
+// (at your option) any later version.
+//
+// This program is distributed in the hope that it will be useful,
+// but WITHOUT ANY WARRANTY; without even the implied warranty of
+// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+// GNU General Public License for more details.
+//
+// You should have received a copy of the GNU General Public License
+// along with this program. If not, see <http://www.gnu.org/licenses/>.
+//
+
+#include <algorithm>
+#include <csignal>
+#include <iostream>
+#include <fstream>
+#include <stdexcept>
+#include <vector>
+
+#include <boost/foreach.hpp>
+#include <boost/asio.hpp>
+#include <boost/program_options.hpp>
+#include <boost/assign.hpp>
+#include <boost/cstdint.hpp>
+#include <boost/assign/list_of.hpp>
+#include <boost/format.hpp>
+#include <boost/filesystem.hpp>
+#include <boost/thread.hpp>
+
+#include <uhd/device.hpp>
+#include <uhd/transport/udp_simple.hpp>
+#include <uhd/types/device_addr.hpp>
+#include <uhd/types/time_spec.hpp>
+#include <uhd/utils/byteswap.hpp>
+#include <uhd/utils/images.hpp>
+#include <uhd/utils/paths.hpp>
+#include <uhd/utils/safe_main.hpp>
+
+#include "../lib/usrp_clock/octoclock/common.h"
+#include "ihexcvt.hpp"
+
+#define MAX_FIRMWARE_SIZE 1024*120
+#define BLOCK_SIZE 256
+#define UDP_TIMEOUT 5
+
+namespace fs = boost::filesystem;
+namespace po = boost::program_options;
+
+using namespace uhd;
+using namespace uhd::transport;
+
+static int num_ctrl_c = 0;
+void sig_int_handler(int){
+ num_ctrl_c++;
+ if(num_ctrl_c == 1){
+ std::cout << std::endl << "Are you sure you want to abort the image burning? If you do, your "
+ "OctoClock device will be bricked!" << std::endl
+ << "Press Ctrl+C again to abort the image burning procedure." << std::endl << std::endl;
+ }
+ else{
+ std::cout << std::endl << "Aborting. Your OctoClock device will be bricked." << std::endl
+ << "Refer to http://files.ettus.com/manual/page_octoclock.html#bootloader" << std::endl
+ << "for details on restoring your device." << std::endl;
+ exit(EXIT_FAILURE);
+ }
+}
+
+boost::uint8_t firmware_image[MAX_FIRMWARE_SIZE];
+size_t firmware_size = 0;
+boost::uint8_t octoclock_data[udp_simple::mtu];
+octoclock_packet_t *pkt_in = reinterpret_cast<octoclock_packet_t *>(octoclock_data);
+std::string firmware_path;
+size_t num_blocks = 0;
+
+/*
+ * Functions
+ */
+void list_octoclocks(){
+ device_addrs_t found_octoclocks = device::find(uhd::device_addr_t(), device::CLOCK);
+
+ std::cout << "Available OctoClock devices:" << std::endl;
+ BOOST_FOREACH(const device_addr_t &oc, found_octoclocks){
+ std::cout << " * " << oc["addr"] << std::endl;
+ }
+}
+
+/*
+ * Manually find bootloader. This sends multiple packets in order to increase chances of getting
+ * bootloader before it switches to the application.
+ */
+device_addrs_t bootloader_find(std::string ip_addr){
+ udp_simple::sptr udp_transport = udp_simple::make_connected(ip_addr, BOOST_STRINGIZE(OCTOCLOCK_UDP_CTRL_PORT));
+
+ octoclock_packet_t pkt_out;
+ pkt_out.sequence = uhd::htonx<boost::uint32_t>(std::rand());
+ pkt_out.code = OCTOCLOCK_QUERY_CMD;
+ pkt_out.len = 0;
+ size_t len = 0;
+
+ device_addrs_t addrs;
+
+ boost::system_time comm_timeout = boost::get_system_time() + boost::posix_time::milliseconds(3000);
+
+ while(boost::get_system_time() < comm_timeout){
+ UHD_OCTOCLOCK_SEND_AND_RECV(udp_transport, OCTOCLOCK_QUERY_CMD, pkt_out, len, octoclock_data);
+ if(UHD_OCTOCLOCK_PACKET_MATCHES(OCTOCLOCK_QUERY_ACK, pkt_out, pkt_in, len) and
+ pkt_in->proto_ver == OCTOCLOCK_BOOTLOADER_PROTO_VER){
+ addrs.push_back(device_addr_t());
+ addrs[0]["type"] = "octoclock-bootloader";
+ addrs[0]["addr"] = udp_transport->get_recv_addr();
+ break;
+ }
+ }
+
+ return addrs;
+}
+
+void read_firmware(){
+ std::ifstream firmware_file(firmware_path.c_str(), std::ios::binary);
+ firmware_file.seekg(0, std::ios::end);
+ firmware_size = firmware_file.tellg();
+ if(firmware_size > MAX_FIRMWARE_SIZE){
+ firmware_file.close();
+ throw uhd::runtime_error(str(boost::format("Firmware file too large: %d > %d")
+ % firmware_size % (MAX_FIRMWARE_SIZE)));
+ }
+ firmware_file.seekg(0, std::ios::beg);
+ firmware_file.read((char*)firmware_image, firmware_size);
+ firmware_file.close();
+
+ num_blocks = (firmware_size % BLOCK_SIZE) ? (firmware_size / BLOCK_SIZE)
+ : ((firmware_size / BLOCK_SIZE) + 1);
+}
+
+void burn_firmware(udp_simple::sptr udp_transport){
+ octoclock_packet_t pkt_out;
+ pkt_out.sequence = uhd::htonx<boost::uint32_t>(std::rand());
+ pkt_out.len = uhd::htonx<boost::uint16_t>((boost::uint16_t)firmware_size);
+ size_t len = 0, current_pos = 0;
+
+ //Tell OctoClock not to jump to application, wait for us instead
+ std::cout << "Telling OctoClock to prepare for firmware download..." << std::flush;
+ UHD_OCTOCLOCK_SEND_AND_RECV(udp_transport, PREPARE_FW_BURN_CMD, pkt_out, len, octoclock_data);
+ if(UHD_OCTOCLOCK_PACKET_MATCHES(FW_BURN_READY_ACK, pkt_out, pkt_in, len)) std::cout << "ready." << std::endl;
+ else{
+ std::cout << std::endl;
+ throw uhd::runtime_error("Could not get OctoClock in valid state for firmware download.");
+ }
+
+ std::cout << std::endl << "Burning firmware." << std::endl;
+ pkt_out.code = FILE_TRANSFER_CMD;
+
+ //Actual burning below
+ for(size_t i = 0; i < num_blocks; i++){
+ pkt_out.sequence++;
+ pkt_out.addr = i*BLOCK_SIZE;
+ std::cout << "\r * Progress: " << int(double(i)/double(num_blocks)*100)
+ << "% (" << (i+1) << "/" << num_blocks << " blocks)" << std::flush;
+
+ memset(pkt_out.data, 0, BLOCK_SIZE);
+ memcpy((void*)(pkt_out.data), &firmware_image[i*BLOCK_SIZE], std::min(int(firmware_size-current_pos), BLOCK_SIZE));
+ UHD_OCTOCLOCK_SEND_AND_RECV(udp_transport, FILE_TRANSFER_CMD, pkt_out, len, octoclock_data);
+ if(not (UHD_OCTOCLOCK_PACKET_MATCHES(FILE_TRANSFER_ACK, pkt_out, pkt_in, len))){
+ std::cout << std::endl;
+ throw uhd::runtime_error("Failed to burn firmware to OctoClock!");
+ }
+
+ current_pos += BLOCK_SIZE;
+ }
+
+ std::cout << "\r * Progress: 100% (" << num_blocks << "/" << num_blocks << " blocks)" << std::endl;
+}
+
+void verify_firmware(udp_simple::sptr udp_transport){
+ octoclock_packet_t pkt_out;
+ pkt_out.proto_ver = OCTOCLOCK_FW_COMPAT_NUM;
+ pkt_out.sequence = uhd::htonx<boost::uint32_t>(std::rand());
+ size_t len = 0, current_pos = 0;
+
+ std::cout << "Verifying firmware." << std::endl;
+
+ for(size_t i = 0; i < num_blocks; i++){
+ pkt_out.sequence++;
+ pkt_out.addr = i*BLOCK_SIZE;
+ std::cout << "\r * Progress: " << int(double(i)/double(num_blocks)*100)
+ << "% (" << (i+1) << "/" << num_blocks << " blocks)" << std::flush;
+
+ UHD_OCTOCLOCK_SEND_AND_RECV(udp_transport, READ_FW_CMD, pkt_out, len, octoclock_data);
+ if(UHD_OCTOCLOCK_PACKET_MATCHES(READ_FW_ACK, pkt_out, pkt_in, len)){
+ if(memcmp((void*)(pkt_in->data), &firmware_image[i*BLOCK_SIZE],
+ std::min(int(firmware_size-current_pos), BLOCK_SIZE))){
+ std::cout << std::endl;
+ throw uhd::runtime_error("Failed to verify OctoClock firmware!");
+ }
+ }
+ else{
+ std::cout << std::endl;
+ throw uhd::runtime_error("Failed to verify OctoClock firmware!");
+ }
+ }
+
+ std::cout << "\r * Progress: 100% (" << num_blocks << "/" << num_blocks << " blocks)" << std::endl;
+}
+
+void reset_octoclock(const std::string &ip_addr){
+ udp_simple::sptr udp_transport = udp_simple::make_connected(ip_addr, BOOST_STRINGIZE(OCTOCLOCK_UDP_CTRL_PORT));
+
+ octoclock_packet_t pkt_out;
+ pkt_out.sequence = uhd::htonx<boost::uint32_t>(std::rand());
+ size_t len;
+
+ UHD_OCTOCLOCK_SEND_AND_RECV(udp_transport, RESET_CMD, pkt_out, len, octoclock_data);
+ if(UHD_OCTOCLOCK_PACKET_MATCHES(RESET_ACK, pkt_out, pkt_in, len)) std::cout << "done." << std::endl;
+ else throw uhd::runtime_error("Failed to place device in state to receive firmware.");
+}
+
+void finalize(udp_simple::sptr udp_transport){
+ octoclock_packet_t pkt_out;
+ pkt_out.len = 0;
+ pkt_out.sequence = uhd::htonx<boost::uint32_t>(std::rand());
+ size_t len = 0;
+
+ std::cout << std::endl << "Telling OctoClock to load application..." << std::flush;
+ UHD_OCTOCLOCK_SEND_AND_RECV(udp_transport, FINALIZE_BURNING_CMD, pkt_out, len, octoclock_data);
+ if(UHD_OCTOCLOCK_PACKET_MATCHES(FINALIZE_BURNING_ACK, pkt_out, pkt_in, len)) std::cout << "done." << std::endl;
+ else std::cout << "no ACK. Device may not have loaded application." << std::endl;
+}
+
+int UHD_SAFE_MAIN(int argc, char *argv[]){
+ std::string ip_addr;
+ po::options_description desc("Allowed options");
+ desc.add_options()
+ ("help", "Display this help message.")
+ ("addr", po::value<std::string>(&ip_addr), "Specify an IP address.")
+ ("fw-path", po::value<std::string>(&firmware_path), "Specify a custom firmware path.")
+ ("list", "List all available OctoClock devices.")
+ ;
+ po::variables_map vm;
+ po::store(po::parse_command_line(argc, argv, desc), vm);
+ po::notify(vm);
+
+ //Print help message
+ if(vm.count("help")){
+ std::cout << "OctoClock Firmware Burner" << std::endl << std::endl;
+
+ std::cout << "Burns a firmware image file onto an OctoClock device. Specify" << std::endl
+ << "the address of the OctoClock with the --addr option. To burn" << std::endl
+ << "a custom firmware image, use the --fw-path option. Otherwise, the" << std::endl
+ << "utility will use the default image. To list all available" << std::endl
+ << "OctoClock devices without burning firmware, use the --list" << std::endl
+ << "option." << std::endl << std::endl;
+
+ std::cout << desc << std::endl;
+ return EXIT_SUCCESS;
+ }
+
+ //List all available devices
+ if(vm.count("list")){
+ list_octoclocks();
+ return EXIT_SUCCESS;
+ }
+
+ if(not (vm.count("addr"))){
+ throw uhd::runtime_error("You must specify an address with the --addr option!");
+ }
+ udp_simple::sptr udp_transport = udp_simple::make_connected(ip_addr, BOOST_STRINGIZE(OCTOCLOCK_UDP_FW_PORT));
+
+ //If custom path given, make sure it exists
+ if(vm.count("fw-path")){
+ //Expand tilde usage if applicable
+ #ifndef UHD_PLATFORM_WIN32
+ if(firmware_path.find("~/") == 0) firmware_path.replace(0,1,getenv("HOME"));
+ #endif
+
+ if(not fs::exists(firmware_path)){
+ throw uhd::runtime_error(str(boost::format("This filepath does not exist: %s") % firmware_path));
+ }
+ }
+ else firmware_path = find_image_path("octoclock_r4_fw.bin");
+
+ //If Intel hex file detected, convert to binary
+ std::string ext = fs::extension(firmware_path);
+ if(ext == ".hex"){
+ std::cout << "Found firmware at path: " << firmware_path << std::endl;
+
+ //Write firmware .bin file to temporary directory
+ fs::path temp_bin = fs::path(fs::path(get_tmp_path()) / str(boost::format("octoclock_fw_%d.bin")
+ % time_spec_t::get_system_time().get_full_secs()));
+ Hex2Bin(firmware_path.c_str(), temp_bin.string().c_str(), false);
+
+ firmware_path = temp_bin.string();
+ }
+ else if(ext == ".bin"){
+ std::cout << "Found firmware at path: " << firmware_path << std::endl;
+ }
+ else throw uhd::runtime_error("The firmware file has in improper extension (must be .hex or .bin).");
+
+ std::cout << std::endl << boost::format("Searching for OctoClock with IP address %s...") % ip_addr << std::flush;
+ device_addrs_t octoclocks = device::find(str(boost::format("addr=%s") % ip_addr), device::CLOCK);
+ if(octoclocks.size() == 1){
+ //If in application, quietly reset into bootloader and try to find again
+ if(octoclocks[0]["type"] == "octoclock"){
+ reset_octoclock(ip_addr);
+ boost::this_thread::sleep(boost::posix_time::milliseconds(2000));
+ octoclocks = bootloader_find(ip_addr);
+ if(octoclocks.size() == 1) std::cout << "found." << std::endl;
+ else{
+ std::cout << std::endl;
+ throw uhd::runtime_error("Could not find OctoClock with given IP address!");
+ }
+ }
+ else std::cout << "found." << std::endl;
+ }
+ else{
+ std::cout << std::endl;
+ throw uhd::runtime_error("Could not find OctoClock with given IP address!");
+ }
+
+ read_firmware();
+
+ std::signal(SIGINT, &sig_int_handler);
+
+ burn_firmware(udp_transport);
+ verify_firmware(udp_transport);
+ finalize(udp_transport);
+
+ std::cout << "Waiting for OctoClock to reinitialize..." << std::flush;
+ boost::this_thread::sleep(boost::posix_time::milliseconds(2000));
+ octoclocks = device::find(str(boost::format("addr=%s") % ip_addr), device::CLOCK);
+ if(octoclocks.size() == 1){
+ if(octoclocks[0]["type"] == "octoclock-bootloader"){
+ std::cout << std::endl;
+ throw uhd::runtime_error("OctoClock failed to leave bootloader state.");
+ }
+ else{
+ std::cout << "found." << std::endl << std::endl
+ << "Successfully burned firmware." << std::endl << std::endl;
+ }
+ }
+ else{
+ std::cout << std::endl;
+ throw uhd::runtime_error("Failed to reinitialize OctoClock.");
+ }
+
+ return EXIT_SUCCESS;
+}
diff --git a/host/utils/uhd_usrp_probe.cpp b/host/utils/uhd_usrp_probe.cpp
index 98ed84850..cfbfe5f20 100644
--- a/host/utils/uhd_usrp_probe.cpp
+++ b/host/utils/uhd_usrp_probe.cpp
@@ -192,6 +192,7 @@ int UHD_SAFE_MAIN(int argc, char *argv[]){
("args", po::value<std::string>()->default_value(""), "device address args")
("tree", "specify to print a complete property tree")
("string", po::value<std::string>(), "query a string value from the properties tree")
+ ("init-only", "skip all queries, only initialize device")
;
po::variables_map vm;
@@ -209,7 +210,7 @@ int UHD_SAFE_MAIN(int argc, char *argv[]){
return EXIT_SUCCESS;
}
- device::sptr dev = device::make(vm["args"].as<std::string>());
+ device::sptr dev = device::make(vm["args"].as<std::string>(), device::USRP);
property_tree::sptr tree = dev->get_tree();
if (vm.count("string")){
@@ -218,7 +219,7 @@ int UHD_SAFE_MAIN(int argc, char *argv[]){
}
if (vm.count("tree") != 0) print_tree("/", tree);
- else std::cout << make_border(get_device_pp_string(tree)) << std::endl;
+ else if (not vm.count("init-only")) std::cout << make_border(get_device_pp_string(tree)) << std::endl;
return EXIT_SUCCESS;
}
diff --git a/host/utils/usrp_burn_db_eeprom.cpp b/host/utils/usrp_burn_db_eeprom.cpp
index 3ca953115..7b483d2e7 100644
--- a/host/utils/usrp_burn_db_eeprom.cpp
+++ b/host/utils/usrp_burn_db_eeprom.cpp
@@ -62,7 +62,7 @@ int UHD_SAFE_MAIN(int argc, char *argv[]){
}
//make the device and extract the dboard w/ property
- device::sptr dev = device::make(args);
+ device::sptr dev = device::make(args, device::USRP);
uhd::property_tree::sptr tree = dev->get_tree();
const uhd::fs_path db_root = "/mboards/0/dboards";
std::vector<std::string> dboard_names = tree->list(db_root);
diff --git a/host/utils/usrp_burn_mb_eeprom.cpp b/host/utils/usrp_burn_mb_eeprom.cpp
index f3e12c765..92df9d7d4 100644
--- a/host/utils/usrp_burn_mb_eeprom.cpp
+++ b/host/utils/usrp_burn_mb_eeprom.cpp
@@ -1,5 +1,5 @@
//
-// Copyright 2010,2013 Ettus Research LLC
+// Copyright 2010,2013-2014 Ettus Research LLC
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
@@ -19,6 +19,7 @@
#include <uhd/device.hpp>
#include <uhd/property_tree.hpp>
#include <uhd/usrp/mboard_eeprom.hpp>
+#include <uhd/types/device_addr.hpp>
#include <boost/algorithm/string.hpp>
#include <boost/program_options.hpp>
#include <boost/format.hpp>
@@ -28,14 +29,16 @@
namespace po = boost::program_options;
int UHD_SAFE_MAIN(int argc, char *argv[]){
- std::string args, key, val;
+ std::string args, input_str, key, val;
po::options_description desc("Allowed options");
desc.add_options()
("help", "help message")
("args", po::value<std::string>(&args)->default_value(""), "device address args [default = \"\"]")
- ("key", po::value<std::string>(&key), "identifiers for new values in EEPROM, separate multiple by \",\"")
- ("val", po::value<std::string>(&val), "the new values to set, omit for readback, separate multiple by \",\"")
+ ("values", po::value<std::string>(&input_str), "keys+values to read/write, separate multiple by \",\"")
+ ("key", po::value<std::string>(&key), "identifiers for new values in EEPROM, separate multiple by \",\" (DEPRECATED)")
+ ("val", po::value<std::string>(&val), "the new values to set, omit for readback, separate multiple by \",\" (DEPRECATED)")
+ ("read-all", "Read all motherboard EEPROM values without writing")
;
po::variables_map vm;
@@ -43,7 +46,7 @@ int UHD_SAFE_MAIN(int argc, char *argv[]){
po::notify(vm);
//print the help message
- if (vm.count("help") or not vm.count("key")){
+ if (vm.count("help") or (not vm.count("key") and not vm.count("values") and not vm.count("read-all"))){
std::cout << boost::format("USRP Burn Motherboard EEPROM %s") % desc << std::endl;
std::cout << boost::format(
"Omit the value argument to perform a readback,\n"
@@ -53,25 +56,35 @@ int UHD_SAFE_MAIN(int argc, char *argv[]){
}
std::cout << "Creating USRP device from address: " + args << std::endl;
- uhd::device::sptr dev = uhd::device::make(args);
+ uhd::device::sptr dev = uhd::device::make(args, uhd::device::USRP);
uhd::property_tree::sptr tree = dev->get_tree();
+ uhd::usrp::mboard_eeprom_t mb_eeprom = tree->access<uhd::usrp::mboard_eeprom_t>("/mboards/0/eeprom").get();
std::cout << std::endl;
- //remove whitespace, split arguments and values
- boost::algorithm::erase_all(key, " ");
- boost::algorithm::erase_all(val, " ");
-
std::vector<std::string> keys_vec, vals_vec;
- boost::split(keys_vec, key, boost::is_any_of("\"',"));
- boost::split(vals_vec, val, boost::is_any_of("\"',"));
+ if(vm.count("read-all")) keys_vec = mb_eeprom.keys(); //Leaving vals_vec empty will force utility to only read
+ else if(vm.count("values")){
+ //uhd::device_addr_t properly parses input values
+ uhd::device_addr_t vals(input_str);
+ keys_vec = vals.keys();
+ vals_vec = vals.vals();
+ }
+ else{
+ std::cout << "WARNING: Use of --key and --val is deprecated!" << std::endl;
+ //remove whitespace, split arguments and values
+ boost::algorithm::erase_all(key, " ");
+ boost::algorithm::erase_all(val, " ");
+
+ boost::split(keys_vec, key, boost::is_any_of("\"',"));
+ boost::split(vals_vec, val, boost::is_any_of("\"',"));
- if((keys_vec.size() != vals_vec.size()) and val != "") {
- //If zero values are given, then user just wants values read to them
- throw std::runtime_error("Number of keys must match number of values!");
+ if((keys_vec.size() != vals_vec.size()) and val != "") {
+ //If zero values are given, then user just wants values read to them
+ throw std::runtime_error("Number of keys must match number of values!");
+ }
}
std::cout << "Fetching current settings from EEPROM..." << std::endl;
- uhd::usrp::mboard_eeprom_t mb_eeprom = tree->access<uhd::usrp::mboard_eeprom_t>("/mboards/0/eeprom").get();
for(size_t i = 0; i < keys_vec.size(); i++){
if (not mb_eeprom.has_key(keys_vec[i])){
std::cerr << boost::format("Cannot find value for EEPROM[%s]") % keys_vec[i] << std::endl;
@@ -80,16 +93,16 @@ int UHD_SAFE_MAIN(int argc, char *argv[]){
std::cout << boost::format(" EEPROM [\"%s\"] is \"%s\"") % keys_vec[i] % mb_eeprom[keys_vec[i]] << std::endl;
}
std::cout << std::endl;
- if (vm.count("val")){
- mb_eeprom = uhd::usrp::mboard_eeprom_t();
- for(size_t i = 0; i < vals_vec.size(); i++){
+ mb_eeprom = uhd::usrp::mboard_eeprom_t();
+ for(size_t i = 0; i < vals_vec.size(); i++){
+ if(vals_vec[i] != ""){
mb_eeprom[keys_vec[i]] = vals_vec[i];
std::cout << boost::format("Setting EEPROM [\"%s\"] to \"%s\"...") % keys_vec[i] % vals_vec[i] << std::endl;
}
- tree->access<uhd::usrp::mboard_eeprom_t>("/mboards/0/eeprom").set(mb_eeprom);
- std::cout << "Power-cycle the USRP device for the changes to take effect." << std::endl;
- std::cout << std::endl;
}
+ tree->access<uhd::usrp::mboard_eeprom_t>("/mboards/0/eeprom").set(mb_eeprom);
+ std::cout << "Power-cycle the USRP device for the changes to take effect." << std::endl;
+ std::cout << std::endl;
std::cout << "Done" << std::endl;
return EXIT_SUCCESS;
diff --git a/host/utils/usrp_n2xx_simple_net_burner.cpp b/host/utils/usrp_n2xx_simple_net_burner.cpp
index 2a766a345..fe437a2e5 100644
--- a/host/utils/usrp_n2xx_simple_net_burner.cpp
+++ b/host/utils/usrp_n2xx_simple_net_burner.cpp
@@ -57,9 +57,11 @@ using namespace uhd::transport;
#define FLASH_DATA_PACKET_SIZE 256
#define FPGA_IMAGE_SIZE_BYTES 1572864
#define FW_IMAGE_SIZE_BYTES 31744
+
#define PROD_FPGA_IMAGE_LOCATION_ADDR 0x00180000
-#define PROD_FW_IMAGE_LOCATION_ADDR 0x00300000
#define SAFE_FPGA_IMAGE_LOCATION_ADDR 0x00000000
+
+#define PROD_FW_IMAGE_LOCATION_ADDR 0x00300000
#define SAFE_FW_IMAGE_LOCATION_ADDR 0x003F0000
typedef enum {
@@ -113,6 +115,7 @@ typedef struct {
//Mapping revision numbers to filenames
uhd::dict<boost::uint32_t, std::string> filename_map = boost::assign::map_list_of
+ (0, "N2XX")
(0xa, "n200_r3")
(0x100a, "n200_r4")
(0x10a, "n210_r3")
@@ -181,25 +184,39 @@ void list_usrps(){
/***********************************************************************
* Find USRP N2XX with specified IP address and return type
**********************************************************************/
-boost::uint32_t find_usrp(udp_simple::sptr udp_transport){
+boost::uint32_t find_usrp(udp_simple::sptr udp_transport, bool check_rev){
boost::uint32_t hw_rev;
bool found_it = false;
+ // If the user chooses to not care about the rev, simply check
+ // for the presence of a USRP N2XX.
+ boost::uint32_t cmd_id = (check_rev) ? GET_HW_REV_CMD
+ : USRP2_QUERY;
+ boost::uint32_t ack_id = (check_rev) ? GET_HW_REV_ACK
+ : USRP2_ACK;
+
const usrp2_fw_update_data_t *update_data_in = reinterpret_cast<const usrp2_fw_update_data_t *>(usrp2_update_data_in_mem);
usrp2_fw_update_data_t hw_info_pkt = usrp2_fw_update_data_t();
hw_info_pkt.proto_ver = htonx<boost::uint32_t>(USRP2_FW_PROTO_VERSION);
- hw_info_pkt.id = htonx<boost::uint32_t>(GET_HW_REV_CMD);
+ hw_info_pkt.id = htonx<boost::uint32_t>(cmd_id);
udp_transport->send(boost::asio::buffer(&hw_info_pkt, sizeof(hw_info_pkt)));
//Loop and receive until the timeout
size_t len = udp_transport->recv(boost::asio::buffer(usrp2_update_data_in_mem), UDP_TIMEOUT);
- if(len > offsetof(usrp2_fw_update_data_t, data) and ntohl(update_data_in->id) == GET_HW_REV_ACK){
+ if(len > offsetof(usrp2_fw_update_data_t, data) and ntohl(update_data_in->id) == ack_id){
hw_rev = ntohl(update_data_in->data.hw_rev);
if(filename_map.has_key(hw_rev)){
std::cout << boost::format("Found %s.\n\n") % filename_map[hw_rev];
found_it = true;
}
- else throw std::runtime_error("Invalid revision found.");
+ else{
+ if(check_rev) throw std::runtime_error("Invalid revision found.");
+ else{
+ hw_rev = 0;
+ std::cout << "Found USRP N2XX." << std::endl;
+ found_it = true;
+ }
+ }
}
if(not found_it) throw std::runtime_error("No USRP N2XX found.");
@@ -210,27 +227,27 @@ boost::uint32_t find_usrp(udp_simple::sptr udp_transport){
* Custom filename validation functions
**********************************************************************/
-void validate_custom_fpga_file(std::string rev_str, std::string& fpga_path){
+void validate_custom_fpga_file(std::string rev_str, std::string& fpga_path, bool check_rev){
//Check for existence of file
if(not fs::exists(fpga_path)) throw std::runtime_error(str(boost::format("No file at specified FPGA path: %s") % fpga_path));
- //Check to find rev_str in filename
+ //If user cares about revision, use revision string to detect invalid image filename
uhd::fs_path custom_fpga_path(fpga_path);
- if(custom_fpga_path.leaf().find(rev_str) == std::string::npos){
+ if(custom_fpga_path.leaf().find(rev_str) == std::string::npos and check_rev){
throw std::runtime_error(str(boost::format("Invalid FPGA image filename at path: %s\nFilename must contain '%s' to be considered valid for this model.")
% fpga_path % rev_str));
}
}
-void validate_custom_fw_file(std::string rev_str, std::string& fw_path){
+void validate_custom_fw_file(std::string rev_str, std::string& fw_path, bool check_rev){
//Check for existence of file
if(not fs::exists(fw_path)) throw std::runtime_error(str(boost::format("No file at specified firmware path: %s") % fw_path));
- //Check to find truncated rev_str in filename
+ //If user cares about revision, use revision string to detect invalid image filename
uhd::fs_path custom_fw_path(fw_path);
- if(custom_fw_path.leaf().find(erase_tail_copy(rev_str,3)) == std::string::npos){
+ if(custom_fw_path.leaf().find(erase_tail_copy(rev_str,3)) == std::string::npos and check_rev){
throw std::runtime_error(str(boost::format("Invalid firmware image filename at path: %s\nFilename must contain '%s' to be considered valid for this model.")
% fw_path % erase_tail_copy(rev_str,3)));
}
@@ -329,10 +346,12 @@ boost::uint32_t* get_flash_info(std::string& ip_addr){
* Image burning functions
**********************************************************************/
-void erase_image(udp_simple::sptr udp_transport, bool is_fw, boost::uint32_t memory_size){
+void erase_image(udp_simple::sptr udp_transport, bool is_fw, boost::uint32_t memory_size, bool overwrite_safe){
- boost::uint32_t image_location_addr = is_fw ? PROD_FW_IMAGE_LOCATION_ADDR
- : PROD_FPGA_IMAGE_LOCATION_ADDR;
+ boost::uint32_t image_location_addr = is_fw ? overwrite_safe ? SAFE_FW_IMAGE_LOCATION_ADDR
+ : PROD_FW_IMAGE_LOCATION_ADDR
+ : overwrite_safe ? SAFE_FPGA_IMAGE_LOCATION_ADDR
+ : PROD_FPGA_IMAGE_LOCATION_ADDR;
boost::uint32_t image_size = is_fw ? FW_IMAGE_SIZE_BYTES
: FPGA_IMAGE_SIZE_BYTES;
@@ -378,10 +397,13 @@ void erase_image(udp_simple::sptr udp_transport, bool is_fw, boost::uint32_t mem
}
}
-void write_image(udp_simple::sptr udp_transport, bool is_fw, boost::uint8_t* image, boost::uint32_t memory_size, int image_size){
+void write_image(udp_simple::sptr udp_transport, bool is_fw, boost::uint8_t* image,
+ boost::uint32_t memory_size, int image_size, bool overwrite_safe){
- boost::uint32_t begin_addr = is_fw ? PROD_FW_IMAGE_LOCATION_ADDR
- : PROD_FPGA_IMAGE_LOCATION_ADDR;
+ boost::uint32_t begin_addr = is_fw ? overwrite_safe ? SAFE_FW_IMAGE_LOCATION_ADDR
+ : PROD_FW_IMAGE_LOCATION_ADDR
+ : overwrite_safe ? SAFE_FPGA_IMAGE_LOCATION_ADDR
+ : PROD_FPGA_IMAGE_LOCATION_ADDR;
boost::uint32_t current_addr = begin_addr;
std::string type = is_fw ? "firmware" : "FPGA";
@@ -418,11 +440,14 @@ void write_image(udp_simple::sptr udp_transport, bool is_fw, boost::uint8_t* ima
std::cout << boost::format(" * Successfully wrote %d bytes.\n") % image_size;
}
-void verify_image(udp_simple::sptr udp_transport, bool is_fw, boost::uint8_t* image, boost::uint32_t memory_size, int image_size){
+void verify_image(udp_simple::sptr udp_transport, bool is_fw, boost::uint8_t* image,
+ boost::uint32_t memory_size, int image_size, bool overwrite_safe){
int current_index = 0;
- boost::uint32_t begin_addr = is_fw ? PROD_FW_IMAGE_LOCATION_ADDR
- : PROD_FPGA_IMAGE_LOCATION_ADDR;
+ boost::uint32_t begin_addr = is_fw ? overwrite_safe ? SAFE_FW_IMAGE_LOCATION_ADDR
+ : PROD_FW_IMAGE_LOCATION_ADDR
+ : overwrite_safe ? SAFE_FPGA_IMAGE_LOCATION_ADDR
+ : PROD_FPGA_IMAGE_LOCATION_ADDR;
boost::uint32_t current_addr = begin_addr;
std::string type = is_fw ? "firmware" : "FPGA";
@@ -501,6 +526,8 @@ int UHD_SAFE_MAIN(int argc, char *argv[]){
("no_fw", "Do not burn a firmware image (DEPRECATED).")
("no-fpga", "Do not burn an FPGA image.")
("no_fpga", "Do not burn an FPGA image (DEPRECATED).")
+ ("overwrite-safe", "Overwrite safe images (not recommended).")
+ ("dont-check-rev", "Don't verify images are for correct model before burning.")
("auto-reboot", "Automatically reboot N2XX without prompting.")
("auto_reboot", "Automatically reboot N2XX without prompting (DEPRECATED).")
("list", "List available N2XX USRP devices.")
@@ -518,25 +545,52 @@ int UHD_SAFE_MAIN(int argc, char *argv[]){
return EXIT_SUCCESS;
}
- //List option
+ //List options
if(vm.count("list")){
list_usrps();
return EXIT_SUCCESS;
}
- //Process user options
+ //Store user options
bool burn_fpga = (vm.count("no-fpga") == 0) and (vm.count("no_fpga") == 0);
bool burn_fw = (vm.count("no-fw") == 0) and (vm.count("no_fw") == 0);
bool use_custom_fpga = (vm.count("fpga") > 0);
bool use_custom_fw = (vm.count("fw") > 0);
bool auto_reboot = (vm.count("auto-reboot") > 0) or (vm.count("auto_reboot") > 0);
+ bool check_rev = (vm.count("dont-check-rev") == 0);
+ bool overwrite_safe = (vm.count("overwrite-safe") > 0);
int fpga_image_size = 0;
int fw_image_size = 0;
+ //Process options and detect invalid option combinations
if(not burn_fpga && not burn_fw){
std::cout << "No images will be burned." << std::endl;
return EXIT_FAILURE;
}
+ if(not check_rev){
+ //Without knowing a revision, the utility cannot automatically generate a filepath, so the user
+ //must specify one. The user must also burn both types of images for consistency.
+ if(not (burn_fpga and burn_fw))
+ throw std::runtime_error("If the --dont-check-rev option is used, both FPGA and firmware images need to be burned.");
+ if(not (use_custom_fpga and use_custom_fw))
+ throw std::runtime_error("If the --dont-check-rev option is used, the user must specify image filepaths.");
+ }
+ if(overwrite_safe){
+ //If the user specifies overwriting safe images, both image types must be burned for consistency.
+ if(not (burn_fpga and burn_fw))
+ throw std::runtime_error("If the --overwrite-safe option is used, both FPGA and firmware images need to be burned.");
+
+ std::cout << "Are you REALLY sure you want to overwrite the safe images?" << std::endl;
+ std::cout << "This is ALMOST ALWAYS a terrible idea." << std::endl;
+ std::cout << "Type \"yes\" to continue, or anything else to quit: " << std::flush;
+ std::string safe_response;
+ std::getline(std::cin, safe_response);
+ if(safe_response != "yes"){
+ std::cout << "Exiting." << std::endl;
+ return EXIT_SUCCESS;
+ }
+ else std::cout << std::endl; //Formatting
+ }
//Print deprecation messages if necessary
if(vm.count("no_fpga") > 0) std::cout << "WARNING: --no_fpga option is deprecated! Use --no-fpga instead." << std::endl << std::endl;
@@ -546,7 +600,7 @@ int UHD_SAFE_MAIN(int argc, char *argv[]){
//Find USRP and establish connection
std::cout << boost::format("Searching for USRP N2XX with IP address %s.\n") % ip_addr;
udp_simple::sptr udp_transport = udp_simple::make_connected(ip_addr, BOOST_STRINGIZE(USRP2_UDP_UPDATE_PORT));
- boost::uint32_t hw_rev = find_usrp(udp_transport);
+ boost::uint32_t hw_rev = find_usrp(udp_transport, check_rev);
//Check validity of file locations and binaries before attempting burn
std::cout << "Searching for specified images." << std::endl << std::endl;
@@ -556,7 +610,7 @@ int UHD_SAFE_MAIN(int argc, char *argv[]){
#ifndef UHD_PLATFORM_WIN32
if(fpga_path.find("~/") == 0) fpga_path.replace(0,1,getenv("HOME"));
#endif
- validate_custom_fpga_file(filename_map[hw_rev], fpga_path);
+ validate_custom_fpga_file(filename_map[hw_rev], fpga_path, check_rev);
}
else{
std::string default_fpga_filename = str(boost::format("usrp_%s_fpga.bin") % filename_map[hw_rev]);
@@ -571,7 +625,7 @@ int UHD_SAFE_MAIN(int argc, char *argv[]){
#ifndef UHD_PLATFORM_WIN32
if(fw_path.find("~/") == 0) fw_path.replace(0,1,getenv("HOME"));
#endif
- validate_custom_fw_file(filename_map[hw_rev], fw_path);
+ validate_custom_fw_file(filename_map[hw_rev], fw_path, check_rev);
}
else{
std::string default_fw_filename = str(boost::format("usrp_%s_fw.bin") % erase_tail_copy(filename_map[hw_rev],3));
@@ -594,15 +648,15 @@ int UHD_SAFE_MAIN(int argc, char *argv[]){
//Burning images
std::signal(SIGINT, &sig_int_handler);
if(burn_fpga){
- erase_image(udp_transport, false, flash_info[1]);
- write_image(udp_transport, false, fpga_image, flash_info[1], fpga_image_size);
- verify_image(udp_transport, false, fpga_image, flash_info[1], fpga_image_size);
+ erase_image(udp_transport, false, flash_info[1], overwrite_safe);
+ write_image(udp_transport, false, fpga_image, flash_info[1], fpga_image_size, overwrite_safe);
+ verify_image(udp_transport, false, fpga_image, flash_info[1], fpga_image_size, overwrite_safe);
}
if(burn_fpga and burn_fw) std::cout << std::endl; //Formatting
if(burn_fw){
- erase_image(udp_transport, true, flash_info[1]);
- write_image(udp_transport, true, fw_image, flash_info[1], fw_image_size);
- verify_image(udp_transport, true, fw_image, flash_info[1], fw_image_size);
+ erase_image(udp_transport, true, flash_info[1], overwrite_safe);
+ write_image(udp_transport, true, fw_image, flash_info[1], fw_image_size, overwrite_safe);
+ verify_image(udp_transport, true, fw_image, flash_info[1], fw_image_size, overwrite_safe);
}
delete(flash_info);
diff --git a/host/utils/usrp_x3xx_fpga_burner.cpp b/host/utils/usrp_x3xx_fpga_burner.cpp
index ea24c4c15..b849cfb92 100644
--- a/host/utils/usrp_x3xx_fpga_burner.cpp
+++ b/host/utils/usrp_x3xx_fpga_burner.cpp
@@ -118,7 +118,7 @@ boost::uint8_t bitswap(uint8_t b){
}
void list_usrps(){
- device_addrs_t found_devices = device::find(device_addr_t("type=x300"));
+ device_addrs_t found_devices = device::find(device_addr_t("type=x300"), device::USRP);
std::cout << "Available X3x0 devices:" << std::endl;
BOOST_FOREACH(const device_addr_t &dev, found_devices){
@@ -142,7 +142,7 @@ void list_usrps(){
device_addr_t find_usrp_with_ethernet(std::string ip_addr, bool output){
if(output) std::cout << "Attempting to find X3x0 with IP address: " << ip_addr << std::endl;
const device_addr_t dev = device_addr_t(str(boost::format("addr=%s") % ip_addr));
- device_addrs_t found_devices = device::find(dev);
+ device_addrs_t found_devices = device::find(dev, device::USRP);
if(found_devices.size() < 1) {
throw std::runtime_error("Could not find X3x0 with the specified address!");
@@ -161,7 +161,7 @@ device_addr_t find_usrp_with_ethernet(std::string ip_addr, bool output){
device_addr_t find_usrp_with_pcie(std::string resource, bool output){
if(output) std::cout << "Attempting to find X3x0 with resource: " << resource << std::endl;
const device_addr_t dev = device_addr_t(str(boost::format("resource=%s") % resource));
- device_addrs_t found_devices = device::find(dev);
+ device_addrs_t found_devices = device::find(dev, device::USRP);
if(found_devices.size() < 1) {
throw std::runtime_error("Could not find X3x0 with the specified resource!");