diff options
Diffstat (limited to 'host')
18 files changed, 2206 insertions, 2728 deletions
diff --git a/host/lib/usrp/b200/b200_iface.cpp b/host/lib/usrp/b200/b200_iface.cpp index efb9b3a35..820090959 100644 --- a/host/lib/usrp/b200/b200_iface.cpp +++ b/host/lib/usrp/b200/b200_iface.cpp @@ -57,15 +57,11 @@ const static boost::uint8_t B200_VREQ_GET_FPGA_HASH = 0x1D; const static boost::uint8_t B200_VREQ_SET_FW_HASH = 0x1E; const static boost::uint8_t B200_VREQ_GET_FW_HASH = 0x1F; const static boost::uint8_t B200_VREQ_LOOP = 0x22; -const static boost::uint8_t B200_VREQ_SPI_WRITE = 0x32; -const static boost::uint8_t B200_VREQ_SPI_READ = 0x42; const static boost::uint8_t B200_VREQ_FPGA_CONFIG = 0x55; const static boost::uint8_t B200_VREQ_FPGA_RESET = 0x62; const static boost::uint8_t B200_VREQ_GPIF_RESET = 0x72; const static boost::uint8_t B200_VREQ_GET_USB = 0x80; const static boost::uint8_t B200_VREQ_GET_STATUS = 0x83; -const static boost::uint8_t B200_VREQ_AD9361_CTRL_WRITE = 0x90; -const static boost::uint8_t B200_VREQ_AD9361_CTRL_READ = 0x91; const static boost::uint8_t B200_VREQ_FX3_RESET = 0x99; const static boost::uint8_t B200_VREQ_EEPROM_WRITE = 0xBA; const static boost::uint8_t B200_VREQ_EEPROM_READ = 0xBB; @@ -270,82 +266,6 @@ public: return recv_bytes; } - void transact_spi( - unsigned char *tx_data, - size_t num_tx_bits, - unsigned char *rx_data, - size_t num_rx_bits) { - int ret = 0; - boost::uint16_t tx_length = num_tx_bits / 8; - - if(tx_data[0] & 0x80) { - ret = fx3_control_write(B200_VREQ_SPI_WRITE, 0x00, \ - 0x00, tx_data, tx_length); - } else { - ret = fx3_control_write(B200_VREQ_SPI_READ, 0x00, \ - 0x00, tx_data, tx_length); - } - - if (ret < 0) - throw uhd::io_error((boost::format("Failed to write SPI (%d: %s)") % ret % libusb_error_name(ret)).str()); - else if (ret != tx_length) - throw uhd::io_error((boost::format("Short write on write SPI (expecting: %d, returned: %d)") % tx_length % ret).str()); - - - if(num_rx_bits) { - boost::uint16_t total_length = num_rx_bits / 8; - - ret = fx3_control_read(B200_VREQ_LOOP, 0x00, \ - 0x00, rx_data, total_length); - - if (ret < 0) - throw uhd::io_error((boost::format("Failed to readback (%d: %s)") % ret % libusb_error_name(ret)).str()); - else if (ret != total_length) - throw uhd::io_error((boost::format("Short read on readback (expecting: %d, returned: %d)") % total_length % ret).str()); - } - } - - void ad9361_transact(const unsigned char in_buff[AD9361_DISPATCH_PACKET_SIZE], unsigned char out_buff[AD9361_DISPATCH_PACKET_SIZE]) { - const int bytes_to_write = AD9361_DISPATCH_PACKET_SIZE; - const int bytes_to_read = AD9361_DISPATCH_PACKET_SIZE; - const size_t read_retries = 5; - - int ret = fx3_control_write(B200_VREQ_AD9361_CTRL_WRITE, 0x00, 0x00, (unsigned char *)in_buff, bytes_to_write); - if (ret < 0) - throw uhd::io_error((boost::format("Failed to write AD9361 (%d: %s)") % ret % libusb_error_name(ret)).str()); - else if (ret != bytes_to_write) - throw uhd::io_error((boost::format("Short write on write AD9361 (expecting: %d, returned: %d)") % bytes_to_write % ret).str()); - - for (size_t i = 0; i < read_retries; i++) - { - ret = fx3_control_read(B200_VREQ_AD9361_CTRL_READ, 0x00, 0x00, out_buff, bytes_to_read, 3000); - if (ret < 0) - { - if (ret == LIBUSB_ERROR_TIMEOUT) - { - UHD_LOG << (boost::format("Failed to read AD9361 (%d: %s). Retrying (%d of %d)...") - % ret - % libusb_error_name(ret) - % (i+1) - % read_retries - ) << std::endl; - } - else - { - throw uhd::io_error((boost::format("Failed to read AD9361 (%d: %s)") - % ret - % libusb_error_name(ret) - ).str()); - } - } - - if (ret == bytes_to_read) - return; - } - - throw uhd::io_error(str(boost::format("Failed to read complete AD9361 (expecting: %d, last read: %d)") % bytes_to_read % ret)); - } - void load_firmware(const std::string filestring, UHD_UNUSED(bool force) = false) { const char *filename = filestring.c_str(); diff --git a/host/lib/usrp/b200/b200_iface.hpp b/host/lib/usrp/b200/b200_iface.hpp index 18d058386..83adfdd64 100644 --- a/host/lib/usrp/b200/b200_iface.hpp +++ b/host/lib/usrp/b200/b200_iface.hpp @@ -70,10 +70,6 @@ public: //! load an FPGA image virtual boost::uint32_t load_fpga(const std::string filestring) = 0; - //! send SPI through the FX3 - virtual void transact_spi( unsigned char *tx_data, size_t num_tx_bits, \ - unsigned char *rx_data, size_t num_rx_bits) = 0; - virtual void write_eeprom(boost::uint16_t addr, boost::uint16_t offset, const uhd::byte_vector_t &bytes) = 0; virtual uhd::byte_vector_t read_eeprom(boost::uint16_t addr, boost::uint16_t offset, size_t num_bytes) = 0; diff --git a/host/lib/usrp/b200/b200_impl.cpp b/host/lib/usrp/b200/b200_impl.cpp index 7c85176ef..5c9324cb9 100644 --- a/host/lib/usrp/b200/b200_impl.cpp +++ b/host/lib/usrp/b200/b200_impl.cpp @@ -46,6 +46,33 @@ static const boost::posix_time::milliseconds REENUMERATION_TIMEOUT_MS(3000); static const size_t FE1 = 1; static const size_t FE2 = 0; +class b200_ad9361_client_t : public ad9361_params { +public: + ~b200_ad9361_client_t() {} + double get_band_edge(frequency_band_t band) { + switch (band) { + case AD9361_RX_BAND0: return 2.2e9; + case AD9361_RX_BAND1: return 4.0e9; + case AD9361_TX_BAND0: return 2.5e9; + default: return 0; + } + } + clocking_mode_t get_clocking_mode() { + return AD9361_XTAL_N_CLK_PATH; + } + digital_interface_mode_t get_digital_interface_mode() { + return AD9361_DDR_FDD_LVCMOS; + } + digital_interface_delays_t get_digital_interface_timing() { + digital_interface_delays_t delays; + delays.rx_clk_delay = 0; + delays.rx_data_delay = 0xF; + delays.tx_clk_delay = 0; + delays.tx_data_delay = 0xF; + return delays; + } +}; + /*********************************************************************** * Discovery **********************************************************************/ @@ -349,8 +376,8 @@ b200_impl::b200_impl(const device_addr_t &device_addr) // Init codec - turns on clocks //////////////////////////////////////////////////////////////////// UHD_MSG(status) << "Initialize CODEC control..." << std::endl; - _codec_ctrl = ad9361_ctrl::make( - ad9361_ctrl_transport::make_software_spi(AD9361_B200, _spi_iface, AD9361_SLAVENO)); + ad9361_params::sptr client_settings = boost::make_shared<b200_ad9361_client_t>(); + _codec_ctrl = ad9361_ctrl::make_spi(client_settings, _spi_iface, AD9361_SLAVENO); this->reset_codec_dcm(); //////////////////////////////////////////////////////////////////// @@ -682,7 +709,7 @@ void b200_impl::enforce_tick_rate_limits(size_t chan_count, double tick_rate, co } else { - const double max_tick_rate = ((chan_count <= 1) ? AD9361_1_CHAN_CLOCK_RATE_MAX : AD9361_2_CHAN_CLOCK_RATE_MAX); + const double max_tick_rate = ad9361_device_t::AD9361_MAX_CLOCK_RATE / ((chan_count <= 1) ? 1 : 2); if (tick_rate - max_tick_rate >= 1.0) { throw uhd::value_error(boost::str( diff --git a/host/lib/usrp/b200/b200_impl.hpp b/host/lib/usrp/b200/b200_impl.hpp index 5177e295f..155ff699c 100644 --- a/host/lib/usrp/b200/b200_impl.hpp +++ b/host/lib/usrp/b200/b200_impl.hpp @@ -45,7 +45,7 @@ #include <uhd/transport/bounded_buffer.hpp> #include <boost/weak_ptr.hpp> #include "recv_packet_demuxer_3000.hpp" -static const boost::uint8_t B200_FW_COMPAT_NUM_MAJOR = 0x05; +static const boost::uint8_t B200_FW_COMPAT_NUM_MAJOR = 0x06; static const boost::uint8_t B200_FW_COMPAT_NUM_MINOR = 0x00; static const boost::uint16_t B200_FPGA_COMPAT_NUM = 0x04; static const double B200_BUS_CLOCK_RATE = 100e6; @@ -100,7 +100,7 @@ private: //controllers b200_iface::sptr _iface; radio_ctrl_core_3000::sptr _local_ctrl; - ad9361_ctrl::sptr _codec_ctrl; + uhd::usrp::ad9361_ctrl::sptr _codec_ctrl; b200_local_spi_core::sptr _spi_iface; boost::shared_ptr<uhd::usrp::adf4001_ctrl> _adf4001_iface; uhd::gps_ctrl::sptr _gps; diff --git a/host/lib/usrp/common/CMakeLists.txt b/host/lib/usrp/common/CMakeLists.txt index b40c16121..129cc569b 100644 --- a/host/lib/usrp/common/CMakeLists.txt +++ b/host/lib/usrp/common/CMakeLists.txt @@ -33,16 +33,9 @@ LIBUHD_APPEND_SOURCES( ${CMAKE_CURRENT_SOURCE_DIR}/adf4001_ctrl.cpp ${CMAKE_CURRENT_SOURCE_DIR}/adf435x_common.cpp ${CMAKE_CURRENT_SOURCE_DIR}/ad9361_ctrl.cpp - ${CMAKE_CURRENT_SOURCE_DIR}/ad9361_driver/ad9361_impl.c - ${CMAKE_CURRENT_SOURCE_DIR}/ad9361_platform_uhd.cpp - ${CMAKE_CURRENT_SOURCE_DIR}/ad9361_client.cpp + ${CMAKE_CURRENT_SOURCE_DIR}/ad9361_driver/ad9361_device.cpp ${CMAKE_CURRENT_SOURCE_DIR}/apply_corrections.cpp ${CMAKE_CURRENT_SOURCE_DIR}/validate_subdev_spec.cpp ${CMAKE_CURRENT_SOURCE_DIR}/recv_packet_demuxer.cpp ${CMAKE_CURRENT_SOURCE_DIR}/fifo_ctrl_excelsior.cpp ) - -SET_SOURCE_FILES_PROPERTIES( - ${CMAKE_CURRENT_SOURCE_DIR}/ad9361_driver/ad9361_impl.c - PROPERTIES LANGUAGE CXX -)
\ No newline at end of file diff --git a/host/lib/usrp/common/ad9361_client.cpp b/host/lib/usrp/common/ad9361_client.cpp deleted file mode 100644 index c0cc61585..000000000 --- a/host/lib/usrp/common/ad9361_client.cpp +++ /dev/null @@ -1,56 +0,0 @@ -// -// Copyright 2014 Ettus Research LLC -// - -#include <ad9361_client.h> - -double ad9361_client_get_band_edge(ad9361_product_t product, frequency_band_t band) -{ - switch (product) { - default: - switch (band) { - case AD9361_RX_BAND0: return 2.2e9; - case AD9361_RX_BAND1: return 4.0e9; - case AD9361_TX_BAND0: return 2.5e9; - default: return 0; - } - } -} - -clocking_mode_t ad9361_client_get_clocking_mode(ad9361_product_t product) -{ - switch (product) { - case AD9361_B200: - return AD9361_XTAL_N_CLK_PATH; - default: - return AD9361_XTAL_N_CLK_PATH; - } -} - -digital_interface_mode_t ad9361_client_get_digital_interface_mode(ad9361_product_t product) -{ - switch (product) { - case AD9361_B200: return AD9361_DDR_FDD_LVCMOS; - default: return AD9361_DDR_FDD_LVCMOS; - } -} - -digital_interface_delays_t ad9361_client_get_digital_interface_timing(ad9361_product_t product) -{ - digital_interface_delays_t delays; - switch (product) { - case AD9361_B200: - delays.rx_clk_delay = 0; - delays.rx_data_delay = 0xF; - delays.tx_clk_delay = 0; - delays.tx_data_delay = 0xF; - break; - default: - delays.rx_clk_delay = 0; - delays.rx_data_delay = 0; - delays.tx_clk_delay = 0; - delays.tx_data_delay = 0; - break; - } - return delays; -} diff --git a/host/lib/usrp/common/ad9361_ctrl.cpp b/host/lib/usrp/common/ad9361_ctrl.cpp index 4cdfaa6e1..dea18ff06 100644 --- a/host/lib/usrp/common/ad9361_ctrl.cpp +++ b/host/lib/usrp/common/ad9361_ctrl.cpp @@ -3,20 +3,19 @@ // #include "ad9361_ctrl.hpp" -#include "ad9361_transaction.h" -#include "ad9361_dispatch.h" -#include <ad9361_platform.h> #include <uhd/exception.hpp> #include <uhd/types/ranges.hpp> #include <uhd/utils/msg.hpp> #include <uhd/types/serial.hpp> -#include <boost/thread/mutex.hpp> -#include <boost/format.hpp> #include <cstring> +#include <boost/format.hpp> #include <boost/utility.hpp> #include <boost/function.hpp> +#include <boost/make_shared.hpp> +#include <boost/thread.hpp> using namespace uhd; +using namespace uhd::usrp; /*********************************************************************** * AD9361 IO Implementation Classes @@ -25,173 +24,82 @@ using namespace uhd; class ad9361_io_spi : public ad9361_io { public: - ad9361_io_spi(uhd::spi_iface::sptr spi_iface, uint32_t slave_num) : + ad9361_io_spi(uhd::spi_iface::sptr spi_iface, boost::uint32_t slave_num) : _spi_iface(spi_iface), _slave_num(slave_num) { } - uint8_t peek8(uint32_t reg) + virtual ~ad9361_io_spi() { } + + virtual boost::uint8_t peek8(boost::uint32_t reg) { + boost::lock_guard<boost::mutex> lock(_mutex); + uhd::spi_config_t config; config.mosi_edge = uhd::spi_config_t::EDGE_FALL; config.miso_edge = uhd::spi_config_t::EDGE_FALL; //TODO (Ashish): FPGA SPI workaround. This should be EDGE_RISE - uint32_t rd_word = AD9361_SPI_READ_CMD | - ((uint32_t(reg) << AD9361_SPI_ADDR_SHIFT) & AD9361_SPI_ADDR_MASK); + boost::uint32_t rd_word = AD9361_SPI_READ_CMD | + ((boost::uint32_t(reg) << AD9361_SPI_ADDR_SHIFT) & AD9361_SPI_ADDR_MASK); - uint32_t val = (_spi_iface->read_spi(_slave_num, config, rd_word, AD9361_SPI_NUM_BITS)); + boost::uint32_t val = (_spi_iface->read_spi(_slave_num, config, rd_word, AD9361_SPI_NUM_BITS)); val &= 0xFF; - return static_cast<uint8_t>(val); + return static_cast<boost::uint8_t>(val); } - void poke8(uint32_t reg, uint8_t val) + virtual void poke8(boost::uint32_t reg, boost::uint8_t val) { + boost::lock_guard<boost::mutex> lock(_mutex); + uhd::spi_config_t config; config.mosi_edge = uhd::spi_config_t::EDGE_FALL; config.miso_edge = uhd::spi_config_t::EDGE_FALL; //TODO (Ashish): FPGA SPI workaround. This should be EDGE_RISE - uint32_t wr_word = AD9361_SPI_WRITE_CMD | - ((uint32_t(reg) << AD9361_SPI_ADDR_SHIFT) & AD9361_SPI_ADDR_MASK) | - ((uint32_t(val) << AD9361_SPI_DATA_SHIFT) & AD9361_SPI_DATA_MASK); + boost::uint32_t wr_word = AD9361_SPI_WRITE_CMD | + ((boost::uint32_t(reg) << AD9361_SPI_ADDR_SHIFT) & AD9361_SPI_ADDR_MASK) | + ((boost::uint32_t(val) << AD9361_SPI_DATA_SHIFT) & AD9361_SPI_DATA_MASK); _spi_iface->write_spi(_slave_num, config, wr_word, AD9361_SPI_NUM_BITS); - - //TODO (Ashish): Is this necessary? The FX3 firmware does it right now but for - //networked devices, it makes writes blocking which will considerably slow down the programming - peek8(reg); - } -private: - uhd::spi_iface::sptr _spi_iface; - uint32_t _slave_num; - - static const uint32_t AD9361_SPI_WRITE_CMD = 0x00800000; - static const uint32_t AD9361_SPI_READ_CMD = 0x00000000; - static const uint32_t AD9361_SPI_ADDR_MASK = 0x003FFF00; - static const uint32_t AD9361_SPI_ADDR_SHIFT = 8; - static const uint32_t AD9361_SPI_DATA_MASK = 0x000000FF; - static const uint32_t AD9361_SPI_DATA_SHIFT = 0; - static const uint32_t AD9361_SPI_NUM_BITS = 24; -}; - -/*********************************************************************** - * AD9361 Transport Implementation Classes - **********************************************************************/ - -//---------------------------------------------------------------------- -//Over a zero-copy device transport -//---------------------------------------------------------------------- -class ad9361_ctrl_transport_zc_impl : public ad9361_ctrl_transport -{ -public: - ad9361_ctrl_transport_zc_impl(uhd::transport::zero_copy_if::sptr xport) - { - _xport = xport; - } - - void ad9361_transact(const unsigned char in_buff[AD9361_DISPATCH_PACKET_SIZE], unsigned char out_buff[AD9361_DISPATCH_PACKET_SIZE]) - { - { - uhd::transport::managed_send_buffer::sptr buff = _xport->get_send_buff(10.0); - if (not buff or buff->size() < AD9361_DISPATCH_PACKET_SIZE) throw std::runtime_error("ad9361_ctrl_over_zc send timeout"); - std::memcpy(buff->cast<void *>(), in_buff, AD9361_DISPATCH_PACKET_SIZE); - buff->commit(AD9361_DISPATCH_PACKET_SIZE); - } - { - uhd::transport::managed_recv_buffer::sptr buff = _xport->get_recv_buff(10.0); - if (not buff or buff->size() < AD9361_DISPATCH_PACKET_SIZE) throw std::runtime_error("ad9361_ctrl_over_zc recv timeout"); - std::memcpy(out_buff, buff->cast<const void *>(), AD9361_DISPATCH_PACKET_SIZE); - } - } - - uint64_t get_device_handle() - { - return 0; //Unused for zero-copy transport because chip class is in FW - } - -private: - uhd::transport::zero_copy_if::sptr _xport; -}; - -//---------------------------------------------------------------------- -//Over a software transport -//---------------------------------------------------------------------- -class ad9361_ctrl_transport_sw_spi_impl : public ad9361_ctrl_transport -{ -public: - ad9361_ctrl_transport_sw_spi_impl( - ad9361_product_t product, - uhd::spi_iface::sptr spi_iface, - boost::uint32_t slave_num) : - _io_iface(spi_iface, slave_num) - { - _device.product = product; - _device.io_iface = reinterpret_cast<void*>(&_io_iface); - } - - void ad9361_transact(const unsigned char in_buff[AD9361_DISPATCH_PACKET_SIZE], unsigned char out_buff[AD9361_DISPATCH_PACKET_SIZE]) - { - ad9361_dispatch((const char*)in_buff, (char*)out_buff); - } - - uint64_t get_device_handle() - { - return reinterpret_cast<uint64_t>(reinterpret_cast<void*>(&_device)); } private: - ad9361_device_t _device; - ad9361_io_spi _io_iface; + uhd::spi_iface::sptr _spi_iface; + boost::uint32_t _slave_num; + boost::mutex _mutex; + + static const boost::uint32_t AD9361_SPI_WRITE_CMD = 0x00800000; + static const boost::uint32_t AD9361_SPI_READ_CMD = 0x00000000; + static const boost::uint32_t AD9361_SPI_ADDR_MASK = 0x003FFF00; + static const boost::uint32_t AD9361_SPI_ADDR_SHIFT = 8; + static const boost::uint32_t AD9361_SPI_DATA_MASK = 0x000000FF; + static const boost::uint32_t AD9361_SPI_DATA_SHIFT = 0; + static const boost::uint32_t AD9361_SPI_NUM_BITS = 24; }; -//---------------------------------------------------------------------- -// Make an instance of the AD9361 Transport -//---------------------------------------------------------------------- -ad9361_ctrl_transport::sptr ad9361_ctrl_transport::make_zero_copy(uhd::transport::zero_copy_if::sptr xport) -{ - return sptr(new ad9361_ctrl_transport_zc_impl(xport)); -} - -ad9361_ctrl_transport::sptr ad9361_ctrl_transport::make_software_spi( - ad9361_product_t product, - uhd::spi_iface::sptr spi_iface, - boost::uint32_t slave_num) -{ - return sptr(new ad9361_ctrl_transport_sw_spi_impl(product, spi_iface, slave_num)); -} - /*********************************************************************** - * AD9361 Software API Class + * AD9361 Control API Class **********************************************************************/ class ad9361_ctrl_impl : public ad9361_ctrl { public: - ad9361_ctrl_impl(ad9361_ctrl_transport::sptr iface): - _iface(iface), _seq(0) + ad9361_ctrl_impl(ad9361_params::sptr client_settings, ad9361_io::sptr io_iface): + _device(client_settings, io_iface) { - ad9361_transaction_t request; - - request.action = AD9361_ACTION_ECHO; - this->do_transaction(request); - - request.action = AD9361_ACTION_INIT; - this->do_transaction(request); + _device.initialize(); } double set_gain(const std::string &which, const double value) { - ad9361_transaction_t request; - - if (which == "RX1") request.action = AD9361_ACTION_SET_RX1_GAIN; - if (which == "RX2") request.action = AD9361_ACTION_SET_RX2_GAIN; - if (which == "TX1") request.action = AD9361_ACTION_SET_TX1_GAIN; - if (which == "TX2") request.action = AD9361_ACTION_SET_TX2_GAIN; + boost::lock_guard<boost::mutex> lock(_mutex); - ad9361_double_pack(value, request.value.gain); - const ad9361_transaction_t reply = this->do_transaction(request); - return ad9361_double_unpack(reply.value.gain); + ad9361_device_t::direction_t direction = _get_direction_from_antenna(which); + ad9361_device_t::chain_t chain =_get_chain_from_antenna(which); + return _device.set_gain(direction, chain, value); } //! set a new clock rate, return the exact value double set_clock_rate(const double rate) { + boost::lock_guard<boost::mutex> lock(_mutex); + //warning for known trouble rates if (rate > 56e6) UHD_MSG(warning) << boost::format( "The requested clock rate %f MHz may cause slow configuration.\n" @@ -202,110 +110,76 @@ public: const meta_range_t clock_rate_range = ad9361_ctrl::get_clock_rate_range(); const double clipped_rate = clock_rate_range.clip(rate); - ad9361_transaction_t request; - request.action = AD9361_ACTION_SET_CLOCK_RATE; - ad9361_double_pack(clipped_rate, request.value.rate); - const ad9361_transaction_t reply = this->do_transaction(request); - return ad9361_double_unpack(reply.value.rate); + return _device.set_clock_rate(clipped_rate); } //! set which RX and TX chains/antennas are active void set_active_chains(bool tx1, bool tx2, bool rx1, bool rx2) { - boost::uint32_t mask = 0; - if (tx1) mask |= (1 << 0); - if (tx2) mask |= (1 << 1); - if (rx1) mask |= (1 << 2); - if (rx2) mask |= (1 << 3); - - ad9361_transaction_t request; - request.action = AD9361_ACTION_SET_ACTIVE_CHAINS; - request.value.enable_mask = mask; - this->do_transaction(request); + boost::lock_guard<boost::mutex> lock(_mutex); + + _device.set_active_chains(tx1, tx2, rx1, rx2); } //! tune the given frontend, return the exact value double tune(const std::string &which, const double freq) { + boost::lock_guard<boost::mutex> lock(_mutex); + //clip to known bounds const meta_range_t freq_range = ad9361_ctrl::get_rf_freq_range(); const double clipped_freq = freq_range.clip(freq); - - ad9361_transaction_t request; - - if (which[0] == 'R') request.action = AD9361_ACTION_SET_RX_FREQ; - if (which[0] == 'T') request.action = AD9361_ACTION_SET_TX_FREQ; - const double value = ad9361_ctrl::get_rf_freq_range().clip(clipped_freq); - ad9361_double_pack(value, request.value.freq); - const ad9361_transaction_t reply = this->do_transaction(request); - return ad9361_double_unpack(reply.value.freq); + + ad9361_device_t::direction_t direction = _get_direction_from_antenna(which); + return _device.tune(direction, value); } //! turn on/off Catalina's data port loopback void data_port_loopback(const bool on) { - ad9361_transaction_t request; - request.action = AD9361_ACTION_SET_CODEC_LOOP; - request.value.codec_loop = on? 1 : 0; - this->do_transaction(request); - } - - ad9361_transaction_t do_transaction(const ad9361_transaction_t &request) - { - boost::mutex::scoped_lock lock(_mutex); - - //declare in/out buffers - unsigned char in_buff[AD9361_DISPATCH_PACKET_SIZE] = {}; - unsigned char out_buff[AD9361_DISPATCH_PACKET_SIZE] = {}; - - //copy the input transaction - std::memcpy(in_buff, &request, sizeof(request)); - - //fill in other goodies - ad9361_transaction_t *in = (ad9361_transaction_t *)in_buff; - in->handle = _iface->get_device_handle(); - in->version = AD9361_TRANSACTION_VERSION; - in->sequence = _seq++; + boost::lock_guard<boost::mutex> lock(_mutex); - //initialize error message to "no error" - std::memset(in->error_msg, 0, AD9361_TRANSACTION_MAX_ERROR_MSG); - - //transact - _iface->ad9361_transact(in_buff, out_buff); - ad9361_transaction_t *out = (ad9361_transaction_t *)out_buff; - - //sanity checks - UHD_ASSERT_THROW(out->version == in->version); - UHD_ASSERT_THROW(out->sequence == in->sequence); - - //handle errors - const size_t len = my_strnlen(out->error_msg, AD9361_TRANSACTION_MAX_ERROR_MSG); - const std::string error_msg(out->error_msg, len); - if (not error_msg.empty()) throw uhd::runtime_error("[ad9361_ctrl::do_transaction] firmware reported: \"" + error_msg + "\""); - - //return result done! - return *out; + _device.data_port_loopback(on); } private: - //! compat strnlen for platforms that dont have it - static size_t my_strnlen(const char *str, size_t max) + static ad9361_device_t::direction_t _get_direction_from_antenna(const std::string& antenna) + { + std::string sub = antenna.substr(0, 2); + if (sub == "RX") { + return ad9361_device_t::RX; + } else if (sub == "TX") { + return ad9361_device_t::TX; + } else { + throw uhd::runtime_error("ad9361_ctrl got an invalid channel string."); + } + return ad9361_device_t::RX; + } + + static ad9361_device_t::chain_t _get_chain_from_antenna(const std::string& antenna) { - const char *end = (const char *)std::memchr((const void *)str, 0, max); - if (end == NULL) return max; - return (size_t)(end - str); + std::string sub = antenna.substr(2, 1); + if (sub == "1") { + return ad9361_device_t::CHAIN_1; + } else if (sub == "2") { + return ad9361_device_t::CHAIN_2; + } else { + throw uhd::runtime_error("ad9361_ctrl::set_gain got an invalid channel string."); + } + return ad9361_device_t::CHAIN_1; } - ad9361_ctrl_transport::sptr _iface; - size_t _seq; - boost::mutex _mutex; + ad9361_device_t _device; + boost::mutex _mutex; }; //---------------------------------------------------------------------- // Make an instance of the AD9361 Control interface //---------------------------------------------------------------------- -ad9361_ctrl::sptr ad9361_ctrl::make(ad9361_ctrl_transport::sptr iface) +ad9361_ctrl::sptr ad9361_ctrl::make_spi( + ad9361_params::sptr client_settings, uhd::spi_iface::sptr spi_iface, boost::uint32_t slave_num) { - return sptr(new ad9361_ctrl_impl(iface)); + boost::shared_ptr<ad9361_io_spi> spi_io_iface = boost::make_shared<ad9361_io_spi>(spi_iface, slave_num); + return sptr(new ad9361_ctrl_impl(client_settings, spi_io_iface)); } diff --git a/host/lib/usrp/common/ad9361_ctrl.hpp b/host/lib/usrp/common/ad9361_ctrl.hpp index 4a920a73f..f1659f30e 100644 --- a/host/lib/usrp/common/ad9361_ctrl.hpp +++ b/host/lib/usrp/common/ad9361_ctrl.hpp @@ -11,41 +11,8 @@ #include <boost/shared_ptr.hpp> #include <ad9361_device.h> #include <string> -#include <stdint.h> -#include "ad9361_transaction.h" -static const double AD9361_CLOCK_RATE_MAX = 61.44e6; -static const double AD9361_1_CHAN_CLOCK_RATE_MAX = AD9361_CLOCK_RATE_MAX; -static const double AD9361_2_CHAN_CLOCK_RATE_MAX = (AD9361_1_CHAN_CLOCK_RATE_MAX / 2); - -/*********************************************************************** - * AD9361 Transport Interface - **********************************************************************/ -class ad9361_io -{ -public: - virtual uint8_t peek8(uint32_t reg) = 0; - virtual void poke8(uint32_t reg, uint8_t val) = 0; -}; - -/*********************************************************************** - * AD9361 Transport Interface - **********************************************************************/ -class ad9361_ctrl_transport -{ -public: - typedef boost::shared_ptr<ad9361_ctrl_transport> sptr; - - virtual uint64_t get_device_handle() = 0; - virtual void ad9361_transact(const unsigned char in_buff[AD9361_DISPATCH_PACKET_SIZE], unsigned char out_buff[AD9361_DISPATCH_PACKET_SIZE]) = 0; - - static ad9361_ctrl_transport::sptr make_zero_copy( - uhd::transport::zero_copy_if::sptr xport); - static ad9361_ctrl_transport::sptr make_software_spi( - ad9361_product_t product, - uhd::spi_iface::sptr spi_iface, - boost::uint32_t slave_num); -}; +namespace uhd { namespace usrp { /*********************************************************************** * AD9361 Control Interface @@ -56,7 +23,8 @@ public: typedef boost::shared_ptr<ad9361_ctrl> sptr; //! make a new codec control object - static sptr make(ad9361_ctrl_transport::sptr iface); + static sptr make_spi( + ad9361_params::sptr client_settings, uhd::spi_iface::sptr spi_iface, boost::uint32_t slave_num); //! Get a list of gain names for RX or TX static std::vector<std::string> get_gain_names(const std::string &/*which*/) @@ -90,7 +58,7 @@ public: static uhd::meta_range_t get_clock_rate_range(void) { //return uhd::meta_range_t(220e3, 61.44e6); - return uhd::meta_range_t(5e6, AD9361_CLOCK_RATE_MAX); //5 MHz DCM low end + return uhd::meta_range_t(5e6, ad9361_device_t::AD9361_MAX_CLOCK_RATE); //5 MHz DCM low end } //! set the filter bandwidth for the frontend @@ -115,4 +83,6 @@ public: virtual void data_port_loopback(const bool on) = 0; }; +}} + #endif /* INCLUDED_AD9361_CTRL_HPP */ diff --git a/host/lib/usrp/common/ad9361_driver/ad9361_client.h b/host/lib/usrp/common/ad9361_driver/ad9361_client.h index 300fdb2a5..5e848d4c0 100644 --- a/host/lib/usrp/common/ad9361_driver/ad9361_client.h +++ b/host/lib/usrp/common/ad9361_driver/ad9361_client.h @@ -2,15 +2,12 @@ // Copyright 2014 Ettus Research LLC // -#ifndef INCLUDED_AD9361_CLIENT_SETTINGS_H -#define INCLUDED_AD9361_CLIENT_SETTINGS_H +#ifndef INCLUDED_AD9361_CLIENT_H +#define INCLUDED_AD9361_CLIENT_H -#include <stdint.h> -#include <ad9361_device.h> +#include <boost/shared_ptr.hpp> -#ifdef __cplusplus -extern "C" { -#endif +namespace uhd { namespace usrp { /*! * Frequency band settings @@ -21,8 +18,6 @@ typedef enum { AD9361_TX_BAND0 } frequency_band_t; -double ad9361_client_get_band_edge(ad9361_product_t product, frequency_band_t band); - /*! * Clocking mode */ @@ -31,8 +26,6 @@ typedef enum { AD9361_XTAL_N_CLK_PATH } clocking_mode_t; -clocking_mode_t ad9361_client_get_clocking_mode(ad9361_product_t product); - /*! * Digital interface specific */ @@ -41,19 +34,40 @@ typedef enum { AD9361_DDR_FDD_LVDS } digital_interface_mode_t; -digital_interface_mode_t ad9361_client_get_digital_interface_mode(ad9361_product_t product); - +/*! + * Interface timing + */ typedef struct { - uint8_t rx_clk_delay; - uint8_t rx_data_delay; - uint8_t tx_clk_delay; - uint8_t tx_data_delay; + boost::uint8_t rx_clk_delay; + boost::uint8_t rx_data_delay; + boost::uint8_t tx_clk_delay; + boost::uint8_t tx_data_delay; } digital_interface_delays_t; -digital_interface_delays_t ad9361_client_get_digital_interface_timing(ad9361_product_t product); +class ad9361_params { +public: + typedef boost::shared_ptr<ad9361_params> sptr; + + virtual ~ad9361_params() {} + + virtual digital_interface_delays_t get_digital_interface_timing() = 0; + virtual digital_interface_mode_t get_digital_interface_mode() = 0; + virtual clocking_mode_t get_clocking_mode() = 0; + virtual double get_band_edge(frequency_band_t band) = 0; +}; + +class ad9361_io +{ +public: + typedef boost::shared_ptr<ad9361_io> sptr; + + virtual ~ad9361_io() {} + + virtual boost::uint8_t peek8(boost::uint32_t reg) = 0; + virtual void poke8(boost::uint32_t reg, boost::uint8_t val) = 0; +}; + -#ifdef __cplusplus -} -#endif +}} -#endif /* INCLUDED_AD9361_CLIENT_SETTINGS_H */ +#endif /* INCLUDED_AD9361_CLIENT_H */ diff --git a/host/lib/usrp/common/ad9361_driver/ad9361_device.cpp b/host/lib/usrp/common/ad9361_driver/ad9361_device.cpp new file mode 100644 index 000000000..c0cc285e2 --- /dev/null +++ b/host/lib/usrp/common/ad9361_driver/ad9361_device.cpp @@ -0,0 +1,1914 @@ +//
+// Copyright 2014 Ettus Research LLC
+//
+
+#include "ad9361_filter_taps.h"
+#include "ad9361_gain_tables.h"
+#include "ad9361_synth_lut.h"
+#include "ad9361_client.h"
+#include "ad9361_device.h"
+#define _USE_MATH_DEFINES
+#include <cmath>
+#include <uhd/exception.hpp>
+#include <uhd/utils/log.hpp>
+#include <boost/cstdint.hpp>
+#include <boost/date_time/posix_time/posix_time.hpp>
+#include <boost/thread/thread.hpp>
+#include <boost/scoped_array.hpp>
+#include <boost/format.hpp>
+#include <boost/math/special_functions.hpp>
+
+////////////////////////////////////////////////////////////
+// the following macros evaluate to a compile time constant
+// macros By Tom Torfs - donated to the public domain
+
+/* turn a numeric literal into a hex constant
+(avoids problems with leading zeroes)
+8-bit constants max value 0x11111111, always fits in unsigned long
+*/
+#define HEX__(n) 0x##n##LU
+
+/* 8-bit conversion function */
+#define B8__(x) ((x&0x0000000FLU)?1:0) \
++((x&0x000000F0LU)?2:0) \
++((x&0x00000F00LU)?4:0) \
++((x&0x0000F000LU)?8:0) \
++((x&0x000F0000LU)?16:0) \
++((x&0x00F00000LU)?32:0) \
++((x&0x0F000000LU)?64:0) \
++((x&0xF0000000LU)?128:0)
+
+/* for upto 8-bit binary constants */
+#define B8(d) ((unsigned char)B8__(HEX__(d)))
+////////////////////////////////////////////////////////////
+
+
+namespace uhd { namespace usrp {
+
+/* This is a simple comparison for very large double-precision floating
+ * point numbers. It is used to prevent re-tunes for frequencies that are
+ * the same but not 'exactly' because of data precision issues. */
+// TODO: see if we can avoid the need for this function
+int freq_is_nearly_equal(double a, double b) {
+ return std::max(a,b) - std::min(a,b) < 1;
+}
+
+/***********************************************************************
+ * Filter functions
+ **********************************************************************/
+
+/* This function takes in the calculated maximum number of FIR taps, and
+ * returns a number of taps that makes AD9361 happy. */
+int get_num_taps(int max_num_taps) {
+
+ int num_taps = 0;
+ int num_taps_list[] = {16, 32, 48, 64, 80, 96, 112, 128};
+ int i;
+ for(i = 1; i < 8; i++) {
+ if(max_num_taps >= num_taps_list[i]) {
+ continue;
+ } else {
+ num_taps = num_taps_list[i - 1];
+ break;
+ }
+ } if(num_taps == 0) { num_taps = 128; }
+
+ return num_taps;
+}
+
+const double ad9361_device_t::AD9361_MAX_GAIN = 89.75;
+const double ad9361_device_t::AD9361_MAX_CLOCK_RATE = 61.44e6;
+
+
+/* Program either the RX or TX FIR filter.
+ *
+ * The process is the same for both filters, but the function must be told
+ * how many taps are in the filter, and given a vector of the taps
+ * themselves. */
+
+void ad9361_device_t::_program_fir_filter(direction_t direction, int num_taps, boost::uint16_t *coeffs)
+{
+ boost::uint16_t base;
+
+ /* RX and TX filters use largely identical sets of programming registers.
+ Select the appropriate bank of registers here. */
+ if (direction == RX) {
+ base = 0x0f0;
+ } else {
+ base = 0x060;
+ }
+
+ /* Encode number of filter taps for programming register */
+ boost::uint8_t reg_numtaps = (((num_taps / 16) - 1) & 0x07) << 5;
+
+ /* Turn on the filter clock. */
+ _io_iface->poke8(base + 5, reg_numtaps | 0x1a);
+ boost::this_thread::sleep(boost::posix_time::milliseconds(1));
+
+ /* Zero the unused taps just in case they have stale data */
+ int addr;
+ for (addr = num_taps; addr < 128; addr++) {
+ _io_iface->poke8(base + 0, addr);
+ _io_iface->poke8(base + 1, 0x0);
+ _io_iface->poke8(base + 2, 0x0);
+ _io_iface->poke8(base + 5, reg_numtaps | 0x1e);
+ _io_iface->poke8(base + 4, 0x00);
+ _io_iface->poke8(base + 4, 0x00);
+ }
+
+ /* Iterate through indirect programming of filter coeffs using ADI recomended procedure */
+ for (addr = 0; addr < num_taps; addr++) {
+ _io_iface->poke8(base + 0, addr);
+ _io_iface->poke8(base + 1, (coeffs[addr]) & 0xff);
+ _io_iface->poke8(base + 2, (coeffs[addr] >> 8) & 0xff);
+ _io_iface->poke8(base + 5, reg_numtaps | 0x1e);
+ _io_iface->poke8(base + 4, 0x00);
+ _io_iface->poke8(base + 4, 0x00);
+ }
+
+ /* UG-671 states (page 25) (paraphrased and clarified):
+ " After the table has been programmed, write to register BASE+5 with the write bit D2 cleared and D1 high.
+ Then, write to register BASE+5 again with D1 clear, thus ensuring that the write bit resets internally
+ before the clock stops. Wait 4 sample clock periods after setting D2 high while that data writes into the table"
+ */
+
+ _io_iface->poke8(base + 5, reg_numtaps | 0x1A);
+ if (direction == RX) {
+ _io_iface->poke8(base + 5, reg_numtaps | 0x18);
+ _io_iface->poke8(base + 6, 0x02); /* Also turn on -6dB Rx gain here, to stop filter overfow.*/
+ } else {
+ _io_iface->poke8(base + 5, reg_numtaps | 0x19); /* Also turn on -6dB Tx gain here, to stop filter overfow.*/
+ }
+}
+
+
+/* Program the RX FIR Filter. */
+void ad9361_device_t::_setup_rx_fir(size_t num_taps)
+{
+ boost::scoped_array<boost::uint16_t> coeffs(new boost::uint16_t[num_taps]);
+ for (size_t i = 0; i < num_taps; i++) {
+ switch (num_taps) {
+ case 128:
+ coeffs[i] = boost::uint16_t(hb127_coeffs[i]);
+ break;
+ case 96:
+ coeffs[i] = boost::uint16_t(hb95_coeffs[i]);
+ break;
+ case 64:
+ coeffs[i] = boost::uint16_t(hb63_coeffs[i]);
+ break;
+ case 48:
+ coeffs[i] = boost::uint16_t(hb47_coeffs[i]);
+ break;
+ default:
+ throw uhd::runtime_error("[ad9361_device_t] Unsupported number of Rx FIR taps.");
+ }
+ }
+
+ _program_fir_filter(RX, num_taps, coeffs.get());
+}
+
+/* Program the TX FIR Filter. */
+void ad9361_device_t::_setup_tx_fir(size_t num_taps)
+{
+ boost::scoped_array<boost::uint16_t> coeffs(new boost::uint16_t[num_taps]);
+ for (size_t i = 0; i < num_taps; i++) {
+ switch (num_taps) {
+ case 128:
+ coeffs[i] = boost::uint16_t(hb127_coeffs[i]);
+ break;
+ case 96:
+ coeffs[i] = boost::uint16_t(hb95_coeffs[i]);
+ break;
+ case 64:
+ coeffs[i] = boost::uint16_t(hb63_coeffs[i]);
+ break;
+ case 48:
+ coeffs[i] = boost::uint16_t(hb47_coeffs[i]);
+ break;
+ default:
+ throw uhd::runtime_error("[ad9361_device_t] Unsupported number of Tx FIR taps.");
+ }
+ }
+
+ _program_fir_filter(TX, num_taps, coeffs.get());
+}
+
+/***********************************************************************
+ * Calibration functions
+ ***********************************************************************/
+
+/* Calibrate and lock the BBPLL.
+ *
+ * This function should be called anytime the BBPLL is tuned. */
+void ad9361_device_t::_calibrate_lock_bbpll()
+{
+ _io_iface->poke8(0x03F, 0x05); // Start the BBPLL calibration
+ _io_iface->poke8(0x03F, 0x01); // Clear the 'start' bit
+
+ /* Increase BBPLL KV and phase margin. */
+ _io_iface->poke8(0x04c, 0x86);
+ _io_iface->poke8(0x04d, 0x01);
+ _io_iface->poke8(0x04d, 0x05);
+
+ /* Wait for BBPLL lock. */
+ size_t count = 0;
+ while (!(_io_iface->peek8(0x05e) & 0x80)) {
+ if (count > 1000) {
+ throw uhd::runtime_error("[ad9361_device_t] BBPLL not locked");
+ break;
+ }
+ count++;
+ boost::this_thread::sleep(boost::posix_time::milliseconds(2));
+ }
+}
+
+/* Calibrate the synthesizer charge pumps.
+ *
+ * Technically, this calibration only needs to be done once, at device
+ * initialization. */
+void ad9361_device_t::_calibrate_synth_charge_pumps()
+{
+ /* If this function ever gets called, and the ENSM isn't already in the
+ * ALERT state, then something has gone horribly wrong. */
+ if ((_io_iface->peek8(0x017) & 0x0F) != 5) {
+ throw uhd::runtime_error("[ad9361_device_t] AD9361 not in ALERT during cal");
+ }
+
+ /* Calibrate the RX synthesizer charge pump. */
+ size_t count = 0;
+ _io_iface->poke8(0x23d, 0x04);
+ while (!(_io_iface->peek8(0x244) & 0x80)) {
+ if (count > 5) {
+ throw uhd::runtime_error("[ad9361_device_t] RX charge pump cal failure");
+ break;
+ }
+ count++;
+ boost::this_thread::sleep(boost::posix_time::milliseconds(1));
+ }
+ _io_iface->poke8(0x23d, 0x00);
+
+ /* Calibrate the TX synthesizer charge pump. */
+ count = 0;
+ _io_iface->poke8(0x27d, 0x04);
+ while (!(_io_iface->peek8(0x284) & 0x80)) {
+ if (count > 5) {
+ throw uhd::runtime_error("[ad9361_device_t] TX charge pump cal failure");
+ break;
+ }
+ count++;
+ boost::this_thread::sleep(boost::posix_time::milliseconds(1));
+ }
+ _io_iface->poke8(0x27d, 0x00);
+}
+
+/* Calibrate the analog BB RX filter.
+ *
+ * Note that the filter calibration depends heavily on the baseband
+ * bandwidth, so this must be re-done after any change to the RX sample
+ * rate. */
+double ad9361_device_t::_calibrate_baseband_rx_analog_filter()
+{
+ /* For filter tuning, baseband BW is half the complex BW, and must be
+ * between 28e6 and 0.2e6. */
+ double bbbw = _baseband_bw / 2.0;
+ if (bbbw > 28e6) {
+ bbbw = 28e6;
+ } else if (bbbw < 0.20e6) {
+ bbbw = 0.20e6;
+ }
+
+ double rxtune_clk = ((1.4 * bbbw * 2 * M_PI) / M_LN2);
+ _rx_bbf_tunediv = std::min<boost::uint16_t>(511, boost::uint16_t(std::ceil(_bbpll_freq / rxtune_clk)));
+ _regs.bbftune_config = (_regs.bbftune_config & 0xFE)
+ | ((_rx_bbf_tunediv >> 8) & 0x0001);
+
+ double bbbw_mhz = bbbw / 1e6;
+ double temp = ((bbbw_mhz - std::floor(bbbw_mhz)) * 1000) / 7.8125;
+ boost::uint8_t bbbw_khz = std::min<boost::uint8_t>(127, boost::uint8_t(std::floor(temp + 0.5)));
+
+ /* Set corner frequencies and dividers. */
+ _io_iface->poke8(0x1fb, (boost::uint8_t) (bbbw_mhz));
+ _io_iface->poke8(0x1fc, bbbw_khz);
+ _io_iface->poke8(0x1f8, (_rx_bbf_tunediv & 0x00FF));
+ _io_iface->poke8(0x1f9, _regs.bbftune_config);
+
+ /* RX Mix Voltage settings - only change with apps engineer help. */
+ _io_iface->poke8(0x1d5, 0x3f);
+ _io_iface->poke8(0x1c0, 0x03);
+
+ /* Enable RX1 & RX2 filter tuners. */
+ _io_iface->poke8(0x1e2, 0x02);
+ _io_iface->poke8(0x1e3, 0x02);
+
+ /* Run the calibration! */
+ size_t count = 0;
+ _io_iface->poke8(0x016, 0x80);
+ while (_io_iface->peek8(0x016) & 0x80) {
+ if (count > 100) {
+ throw uhd::runtime_error("[ad9361_device_t] RX baseband filter cal FAILURE");
+ break;
+ }
+ count++;
+ boost::this_thread::sleep(boost::posix_time::milliseconds(1));
+ }
+
+ /* Disable RX1 & RX2 filter tuners. */
+ _io_iface->poke8(0x1e2, 0x03);
+ _io_iface->poke8(0x1e3, 0x03);
+
+ return bbbw;
+}
+
+/* Calibrate the analog BB TX filter.
+ *
+ * Note that the filter calibration depends heavily on the baseband
+ * bandwidth, so this must be re-done after any change to the TX sample
+ * rate. */
+double ad9361_device_t::_calibrate_baseband_tx_analog_filter()
+{
+ /* For filter tuning, baseband BW is half the complex BW, and must be
+ * between 28e6 and 0.2e6. */
+ double bbbw = _baseband_bw / 2.0;
+ if (bbbw > 20e6) {
+ bbbw = 20e6;
+ } else if (bbbw < 0.625e6) {
+ bbbw = 0.625e6;
+ }
+
+ double txtune_clk = ((1.6 * bbbw * 2 * M_PI) / M_LN2);
+ boost::uint16_t txbbfdiv = std::min<boost::uint16_t>(511, boost::uint16_t(std::ceil(_bbpll_freq / txtune_clk)));
+ _regs.bbftune_mode = (_regs.bbftune_mode & 0xFE)
+ | ((txbbfdiv >> 8) & 0x0001);
+
+ /* Program the divider values. */
+ _io_iface->poke8(0x0d6, (txbbfdiv & 0x00FF));
+ _io_iface->poke8(0x0d7, _regs.bbftune_mode);
+
+ /* Enable the filter tuner. */
+ _io_iface->poke8(0x0ca, 0x22);
+
+ /* Calibrate! */
+ size_t count = 0;
+ _io_iface->poke8(0x016, 0x40);
+ while (_io_iface->peek8(0x016) & 0x40) {
+ if (count > 100) {
+ throw uhd::runtime_error("[ad9361_device_t] TX baseband filter cal FAILURE");
+ break;
+ }
+
+ count++;
+ boost::this_thread::sleep(boost::posix_time::milliseconds(1));
+ }
+
+ /* Disable the filter tuner. */
+ _io_iface->poke8(0x0ca, 0x26);
+
+ return bbbw;
+}
+
+/* Calibrate the secondary TX filter.
+ *
+ * This filter also depends on the TX sample rate, so if a rate change is
+ * made, the previous calibration will no longer be valid. */
+void ad9361_device_t::_calibrate_secondary_tx_filter()
+{
+ /* For filter tuning, baseband BW is half the complex BW, and must be
+ * between 20e6 and 0.53e6. */
+ double bbbw = _baseband_bw / 2.0;
+ if (bbbw > 20e6) {
+ bbbw = 20e6;
+ } else if (bbbw < 0.53e6) {
+ bbbw = 0.53e6;
+ }
+
+ double bbbw_mhz = bbbw / 1e6;
+
+ /* Start with a resistor value of 100 Ohms. */
+ int res = 100;
+
+ /* Calculate target corner frequency. */
+ double corner_freq = 5 * bbbw_mhz * 2 * M_PI;
+
+ /* Iterate through RC values to determine correct combination. */
+ int cap = 0;
+ int i;
+ for (i = 0; i <= 3; i++) {
+ cap = static_cast<int>(std::floor(0.5 + ((1 / ((corner_freq * res) * 1e6)) * 1e12)))
+ - 12;
+
+ if (cap <= 63) {
+ break;
+ }
+
+ res = res * 2;
+ }
+ if (cap > 63) {
+ cap = 63;
+ }
+
+ boost::uint8_t reg0d0, reg0d1, reg0d2;
+
+ /* Translate baseband bandwidths to register settings. */
+ if ((bbbw_mhz * 2) <= 9) {
+ reg0d0 = 0x59;
+ } else if (((bbbw_mhz * 2) > 9) && ((bbbw_mhz * 2) <= 24)) {
+ reg0d0 = 0x56;
+ } else if ((bbbw_mhz * 2) > 24) {
+ reg0d0 = 0x57;
+ } else {
+ throw uhd::runtime_error("[ad9361_device_t] Cal2ndTxFil: INVALID_CODE_PATH bad bbbw_mhz");
+ reg0d0 = 0x00;
+ }
+
+ /* Translate resistor values to register settings. */
+ if (res == 100) {
+ reg0d1 = 0x0c;
+ } else if (res == 200) {
+ reg0d1 = 0x04;
+ } else if (res == 400) {
+ reg0d1 = 0x03;
+ } else if (res == 800) {
+ reg0d1 = 0x01;
+ } else {
+ reg0d1 = 0x0c;
+ }
+
+ reg0d2 = cap;
+
+ /* Program the above-calculated values. Sweet. */
+ _io_iface->poke8(0x0d2, reg0d2);
+ _io_iface->poke8(0x0d1, reg0d1);
+ _io_iface->poke8(0x0d0, reg0d0);
+}
+
+/* Calibrate the RX TIAs.
+ *
+ * Note that the values in the TIA register, after calibration, vary with
+ * the RX gain settings. */
+void ad9361_device_t::_calibrate_rx_TIAs()
+{
+ boost::uint8_t reg1eb = _io_iface->peek8(0x1eb) & 0x3F;
+ boost::uint8_t reg1ec = _io_iface->peek8(0x1ec) & 0x7F;
+ boost::uint8_t reg1e6 = _io_iface->peek8(0x1e6) & 0x07;
+ boost::uint8_t reg1db = 0x00;
+ boost::uint8_t reg1dc = 0x00;
+ boost::uint8_t reg1dd = 0x00;
+ boost::uint8_t reg1de = 0x00;
+ boost::uint8_t reg1df = 0x00;
+
+ /* For calibration, baseband BW is half the complex BW, and must be
+ * between 28e6 and 0.2e6. */
+ double bbbw = _baseband_bw / 2.0;
+ if (bbbw > 20e6) {
+ bbbw = 20e6;
+ } else if (bbbw < 0.20e6) {
+ bbbw = 0.20e6;
+ }
+ double ceil_bbbw_mhz = std::ceil(bbbw / 1e6);
+
+ /* Do some crazy resistor and capacitor math. */
+ int Cbbf = (reg1eb * 160) + (reg1ec * 10) + 140;
+ int R2346 = 18300 * (reg1e6 & 0x07);
+ double CTIA_fF = (Cbbf * R2346 * 0.56) / 3500;
+
+ /* Translate baseband BW to register settings. */
+ if (ceil_bbbw_mhz <= 3) {
+ reg1db = 0xe0;
+ } else if ((ceil_bbbw_mhz > 3) && (ceil_bbbw_mhz <= 10)) {
+ reg1db = 0x60;
+ } else if (ceil_bbbw_mhz > 10) {
+ reg1db = 0x20;
+ } else {
+ throw uhd::runtime_error("[ad9361_device_t] CalRxTias: INVALID_CODE_PATH bad bbbw_mhz");
+ }
+
+ if (CTIA_fF > 2920) {
+ reg1dc = 0x40;
+ reg1de = 0x40;
+ boost::uint8_t temp = (boost::uint8_t) std::min<boost::uint8_t>(127,
+ boost::uint8_t(std::floor(0.5 + ((CTIA_fF - 400.0) / 320.0))));
+ reg1dd = temp;
+ reg1df = temp;
+ } else {
+ boost::uint8_t temp = boost::uint8_t(std::floor(0.5 + ((CTIA_fF - 400.0) / 40.0)) + 0x40);
+ reg1dc = temp;
+ reg1de = temp;
+ reg1dd = 0;
+ reg1df = 0;
+ }
+
+ /* w00t. Settings calculated. Program them and roll out. */
+ _io_iface->poke8(0x1db, reg1db);
+ _io_iface->poke8(0x1dd, reg1dd);
+ _io_iface->poke8(0x1df, reg1df);
+ _io_iface->poke8(0x1dc, reg1dc);
+ _io_iface->poke8(0x1de, reg1de);
+}
+
+/* Setup the AD9361 ADC.
+ *
+ * There are 40 registers that control the ADC's operation, most of the
+ * values of which must be derived mathematically, dependent on the current
+ * setting of the BBPLL. Note that the order of calculation is critical, as
+ * some of the 40 registers depend on the values in others. */
+void ad9361_device_t::_setup_adc()
+{
+ double bbbw_mhz = (((_bbpll_freq / 1e6) / _rx_bbf_tunediv) * M_LN2) \
+ / (1.4 * 2 * M_PI);
+
+ /* For calibration, baseband BW is half the complex BW, and must be
+ * between 28e6 and 0.2e6. */
+ if(bbbw_mhz > 28) {
+ bbbw_mhz = 28;
+ } else if (bbbw_mhz < 0.20) {
+ bbbw_mhz = 0.20;
+ }
+
+ boost::uint8_t rxbbf_c3_msb = _io_iface->peek8(0x1eb) & 0x3F;
+ boost::uint8_t rxbbf_c3_lsb = _io_iface->peek8(0x1ec) & 0x7F;
+ boost::uint8_t rxbbf_r2346 = _io_iface->peek8(0x1e6) & 0x07;
+
+ double fsadc = _adcclock_freq / 1e6;
+
+ /* Sort out the RC time constant for our baseband bandwidth... */
+ double rc_timeconst = 0.0;
+ if(bbbw_mhz < 18) {
+ rc_timeconst = (1 / ((1.4 * 2 * M_PI) \
+ * (18300 * rxbbf_r2346)
+ * ((160e-15 * rxbbf_c3_msb)
+ + (10e-15 * rxbbf_c3_lsb) + 140e-15)
+ * (bbbw_mhz * 1e6)));
+ } else {
+ rc_timeconst = (1 / ((1.4 * 2 * M_PI) \
+ * (18300 * rxbbf_r2346)
+ * ((160e-15 * rxbbf_c3_msb)
+ + (10e-15 * rxbbf_c3_lsb) + 140e-15)
+ * (bbbw_mhz * 1e6) * (1 + (0.01 * (bbbw_mhz - 18)))));
+ }
+
+ double scale_res = sqrt(1 / rc_timeconst);
+ double scale_cap = sqrt(1 / rc_timeconst);
+
+ double scale_snr = (_adcclock_freq < 80e6) ? 1.0 : 1.584893192;
+ double maxsnr = 640 / 160;
+
+ /* Calculate the values for all 40 settings registers.
+ *
+ * DO NOT TOUCH THIS UNLESS YOU KNOW EXACTLY WHAT YOU ARE DOING. kthx.*/
+ boost::uint8_t data[40];
+ data[0] = 0; data[1] = 0; data[2] = 0; data[3] = 0x24;
+ data[4] = 0x24; data[5] = 0; data[6] = 0;
+ data[7] = std::min<boost::uint8_t>(124, boost::uint8_t(std::floor(-0.5
+ + (80.0 * scale_snr * scale_res
+ * std::min<double>(1.0, sqrt(maxsnr * fsadc / 640.0))))));
+ double data007 = data[7];
+ data[8] = std::min<boost::uint8_t>(255, boost::uint8_t(std::floor(0.5
+ + ((20.0 * (640.0 / fsadc) * ((data007 / 80.0))
+ / (scale_res * scale_cap))))));
+ data[10] = std::min<boost::uint8_t>(127, boost::uint8_t(std::floor(-0.5 + (77.0 * scale_res
+ * std::min<double>(1.0, sqrt(maxsnr * fsadc / 640.0))))));
+ double data010 = data[10];
+ data[9] = std::min<boost::uint8_t>(127, boost::uint8_t(std::floor(0.8 * data010)));
+ data[11] = std::min<boost::uint8_t>(255, boost::uint8_t(std::floor(0.5
+ + (20.0 * (640.0 / fsadc) * ((data010 / 77.0)
+ / (scale_res * scale_cap))))));
+ data[12] = std::min<boost::uint8_t>(127, boost::uint8_t(std::floor(-0.5
+ + (80.0 * scale_res * std::min<double>(1.0,
+ sqrt(maxsnr * fsadc / 640.0))))));
+ double data012 = data[12];
+ data[13] = std::min<boost::uint8_t>(255, boost::uint8_t(std::floor(-1.5
+ + (20.0 * (640.0 / fsadc) * ((data012 / 80.0)
+ / (scale_res * scale_cap))))));
+ data[14] = 21 * boost::uint8_t(std::floor(0.1 * 640.0 / fsadc));
+ data[15] = std::min<boost::uint8_t>(127, boost::uint8_t(1.025 * data007));
+ double data015 = data[15];
+ data[16] = std::min<boost::uint8_t>(127, boost::uint8_t(std::floor((data015
+ * (0.98 + (0.02 * std::max<double>(1.0,
+ (640.0 / fsadc) / maxsnr)))))));
+ data[17] = data[15];
+ data[18] = std::min<boost::uint8_t>(127, boost::uint8_t(0.975 * (data010)));
+ double data018 = data[18];
+ data[19] = std::min<boost::uint8_t>(127, boost::uint8_t(std::floor((data018
+ * (0.98 + (0.02 * std::max<double>(1.0,
+ (640.0 / fsadc) / maxsnr)))))));
+ data[20] = data[18];
+ data[21] = std::min<boost::uint8_t>(127, boost::uint8_t(0.975 * data012));
+ double data021 = data[21];
+ data[22] = std::min<boost::uint8_t>(127, boost::uint8_t(std::floor((data021
+ * (0.98 + (0.02 * std::max<double>(1.0,
+ (640.0 / fsadc) / maxsnr)))))));
+ data[23] = data[21];
+ data[24] = 0x2e;
+ data[25] = boost::uint8_t(std::floor(128.0 + std::min<double>(63.0,
+ 63.0 * (fsadc / 640.0))));
+ data[26] = boost::uint8_t(std::floor(std::min<double>(63.0, 63.0 * (fsadc / 640.0)
+ * (0.92 + (0.08 * (640.0 / fsadc))))));
+ data[27] = boost::uint8_t(std::floor(std::min<double>(63.0,
+ 32.0 * sqrt(fsadc / 640.0))));
+ data[28] = boost::uint8_t(std::floor(128.0 + std::min<double>(63.0,
+ 63.0 * (fsadc / 640.0))));
+ data[29] = boost::uint8_t(std::floor(std::min<double>(63.0,
+ 63.0 * (fsadc / 640.0)
+ * (0.92 + (0.08 * (640.0 / fsadc))))));
+ data[30] = boost::uint8_t(std::floor(std::min<double>(63.0,
+ 32.0 * sqrt(fsadc / 640.0))));
+ data[31] = boost::uint8_t(std::floor(128.0 + std::min<double>(63.0,
+ 63.0 * (fsadc / 640.0))));
+ data[32] = boost::uint8_t(std::floor(std::min<double>(63.0,
+ 63.0 * (fsadc / 640.0) * (0.92
+ + (0.08 * (640.0 / fsadc))))));
+ data[33] = boost::uint8_t(std::floor(std::min<double>(63.0,
+ 63.0 * sqrt(fsadc / 640.0))));
+ data[34] = std::min<boost::uint8_t>(127, boost::uint8_t(std::floor(64.0
+ * sqrt(fsadc / 640.0))));
+ data[35] = 0x40;
+ data[36] = 0x40;
+ data[37] = 0x2c;
+ data[38] = 0x00;
+ data[39] = 0x00;
+
+ /* Program the registers! */
+ for(size_t i = 0; i < 40; i++) {
+ _io_iface->poke8(0x200+i, data[i]);
+ }
+}
+
+/* Calibrate the baseband DC offset.
+ *
+ * Note that this function is called from within the TX quadrature
+ * calibration function! */
+void ad9361_device_t::_calibrate_baseband_dc_offset()
+{
+ _io_iface->poke8(0x193, 0x3f); // Calibration settings
+ _io_iface->poke8(0x190, 0x0f); // Set tracking coefficient
+ //write_ad9361_reg(device, 0x190, /*0x0f*//*0xDF*/0x80*1 | 0x40*1 | (16+8/*+4*/)); // Set tracking coefficient: don't *4 counter, do decim /4, increased gain shift
+ _io_iface->poke8(0x194, 0x01); // More calibration settings
+
+ /* Start that calibration, baby. */
+ size_t count = 0;
+ _io_iface->poke8(0x016, 0x01);
+ while (_io_iface->peek8(0x016) & 0x01) {
+ if (count > 100) {
+ throw uhd::runtime_error("[ad9361_device_t] Baseband DC Offset Calibration Failure");
+ break;
+ }
+ count++;
+ boost::this_thread::sleep(boost::posix_time::milliseconds(5));
+ }
+}
+
+/* Calibrate the RF DC offset.
+ *
+ * Note that this function is called from within the TX quadrature
+ * calibration function. */
+void ad9361_device_t::_calibrate_rf_dc_offset()
+{
+ /* Some settings are frequency-dependent. */
+ if (_rx_freq < 4e9) {
+ _io_iface->poke8(0x186, 0x32); // RF DC Offset count
+ _io_iface->poke8(0x187, 0x24);
+ _io_iface->poke8(0x188, 0x05);
+ } else {
+ _io_iface->poke8(0x186, 0x28); // RF DC Offset count
+ _io_iface->poke8(0x187, 0x34);
+ _io_iface->poke8(0x188, 0x06);
+ }
+
+ _io_iface->poke8(0x185, 0x20); // RF DC Offset wait count
+ _io_iface->poke8(0x18b, 0x83);
+ _io_iface->poke8(0x189, 0x30);
+
+ /* Run the calibration! */
+ size_t count = 0;
+ _io_iface->poke8(0x016, 0x02);
+ while (_io_iface->peek8(0x016) & 0x02) {
+ if (count > 100) {
+ throw uhd::runtime_error("[ad9361_device_t] RF DC Offset Calibration Failure");
+ break;
+ }
+ count++;
+ boost::this_thread::sleep(boost::posix_time::milliseconds(50));
+ }
+}
+
+/* Start the RX quadrature calibration.
+ *
+ * Note that we are using AD9361's 'tracking' feature for RX quadrature
+ * calibration, so once it starts it continues to free-run during operation.
+ * It should be re-run for large frequency changes. */
+void ad9361_device_t::_calibrate_rx_quadrature()
+{
+ /* Configure RX Quadrature calibration settings. */
+ _io_iface->poke8(0x168, 0x03); // Set tone level for cal
+ _io_iface->poke8(0x16e, 0x25); // RX Gain index to use for cal
+ _io_iface->poke8(0x16a, 0x75); // Set Kexp phase
+ _io_iface->poke8(0x16b, 0x15); // Set Kexp amplitude
+ _io_iface->poke8(0x169, 0xcf); // Continuous tracking mode
+ _io_iface->poke8(0x18b, 0xad);
+}
+
+/* TX quadtrature calibration routine.
+ *
+ * The TX quadrature needs to be done twice, once for each TX chain, with
+ * only one register change in between. Thus, this function enacts the
+ * calibrations, and it is called from calibrate_tx_quadrature. */
+void ad9361_device_t::_tx_quadrature_cal_routine() {
+ /* This is a weird process, but here is how it works:
+ * 1) Read the calibrated NCO frequency bits out of 0A3.
+ * 2) Write the two bits to the RX NCO freq part of 0A0.
+ * 3) Re-read 0A3 to get bits [5:0] because maybe they changed?
+ * 4) Update only the TX NCO freq bits in 0A3.
+ * 5) Profit (I hope). */
+ boost::uint8_t reg0a3 = _io_iface->peek8(0x0a3);
+ boost::uint8_t nco_freq = (reg0a3 & 0xC0);
+ _io_iface->poke8(0x0a0, 0x15 | (nco_freq >> 1));
+ reg0a3 = _io_iface->peek8(0x0a3);
+ _io_iface->poke8(0x0a3, (reg0a3 & 0x3F) | nco_freq);
+
+ /* It is possible to reach a configuration that won't operate correctly,
+ * where the two test tones used for quadrature calibration are outside
+ * of the RX BBF, and therefore don't make it to the ADC. We will check
+ * for that scenario here. */
+ double max_cal_freq = (((_baseband_bw * _tfir_factor)
+ * ((nco_freq >> 6) + 1)) / 32) * 2;
+ double bbbw = _baseband_bw / 2.0; // bbbw represents the one-sided BW
+ if (bbbw > 28e6) {
+ bbbw = 28e6;
+ } else if (bbbw < 0.20e6) {
+ bbbw = 0.20e6;
+ }
+ if (max_cal_freq > bbbw)
+ throw uhd::runtime_error("[ad9361_device_t] max_cal_freq > bbbw");
+
+ _io_iface->poke8(0x0a1, 0x7B); // Set tracking coefficient
+ _io_iface->poke8(0x0a9, 0xff); // Cal count
+ _io_iface->poke8(0x0a2, 0x7f); // Cal Kexp
+ _io_iface->poke8(0x0a5, 0x01); // Cal magnitude threshold VVVV
+ _io_iface->poke8(0x0a6, 0x01);
+
+ /* The gain table index used for calibration must be adjusted for the
+ * mid-table to get a TIA index = 1 and LPF index = 0. */
+ if ((_rx_freq >= 1300e6) && (_rx_freq < 4000e6)) {
+ _io_iface->poke8(0x0aa, 0x22); // Cal gain table index
+ } else {
+ _io_iface->poke8(0x0aa, 0x25); // Cal gain table index
+ }
+
+ _io_iface->poke8(0x0a4, 0xf0); // Cal setting conut
+ _io_iface->poke8(0x0ae, 0x00); // Cal LPF gain index (split mode)
+
+ /* First, calibrate the baseband DC offset. */
+ _calibrate_baseband_dc_offset();
+
+ /* Second, calibrate the RF DC offset. */
+ _calibrate_rf_dc_offset();
+
+ /* Now, calibrate the TX quadrature! */
+ size_t count = 0;
+ _io_iface->poke8(0x016, 0x10);
+ while (_io_iface->peek8(0x016) & 0x10) {
+ if (count > 100) {
+ throw uhd::runtime_error("[ad9361_device_t] TX Quadrature Calibration Failure");
+ break;
+ }
+ count++;
+ boost::this_thread::sleep(boost::posix_time::milliseconds(10));
+ }
+}
+
+/* Run the TX quadrature calibration.
+ *
+ * Note that from within this function we are also triggering the baseband
+ * and RF DC calibrations. */
+void ad9361_device_t::_calibrate_tx_quadrature()
+{
+ /* Make sure we are, in fact, in the ALERT state. If not, something is
+ * terribly wrong in the driver execution flow. */
+ if ((_io_iface->peek8(0x017) & 0x0F) != 5) {
+ throw uhd::runtime_error("[ad9361_device_t] TX Quad Cal started, but not in ALERT");
+ }
+
+ /* Turn off free-running and continuous calibrations. Note that this
+ * will get turned back on at the end of the RX calibration routine. */
+ _io_iface->poke8(0x169, 0xc0);
+
+ /* This calibration must be done in a certain order, and for both TX_A
+ * and TX_B, separately. Store the original setting so that we can
+ * restore it later. */
+ boost::uint8_t orig_reg_inputsel = _regs.inputsel;
+
+ /***********************************************************************
+ * TX1/2-A Calibration
+ **********************************************************************/
+ _regs.inputsel = _regs.inputsel & 0xBF;
+ _io_iface->poke8(0x004, _regs.inputsel);
+
+ _tx_quadrature_cal_routine();
+
+ /***********************************************************************
+ * TX1/2-B Calibration
+ **********************************************************************/
+ _regs.inputsel = _regs.inputsel | 0x40;
+ _io_iface->poke8(0x004, _regs.inputsel);
+
+ _tx_quadrature_cal_routine();
+
+ /***********************************************************************
+ * fin
+ **********************************************************************/
+ _regs.inputsel = orig_reg_inputsel;
+ _io_iface->poke8(0x004, orig_reg_inputsel);
+}
+
+
+/***********************************************************************
+ * Other Misc Setup Functions
+ ***********************************************************************/
+
+/* Program the mixer gain table.
+ *
+ * Note that this table is fixed for all frequency settings. */
+void ad9361_device_t::_program_mixer_gm_subtable()
+{
+ boost::uint8_t gain[] = { 0x78, 0x74, 0x70, 0x6C, 0x68, 0x64, 0x60, 0x5C, 0x58,
+ 0x54, 0x50, 0x4C, 0x48, 0x30, 0x18, 0x00 };
+ boost::uint8_t gm[] = { 0x00, 0x0D, 0x15, 0x1B, 0x21, 0x25, 0x29, 0x2C, 0x2F, 0x31,
+ 0x33, 0x34, 0x35, 0x3A, 0x3D, 0x3E };
+
+ /* Start the clock. */
+ _io_iface->poke8(0x13f, 0x02);
+
+ /* Program the GM Sub-table. */
+ int i;
+ for (i = 15; i >= 0; i--) {
+ _io_iface->poke8(0x138, i);
+ _io_iface->poke8(0x139, gain[(15 - i)]);
+ _io_iface->poke8(0x13A, 0x00);
+ _io_iface->poke8(0x13B, gm[(15 - i)]);
+ _io_iface->poke8(0x13F, 0x06);
+ _io_iface->poke8(0x13C, 0x00);
+ _io_iface->poke8(0x13C, 0x00);
+ }
+
+ /* Clear write bit and stop clock. */
+ _io_iface->poke8(0x13f, 0x02);
+ _io_iface->poke8(0x13C, 0x00);
+ _io_iface->poke8(0x13C, 0x00);
+ _io_iface->poke8(0x13f, 0x00);
+}
+
+/* Program the gain table.
+ *
+ * There are three different gain tables for different frequency ranges! */
+void ad9361_device_t::_program_gain_table() {
+ /* Figure out which gain table we should be using for our current
+ * frequency band. */
+ boost::uint8_t (*gain_table)[5] = NULL;
+ boost::uint8_t new_gain_table;
+ if (_rx_freq < 1300e6) {
+ gain_table = gain_table_sub_1300mhz;
+ new_gain_table = 1;
+ } else if (_rx_freq < 4e9) {
+ gain_table = gain_table_1300mhz_to_4000mhz;
+ new_gain_table = 2;
+ } else if (_rx_freq <= 6e9) {
+ gain_table = gain_table_4000mhz_to_6000mhz;
+ new_gain_table = 3;
+ } else {
+ throw uhd::runtime_error("[ad9361_device_t] Wrong _rx_freq value");
+ new_gain_table = 1;
+ }
+
+ /* Only re-program the gain table if there has been a band change. */
+ if (_curr_gain_table == new_gain_table) {
+ return;
+ } else {
+ _curr_gain_table = new_gain_table;
+ }
+
+ /* Okay, we have to program a new gain table. Sucks, brah. Start the
+ * gain table clock. */
+ _io_iface->poke8(0x137, 0x1A);
+
+ /* IT'S PROGRAMMING TIME. */
+ boost::uint8_t index = 0;
+ for (; index < 77; index++) {
+ _io_iface->poke8(0x130, index);
+ _io_iface->poke8(0x131, gain_table[index][1]);
+ _io_iface->poke8(0x132, gain_table[index][2]);
+ _io_iface->poke8(0x133, gain_table[index][3]);
+ _io_iface->poke8(0x137, 0x1E);
+ _io_iface->poke8(0x134, 0x00);
+ _io_iface->poke8(0x134, 0x00);
+ }
+
+ /* Everything above the 77th index is zero. */
+ for (; index < 91; index++) {
+ _io_iface->poke8(0x130, index);
+ _io_iface->poke8(0x131, 0x00);
+ _io_iface->poke8(0x132, 0x00);
+ _io_iface->poke8(0x133, 0x00);
+ _io_iface->poke8(0x137, 0x1E);
+ _io_iface->poke8(0x134, 0x00);
+ _io_iface->poke8(0x134, 0x00);
+ }
+
+ /* Clear the write bit and stop the gain clock. */
+ _io_iface->poke8(0x137, 0x1A);
+ _io_iface->poke8(0x134, 0x00);
+ _io_iface->poke8(0x134, 0x00);
+ _io_iface->poke8(0x137, 0x00);
+}
+
+/* Setup gain control registers.
+ *
+ * This really only needs to be done once, at initialization. */
+void ad9361_device_t::_setup_gain_control()
+{
+ _io_iface->poke8(0x0FA, 0xE0); // Gain Control Mode Select
+ _io_iface->poke8(0x0FB, 0x08); // Table, Digital Gain, Man Gain Ctrl
+ _io_iface->poke8(0x0FC, 0x23); // Incr Step Size, ADC Overrange Size
+ _io_iface->poke8(0x0FD, 0x4C); // Max Full/LMT Gain Table Index
+ _io_iface->poke8(0x0FE, 0x44); // Decr Step Size, Peak Overload Time
+ _io_iface->poke8(0x100, 0x6F); // Max Digital Gain
+ _io_iface->poke8(0x104, 0x2F); // ADC Small Overload Threshold
+ _io_iface->poke8(0x105, 0x3A); // ADC Large Overload Threshold
+ _io_iface->poke8(0x107, 0x31); // Large LMT Overload Threshold
+ _io_iface->poke8(0x108, 0x39); // Small LMT Overload Threshold
+ _io_iface->poke8(0x109, 0x23); // Rx1 Full/LMT Gain Index
+ _io_iface->poke8(0x10A, 0x58); // Rx1 LPF Gain Index
+ _io_iface->poke8(0x10B, 0x00); // Rx1 Digital Gain Index
+ _io_iface->poke8(0x10C, 0x23); // Rx2 Full/LMT Gain Index
+ _io_iface->poke8(0x10D, 0x18); // Rx2 LPF Gain Index
+ _io_iface->poke8(0x10E, 0x00); // Rx2 Digital Gain Index
+ _io_iface->poke8(0x114, 0x30); // Low Power Threshold
+ _io_iface->poke8(0x11A, 0x27); // Initial LMT Gain Limit
+ _io_iface->poke8(0x081, 0x00); // Tx Symbol Gain Control
+}
+
+/* Setup the RX or TX synthesizers.
+ *
+ * This setup depends on a fixed look-up table, which is stored in an
+ * included header file. The table is indexed based on the passed VCO rate.
+ */
+void ad9361_device_t::_setup_synth(direction_t direction, double vcorate)
+{
+ /* The vcorates in the vco_index array represent lower boundaries for
+ * rates. Once we find a match, we use that index to look-up the rest of
+ * the register values in the LUT. */
+ int vcoindex = 0;
+ for (size_t i = 0; i < 53; i++) {
+ vcoindex = i;
+ if (vcorate > vco_index[i]) {
+ break;
+ }
+ }
+ if (vcoindex > 53)
+ throw uhd::runtime_error("[ad9361_device_t] vcoindex > 53");
+
+ /* Parse the values out of the LUT based on our calculated index... */
+ boost::uint8_t vco_output_level = synth_cal_lut[vcoindex][0];
+ boost::uint8_t vco_varactor = synth_cal_lut[vcoindex][1];
+ boost::uint8_t vco_bias_ref = synth_cal_lut[vcoindex][2];
+ boost::uint8_t vco_bias_tcf = synth_cal_lut[vcoindex][3];
+ boost::uint8_t vco_cal_offset = synth_cal_lut[vcoindex][4];
+ boost::uint8_t vco_varactor_ref = synth_cal_lut[vcoindex][5];
+ boost::uint8_t charge_pump_curr = synth_cal_lut[vcoindex][6];
+ boost::uint8_t loop_filter_c2 = synth_cal_lut[vcoindex][7];
+ boost::uint8_t loop_filter_c1 = synth_cal_lut[vcoindex][8];
+ boost::uint8_t loop_filter_r1 = synth_cal_lut[vcoindex][9];
+ boost::uint8_t loop_filter_c3 = synth_cal_lut[vcoindex][10];
+ boost::uint8_t loop_filter_r3 = synth_cal_lut[vcoindex][11];
+
+ /* ... annnd program! */
+ if (direction == RX) {
+ _io_iface->poke8(0x23a, 0x40 | vco_output_level);
+ _io_iface->poke8(0x239, 0xC0 | vco_varactor);
+ _io_iface->poke8(0x242, vco_bias_ref | (vco_bias_tcf << 3));
+ _io_iface->poke8(0x238, (vco_cal_offset << 3));
+ _io_iface->poke8(0x245, 0x00);
+ _io_iface->poke8(0x251, vco_varactor_ref);
+ _io_iface->poke8(0x250, 0x70);
+ _io_iface->poke8(0x23b, 0x80 | charge_pump_curr);
+ _io_iface->poke8(0x23e, loop_filter_c1 | (loop_filter_c2 << 4));
+ _io_iface->poke8(0x23f, loop_filter_c3 | (loop_filter_r1 << 4));
+ _io_iface->poke8(0x240, loop_filter_r3);
+ } else if (direction == TX) {
+ _io_iface->poke8(0x27a, 0x40 | vco_output_level);
+ _io_iface->poke8(0x279, 0xC0 | vco_varactor);
+ _io_iface->poke8(0x282, vco_bias_ref | (vco_bias_tcf << 3));
+ _io_iface->poke8(0x278, (vco_cal_offset << 3));
+ _io_iface->poke8(0x285, 0x00);
+ _io_iface->poke8(0x291, vco_varactor_ref);
+ _io_iface->poke8(0x290, 0x70);
+ _io_iface->poke8(0x27b, 0x80 | charge_pump_curr);
+ _io_iface->poke8(0x27e, loop_filter_c1 | (loop_filter_c2 << 4));
+ _io_iface->poke8(0x27f, loop_filter_c3 | (loop_filter_r1 << 4));
+ _io_iface->poke8(0x280, loop_filter_r3);
+ } else {
+ throw uhd::runtime_error("[ad9361_device_t] [_setup_synth] INVALID_CODE_PATH");
+ }
+}
+
+
+/* Tune the baseband VCO.
+ *
+ * This clock signal is what gets fed to the ADCs and DACs. This function is
+ * not exported outside of this file, and is invoked based on the rate
+ * fed to the public set_clock_rate function. */
+double ad9361_device_t::_tune_bbvco(const double rate)
+{
+ UHD_LOG << boost::format("[ad9361_device_t::_tune_bbvco] rate=%.10f\n") % rate;
+
+ /* Let's not re-tune to the same frequency over and over... */
+ if (freq_is_nearly_equal(rate, _req_coreclk)) {
+ return _adcclock_freq;
+ }
+
+ _req_coreclk = rate;
+
+ const double fref = 40e6;
+ const int modulus = 2088960;
+ const double vcomax = 1430e6;
+ const double vcomin = 672e6;
+ double vcorate;
+ int vcodiv;
+
+ /* Iterate over VCO dividers until appropriate divider is found. */
+ int i = 1;
+ for (; i <= 6; i++) {
+ vcodiv = 1 << i;
+ vcorate = rate * vcodiv;
+
+ if (vcorate >= vcomin && vcorate <= vcomax)
+ break;
+ }
+ if (i == 7)
+ throw uhd::runtime_error("[ad9361_device_t] _tune_bbvco: wrong vcorate");
+
+ UHD_LOG << boost::format("[ad9361_device_t::_tune_bbvco] vcodiv=%d vcorate=%.10f\n") % vcodiv % vcorate;
+ /* Fo = Fref * (Nint + Nfrac / mod) */
+ int nint = static_cast<int>(vcorate / fref);
+ UHD_LOG << boost::format("[ad9361_device_t::_tune_bbvco] (nint)=%.10f\n") % (vcorate / fref);
+ int nfrac = static_cast<int>(boost::math::round(((vcorate / fref) - (double) nint) * (double) modulus));
+ UHD_LOG << boost::format("[ad9361_device_t::_tune_bbvco] (nfrac)=%.10f\n") % (((vcorate / fref) - (double) nint) * (double) modulus);
+ UHD_LOG << boost::format("[ad9361_device_t::_tune_bbvco] nint=%d nfrac=%d\n") % nint % nfrac;
+ double actual_vcorate = fref
+ * ((double) nint + ((double) nfrac / (double) modulus));
+
+ /* Scale CP current according to VCO rate */
+ const double icp_baseline = 150e-6;
+ const double freq_baseline = 1280e6;
+ double icp = icp_baseline * (actual_vcorate / freq_baseline);
+ int icp_reg = static_cast<int>(icp / 25e-6) - 1;
+
+ _io_iface->poke8(0x045, 0x00); // REFCLK / 1 to BBPLL
+ _io_iface->poke8(0x046, icp_reg & 0x3F); // CP current
+ _io_iface->poke8(0x048, 0xe8); // BBPLL loop filters
+ _io_iface->poke8(0x049, 0x5b); // BBPLL loop filters
+ _io_iface->poke8(0x04a, 0x35); // BBPLL loop filters
+
+ _io_iface->poke8(0x04b, 0xe0);
+ _io_iface->poke8(0x04e, 0x10); // Max accuracy
+
+ _io_iface->poke8(0x043, nfrac & 0xFF); // Nfrac[7:0]
+ _io_iface->poke8(0x042, (nfrac >> 8) & 0xFF); // Nfrac[15:8]
+ _io_iface->poke8(0x041, (nfrac >> 16) & 0xFF); // Nfrac[23:16]
+ _io_iface->poke8(0x044, nint); // Nint
+
+ _calibrate_lock_bbpll();
+
+ _regs.bbpll = (_regs.bbpll & 0xF8) | i;
+
+ _bbpll_freq = actual_vcorate;
+ _adcclock_freq = (actual_vcorate / vcodiv);
+
+ return _adcclock_freq;
+}
+
+/* This function re-programs all of the gains in the system.
+ *
+ * Because the gain values match to different gain indices based on the
+ * current operating band, this function can be called to update all gain
+ * settings to the appropriate index after a re-tune. */
+void ad9361_device_t::_reprogram_gains()
+{
+ set_gain(RX, CHAIN_1,_rx1_gain);
+ set_gain(RX, CHAIN_2,_rx2_gain);
+ set_gain(TX, CHAIN_1,_tx1_gain);
+ set_gain(TX, CHAIN_2,_tx2_gain);
+}
+
+/* This is the internal tune function, not available for a host call.
+ *
+ * Calculate the VCO settings for the requested frquency, and then either
+ * tune the RX or TX VCO. */
+double ad9361_device_t::_tune_helper(direction_t direction, const double value)
+{
+ /* The RFPLL runs from 6 GHz - 12 GHz */
+ const double fref = 80e6;
+ const int modulus = 8388593;
+ const double vcomax = 12e9;
+ const double vcomin = 6e9;
+ double vcorate;
+ int vcodiv;
+
+ /* Iterate over VCO dividers until appropriate divider is found. */
+ int i;
+ for (i = 0; i <= 6; i++) {
+ vcodiv = 2 << i;
+ vcorate = value * vcodiv;
+ if (vcorate >= vcomin && vcorate <= vcomax)
+ break;
+ }
+ if (i == 7)
+ throw uhd::runtime_error("[ad9361_device_t] RFVCO can't find valid VCO rate!");
+
+ int nint = static_cast<int>(vcorate / fref);
+ int nfrac = static_cast<int>(((vcorate / fref) - nint) * modulus);
+
+ double actual_vcorate = fref * (nint + (double) (nfrac) / modulus);
+ double actual_lo = actual_vcorate / vcodiv;
+
+ if (direction == RX) {
+
+ _req_rx_freq = value;
+
+ /* Set band-specific settings. */
+ if (value < _client_params->get_band_edge(AD9361_RX_BAND0)) {
+ _regs.inputsel = (_regs.inputsel & 0xC0) | 0x30;
+ } else if ((value
+ >= _client_params->get_band_edge(AD9361_RX_BAND0))
+ && (value
+ < _client_params->get_band_edge(AD9361_RX_BAND1))) {
+ _regs.inputsel = (_regs.inputsel & 0xC0) | 0x0C;
+ } else if ((value
+ >= _client_params->get_band_edge(AD9361_RX_BAND1))
+ && (value <= 6e9)) {
+ _regs.inputsel = (_regs.inputsel & 0xC0) | 0x03;
+ } else {
+ throw uhd::runtime_error("[ad9361_device_t] [_tune_helper] INVALID_CODE_PATH");
+ }
+
+ _io_iface->poke8(0x004, _regs.inputsel);
+
+ /* Store vcodiv setting. */
+ _regs.vcodivs = (_regs.vcodivs & 0xF0) | (i & 0x0F);
+
+ /* Setup the synthesizer. */
+ _setup_synth(RX, actual_vcorate);
+
+ /* Tune!!!! */
+ _io_iface->poke8(0x233, nfrac & 0xFF);
+ _io_iface->poke8(0x234, (nfrac >> 8) & 0xFF);
+ _io_iface->poke8(0x235, (nfrac >> 16) & 0xFF);
+ _io_iface->poke8(0x232, (nint >> 8) & 0xFF);
+ _io_iface->poke8(0x231, nint & 0xFF);
+ _io_iface->poke8(0x005, _regs.vcodivs);
+
+ /* Lock the PLL! */
+ boost::this_thread::sleep(boost::posix_time::milliseconds(2));
+ if ((_io_iface->peek8(0x247) & 0x02) == 0) {
+ throw uhd::runtime_error("[ad9361_device_t] RX PLL NOT LOCKED");
+ }
+
+ _rx_freq = actual_lo;
+
+ return actual_lo;
+
+ } else {
+
+ _req_tx_freq = value;
+
+ /* Set band-specific settings. */
+ if (value < _client_params->get_band_edge(AD9361_TX_BAND0)) {
+ _regs.inputsel = _regs.inputsel | 0x40;
+ } else if ((value
+ >= _client_params->get_band_edge(AD9361_TX_BAND0))
+ && (value <= 6e9)) {
+ _regs.inputsel = _regs.inputsel & 0xBF;
+ } else {
+ throw uhd::runtime_error("[ad9361_device_t] [_tune_helper] INVALID_CODE_PATH");
+ }
+
+ _io_iface->poke8(0x004, _regs.inputsel);
+
+ /* Store vcodiv setting. */
+ _regs.vcodivs = (_regs.vcodivs & 0x0F) | ((i & 0x0F) << 4);
+
+ /* Setup the synthesizer. */
+ _setup_synth(TX, actual_vcorate);
+
+ /* Tune it, homey. */
+ _io_iface->poke8(0x273, nfrac & 0xFF);
+ _io_iface->poke8(0x274, (nfrac >> 8) & 0xFF);
+ _io_iface->poke8(0x275, (nfrac >> 16) & 0xFF);
+ _io_iface->poke8(0x272, (nint >> 8) & 0xFF);
+ _io_iface->poke8(0x271, nint & 0xFF);
+ _io_iface->poke8(0x005, _regs.vcodivs);
+
+ /* Lock the PLL! */
+ boost::this_thread::sleep(boost::posix_time::milliseconds(2));
+ if ((_io_iface->peek8(0x287) & 0x02) == 0) {
+ throw uhd::runtime_error("[ad9361_device_t] TX PLL NOT LOCKED");
+ }
+
+ _tx_freq = actual_lo;
+
+ return actual_lo;
+ }
+}
+
+/* Configure the various clock / sample rates in the RX and TX chains.
+ *
+ * Functionally, this function configures AD9361's RX and TX rates. For
+ * a requested TX & RX rate, it sets the interpolation & decimation filters,
+ * and tunes the VCO that feeds the ADCs and DACs.
+ */
+double ad9361_device_t::_setup_rates(const double rate)
+{
+ /* If we make it into this function, then we are tuning to a new rate.
+ * Store the new rate. */
+ _req_clock_rate = rate;
+
+ /* Set the decimation and interpolation values in the RX and TX chains.
+ * This also switches filters in / out. Note that all transmitters and
+ * receivers have to be turned on for the calibration portion of
+ * bring-up, and then they will be switched out to reflect the actual
+ * user-requested antenna selections. */
+ int divfactor = 0;
+ _tfir_factor = 0;
+ if (rate < 0.33e6) {
+ // RX1 + RX2 enabled, 3, 2, 2, 4
+ _regs.rxfilt = B8(11101111);
+
+ // TX1 + TX2 enabled, 3, 2, 2, 4
+ _regs.txfilt = B8(11101111);
+
+ divfactor = 48;
+ _tfir_factor = 2;
+ } else if (rate < 0.66e6) {
+ // RX1 + RX2 enabled, 2, 2, 2, 4
+ _regs.rxfilt = B8(11011111);
+
+ // TX1 + TX2 enabled, 2, 2, 2, 4
+ _regs.txfilt = B8(11011111);
+
+ divfactor = 32;
+ _tfir_factor = 2;
+ } else if (rate <= 20e6) {
+ // RX1 + RX2 enabled, 2, 2, 2, 2
+ _regs.rxfilt = B8(11011110);
+
+ // TX1 + TX2 enabled, 2, 2, 2, 2
+ _regs.txfilt = B8(11011110);
+
+ divfactor = 16;
+ _tfir_factor = 2;
+ } else if ((rate > 20e6) && (rate < 23e6)) {
+ // RX1 + RX2 enabled, 3, 2, 2, 2
+ _regs.rxfilt = B8(11101110);
+
+ // TX1 + TX2 enabled, 3, 1, 2, 2
+ _regs.txfilt = B8(11100110);
+
+ divfactor = 24;
+ _tfir_factor = 2;
+ } else if ((rate >= 23e6) && (rate < 41e6)) {
+ // RX1 + RX2 enabled, 2, 2, 2, 2
+ _regs.rxfilt = B8(11011110);
+
+ // TX1 + TX2 enabled, 1, 2, 2, 2
+ _regs.txfilt = B8(11001110);
+
+ divfactor = 16;
+ _tfir_factor = 2;
+ } else if ((rate >= 41e6) && (rate <= 56e6)) {
+ // RX1 + RX2 enabled, 3, 1, 2, 2
+ _regs.rxfilt = B8(11100110);
+
+ // TX1 + TX2 enabled, 3, 1, 1, 2
+ _regs.txfilt = B8(11100010);
+
+ divfactor = 12;
+ _tfir_factor = 2;
+ } else if ((rate > 56e6) && (rate <= 61.44e6)) {
+ // RX1 + RX2 enabled, 3, 1, 1, 2
+ _regs.rxfilt = B8(11100010);
+
+ // TX1 + TX2 enabled, 3, 1, 1, 1
+ _regs.txfilt = B8(11100001);
+
+ divfactor = 6;
+ _tfir_factor = 1;
+ } else {
+ // should never get in here
+ throw uhd::runtime_error("[ad9361_device_t] [_setup_rates] INVALID_CODE_PATH");
+ }
+
+ UHD_LOG << boost::format("[ad9361_device_t::_setup_rates] divfactor=%d\n") % divfactor;
+
+ /* Tune the BBPLL to get the ADC and DAC clocks. */
+ const double adcclk = _tune_bbvco(rate * divfactor);
+ double dacclk = adcclk;
+
+ /* The DAC clock must be <= 336e6, and is either the ADC clock or 1/2 the
+ * ADC clock.*/
+ if (adcclk > 336e6) {
+ /* Make the DAC clock = ADC/2, and bypass the TXFIR. */
+ _regs.bbpll = _regs.bbpll | 0x08;
+ dacclk = adcclk / 2.0;
+ } else {
+ _regs.bbpll = _regs.bbpll & 0xF7;
+ }
+
+ /* Set the dividers / interpolators in AD9361. */
+ _io_iface->poke8(0x002, _regs.txfilt);
+ _io_iface->poke8(0x003, _regs.rxfilt);
+ _io_iface->poke8(0x004, _regs.inputsel);
+ _io_iface->poke8(0x00A, _regs.bbpll);
+
+ UHD_LOG << boost::format("[ad9361_device_t::_setup_rates] adcclk=%f\n") % adcclk;
+ _baseband_bw = (adcclk / divfactor);
+
+ /*
+ The Tx & Rx FIR calculate 16 taps per clock cycle. This limits the number of available taps to the ratio of DAC_CLK/ADC_CLK
+ to the input data rate multiplied by 16. For example, if the input data rate is 25 MHz and DAC_CLK is 100 MHz,
+ then the ratio of DAC_CLK to the input data rate is 100/25 or 4. In this scenario, the total number of taps available is 64.
+
+ Also, whilst the Rx FIR filter always has memory available for 128 taps, the Tx FIR Filter can only support a maximum length of 64 taps
+ in 1x interpolation mode, and 128 taps in 2x & 4x modes.
+ */
+ const size_t max_tx_taps = std::min<size_t>(
+ std::min<size_t>((16 * (int)((dacclk / rate) + 0.5)), 128),
+ (_tfir_factor == 1) ? 64 : 128);
+ const size_t max_rx_taps = std::min<size_t>((16 * (size_t)((adcclk / rate) + 0.5)),
+ 128);
+
+ const size_t num_tx_taps = get_num_taps(max_tx_taps);
+ const size_t num_rx_taps = get_num_taps(max_rx_taps);
+
+ _setup_tx_fir(num_tx_taps);
+ _setup_rx_fir(num_rx_taps);
+
+ return _baseband_bw;
+}
+
+/***********************************************************************
+ * Publicly exported functions to host calls
+ **********************************************************************/
+void ad9361_device_t::initialize()
+{
+ boost::lock_guard<boost::recursive_mutex> lock(_mutex);
+
+ /* Initialize shadow registers. */
+ _regs.vcodivs = 0x00;
+ _regs.inputsel = 0x30;
+ _regs.rxfilt = 0x00;
+ _regs.txfilt = 0x00;
+ _regs.bbpll = 0x02;
+ _regs.bbftune_config = 0x1e;
+ _regs.bbftune_mode = 0x1e;
+
+ /* Initialize private VRQ fields. */
+ _rx_freq = 0.0;
+ _tx_freq = 0.0;
+ _req_rx_freq = 0.0;
+ _req_tx_freq = 0.0;
+ _baseband_bw = 0.0;
+ _req_clock_rate = 0.0;
+ _req_coreclk = 0.0;
+ _bbpll_freq = 0.0;
+ _adcclock_freq = 0.0;
+ _rx_bbf_tunediv = 0;
+ _curr_gain_table = 0;
+ _rx1_gain = 0;
+ _rx2_gain = 0;
+ _tx1_gain = 0;
+ _tx2_gain = 0;
+
+ /* Reset the device. */
+ _io_iface->poke8(0x000, 0x01);
+ _io_iface->poke8(0x000, 0x00);
+ boost::this_thread::sleep(boost::posix_time::milliseconds(20));
+
+ /* There is not a WAT big enough for this. */
+ _io_iface->poke8(0x3df, 0x01);
+
+ _io_iface->poke8(0x2a6, 0x0e); // Enable master bias
+ _io_iface->poke8(0x2a8, 0x0e); // Set bandgap trim
+
+ /* Set RFPLL ref clock scale to REFCLK * 2 */
+ _io_iface->poke8(0x2ab, 0x07);
+ _io_iface->poke8(0x2ac, 0xff);
+
+ /* Enable clocks. */
+ switch (_client_params->get_clocking_mode()) {
+ case AD9361_XTAL_N_CLK_PATH: {
+ _io_iface->poke8(0x009, 0x17);
+ } break;
+
+ case AD9361_XTAL_P_CLK_PATH: {
+ _io_iface->poke8(0x009, 0x07);
+ _io_iface->poke8(0x292, 0x08);
+ _io_iface->poke8(0x293, 0x80);
+ _io_iface->poke8(0x294, 0x00);
+ _io_iface->poke8(0x295, 0x14);
+ } break;
+
+ default:
+ throw uhd::runtime_error("[ad9361_device_t] NOT IMPLEMENTED");
+ }
+ boost::this_thread::sleep(boost::posix_time::milliseconds(20));
+
+ /* Tune the BBPLL, write TX and RX FIRS. */
+ _setup_rates(50e6);
+
+ /* Setup data ports (FDD dual port DDR):
+ * FDD dual port DDR CMOS no swap.
+ * Force TX on one port, RX on the other. */
+ switch (_client_params->get_digital_interface_mode()) {
+ case AD9361_DDR_FDD_LVCMOS: {
+ _io_iface->poke8(0x010, 0xc8);
+ _io_iface->poke8(0x011, 0x00);
+ _io_iface->poke8(0x012, 0x02);
+ } break;
+
+ case AD9361_DDR_FDD_LVDS: {
+ _io_iface->poke8(0x010, 0xcc);
+ _io_iface->poke8(0x011, 0x00);
+ _io_iface->poke8(0x012, 0x10);
+
+ //LVDS Specific
+ _io_iface->poke8(0x03C, 0x23);
+ _io_iface->poke8(0x03D, 0xFF);
+ _io_iface->poke8(0x03E, 0x0F);
+ } break;
+
+ default:
+ throw uhd::runtime_error("[ad9361_device_t] NOT IMPLEMENTED");
+ }
+
+ /* Data delay for TX and RX data clocks */
+ digital_interface_delays_t timing =
+ _client_params->get_digital_interface_timing();
+ boost::uint8_t rx_delays = ((timing.rx_clk_delay & 0xF) << 4)
+ | (timing.rx_data_delay & 0xF);
+ boost::uint8_t tx_delays = ((timing.tx_clk_delay & 0xF) << 4)
+ | (timing.tx_data_delay & 0xF);
+ _io_iface->poke8(0x006, rx_delays);
+ _io_iface->poke8(0x007, tx_delays);
+
+ /* Setup AuxDAC */
+ _io_iface->poke8(0x018, 0x00); // AuxDAC1 Word[9:2]
+ _io_iface->poke8(0x019, 0x00); // AuxDAC2 Word[9:2]
+ _io_iface->poke8(0x01A, 0x00); // AuxDAC1 Config and Word[1:0]
+ _io_iface->poke8(0x01B, 0x00); // AuxDAC2 Config and Word[1:0]
+ _io_iface->poke8(0x022, 0x4A); // Invert Bypassed LNA
+ _io_iface->poke8(0x023, 0xFF); // AuxDAC Manaul/Auto Control
+ _io_iface->poke8(0x026, 0x00); // AuxDAC Manual Select Bit/GPO Manual Select
+ _io_iface->poke8(0x030, 0x00); // AuxDAC1 Rx Delay
+ _io_iface->poke8(0x031, 0x00); // AuxDAC1 Tx Delay
+ _io_iface->poke8(0x032, 0x00); // AuxDAC2 Rx Delay
+ _io_iface->poke8(0x033, 0x00); // AuxDAC2 Tx Delay
+
+ /* Setup AuxADC */
+ _io_iface->poke8(0x00B, 0x00); // Temp Sensor Setup (Offset)
+ _io_iface->poke8(0x00C, 0x00); // Temp Sensor Setup (Temp Window)
+ _io_iface->poke8(0x00D, 0x03); // Temp Sensor Setup (Periodic Measure)
+ _io_iface->poke8(0x00F, 0x04); // Temp Sensor Setup (Decimation)
+ _io_iface->poke8(0x01C, 0x10); // AuxADC Setup (Clock Div)
+ _io_iface->poke8(0x01D, 0x01); // AuxADC Setup (Decimation/Enable)
+
+ /* Setup control outputs. */
+ _io_iface->poke8(0x035, 0x07);
+ _io_iface->poke8(0x036, 0xFF);
+
+ /* Setup GPO */
+ _io_iface->poke8(0x03a, 0x27); //set delay register
+ _io_iface->poke8(0x020, 0x00); // GPO Auto Enable Setup in RX and TX
+ _io_iface->poke8(0x027, 0x03); // GPO Manual and GPO auto value in ALERT
+ _io_iface->poke8(0x028, 0x00); // GPO_0 RX Delay
+ _io_iface->poke8(0x029, 0x00); // GPO_1 RX Delay
+ _io_iface->poke8(0x02A, 0x00); // GPO_2 RX Delay
+ _io_iface->poke8(0x02B, 0x00); // GPO_3 RX Delay
+ _io_iface->poke8(0x02C, 0x00); // GPO_0 TX Delay
+ _io_iface->poke8(0x02D, 0x00); // GPO_1 TX Delay
+ _io_iface->poke8(0x02E, 0x00); // GPO_2 TX Delay
+ _io_iface->poke8(0x02F, 0x00); // GPO_3 TX Delay
+
+ _io_iface->poke8(0x261, 0x00); // RX LO power
+ _io_iface->poke8(0x2a1, 0x00); // TX LO power
+ _io_iface->poke8(0x248, 0x0b); // en RX VCO LDO
+ _io_iface->poke8(0x288, 0x0b); // en TX VCO LDO
+ _io_iface->poke8(0x246, 0x02); // pd RX cal Tcf
+ _io_iface->poke8(0x286, 0x02); // pd TX cal Tcf
+ _io_iface->poke8(0x249, 0x8e); // rx vco cal length
+ _io_iface->poke8(0x289, 0x8e); // rx vco cal length
+ _io_iface->poke8(0x23b, 0x80); // set RX MSB?, FIXME 0x89 magic cp
+ _io_iface->poke8(0x27b, 0x80); // "" TX //FIXME 0x88 see above
+ _io_iface->poke8(0x243, 0x0d); // set rx prescaler bias
+ _io_iface->poke8(0x283, 0x0d); // "" TX
+
+ _io_iface->poke8(0x23d, 0x00); // Clear half VCO cal clock setting
+ _io_iface->poke8(0x27d, 0x00); // Clear half VCO cal clock setting
+
+ /* The order of the following process is EXTREMELY important. If the
+ * below functions are modified at all, device initialization and
+ * calibration might be broken in the process! */
+
+ _io_iface->poke8(0x015, 0x04); // dual synth mode, synth en ctrl en
+ _io_iface->poke8(0x014, 0x05); // use SPI for TXNRX ctrl, to ALERT, TX on
+ _io_iface->poke8(0x013, 0x01); // enable ENSM
+ boost::this_thread::sleep(boost::posix_time::milliseconds(1));
+
+ _calibrate_synth_charge_pumps();
+
+ _tune_helper(RX, 800e6);
+ _tune_helper(TX, 850e6);
+
+ _program_mixer_gm_subtable();
+ _program_gain_table();
+ _setup_gain_control();
+
+ _calibrate_baseband_rx_analog_filter();
+ _calibrate_baseband_tx_analog_filter();
+ _calibrate_rx_TIAs();
+ _calibrate_secondary_tx_filter();
+
+ _setup_adc();
+
+ _calibrate_tx_quadrature();
+ _calibrate_rx_quadrature();
+
+ // cals done, set PPORT config
+ switch (_client_params->get_digital_interface_mode()) {
+ case AD9361_DDR_FDD_LVCMOS: {
+ _io_iface->poke8(0x012, 0x02);
+ } break;
+
+ case AD9361_DDR_FDD_LVDS: {
+ _io_iface->poke8(0x012, 0x10);
+ } break;
+
+ default:
+ throw uhd::runtime_error("[ad9361_device_t] NOT IMPLEMENTED");
+ }
+
+ _io_iface->poke8(0x013, 0x01); // Set ENSM FDD bit
+ _io_iface->poke8(0x015, 0x04); // dual synth mode, synth en ctrl en
+
+ /* Default TX attentuation to 10dB on both TX1 and TX2 */
+ _io_iface->poke8(0x073, 0x00);
+ _io_iface->poke8(0x074, 0x00);
+ _io_iface->poke8(0x075, 0x00);
+ _io_iface->poke8(0x076, 0x00);
+
+ /* Setup RSSI Measurements */
+ _io_iface->poke8(0x150, 0x0E); // RSSI Measurement Duration 0, 1
+ _io_iface->poke8(0x151, 0x00); // RSSI Measurement Duration 2, 3
+ _io_iface->poke8(0x152, 0xFF); // RSSI Weighted Multiplier 0
+ _io_iface->poke8(0x153, 0x00); // RSSI Weighted Multiplier 1
+ _io_iface->poke8(0x154, 0x00); // RSSI Weighted Multiplier 2
+ _io_iface->poke8(0x155, 0x00); // RSSI Weighted Multiplier 3
+ _io_iface->poke8(0x156, 0x00); // RSSI Delay
+ _io_iface->poke8(0x157, 0x00); // RSSI Wait
+ _io_iface->poke8(0x158, 0x0D); // RSSI Mode Select
+ _io_iface->poke8(0x15C, 0x67); // Power Measurement Duration
+
+ /* Turn on the default RX & TX chains. */
+ set_active_chains(true, false, false, false);
+
+ /* Set TXers & RXers on (only works in FDD mode) */
+ _io_iface->poke8(0x014, 0x21);
+}
+
+
+/* This function sets the RX / TX rate between AD9361 and the FPGA, and
+ * thus determines the interpolation / decimation required in the FPGA to
+ * achieve the user's requested rate.
+ *
+ * This is the only clock setting function that is exposed to the outside. */
+double ad9361_device_t::set_clock_rate(const double req_rate)
+{
+ boost::lock_guard<boost::recursive_mutex> lock(_mutex);
+
+ if (req_rate > 61.44e6) {
+ throw uhd::runtime_error("[ad9361_device_t] Requested master clock rate outside range");
+ }
+
+ UHD_LOG << boost::format("[ad9361_device_t::set_clock_rate] req_rate=%.10f\n") % req_rate;
+
+ /* UHD has a habit of requesting the same rate like four times when it
+ * starts up. This prevents that, and any bugs in user code that request
+ * the same rate over and over. */
+ if (freq_is_nearly_equal(req_rate, _req_clock_rate)) {
+ return _baseband_bw;
+ }
+
+ /* We must be in the SLEEP / WAIT state to do this. If we aren't already
+ * there, transition the ENSM to State 0. */
+ boost::uint8_t current_state = _io_iface->peek8(0x017) & 0x0F;
+ switch (current_state) {
+ case 0x05:
+ /* We are in the ALERT state. */
+ _io_iface->poke8(0x014, 0x21);
+ boost::this_thread::sleep(boost::posix_time::milliseconds(5));
+ _io_iface->poke8(0x014, 0x00);
+ break;
+
+ case 0x0A:
+ /* We are in the FDD state. */
+ _io_iface->poke8(0x014, 0x00);
+ break;
+
+ default:
+ throw uhd::runtime_error("[ad9361_device_t] [set_clock_rate:1] AD9361 in unknown state");
+ break;
+ };
+
+ /* Store the current chain / antenna selections so that we can restore
+ * them at the end of this routine; all chains will be enabled from
+ * within setup_rates for calibration purposes. */
+ boost::uint8_t orig_tx_chains = _regs.txfilt & 0xC0;
+ boost::uint8_t orig_rx_chains = _regs.rxfilt & 0xC0;
+
+ /* Call into the clock configuration / settings function. This is where
+ * all the hard work gets done. */
+ double rate = _setup_rates(req_rate);
+
+ UHD_LOG << boost::format("[ad9361_device_t::set_clock_rate] rate=%.10f\n") % rate;
+
+ /* Transition to the ALERT state and calibrate everything. */
+ _io_iface->poke8(0x015, 0x04); //dual synth mode, synth en ctrl en
+ _io_iface->poke8(0x014, 0x05); //use SPI for TXNRX ctrl, to ALERT, TX on
+ _io_iface->poke8(0x013, 0x01); //enable ENSM
+ boost::this_thread::sleep(boost::posix_time::milliseconds(1));
+
+ _calibrate_synth_charge_pumps();
+
+ _tune_helper(RX, _rx_freq);
+ _tune_helper(TX, _tx_freq);
+
+ _program_mixer_gm_subtable();
+ _program_gain_table();
+ _setup_gain_control();
+ _reprogram_gains();
+
+ _calibrate_baseband_rx_analog_filter();
+ _calibrate_baseband_tx_analog_filter();
+ _calibrate_rx_TIAs();
+ _calibrate_secondary_tx_filter();
+
+ _setup_adc();
+
+ _calibrate_tx_quadrature();
+ _calibrate_rx_quadrature();
+
+ // cals done, set PPORT config
+ switch (_client_params->get_digital_interface_mode()) {
+ case AD9361_DDR_FDD_LVCMOS: {
+ _io_iface->poke8(0x012, 0x02);
+ }break;
+
+ case AD9361_DDR_FDD_LVDS: {
+ _io_iface->poke8(0x012, 0x10);
+ }break;
+
+ default:
+ throw uhd::runtime_error("[ad9361_device_t] NOT IMPLEMENTED");
+ }
+ _io_iface->poke8(0x013, 0x01); // Set ENSM FDD bit
+ _io_iface->poke8(0x015, 0x04); // dual synth mode, synth en ctrl en
+
+ /* End the function in the same state as the entry state. */
+ switch (current_state) {
+ case 0x05:
+ /* We are already in ALERT. */
+ break;
+
+ case 0x0A:
+ /* Transition back to FDD, and restore the original antenna
+ * / chain selections. */
+ _regs.txfilt = (_regs.txfilt & 0x3F) | orig_tx_chains;
+ _regs.rxfilt = (_regs.rxfilt & 0x3F) | orig_rx_chains;
+
+ _io_iface->poke8(0x002, _regs.txfilt);
+ _io_iface->poke8(0x003, _regs.rxfilt);
+ _io_iface->poke8(0x014, 0x21);
+ break;
+
+ default:
+ throw uhd::runtime_error("[ad9361_device_t] [set_clock_rate:2] AD9361 in unknown state");
+ break;
+ };
+
+ return rate;
+}
+
+
+/* Set which of the four TX / RX chains provided by AD9361 are active.
+ *
+ * AD9361 provides two sets of chains, Side A and Side B. Each side
+ * provides one TX antenna, and one RX antenna. The B200 maintains the USRP
+ * standard of providing one antenna connection that is both TX & RX, and
+ * one that is RX-only - for each chain. Thus, the possible antenna and
+ * chain selections are:
+ *
+ * B200 Antenna AD9361 Side AD9361 Chain
+ * -------------------------------------------------------------------
+ * TX / RX1 Side A TX1 (when switched to TX)
+ * TX / RX1 Side A RX1 (when switched to RX)
+ * RX1 Side A RX1
+ *
+ * TX / RX2 Side B TX2 (when switched to TX)
+ * TX / RX2 Side B RX2 (when switched to RX)
+ * RX2 Side B RX2
+ */
+void ad9361_device_t::set_active_chains(bool tx1, bool tx2, bool rx1, bool rx2)
+{
+ boost::lock_guard<boost::recursive_mutex> lock(_mutex);
+
+ /* Clear out the current active chain settings. */
+ _regs.txfilt = _regs.txfilt & 0x3F;
+ _regs.rxfilt = _regs.rxfilt & 0x3F;
+
+ /* Turn on the different chains based on the passed parameters. */
+ if (tx1) {
+ _regs.txfilt = _regs.txfilt | 0x40;
+ }
+ if (tx2) {
+ _regs.txfilt = _regs.txfilt | 0x80;
+ }
+ if (rx1) {
+ _regs.rxfilt = _regs.rxfilt | 0x40;
+ }
+ if (rx2) {
+ _regs.rxfilt = _regs.rxfilt | 0x80;
+ }
+
+ /* Check for FDD state */
+ boost::uint8_t set_back_to_fdd = 0;
+ boost::uint8_t ensm_state = _io_iface->peek8(0x017) & 0x0F;
+ if (ensm_state == 0xA) // FDD
+ {
+ /* Put into ALERT state (via the FDD flush state). */
+ _io_iface->poke8(0x014, 0x01);
+ set_back_to_fdd = 1;
+ }
+
+ /* Wait for FDD flush state to complete (if necessary) */
+ while (ensm_state == 0xA || ensm_state == 0xB)
+ ensm_state = _io_iface->peek8(0x017) & 0x0F;
+
+ /* Turn on / off the chains. */
+ _io_iface->poke8(0x002, _regs.txfilt);
+ _io_iface->poke8(0x003, _regs.rxfilt);
+
+ /* Put back into FDD state if necessary */
+ if (set_back_to_fdd)
+ _io_iface->poke8(0x014, 0x21);
+}
+
+/* Tune the RX or TX frequency.
+ *
+ * This is the publicly-accessible tune function. It makes sure the tune
+ * isn't a redundant request, and if not, passes it on to the class's
+ * internal tune function.
+ *
+ * After tuning, it runs any appropriate calibrations. */
+double ad9361_device_t::tune(direction_t direction, const double value)
+{
+ boost::lock_guard<boost::recursive_mutex> lock(_mutex);
+
+ if (direction == RX) {
+ if (freq_is_nearly_equal(value, _req_rx_freq)) {
+ return _rx_freq;
+ }
+
+ } else if (direction == TX) {
+ if (freq_is_nearly_equal(value, _req_tx_freq)) {
+ return _tx_freq;
+ }
+
+ } else {
+ throw uhd::runtime_error("[ad9361_device_t] [tune] INVALID_CODE_PATH");
+ }
+
+ /* If we aren't already in the ALERT state, we will need to return to
+ * the FDD state after tuning. */
+ int not_in_alert = 0;
+ if ((_io_iface->peek8(0x017) & 0x0F) != 5) {
+ /* Force the device into the ALERT state. */
+ not_in_alert = 1;
+ _io_iface->poke8(0x014, 0x01);
+ }
+
+ /* Tune the RF VCO! */
+ double tune_freq = _tune_helper(direction, value);
+
+ /* Run any necessary calibrations / setups */
+ if (direction == RX) {
+ _program_gain_table();
+ }
+
+ /* Update the gain settings. */
+ _reprogram_gains();
+
+ /* Run the calibration algorithms. */
+ _calibrate_tx_quadrature();
+ _calibrate_rx_quadrature();
+
+ /* If we were in the FDD state, return it now. */
+ if (not_in_alert) {
+ _io_iface->poke8(0x014, 0x21);
+ }
+
+ return tune_freq;
+}
+
+/* Set the gain of RX1, RX2, TX1, or TX2.
+ *
+ * Note that the 'value' passed to this function is the actual gain value,
+ * _not_ the gain index. This is the opposite of the eval software's GUI!
+ * Also note that the RX chains are done in terms of gain, and the TX chains
+ * are done in terms of attenuation. */
+double ad9361_device_t::set_gain(direction_t direction, chain_t chain, const double value)
+{
+ boost::lock_guard<boost::recursive_mutex> lock(_mutex);
+
+ if (direction == RX) {
+ /* Indexing the gain tables requires an offset from the requested
+ * amount of total gain in dB:
+ * < 1300MHz: dB + 5
+ * >= 1300MHz and < 4000MHz: dB + 3
+ * >= 4000MHz and <= 6000MHz: dB + 14
+ */
+ int gain_offset = 0;
+ if (_rx_freq < 1300e6) {
+ gain_offset = 5;
+ } else if (_rx_freq < 4000e6) {
+ gain_offset = 3;
+ } else {
+ gain_offset = 14;
+ }
+
+ int gain_index = static_cast<int>(value + gain_offset);
+
+ /* Clip the gain values to the proper min/max gain values. */
+ if (gain_index > 76)
+ gain_index = 76;
+ if (gain_index < 0)
+ gain_index = 0;
+
+ if (chain == CHAIN_1) {
+ _rx1_gain = boost::uint32_t(value);
+ _io_iface->poke8(0x109, gain_index);
+ } else {
+ _rx2_gain = boost::uint32_t(value);
+ _io_iface->poke8(0x10c, gain_index);
+ }
+
+ return gain_index - gain_offset;
+ } else {
+ /* Setting the below bits causes a change in the TX attenuation word
+ * to immediately take effect. */
+ _io_iface->poke8(0x077, 0x40);
+ _io_iface->poke8(0x07c, 0x40);
+
+ /* Each gain step is -0.25dB. Calculate the attenuation necessary
+ * for the requested gain, convert it into gain steps, then write
+ * the attenuation word. Max gain (so zero attenuation) is 89.75. */
+ double atten = AD9361_MAX_GAIN - value;
+ boost::uint32_t attenreg = boost::uint32_t(atten * 4);
+ if (chain == CHAIN_1) {
+ _tx1_gain = boost::uint32_t(value);
+ _io_iface->poke8(0x073, attenreg & 0xFF);
+ _io_iface->poke8(0x074, (attenreg >> 8) & 0x01);
+ } else {
+ _tx2_gain = boost::uint32_t(value);
+ _io_iface->poke8(0x075, attenreg & 0xFF);
+ _io_iface->poke8(0x076, (attenreg >> 8) & 0x01);
+ }
+ return AD9361_MAX_GAIN - ((double) (attenreg) / 4);
+ }
+}
+
+void ad9361_device_t::output_test_tone()
+{
+ boost::lock_guard<boost::recursive_mutex> lock(_mutex);
+ /* Output a 480 kHz tone at 800 MHz */
+ _io_iface->poke8(0x3F4, 0x0B);
+ _io_iface->poke8(0x3FC, 0xFF);
+ _io_iface->poke8(0x3FD, 0xFF);
+ _io_iface->poke8(0x3FE, 0x3F);
+}
+
+void ad9361_device_t::data_port_loopback(const bool loopback_enabled)
+{
+ boost::lock_guard<boost::recursive_mutex> lock(_mutex);
+ _io_iface->poke8(0x3F5, (loopback_enabled ? 0x01 : 0x00));
+}
+
+}}
diff --git a/host/lib/usrp/common/ad9361_driver/ad9361_device.h b/host/lib/usrp/common/ad9361_driver/ad9361_device.h index 0cb4b32a4..5770f332a 100644 --- a/host/lib/usrp/common/ad9361_driver/ad9361_device.h +++ b/host/lib/usrp/common/ad9361_driver/ad9361_device.h @@ -1,53 +1,125 @@ -// -// Copyright 2014 Ettus Research LLC -// - -#ifndef INCLUDED_AD9361_CHIP_H -#define INCLUDED_AD9361_CHIP_H - -#include <stdint.h> - -#ifdef __cplusplus -extern "C" { -#endif - -typedef enum { - AD9361_GENERIC, AD9361_B200 -} ad9361_product_t; - -//////////////////////////////////////////////////////////// -// shadow registers -typedef struct { - uint8_t vcodivs; - uint8_t inputsel; - uint8_t rxfilt; - uint8_t txfilt; - uint8_t bbpll; - uint8_t bbftune_config; - uint8_t bbftune_mode; -} ad9361_chip_regs_t; - -//////////////////////////////////////////////////////////// -// other private data fields for VRQ handler -typedef struct { - //Product - ad9361_product_t product; - //Intermediate state - double rx_freq, tx_freq, req_rx_freq, req_tx_freq; - double baseband_bw, bbpll_freq, adcclock_freq; - double req_clock_rate, req_coreclk; - uint16_t rx_bbf_tunediv; - uint8_t curr_gain_table; - uint32_t rx1_gain, rx2_gain, tx1_gain, tx2_gain; - int32_t tfir_factor; - //Register soft-copies - ad9361_chip_regs_t regs; - //IO Interface - void* io_iface; -} ad9361_device_t; - -#ifdef __cplusplus -} -#endif - -#endif /* INCLUDED_AD9361_CHIP_H */ +//
+// Copyright 2014 Ettus Research LLC
+//
+
+#ifndef INCLUDED_AD9361_DEVICE_H
+#define INCLUDED_AD9361_DEVICE_H
+
+#include <ad9361_client.h>
+#include <boost/noncopyable.hpp>
+#include <boost/thread/recursive_mutex.hpp>
+
+namespace uhd { namespace usrp {
+
+class ad9361_device_t : public boost::noncopyable
+{
+public:
+ enum direction_t { RX, TX };
+ enum chain_t { CHAIN_1, CHAIN_2 };
+
+ ad9361_device_t(ad9361_params::sptr client, ad9361_io::sptr io_iface) :
+ _client_params(client), _io_iface(io_iface) {}
+
+ /* Initialize the AD9361 codec. */
+ void initialize();
+
+ /* This function sets the RX / TX rate between AD9361 and the FPGA, and
+ * thus determines the interpolation / decimation required in the FPGA to
+ * achieve the user's requested rate.
+ */
+ double set_clock_rate(const double req_rate);
+
+ /* Set which of the four TX / RX chains provided by AD9361 are active.
+ *
+ * AD9361 provides two sets of chains, Side A and Side B. Each side
+ * provides one TX antenna, and one RX antenna. The B200 maintains the USRP
+ * standard of providing one antenna connection that is both TX & RX, and
+ * one that is RX-only - for each chain. Thus, the possible antenna and
+ * chain selections are:
+ *
+ */
+ void set_active_chains(bool tx1, bool tx2, bool rx1, bool rx2);
+
+ /* Tune the RX or TX frequency.
+ *
+ * This is the publicly-accessible tune function. It makes sure the tune
+ * isn't a redundant request, and if not, passes it on to the class's
+ * internal tune function.
+ *
+ * After tuning, it runs any appropriate calibrations. */
+ double tune(direction_t direction, const double value);
+
+ /* Set the gain of RX1, RX2, TX1, or TX2.
+ *
+ * Note that the 'value' passed to this function is the actual gain value,
+ * _not_ the gain index. This is the opposite of the eval software's GUI!
+ * Also note that the RX chains are done in terms of gain, and the TX chains
+ * are done in terms of attenuation. */
+ double set_gain(direction_t direction, chain_t chain, const double value);
+
+ /* Make AD9361 output its test tone. */
+ void output_test_tone();
+
+ /* Turn on/off AD9361's TX port --> RX port loopback. */
+ void data_port_loopback(const bool loopback_enabled);
+
+ //Constants
+ static const double AD9361_MAX_GAIN;
+ static const double AD9361_MAX_CLOCK_RATE;
+
+private: //Methods
+ void _program_fir_filter(direction_t direction, int num_taps, boost::uint16_t *coeffs);
+ void _setup_tx_fir(size_t num_taps);
+ void _setup_rx_fir(size_t num_taps);
+ void _calibrate_lock_bbpll();
+ void _calibrate_synth_charge_pumps();
+ double _calibrate_baseband_rx_analog_filter();
+ double _calibrate_baseband_tx_analog_filter();
+ void _calibrate_secondary_tx_filter();
+ void _calibrate_rx_TIAs();
+ void _setup_adc();
+ void _calibrate_baseband_dc_offset();
+ void _calibrate_rf_dc_offset();
+ void _calibrate_rx_quadrature();
+ void _tx_quadrature_cal_routine();
+ void _calibrate_tx_quadrature();
+ void _program_mixer_gm_subtable();
+ void _program_gain_table();
+ void _setup_gain_control();
+ void _setup_synth(direction_t direction, double vcorate);
+ double _tune_bbvco(const double rate);
+ void _reprogram_gains();
+ double _tune_helper(direction_t direction, const double value);
+ double _setup_rates(const double rate);
+
+private: //Members
+ typedef struct {
+ boost::uint8_t vcodivs;
+ boost::uint8_t inputsel;
+ boost::uint8_t rxfilt;
+ boost::uint8_t txfilt;
+ boost::uint8_t bbpll;
+ boost::uint8_t bbftune_config;
+ boost::uint8_t bbftune_mode;
+ } chip_regs_t;
+
+ //Interfaces
+ ad9361_params::sptr _client_params;
+ ad9361_io::sptr _io_iface;
+ //Intermediate state
+ double _rx_freq, _tx_freq, _req_rx_freq, _req_tx_freq;
+ double _baseband_bw, _bbpll_freq, _adcclock_freq;
+ double _req_clock_rate, _req_coreclk;
+ boost::uint16_t _rx_bbf_tunediv;
+ boost::uint8_t _curr_gain_table;
+ boost::uint32_t _rx1_gain, _rx2_gain, _tx1_gain, _tx2_gain;
+ boost::int32_t _tfir_factor;
+ //Register soft-copies
+ chip_regs_t _regs;
+ //Synchronization
+ boost::recursive_mutex _mutex;
+};
+
+}} //namespace
+
+#endif /* INCLUDED_AD9361_DEVICE_H */
diff --git a/host/lib/usrp/common/ad9361_driver/ad9361_dispatch.h b/host/lib/usrp/common/ad9361_driver/ad9361_dispatch.h deleted file mode 100644 index 552405763..000000000 --- a/host/lib/usrp/common/ad9361_driver/ad9361_dispatch.h +++ /dev/null @@ -1,24 +0,0 @@ -// -// Copyright 2014 Ettus Research LLC -// - -#ifndef INCLUDED_AD9361_DISPATCH_H -#define INCLUDED_AD9361_DISPATCH_H - -#ifdef __cplusplus -extern "C" { -#endif - -#include <ad9361_transaction.h> - -extern void ad9361_dispatch(const char* request, char* response); - -typedef void (*msgfn)(const char*, ...); - -extern void ad9361_set_msgfn(msgfn pfn); - -#ifdef __cplusplus -} -#endif - -#endif /* INCLUDED_AD9361_DISPATCH_H */ diff --git a/host/lib/usrp/common/ad9361_driver/ad9361_filter_taps.h b/host/lib/usrp/common/ad9361_driver/ad9361_filter_taps.h index 2b4374025..4059ad7ee 100644 --- a/host/lib/usrp/common/ad9361_driver/ad9361_filter_taps.h +++ b/host/lib/usrp/common/ad9361_driver/ad9361_filter_taps.h @@ -5,6 +5,8 @@ #ifndef INCLUDED_AD9361_FILTER_TAPS_HPP #define INCLUDED_AD9361_FILTER_TAPS_HPP +#include <boost/cstdint.hpp> + /* A default 128-tap filter that can be used for generic circumstances. */ /* static uint16_t default_128tap_coeffs[] = { 0x0001,0xfff1,0xffcf,0xffc0,0xffe8,0x0020,0x001a,0xffe3, @@ -45,25 +47,25 @@ static uint16_t lte10mhz_tx_coeffs[] = { /* 127 tap Halfband designed with: round(2^16 * halfgen4(0.9/4,32)) (center tap tweaked to 32767) */ -static int16_t hb127_coeffs[] = { +static boost::int16_t hb127_coeffs[] = { -0,0,1,-0,-2,0,3,-0,-5,0,8,-0,-11,0,17,-0,-24,0,33,-0,-45,0,61,-0,-80,0,104,-0,-134,0,169,-0, -213,0,264,-0,-327,0,401,-0,-489,0,595,-0,-724,0,880,-0,-1075,0,1323,-0,-1652,0,2114,-0,-2819,0,4056,-0,-6883,0,20837,32767, 20837,0,-6883,-0,4056,0,-2819,-0,2114,0,-1652,-0,1323,0,-1075,-0,880,0,-724,-0,595,0,-489,-0,401,0,-327,-0,264,0,-213,-0, 169,0,-134,-0,104,0,-80,-0,61,0,-45,-0,33,0,-24,-0,17,0,-11,-0,8,0,-5,-0,3,0,-2,-0,1,0,-0, 0 }; /* 95 tap Halfband designed with: round(2^16 * halfgen4(0.9/4,24)) (center tap tweaked to 32767) */ -static int16_t hb95_coeffs[] = { +static boost::int16_t hb95_coeffs[] = { -4,0,8,-0,-14,0,23,-0,-36,0,52,-0,-75,0,104,-0,-140,0,186,-0,-243,0,314,-0,-400,0,505,-0,-634,0,793,-0, -993,0,1247,-0,-1585,0,2056,-0,-2773,0,4022,-0,-6862,0,20830,32767,20830,0,-6862,-0,4022,0,-2773,-0,2056,0,-1585,-0,1247,0,-993,-0, 793,0,-634,-0,505,0,-400,-0,314,0,-243,-0,186,0,-140,-0,104,0,-75,-0,52,0,-36,-0,23,0,-14,-0,8,0,-4,0}; /* 63 tap Halfband designed with: round(2^16 * halfgen4(0.9/4,16)) (center tap tweaked to 32767) */ -static int16_t hb63_coeffs[] = { +static boost::int16_t hb63_coeffs[] = { -58,0,83,-0,-127,0,185,-0,-262,0,361,-0,-488,0,648,-0,-853,0,1117,-0,-1466,0,1954,-0,-2689,0,3960,-0,-6825,0,20818,32767, 20818,0,-6825,-0,3960,0,-2689,-0,1954,0,-1466,-0,1117,0,-853,-0,648,0,-488,-0,361,0,-262,-0,185,0,-127,-0,83,0,-58,0}; /* 47 tap Halfband designed with: round(2^16 * halfgen4(0.85/4,12)) (center tap tweaked to 32767) */ -static int16_t hb47_coeffs[] = { +static boost::int16_t hb47_coeffs[] = { -50,0,98,-0,-181,0,307,-0,-489,0,747,-0,-1109,0,1628,-0,-2413,0,3750,-0,-6693,0,20773,32767,20773,0,-6693,-0,3750,0,-2413,-0, 1628,0,-1109,-0,747,0,-489,-0,307,0,-181,-0,98,0,-50,0}; diff --git a/host/lib/usrp/common/ad9361_driver/ad9361_gain_tables.h b/host/lib/usrp/common/ad9361_driver/ad9361_gain_tables.h index d38efd11d..786029d6e 100644 --- a/host/lib/usrp/common/ad9361_driver/ad9361_gain_tables.h +++ b/host/lib/usrp/common/ad9361_driver/ad9361_gain_tables.h @@ -5,7 +5,9 @@ #ifndef INCLUDED_AD9361_GAIN_TABLES_HPP #define INCLUDED_AD9361_GAIN_TABLES_HPP -uint8_t gain_table_sub_1300mhz[77][5] = { {0,0x00,0x00,0x20,1}, +#include <boost/cstdint.hpp> + +boost::uint8_t gain_table_sub_1300mhz[77][5] = { {0,0x00,0x00,0x20,1}, {1,0x00,0x00,0x00,0}, {2,0x00,0x00,0x00,0}, {3,0x00,0x01,0x00,0}, {4,0x00,0x02,0x00,0}, {5,0x00,0x03,0x00,0}, {6,0x00,0x04,0x00,0}, {7,0x00,0x05,0x00,0}, {8,0x01,0x03,0x20,1}, {9,0x01,0x04,0x00,0}, @@ -34,7 +36,7 @@ uint8_t gain_table_sub_1300mhz[77][5] = { {0,0x00,0x00,0x20,1}, {76,0x6F,0x38,0x20,1}}; -uint8_t gain_table_1300mhz_to_4000mhz[77][5] = { {0,0x00,0x00,0x20,1}, +boost::uint8_t gain_table_1300mhz_to_4000mhz[77][5] = { {0,0x00,0x00,0x20,1}, {1,0x00,0x00,0x00,0}, {2,0x00,0x00,0x00,0}, {3,0x00,0x01,0x00,0}, {4,0x00,0x02,0x00,0}, {5,0x00,0x03,0x00,0}, {6,0x00,0x04,0x00,0}, {7,0x00,0x05,0x00,0}, {8,0x01,0x03,0x20,1}, {9,0x01,0x04,0x00,0}, @@ -63,7 +65,7 @@ uint8_t gain_table_1300mhz_to_4000mhz[77][5] = { {0,0x00,0x00,0x20,1}, {76,0x6F,0x38,0x20,1}}; -uint8_t gain_table_4000mhz_to_6000mhz[77][5] = { {0,0x00,0x00,0x20,1}, +boost::uint8_t gain_table_4000mhz_to_6000mhz[77][5] = { {0,0x00,0x00,0x20,1}, {1,0x00,0x00,0x00,0}, {2,0x00,0x00,0x00,0}, {3,0x00,0x00,0x00,0}, {4,0x00,0x00,0x00,0}, {5,0x00,0x01,0x00,0}, {6,0x00,0x02,0x00,0}, {7,0x00,0x03,0x00,0}, {8,0x01,0x01,0x20,1}, {9,0x01,0x02,0x00,0}, diff --git a/host/lib/usrp/common/ad9361_driver/ad9361_impl.c b/host/lib/usrp/common/ad9361_driver/ad9361_impl.c deleted file mode 100644 index fab906e6f..000000000 --- a/host/lib/usrp/common/ad9361_driver/ad9361_impl.c +++ /dev/null @@ -1,1999 +0,0 @@ -// -// Copyright 2014 Ettus Research LLC -// - -#include <stdarg.h> -#include <stdio.h> -#ifdef __cplusplus -#include <string.h> -static int lround(double dbl) { return static_cast<int>(dbl+0.5); } -using namespace std; -#else -#include <stdbool.h> -#include <math.h> -#endif -#include <iostream> -#include <ad9361_transaction.h> -#include "ad9361_filter_taps.h" -#include "ad9361_gain_tables.h" -#include "ad9361_synth_lut.h" -#include "ad9361_dispatch.h" -#include "ad9361_platform.h" //Platform specific operations -#include "ad9361_client.h" //Client (product) specific settings -#include "ad9361_device.h" - -#define AD9361_MIN(a, b) (((a) < (b)) ? (a) : (b)) -#define AD9361_MAX(a, b) (((a) > (b)) ? (a) : (b)) - -//////////////////////////////////////////////////////////// - -static void fake_msg(const char* str, ...) -{ - (void) str; -} - -static msgfn _msgfn = fake_msg; - -//extern void msg(const char* str, ...); External object must provide this symbol -#define msg (_msgfn) - -void ad9361_set_msgfn(msgfn pfn) -{ - _msgfn = pfn; -} - -//////////////////////////////////////////////////////////// -#define AD9361_MAX_GAIN 89.75 - -#define DOUBLE_PI 3.14159265359 -#define DOUBLE_LN_2 0.693147181 - -#define RX_TYPE 0 -#define TX_TYPE 1 - -//////////////////////////////////////////////////////////// -// the following macros evaluate to a compile time constant -// macros By Tom Torfs - donated to the public domain - -/* turn a numeric literal into a hex constant -(avoids problems with leading zeroes) -8-bit constants max value 0x11111111, always fits in unsigned long -*/ -#define HEX__(n) 0x##n##LU - -/* 8-bit conversion function */ -#define B8__(x) ((x&0x0000000FLU)?1:0) \ -+((x&0x000000F0LU)?2:0) \ -+((x&0x00000F00LU)?4:0) \ -+((x&0x0000F000LU)?8:0) \ -+((x&0x000F0000LU)?16:0) \ -+((x&0x00F00000LU)?32:0) \ -+((x&0x0F000000LU)?64:0) \ -+((x&0xF0000000LU)?128:0) - -/* *** user macros *** */ - -/* for upto 8-bit binary constants */ -#define B8(d) ((unsigned char)B8__(HEX__(d))) - -double set_gain(uint64_t handle, int which, int n, const double value); -void set_active_chains(uint64_t handle, bool tx1, bool tx2, bool rx1, bool rx2); -/*********************************************************************** - * Placeholders, unused, or test functions - **********************************************************************/ -static char *tmp_req_buffer; -void post_err_msg( const char* error) -{ - msg("[AD9361 error] %s", error); - if (!tmp_req_buffer) - return; - - ad9361_transaction_t *request = (ad9361_transaction_t *)tmp_req_buffer; - strncpy(request->error_msg, error, (AD9361_TRANSACTION_MAX_ERROR_MSG + 1)); // '+ 1' as length excludes terminating NUL - request->error_msg[AD9361_TRANSACTION_MAX_ERROR_MSG] = '\0'; // If string was too long, NUL will not be copied, so force one just in case -} - -/* Make AD9361 output its test tone. */ -void output_test_tone(ad9361_device_t* device) { - /* Output a 480 kHz tone at 800 MHz */ - write_ad9361_reg(device, 0x3F4, 0x0B); - write_ad9361_reg(device, 0x3FC, 0xFF); - write_ad9361_reg(device, 0x3FD, 0xFF); - write_ad9361_reg(device, 0x3FE, 0x3F); -} - -/* Turn on/off AD9361's TX port --> RX port loopback. */ -void data_port_loopback(uint64_t handle, const int on) { - ad9361_device_t* device = get_ad9361_device(handle); - msg("[data_port_loopback] Enabled: %d", on); - write_ad9361_reg(device, 0x3F5, (on ? 0x01 : 0x00)); -} - -/* This is a simple comparison for very large double-precision floating - * point numbers. It is used to prevent re-tunes for frequencies that are - * the same but not 'exactly' because of data precision issues. */ -// TODO: see if we can avoid the need for this function -int freq_is_nearly_equal(double a, double b) { - return AD9361_MAX(a,b) - AD9361_MIN(a,b) < 1; -} - -/*********************************************************************** - * Filter functions - **********************************************************************/ - -/* This function takes in the calculated maximum number of FIR taps, and - * returns a number of taps that makes AD9361 happy. */ -int get_num_taps(int max_num_taps) { - - int num_taps = 0; - int num_taps_list[] = {16, 32, 48, 64, 80, 96, 112, 128}; - int i; - for(i = 1; i < 8; i++) { - if(max_num_taps >= num_taps_list[i]) { - continue; - } else { - num_taps = num_taps_list[i - 1]; - break; - } - } if(num_taps == 0) { num_taps = 128; } - - return num_taps; -} - -/* Program either the RX or TX FIR filter. - * - * The process is the same for both filters, but the function must be told - * how many taps are in the filter, and given a vector of the taps - * themselves. */ - -void program_fir_filter(ad9361_device_t* device, int which, int num_taps, uint16_t *coeffs) { - uint16_t base; - - /* RX and TX filters use largely identical sets of programming registers. - Select the appropriate bank of registers here. */ - if(which == RX_TYPE) { - base = 0x0f0; - } else { - base = 0x060; - } - - /* Encode number of filter taps for programming register */ - uint8_t reg_numtaps = (((num_taps / 16) - 1) & 0x07) << 5; - - /* Turn on the filter clock. */ - write_ad9361_reg(device, base+5, reg_numtaps | 0x1a); - ad9361_msleep(1); - - /* Zero the unused taps just in case they have stale data */ - int addr; - for(addr=num_taps; addr < 128; addr++) { - write_ad9361_reg(device, base+0, addr); - write_ad9361_reg(device, base+1, 0x0); - write_ad9361_reg(device, base+2, 0x0); - write_ad9361_reg(device, base+5, reg_numtaps | 0x1e); - write_ad9361_reg(device, base+4, 0x00); - write_ad9361_reg(device, base+4, 0x00); - } - - /* Iterate through indirect programming of filter coeffs using ADI recomended procedure */ - for(addr=0; addr < num_taps; addr++) { - write_ad9361_reg(device, base+0, addr); - write_ad9361_reg(device, base+1, (coeffs[addr]) & 0xff); - write_ad9361_reg(device, base+2, (coeffs[addr] >> 8) & 0xff); - write_ad9361_reg(device, base+5, reg_numtaps | 0x1e); - write_ad9361_reg(device, base+4, 0x00); - write_ad9361_reg(device, base+4, 0x00); - } - - /* UG-671 states (page 25) (paraphrased and clarified): - " After the table has been programmed, write to register BASE+5 with the write bit D2 cleared and D1 high. - Then, write to register BASE+5 again with D1 clear, thus ensuring that the write bit resets internally - before the clock stops. Wait 4 sample clock periods after setting D2 high while that data writes into the table" - */ - - write_ad9361_reg(device, base+5, reg_numtaps | 0x1A); - if(which == RX_TYPE) { - write_ad9361_reg(device, base+5, reg_numtaps | 0x18); - write_ad9361_reg(device, base+6, 0x02); /* Also turn on -6dB Rx gain here, to stop filter overfow.*/ - } else { - write_ad9361_reg(device, base+5, reg_numtaps | 0x19); /* Also turn on -6dB Tx gain here, to stop filter overfow.*/ - } -} - - - -/* Program the RX FIR Filter. */ -void setup_rx_fir(ad9361_device_t* device, int total_num_taps) { - int num_taps = total_num_taps; -#ifdef __cplusplus - uint16_t* coeffs = new uint16_t[num_taps]; -#else - uint16_t coeffs[num_taps]; -#endif - int i; - for(i = 0; i < num_taps; i++) { - switch(num_taps) { - case 128: coeffs[i] = (uint16_t)hb127_coeffs[i]; break; - case 96: coeffs[i] = (uint16_t)hb95_coeffs[i]; break; - case 64: coeffs[i] = (uint16_t)hb63_coeffs[i]; break; - case 48: coeffs[i] = (uint16_t)hb47_coeffs[i]; break; - default: post_err_msg("Unsupported number of Rx FIR taps."); - } - } - - program_fir_filter(device, RX_TYPE, total_num_taps, coeffs); -#ifdef __cplusplus - delete[] coeffs; -#endif -} - -/* Program the TX FIR Filter. */ -void setup_tx_fir(ad9361_device_t* device, int total_num_taps) { - int num_taps = total_num_taps; -#ifdef __cplusplus - uint16_t* coeffs = new uint16_t[num_taps]; -#else - uint16_t coeffs[num_taps]; -#endif - int i; - for(i = 0; i < num_taps; i++) { - switch(num_taps) { - case 128: coeffs[i] = (uint16_t)hb127_coeffs[i]; break; - case 96: coeffs[i] = (uint16_t)hb95_coeffs[i]; break; - case 64: coeffs[i] = (uint16_t)hb63_coeffs[i]; break; - case 48: coeffs[i] = (uint16_t)hb47_coeffs[i]; break; - default: post_err_msg("Unsupported number of Tx FIR taps."); - } - } - - program_fir_filter(device, TX_TYPE, total_num_taps, coeffs); -#ifdef __cplusplus - delete[] coeffs; -#endif -} - -/*********************************************************************** - * Calibration functions - ***********************************************************************/ - -/* Calibrate and lock the BBPLL. - * - * This function should be called anytime the BBPLL is tuned. */ -void calibrate_lock_bbpll(ad9361_device_t* device) { - write_ad9361_reg(device, 0x03F, 0x05); // Start the BBPLL calibration - write_ad9361_reg(device, 0x03F, 0x01); // Clear the 'start' bit - - /* Increase BBPLL KV and phase margin. */ - write_ad9361_reg(device, 0x04c, 0x86); - write_ad9361_reg(device, 0x04d, 0x01); - write_ad9361_reg(device, 0x04d, 0x05); - - /* Wait for BBPLL lock. */ - int count = 0; - while(!(read_ad9361_reg(device, 0x05e) & 0x80)) { - if(count > 1000) { - post_err_msg("BBPLL not locked"); - break; - } - - count++; - ad9361_msleep(2); - } -} - -/* Calibrate the synthesizer charge pumps. - * - * Technically, this calibration only needs to be done once, at device - * initialization. */ -void calibrate_synth_charge_pumps(ad9361_device_t* device) { - /* If this function ever gets called, and the ENSM isn't already in the - * ALERT state, then something has gone horribly wrong. */ - if((read_ad9361_reg(device, 0x017) & 0x0F) != 5) { - post_err_msg("AD9361 not in ALERT during cal"); - } - - /* Calibrate the RX synthesizer charge pump. */ - int count = 0; - write_ad9361_reg(device, 0x23d, 0x04); - while(!(read_ad9361_reg(device, 0x244) & 0x80)) { - if(count > 5) { - post_err_msg("RX charge pump cal failure"); - break; - } - - count++; - ad9361_msleep(1); - } - write_ad9361_reg(device, 0x23d, 0x00); - - /* Calibrate the TX synthesizer charge pump. */ - count = 0; - write_ad9361_reg(device, 0x27d, 0x04); - while(!(read_ad9361_reg(device, 0x284) & 0x80)) { - if(count > 5) { - post_err_msg("TX charge pump cal failure"); - break; - } - - count++; - ad9361_msleep(1); - } - write_ad9361_reg(device, 0x27d, 0x00); -} - -/* Calibrate the analog BB RX filter. - * - * Note that the filter calibration depends heavily on the baseband - * bandwidth, so this must be re-done after any change to the RX sample - * rate. */ -double calibrate_baseband_rx_analog_filter(ad9361_device_t* device) { - /* For filter tuning, baseband BW is half the complex BW, and must be - * between 28e6 and 0.2e6. */ - double bbbw = device->baseband_bw / 2.0; - if(bbbw > 28e6) { - bbbw = 28e6; - } else if (bbbw < 0.20e6) { - bbbw = 0.20e6; - } - - double rxtune_clk = ((1.4 * bbbw * 2 * - DOUBLE_PI) / DOUBLE_LN_2); - - device->rx_bbf_tunediv = AD9361_MIN(511, ad9361_ceil_to_int(device->bbpll_freq / rxtune_clk)); - - device->regs.bbftune_config = (device->regs.bbftune_config & 0xFE) \ - | ((device->rx_bbf_tunediv >> 8) & 0x0001); - - double bbbw_mhz = bbbw / 1e6; - - double temp = ((bbbw_mhz - ad9361_floor_to_int(bbbw_mhz)) * 1000) / 7.8125; - uint8_t bbbw_khz = (uint8_t) AD9361_MIN(127, (ad9361_floor_to_int(temp + 0.5))); - - /* Set corner frequencies and dividers. */ - write_ad9361_reg(device, 0x1fb, (uint8_t)(bbbw_mhz)); - write_ad9361_reg(device, 0x1fc, bbbw_khz); - write_ad9361_reg(device, 0x1f8, (device->rx_bbf_tunediv & 0x00FF)); - write_ad9361_reg(device, 0x1f9, device->regs.bbftune_config); - - /* RX Mix Voltage settings - only change with apps engineer help. */ - write_ad9361_reg(device, 0x1d5, 0x3f); - write_ad9361_reg(device, 0x1c0, 0x03); - - /* Enable RX1 & RX2 filter tuners. */ - write_ad9361_reg(device, 0x1e2, 0x02); - write_ad9361_reg(device, 0x1e3, 0x02); - - /* Run the calibration! */ - int count = 0; - write_ad9361_reg(device, 0x016, 0x80); - while(read_ad9361_reg(device, 0x016) & 0x80) { - if(count > 100) { - post_err_msg("RX baseband filter cal FAILURE"); - break; - } - - count++; - ad9361_msleep(1); - } - - /* Disable RX1 & RX2 filter tuners. */ - write_ad9361_reg(device, 0x1e2, 0x03); - write_ad9361_reg(device, 0x1e3, 0x03); - - return bbbw; -} - -/* Calibrate the analog BB TX filter. - * - * Note that the filter calibration depends heavily on the baseband - * bandwidth, so this must be re-done after any change to the TX sample - * rate. */ -double calibrate_baseband_tx_analog_filter(ad9361_device_t* device) { - /* For filter tuning, baseband BW is half the complex BW, and must be - * between 28e6 and 0.2e6. */ - double bbbw = device->baseband_bw / 2.0; - if(bbbw > 20e6) { - bbbw = 20e6; - } else if (bbbw < 0.625e6) { - bbbw = 0.625e6; - } - - double txtune_clk = ((1.6 * bbbw * 2 * - DOUBLE_PI) / DOUBLE_LN_2); - - uint16_t txbbfdiv = AD9361_MIN(511, (ad9361_ceil_to_int(device->bbpll_freq / txtune_clk))); - - device->regs.bbftune_mode = (device->regs.bbftune_mode & 0xFE) \ - | ((txbbfdiv >> 8) & 0x0001); - - /* Program the divider values. */ - write_ad9361_reg(device, 0x0d6, (txbbfdiv & 0x00FF)); - write_ad9361_reg(device, 0x0d7, device->regs.bbftune_mode); - - /* Enable the filter tuner. */ - write_ad9361_reg(device, 0x0ca, 0x22); - - /* Calibrate! */ - int count = 0; - write_ad9361_reg(device, 0x016, 0x40); - while(read_ad9361_reg(device, 0x016) & 0x40) { - if(count > 100) { - post_err_msg("TX baseband filter cal FAILURE"); - break; - } - - count++; - ad9361_msleep(1); - } - - /* Disable the filter tuner. */ - write_ad9361_reg(device, 0x0ca, 0x26); - - return bbbw; -} - -/* Calibrate the secondary TX filter. - * - * This filter also depends on the TX sample rate, so if a rate change is - * made, the previous calibration will no longer be valid. */ -void calibrate_secondary_tx_filter(ad9361_device_t* device) { - /* For filter tuning, baseband BW is half the complex BW, and must be - * between 20e6 and 0.53e6. */ - double bbbw = device->baseband_bw / 2.0; - if(bbbw > 20e6) { - bbbw = 20e6; - } else if (bbbw < 0.53e6) { - bbbw = 0.53e6; - } - - double bbbw_mhz = bbbw / 1e6; - - /* Start with a resistor value of 100 Ohms. */ - int res = 100; - - /* Calculate target corner frequency. */ - double corner_freq = 5 * bbbw_mhz * 2 * DOUBLE_PI; - - /* Iterate through RC values to determine correct combination. */ - int cap = 0; - int i; - for(i = 0; i <= 3; i++) { - cap = (ad9361_floor_to_int(0.5 + (( 1 / ((corner_freq * res) * 1e6)) * 1e12))) - 12; - - if(cap <= 63) { - break; - } - - res = res * 2; - } - if(cap > 63) { - cap = 63; - } - - uint8_t reg0d0, reg0d1, reg0d2; - - /* Translate baseband bandwidths to register settings. */ - if((bbbw_mhz * 2) <= 9) { - reg0d0 = 0x59; - } else if(((bbbw_mhz * 2) > 9) && ((bbbw_mhz * 2) <= 24)) { - reg0d0 = 0x56; - } else if((bbbw_mhz * 2) > 24) { - reg0d0 = 0x57; - } else { - post_err_msg("Cal2ndTxFil: INVALID_CODE_PATH bad bbbw_mhz"); - reg0d0 = 0x00; - } - - /* Translate resistor values to register settings. */ - if(res == 100) { - reg0d1 = 0x0c; - } else if(res == 200) { - reg0d1 = 0x04; - } else if(res == 400) { - reg0d1 = 0x03; - } else if(res == 800) { - reg0d1 = 0x01; - } else { - reg0d1 = 0x0c; - } - - reg0d2 = cap; - - /* Program the above-calculated values. Sweet. */ - write_ad9361_reg(device, 0x0d2, reg0d2); - write_ad9361_reg(device, 0x0d1, reg0d1); - write_ad9361_reg(device, 0x0d0, reg0d0); -} - -/* Calibrate the RX TIAs. - * - * Note that the values in the TIA register, after calibration, vary with - * the RX gain settings. */ -void calibrate_rx_TIAs(ad9361_device_t* device) { - - uint8_t reg1eb = read_ad9361_reg(device, 0x1eb) & 0x3F; - uint8_t reg1ec = read_ad9361_reg(device, 0x1ec) & 0x7F; - uint8_t reg1e6 = read_ad9361_reg(device, 0x1e6) & 0x07; - uint8_t reg1db = 0x00; - uint8_t reg1dc = 0x00; - uint8_t reg1dd = 0x00; - uint8_t reg1de = 0x00; - uint8_t reg1df = 0x00; - - /* For calibration, baseband BW is half the complex BW, and must be - * between 28e6 and 0.2e6. */ - double bbbw = device->baseband_bw / 2.0; - if(bbbw > 20e6) { - bbbw = 20e6; - } else if (bbbw < 0.20e6) { - bbbw = 0.20e6; - } - double ceil_bbbw_mhz = ad9361_ceil_to_int(bbbw / 1e6); - - /* Do some crazy resistor and capacitor math. */ - int Cbbf = (reg1eb * 160) + (reg1ec * 10) + 140; - int R2346 = 18300 * (reg1e6 & 0x07); - double CTIA_fF = (Cbbf * R2346 * 0.56) / 3500; - - /* Translate baseband BW to register settings. */ - if(ceil_bbbw_mhz <= 3) { - reg1db = 0xe0; - } else if((ceil_bbbw_mhz > 3) && (ceil_bbbw_mhz <= 10)) { - reg1db = 0x60; - } else if(ceil_bbbw_mhz > 10) { - reg1db = 0x20; - } else { - post_err_msg("CalRxTias: INVALID_CODE_PATH bad bbbw_mhz"); - } - - if(CTIA_fF > 2920) { - reg1dc = 0x40; - reg1de = 0x40; - - uint8_t temp = (uint8_t) AD9361_MIN(127, (ad9361_floor_to_int(0.5 + ((CTIA_fF - 400.0) / 320.0)))); - reg1dd = temp; - reg1df = temp; - } else { - uint8_t temp = (uint8_t) ad9361_floor_to_int(0.5 + ((CTIA_fF - 400.0) / 40.0)) + 0x40; - reg1dc = temp; - reg1de = temp; - reg1dd = 0; - reg1df = 0; - } - - /* w00t. Settings calculated. Program them and roll out. */ - write_ad9361_reg(device, 0x1db, reg1db); - write_ad9361_reg(device, 0x1dd, reg1dd); - write_ad9361_reg(device, 0x1df, reg1df); - write_ad9361_reg(device, 0x1dc, reg1dc); - write_ad9361_reg(device, 0x1de, reg1de); -} - -/* Setup the AD9361 ADC. - * - * There are 40 registers that control the ADC's operation, most of the - * values of which must be derived mathematically, dependent on the current - * setting of the BBPLL. Note that the order of calculation is critical, as - * some of the 40 registers depend on the values in others. */ -void setup_adc(ad9361_device_t* device) { - double bbbw_mhz = (((device->bbpll_freq / 1e6) / device->rx_bbf_tunediv) * DOUBLE_LN_2) \ - / (1.4 * 2 * DOUBLE_PI); - - /* For calibration, baseband BW is half the complex BW, and must be - * between 28e6 and 0.2e6. */ - if(bbbw_mhz > 28) { - bbbw_mhz = 28; - } else if (bbbw_mhz < 0.20) { - bbbw_mhz = 0.20; - } - - uint8_t rxbbf_c3_msb = read_ad9361_reg(device, 0x1eb) & 0x3F; - uint8_t rxbbf_c3_lsb = read_ad9361_reg(device, 0x1ec) & 0x7F; - uint8_t rxbbf_r2346 = read_ad9361_reg(device, 0x1e6) & 0x07; - - double fsadc = device->adcclock_freq / 1e6; - - /* Sort out the RC time constant for our baseband bandwidth... */ - double rc_timeconst = 0.0; - if(bbbw_mhz < 18) { - rc_timeconst = (1 / ((1.4 * 2 * DOUBLE_PI) \ - * (18300 * rxbbf_r2346) - * ((160e-15 * rxbbf_c3_msb) - + (10e-15 * rxbbf_c3_lsb) + 140e-15) - * (bbbw_mhz * 1e6))); - } else { - rc_timeconst = (1 / ((1.4 * 2 * DOUBLE_PI) \ - * (18300 * rxbbf_r2346) - * ((160e-15 * rxbbf_c3_msb) - + (10e-15 * rxbbf_c3_lsb) + 140e-15) - * (bbbw_mhz * 1e6) * (1 + (0.01 * (bbbw_mhz - 18))))); - } - - double scale_res = ad9361_sqrt(1 / rc_timeconst); - double scale_cap = ad9361_sqrt(1 / rc_timeconst); - - double scale_snr = (device->adcclock_freq < 80e6) ? 1.0 : 1.584893192; - double maxsnr = 640 / 160; - - /* Calculate the values for all 40 settings registers. - * - * DO NOT TOUCH THIS UNLESS YOU KNOW EXACTLY WHAT YOU ARE DOING. kthx.*/ - uint8_t data[40]; - data[0] = 0; data[1] = 0; data[2] = 0; data[3] = 0x24; - data[4] = 0x24; data[5] = 0; data[6] = 0; - data[7] = (uint8_t) AD9361_MIN(124, (ad9361_floor_to_int(-0.5 - + (80.0 * scale_snr * scale_res - * AD9361_MIN(1.0, ad9361_sqrt(maxsnr * fsadc / 640.0)))))); - double data007 = data[7]; - data[8] = (uint8_t) AD9361_MIN(255, (ad9361_floor_to_int(0.5 - + ((20.0 * (640.0 / fsadc) * ((data007 / 80.0)) - / (scale_res * scale_cap)))))); - data[10] = (uint8_t) AD9361_MIN(127, (ad9361_floor_to_int(-0.5 + (77.0 * scale_res - * AD9361_MIN(1.0, ad9361_sqrt(maxsnr * fsadc / 640.0)))))); - double data010 = data[10]; - data[9] = (uint8_t) AD9361_MIN(127, (ad9361_floor_to_int(0.8 * data010))); - data[11] = (uint8_t) AD9361_MIN(255, (ad9361_floor_to_int(0.5 - + (20.0 * (640.0 / fsadc) * ((data010 / 77.0) - / (scale_res * scale_cap)))))); - data[12] = (uint8_t) AD9361_MIN(127, (ad9361_floor_to_int(-0.5 - + (80.0 * scale_res * AD9361_MIN(1.0, - ad9361_sqrt(maxsnr * fsadc / 640.0)))))); - double data012 = data[12]; - data[13] = (uint8_t) AD9361_MIN(255, (ad9361_floor_to_int(-1.5 - + (20.0 * (640.0 / fsadc) * ((data012 / 80.0) - / (scale_res * scale_cap)))))); - data[14] = 21 * (uint8_t)(ad9361_floor_to_int(0.1 * 640.0 / fsadc)); - data[15] = (uint8_t) AD9361_MIN(127, (1.025 * data007)); - double data015 = data[15]; - data[16] = (uint8_t) AD9361_MIN(127, (ad9361_floor_to_int((data015 - * (0.98 + (0.02 * AD9361_MAX(1.0, - (640.0 / fsadc) / maxsnr))))))); - data[17] = data[15]; - data[18] = (uint8_t) AD9361_MIN(127, (0.975 * (data010))); - double data018 = data[18]; - data[19] = (uint8_t) AD9361_MIN(127, (ad9361_floor_to_int((data018 - * (0.98 + (0.02 * AD9361_MAX(1.0, - (640.0 / fsadc) / maxsnr))))))); - data[20] = data[18]; - data[21] = (uint8_t) AD9361_MIN(127, (0.975 * data012)); - double data021 = data[21]; - data[22] = (uint8_t) AD9361_MIN(127, (ad9361_floor_to_int((data021 - * (0.98 + (0.02 * AD9361_MAX(1.0, - (640.0 / fsadc) / maxsnr))))))); - data[23] = data[21]; - data[24] = 0x2e; - data[25] = (uint8_t)(ad9361_floor_to_int(128.0 + AD9361_MIN(63.0, - 63.0 * (fsadc / 640.0)))); - data[26] = (uint8_t)(ad9361_floor_to_int(AD9361_MIN(63.0, 63.0 * (fsadc / 640.0) - * (0.92 + (0.08 * (640.0 / fsadc)))))); - data[27] = (uint8_t)(ad9361_floor_to_int(AD9361_MIN(63.0, - 32.0 * ad9361_sqrt(fsadc / 640.0)))); - data[28] = (uint8_t)(ad9361_floor_to_int(128.0 + AD9361_MIN(63.0, - 63.0 * (fsadc / 640.0)))); - data[29] = (uint8_t)(ad9361_floor_to_int(AD9361_MIN(63.0, - 63.0 * (fsadc / 640.0) - * (0.92 + (0.08 * (640.0 / fsadc)))))); - data[30] = (uint8_t)(ad9361_floor_to_int(AD9361_MIN(63.0, - 32.0 * ad9361_sqrt(fsadc / 640.0)))); - data[31] = (uint8_t)(ad9361_floor_to_int(128.0 + AD9361_MIN(63.0, - 63.0 * (fsadc / 640.0)))); - data[32] = (uint8_t)(ad9361_floor_to_int(AD9361_MIN(63.0, - 63.0 * (fsadc / 640.0) * (0.92 - + (0.08 * (640.0 / fsadc)))))); - data[33] = (uint8_t)(ad9361_floor_to_int(AD9361_MIN(63.0, - 63.0 * ad9361_sqrt(fsadc / 640.0)))); - data[34] = (uint8_t) AD9361_MIN(127, (ad9361_floor_to_int(64.0 - * ad9361_sqrt(fsadc / 640.0)))); - data[35] = 0x40; - data[36] = 0x40; - data[37] = 0x2c; - data[38] = 0x00; - data[39] = 0x00; - - /* Program the registers! */ - int i; - for(i=0; i<40; i++) { - write_ad9361_reg(device, 0x200+i, data[i]); - } - -} - -/* Calibrate the baseband DC offset. - * - * Note that this function is called from within the TX quadrature - * calibration function! */ -void calibrate_baseband_dc_offset(ad9361_device_t* device) { - write_ad9361_reg(device, 0x193, 0x3f); // Calibration settings - write_ad9361_reg(device, 0x190, 0x0f); // Set tracking coefficient - //write_ad9361_reg(device, 0x190, /*0x0f*//*0xDF*/0x80*1 | 0x40*1 | (16+8/*+4*/)); // Set tracking coefficient: don't *4 counter, do decim /4, increased gain shift - write_ad9361_reg(device, 0x194, 0x01); // More calibration settings - - /* Start that calibration, baby. */ - int count = 0; - write_ad9361_reg(device, 0x016, 0x01); - while(read_ad9361_reg(device, 0x016) & 0x01) { - if(count > 100) { - post_err_msg("Baseband DC Offset Calibration Failure"); - break; - } - - count++; - ad9361_msleep(5); - } -} - -/* Calibrate the RF DC offset. - * - * Note that this function is called from within the TX quadrature - * calibration function. */ -void calibrate_rf_dc_offset(ad9361_device_t* device) { - /* Some settings are frequency-dependent. */ - if(device->rx_freq < 4e9) { - write_ad9361_reg(device, 0x186, 0x32); // RF DC Offset count - write_ad9361_reg(device, 0x187, 0x24); - write_ad9361_reg(device, 0x188, 0x05); - } else { - write_ad9361_reg(device, 0x186, 0x28); // RF DC Offset count - write_ad9361_reg(device, 0x187, 0x34); - write_ad9361_reg(device, 0x188, 0x06); - } - - write_ad9361_reg(device, 0x185, 0x20); // RF DC Offset wait count - write_ad9361_reg(device, 0x18b, 0x83); - write_ad9361_reg(device, 0x189, 0x30); - - /* Run the calibration! */ - int count = 0; - write_ad9361_reg(device, 0x016, 0x02); - while(read_ad9361_reg(device, 0x016) & 0x02) { - if(count > 100) { - post_err_msg("RF DC Offset Calibration Failure"); - break; - } - - count++; - ad9361_msleep(50); - } -} - -/* Start the RX quadrature calibration. - * - * Note that we are using AD9361's 'tracking' feature for RX quadrature - * calibration, so once it starts it continues to free-run during operation. - * It should be re-run for large frequency changes. */ -void calibrate_rx_quadrature(ad9361_device_t* device) { - /* Configure RX Quadrature calibration settings. */ - write_ad9361_reg(device, 0x168, 0x03); // Set tone level for cal - write_ad9361_reg(device, 0x16e, 0x25); // RX Gain index to use for cal - write_ad9361_reg(device, 0x16a, 0x75); // Set Kexp phase - write_ad9361_reg(device, 0x16b, 0x15); // Set Kexp amplitude - write_ad9361_reg(device, 0x169, 0xcf); // Continuous tracking mode - write_ad9361_reg(device, 0x18b, 0xad); -} - -/* TX quadtrature calibration routine. - * - * The TX quadrature needs to be done twice, once for each TX chain, with - * only one register change in between. Thus, this function enacts the - * calibrations, and it is called from calibrate_tx_quadrature. */ -void tx_quadrature_cal_routine(ad9361_device_t* device) { - - /* This is a weird process, but here is how it works: - * 1) Read the calibrated NCO frequency bits out of 0A3. - * 2) Write the two bits to the RX NCO freq part of 0A0. - * 3) Re-read 0A3 to get bits [5:0] because maybe they changed? - * 4) Update only the TX NCO freq bits in 0A3. - * 5) Profit (I hope). */ - uint8_t reg0a3 = read_ad9361_reg(device, 0x0a3); - uint8_t nco_freq = (reg0a3 & 0xC0); - write_ad9361_reg(device, 0x0a0, 0x15 | (nco_freq >> 1)); - reg0a3 = read_ad9361_reg(device, 0x0a3); - write_ad9361_reg(device, 0x0a3, (reg0a3 & 0x3F) | nco_freq); - - /* It is possible to reach a configuration that won't operate correctly, - * where the two test tones used for quadrature calibration are outside - * of the RX BBF, and therefore don't make it to the ADC. We will check - * for that scenario here. */ - double max_cal_freq = (((device->baseband_bw * device->tfir_factor) * ((nco_freq >> 6) + 1)) / 32) * 2; - double bbbw = device->baseband_bw / 2.0; // bbbw represents the one-sided BW - if(bbbw > 28e6) { - bbbw = 28e6; - } else if (bbbw < 0.20e6) { - bbbw = 0.20e6; - } - if (max_cal_freq > bbbw ) - post_err_msg("max_cal_freq > bbbw"); - - write_ad9361_reg(device, 0x0a1, 0x7B); // Set tracking coefficient - write_ad9361_reg(device, 0x0a9, 0xff); // Cal count - write_ad9361_reg(device, 0x0a2, 0x7f); // Cal Kexp - write_ad9361_reg(device, 0x0a5, 0x01); // Cal magnitude threshold VVVV - write_ad9361_reg(device, 0x0a6, 0x01); - - /* The gain table index used for calibration must be adjusted for the - * mid-table to get a TIA index = 1 and LPF index = 0. */ - if((device->rx_freq >= 1300e6) && (device->rx_freq < 4000e6)) { - write_ad9361_reg(device, 0x0aa, 0x22); // Cal gain table index - } else { - write_ad9361_reg(device, 0x0aa, 0x25); // Cal gain table index - } - - write_ad9361_reg(device, 0x0a4, 0xf0); // Cal setting conut - write_ad9361_reg(device, 0x0ae, 0x00); // Cal LPF gain index (split mode) - - /* First, calibrate the baseband DC offset. */ - calibrate_baseband_dc_offset(device); - - /* Second, calibrate the RF DC offset. */ - calibrate_rf_dc_offset(device); - - /* Now, calibrate the TX quadrature! */ - int count = 0; - write_ad9361_reg(device, 0x016, 0x10); - while(read_ad9361_reg(device, 0x016) & 0x10) { - if(count > 100) { - post_err_msg("TX Quadrature Calibration Failure"); - break; - } - - count++; - ad9361_msleep(10); - } -} - -/* Run the TX quadrature calibration. - * - * Note that from within this function we are also triggering the baseband - * and RF DC calibrations. */ -void calibrate_tx_quadrature(ad9361_device_t* device) { - /* Make sure we are, in fact, in the ALERT state. If not, something is - * terribly wrong in the driver execution flow. */ - if((read_ad9361_reg(device, 0x017) & 0x0F) != 5) { - post_err_msg("TX Quad Cal started, but not in ALERT"); - } - - /* Turn off free-running and continuous calibrations. Note that this - * will get turned back on at the end of the RX calibration routine. */ - write_ad9361_reg(device, 0x169, 0xc0); - - /* This calibration must be done in a certain order, and for both TX_A - * and TX_B, separately. Store the original setting so that we can - * restore it later. */ - uint8_t orig_reg_inputsel = device->regs.inputsel; - - /*********************************************************************** - * TX1/2-A Calibration - **********************************************************************/ - device->regs.inputsel = device->regs.inputsel & 0xBF; - write_ad9361_reg(device, 0x004, device->regs.inputsel); - - tx_quadrature_cal_routine(device); - - /*********************************************************************** - * TX1/2-B Calibration - **********************************************************************/ - device->regs.inputsel = device->regs.inputsel | 0x40; - write_ad9361_reg(device, 0x004, device->regs.inputsel); - - tx_quadrature_cal_routine(device); - - /*********************************************************************** - * fin - **********************************************************************/ - device->regs.inputsel = orig_reg_inputsel; - write_ad9361_reg(device, 0x004, orig_reg_inputsel); -} - - -/*********************************************************************** - * Other Misc Setup Functions - ***********************************************************************/ - -/* Program the mixer gain table. - * - * Note that this table is fixed for all frequency settings. */ -void program_mixer_gm_subtable(ad9361_device_t* device) { - uint8_t gain[] = {0x78, 0x74, 0x70, 0x6C, 0x68, 0x64, 0x60, 0x5C, 0x58, - 0x54, 0x50, 0x4C, 0x48, 0x30, 0x18, 0x00}; - uint8_t gm[] = {0x00, 0x0D, 0x15, 0x1B, 0x21, 0x25, 0x29, 0x2C, 0x2F, - 0x31, 0x33, 0x34, 0x35, 0x3A, 0x3D, 0x3E}; - - /* Start the clock. */ - write_ad9361_reg(device, 0x13f, 0x02); - - /* Program the GM Sub-table. */ - int i; - for(i = 15; i >= 0; i--) { - write_ad9361_reg(device, 0x138, i); - write_ad9361_reg(device, 0x139, gain[(15 - i)]); - write_ad9361_reg(device, 0x13A, 0x00); - write_ad9361_reg(device, 0x13B, gm[(15 - i)]); - write_ad9361_reg(device, 0x13F, 0x06); - write_ad9361_reg(device, 0x13C, 0x00); - write_ad9361_reg(device, 0x13C, 0x00); - } - - /* Clear write bit and stop clock. */ - write_ad9361_reg(device, 0x13f, 0x02); - write_ad9361_reg(device, 0x13C, 0x00); - write_ad9361_reg(device, 0x13C, 0x00); - write_ad9361_reg(device, 0x13f, 0x00); -} - -/* Program the gain table. - * - * There are three different gain tables for different frequency ranges! */ -void program_gain_table(ad9361_device_t* device) { - - /* Figure out which gain table we should be using for our current - * frequency band. */ - uint8_t (*gain_table)[5] = NULL; - uint8_t new_gain_table; - if(device->rx_freq < 1300e6) { - gain_table = gain_table_sub_1300mhz; - new_gain_table = 1; - } else if(device->rx_freq < 4e9) { - gain_table = gain_table_1300mhz_to_4000mhz; - new_gain_table = 2; - } else if(device->rx_freq <= 6e9) { - gain_table = gain_table_4000mhz_to_6000mhz; - new_gain_table = 3; - } else { - post_err_msg("Wrong _rx_freq value"); - new_gain_table = 1; - } - - /* Only re-program the gain table if there has been a band change. */ - if(device->curr_gain_table == new_gain_table) { - return; - } else { - device->curr_gain_table = new_gain_table; - } - - /* Okay, we have to program a new gain table. Sucks, brah. Start the - * gain table clock. */ - write_ad9361_reg(device, 0x137, 0x1A); - - /* IT'S PROGRAMMING TIME. */ - uint8_t index = 0; - for(; index < 77; index++) { - write_ad9361_reg(device, 0x130, index); - write_ad9361_reg(device, 0x131, gain_table[index][1]); - write_ad9361_reg(device, 0x132, gain_table[index][2]); - write_ad9361_reg(device, 0x133, gain_table[index][3]); - write_ad9361_reg(device, 0x137, 0x1E); - write_ad9361_reg(device, 0x134, 0x00); - write_ad9361_reg(device, 0x134, 0x00); - } - - /* Everything above the 77th index is zero. */ - for(; index < 91; index++) { - write_ad9361_reg(device, 0x130, index); - write_ad9361_reg(device, 0x131, 0x00); - write_ad9361_reg(device, 0x132, 0x00); - write_ad9361_reg(device, 0x133, 0x00); - write_ad9361_reg(device, 0x137, 0x1E); - write_ad9361_reg(device, 0x134, 0x00); - write_ad9361_reg(device, 0x134, 0x00); - } - - /* Clear the write bit and stop the gain clock. */ - write_ad9361_reg(device, 0x137, 0x1A); - write_ad9361_reg(device, 0x134, 0x00); - write_ad9361_reg(device, 0x134, 0x00); - write_ad9361_reg(device, 0x137, 0x00); -} - -/* Setup gain control registers. - * - * This really only needs to be done once, at initialization. */ -void setup_gain_control(ad9361_device_t* device) -{ - write_ad9361_reg(device, 0x0FA, 0xE0); // Gain Control Mode Select - write_ad9361_reg(device, 0x0FB, 0x08); // Table, Digital Gain, Man Gain Ctrl - write_ad9361_reg(device, 0x0FC, 0x23); // Incr Step Size, ADC Overrange Size - write_ad9361_reg(device, 0x0FD, 0x4C); // Max Full/LMT Gain Table Index - write_ad9361_reg(device, 0x0FE, 0x44); // Decr Step Size, Peak Overload Time - write_ad9361_reg(device, 0x100, 0x6F); // Max Digital Gain - write_ad9361_reg(device, 0x104, 0x2F); // ADC Small Overload Threshold - write_ad9361_reg(device, 0x105, 0x3A); // ADC Large Overload Threshold - write_ad9361_reg(device, 0x107, 0x31); // Large LMT Overload Threshold - write_ad9361_reg(device, 0x108, 0x39); // Small LMT Overload Threshold - write_ad9361_reg(device, 0x109, 0x23); // Rx1 Full/LMT Gain Index - write_ad9361_reg(device, 0x10A, 0x58); // Rx1 LPF Gain Index - write_ad9361_reg(device, 0x10B, 0x00); // Rx1 Digital Gain Index - write_ad9361_reg(device, 0x10C, 0x23); // Rx2 Full/LMT Gain Index - write_ad9361_reg(device, 0x10D, 0x18); // Rx2 LPF Gain Index - write_ad9361_reg(device, 0x10E, 0x00); // Rx2 Digital Gain Index - write_ad9361_reg(device, 0x114, 0x30); // Low Power Threshold - write_ad9361_reg(device, 0x11A, 0x27); // Initial LMT Gain Limit - write_ad9361_reg(device, 0x081, 0x00); // Tx Symbol Gain Control -} - -/* Setup the RX or TX synthesizers. - * - * This setup depends on a fixed look-up table, which is stored in an - * included header file. The table is indexed based on the passed VCO rate. - */ -void setup_synth(ad9361_device_t* device, int which, double vcorate) { - /* The vcorates in the vco_index array represent lower boundaries for - * rates. Once we find a match, we use that index to look-up the rest of - * the register values in the LUT. */ - int vcoindex = 0; - int i; - for(i = 0; i < 53; i++) { - vcoindex = i; - if(vcorate > vco_index[i]) { - break; - } - } - - if (vcoindex > 53) - post_err_msg("vcoindex > 53"); - - /* Parse the values out of the LUT based on our calculated index... */ - uint8_t vco_output_level = synth_cal_lut[vcoindex][0]; - uint8_t vco_varactor = synth_cal_lut[vcoindex][1]; - uint8_t vco_bias_ref = synth_cal_lut[vcoindex][2]; - uint8_t vco_bias_tcf = synth_cal_lut[vcoindex][3]; - uint8_t vco_cal_offset = synth_cal_lut[vcoindex][4]; - uint8_t vco_varactor_ref = synth_cal_lut[vcoindex][5]; - uint8_t charge_pump_curr = synth_cal_lut[vcoindex][6]; - uint8_t loop_filter_c2 = synth_cal_lut[vcoindex][7]; - uint8_t loop_filter_c1 = synth_cal_lut[vcoindex][8]; - uint8_t loop_filter_r1 = synth_cal_lut[vcoindex][9]; - uint8_t loop_filter_c3 = synth_cal_lut[vcoindex][10]; - uint8_t loop_filter_r3 = synth_cal_lut[vcoindex][11]; - - /* ... annnd program! */ - if(which == RX_TYPE) { - write_ad9361_reg(device, 0x23a, 0x40 | vco_output_level); - write_ad9361_reg(device, 0x239, 0xC0 | vco_varactor); - write_ad9361_reg(device, 0x242, vco_bias_ref | (vco_bias_tcf << 3)); - write_ad9361_reg(device, 0x238, (vco_cal_offset << 3)); - write_ad9361_reg(device, 0x245, 0x00); - write_ad9361_reg(device, 0x251, vco_varactor_ref); - write_ad9361_reg(device, 0x250, 0x70); - write_ad9361_reg(device, 0x23b, 0x80 | charge_pump_curr); - write_ad9361_reg(device, 0x23e, loop_filter_c1 | (loop_filter_c2 << 4)); - write_ad9361_reg(device, 0x23f, loop_filter_c3 | (loop_filter_r1 << 4)); - write_ad9361_reg(device, 0x240, loop_filter_r3); - } else if(which == TX_TYPE) { - write_ad9361_reg(device, 0x27a, 0x40 | vco_output_level); - write_ad9361_reg(device, 0x279, 0xC0 | vco_varactor); - write_ad9361_reg(device, 0x282, vco_bias_ref | (vco_bias_tcf << 3)); - write_ad9361_reg(device, 0x278, (vco_cal_offset << 3)); - write_ad9361_reg(device, 0x285, 0x00); - write_ad9361_reg(device, 0x291, vco_varactor_ref); - write_ad9361_reg(device, 0x290, 0x70); - write_ad9361_reg(device, 0x27b, 0x80 | charge_pump_curr); - write_ad9361_reg(device, 0x27e, loop_filter_c1 | (loop_filter_c2 << 4)); - write_ad9361_reg(device, 0x27f, loop_filter_c3 | (loop_filter_r1 << 4)); - write_ad9361_reg(device, 0x280, loop_filter_r3); - } else { - post_err_msg("[setup_synth] INVALID_CODE_PATH"); - } -} - - -/* Tune the baseband VCO. - * - * This clock signal is what gets fed to the ADCs and DACs. This function is - * not exported outside of this file, and is invoked based on the rate - * fed to the public set_clock_rate function. */ -double tune_bbvco(ad9361_device_t* device, const double rate) { - msg("[tune_bbvco] rate=%.10f", rate); - - /* Let's not re-tune to the same frequency over and over... */ - if(freq_is_nearly_equal(rate, device->req_coreclk)) { - return device->adcclock_freq; - } - - device->req_coreclk = rate; - - const double fref = 40e6; - const int modulus = 2088960; - const double vcomax = 1430e6; - const double vcomin = 672e6; - double vcorate; - int vcodiv; - - /* Iterate over VCO dividers until appropriate divider is found. */ - int i = 1; - for(; i <= 6; i++) { - vcodiv = 1 << i; - vcorate = rate * vcodiv; - - if(vcorate >= vcomin && vcorate <= vcomax) break; - } - if(i == 7) - post_err_msg("tune_bbvco: wrong vcorate"); - - msg("[tune_bbvco] vcodiv=%d vcorate=%.10f", vcodiv, vcorate); - - /* Fo = Fref * (Nint + Nfrac / mod) */ - int nint = vcorate / fref; - msg("[tune_bbvco] (nint)=%.10f", (vcorate / fref)); - int nfrac = lround(((vcorate / fref) - (double)nint) * (double)modulus); - msg("[tune_bbvco] (nfrac)=%.10f", (((vcorate / fref) - (double)nint) * (double)modulus)); - msg("[tune_bbvco] nint=%d nfrac=%d", nint, nfrac); - double actual_vcorate = fref * ((double)nint + ((double)nfrac / (double)modulus)); - - /* Scale CP current according to VCO rate */ - const double icp_baseline = 150e-6; - const double freq_baseline = 1280e6; - double icp = icp_baseline * (actual_vcorate / freq_baseline); - int icp_reg = (icp / 25e-6) - 1; - - write_ad9361_reg(device, 0x045, 0x00); // REFCLK / 1 to BBPLL - write_ad9361_reg(device, 0x046, icp_reg & 0x3F); // CP current - write_ad9361_reg(device, 0x048, 0xe8); // BBPLL loop filters - write_ad9361_reg(device, 0x049, 0x5b); // BBPLL loop filters - write_ad9361_reg(device, 0x04a, 0x35); // BBPLL loop filters - - write_ad9361_reg(device, 0x04b, 0xe0); - write_ad9361_reg(device, 0x04e, 0x10); // Max accuracy - - write_ad9361_reg(device, 0x043, nfrac & 0xFF); // Nfrac[7:0] - write_ad9361_reg(device, 0x042, (nfrac >> 8) & 0xFF); // Nfrac[15:8] - write_ad9361_reg(device, 0x041, (nfrac >> 16) & 0xFF); // Nfrac[23:16] - write_ad9361_reg(device, 0x044, nint); // Nint - - calibrate_lock_bbpll(device); - - device->regs.bbpll = (device->regs.bbpll & 0xF8) | i; - - device->bbpll_freq = actual_vcorate; - device->adcclock_freq = (actual_vcorate / vcodiv); - - return device->adcclock_freq; -} - -/* This function re-programs all of the gains in the system. - * - * Because the gain values match to different gain indices based on the - * current operating band, this function can be called to update all gain - * settings to the appropriate index after a re-tune. */ -void program_gains(uint64_t handle) { - ad9361_device_t* device = get_ad9361_device(handle); - set_gain(handle, RX_TYPE,1, device->rx1_gain); - set_gain(handle, RX_TYPE,2, device->rx2_gain); - set_gain(handle, TX_TYPE,1, device->tx1_gain); - set_gain(handle, TX_TYPE,2, device->tx2_gain); -} - -/* This is the internal tune function, not available for a host call. - * - * Calculate the VCO settings for the requested frquency, and then either - * tune the RX or TX VCO. */ -double tune_helper(ad9361_device_t* device, int which, const double value) { - - /* The RFPLL runs from 6 GHz - 12 GHz */ - const double fref = 80e6; - const int modulus = 8388593; - const double vcomax = 12e9; - const double vcomin = 6e9; - double vcorate; - int vcodiv; - - /* Iterate over VCO dividers until appropriate divider is found. */ - int i; - for(i = 0; i <= 6; i++) { - vcodiv = 2 << i; - vcorate = value * vcodiv; - if(vcorate >= vcomin && vcorate <= vcomax) break; - } - if(i == 7) - post_err_msg("RFVCO can't find valid VCO rate!"); - - int nint = vcorate / fref; - int nfrac = ((vcorate / fref) - nint) * modulus; - - double actual_vcorate = fref * (nint + (double)(nfrac)/modulus); - double actual_lo = actual_vcorate / vcodiv; - - if(which == RX_TYPE) { - - device->req_rx_freq = value; - - /* Set band-specific settings. */ - if(value < ad9361_client_get_band_edge(device->product, AD9361_RX_BAND0)) { - device->regs.inputsel = (device->regs.inputsel & 0xC0) | 0x30; - } else if((value >= ad9361_client_get_band_edge(device->product, AD9361_RX_BAND0)) && - (value < ad9361_client_get_band_edge(device->product, AD9361_RX_BAND1))) { - device->regs.inputsel = (device->regs.inputsel & 0xC0) | 0x0C; - } else if((value >= ad9361_client_get_band_edge(device->product, AD9361_RX_BAND1)) && - (value <= 6e9)) { - device->regs.inputsel = (device->regs.inputsel & 0xC0) | 0x03; - } else { - post_err_msg("[tune_helper] INVALID_CODE_PATH"); - } - - write_ad9361_reg(device, 0x004, device->regs.inputsel); - - /* Store vcodiv setting. */ - device->regs.vcodivs = (device->regs.vcodivs & 0xF0) | (i & 0x0F); - - /* Setup the synthesizer. */ - setup_synth(device, RX_TYPE, actual_vcorate); - - /* Tune!!!! */ - write_ad9361_reg(device, 0x233, nfrac & 0xFF); - write_ad9361_reg(device, 0x234, (nfrac >> 8) & 0xFF); - write_ad9361_reg(device, 0x235, (nfrac >> 16) & 0xFF); - write_ad9361_reg(device, 0x232, (nint >> 8) & 0xFF); - write_ad9361_reg(device, 0x231, nint & 0xFF); - write_ad9361_reg(device, 0x005, device->regs.vcodivs); - - /* Lock the PLL! */ - ad9361_msleep(2); - if((read_ad9361_reg(device, 0x247) & 0x02) == 0) { - post_err_msg("RX PLL NOT LOCKED"); - } - - device->rx_freq = actual_lo; - - return actual_lo; - - } else { - - device->req_tx_freq = value; - - /* Set band-specific settings. */ - if(value < ad9361_client_get_band_edge(device->product, AD9361_TX_BAND0)) { - device->regs.inputsel = device->regs.inputsel | 0x40; - } else if((value >= ad9361_client_get_band_edge(device->product, AD9361_TX_BAND0)) && - (value <= 6e9)) { - device->regs.inputsel = device->regs.inputsel & 0xBF; - } else { - post_err_msg("[tune_helper] INVALID_CODE_PATH"); - } - - write_ad9361_reg(device, 0x004, device->regs.inputsel); - - /* Store vcodiv setting. */ - device->regs.vcodivs = (device->regs.vcodivs & 0x0F) | ((i & 0x0F) << 4); - - /* Setup the synthesizer. */ - setup_synth(device, TX_TYPE, actual_vcorate); - - /* Tune it, homey. */ - write_ad9361_reg(device, 0x273, nfrac & 0xFF); - write_ad9361_reg(device, 0x274, (nfrac >> 8) & 0xFF); - write_ad9361_reg(device, 0x275, (nfrac >> 16) & 0xFF); - write_ad9361_reg(device, 0x272, (nint >> 8) & 0xFF); - write_ad9361_reg(device, 0x271, nint & 0xFF); - write_ad9361_reg(device, 0x005, device->regs.vcodivs); - - /* Lock the PLL! */ - ad9361_msleep(2); - if((read_ad9361_reg(device, 0x287) & 0x02) == 0) { - post_err_msg("TX PLL NOT LOCKED"); - } - - device->tx_freq = actual_lo; - - return actual_lo; - } -} - -/* Configure the various clock / sample rates in the RX and TX chains. - * - * Functionally, this function configures AD9361's RX and TX rates. For - * a requested TX & RX rate, it sets the interpolation & decimation filters, - * and tunes the VCO that feeds the ADCs and DACs. - */ -double setup_rates(ad9361_device_t* device, const double rate) { - - /* If we make it into this function, then we are tuning to a new rate. - * Store the new rate. */ - device->req_clock_rate = rate; - - /* Set the decimation and interpolation values in the RX and TX chains. - * This also switches filters in / out. Note that all transmitters and - * receivers have to be turned on for the calibration portion of - * bring-up, and then they will be switched out to reflect the actual - * user-requested antenna selections. */ - int divfactor = 0; - device->tfir_factor = 0; - if(rate < 0.33e6) { - // RX1 + RX2 enabled, 3, 2, 2, 4 - device->regs.rxfilt = B8( 11101111 ) ; - - // TX1 + TX2 enabled, 3, 2, 2, 4 - device->regs.txfilt = B8( 11101111 ) ; - - divfactor = 48; - device->tfir_factor = 2; - } else if(rate < 0.66e6) { - // RX1 + RX2 enabled, 2, 2, 2, 4 - device->regs.rxfilt = B8( 11011111 ) ; - - // TX1 + TX2 enabled, 2, 2, 2, 4 - device->regs.txfilt = B8( 11011111 ) ; - - divfactor = 32; - device->tfir_factor = 2; - } else if(rate <= 20e6) { - // RX1 + RX2 enabled, 2, 2, 2, 2 - device->regs.rxfilt = B8( 11011110 ) ; - - // TX1 + TX2 enabled, 2, 2, 2, 2 - device->regs.txfilt = B8( 11011110 ) ; - - divfactor = 16; - device->tfir_factor = 2; - } else if((rate > 20e6) && (rate < 23e6)) { - // RX1 + RX2 enabled, 3, 2, 2, 2 - device->regs.rxfilt = B8( 11101110 ) ; - - // TX1 + TX2 enabled, 3, 1, 2, 2 - device->regs.txfilt = B8( 11100110 ) ; - - divfactor = 24; - device->tfir_factor = 2; - } else if((rate >= 23e6) && (rate < 41e6)) { - // RX1 + RX2 enabled, 2, 2, 2, 2 - device->regs.rxfilt = B8( 11011110 ) ; - - // TX1 + TX2 enabled, 1, 2, 2, 2 - device->regs.txfilt = B8( 11001110 ) ; - - divfactor = 16; - device->tfir_factor = 2; - } else if((rate >= 41e6) && (rate <= 56e6)) { - // RX1 + RX2 enabled, 3, 1, 2, 2 - device->regs.rxfilt = B8( 11100110 ) ; - - // TX1 + TX2 enabled, 3, 1, 1, 2 - device->regs.txfilt = B8( 11100010 ) ; - - divfactor = 12; - device->tfir_factor = 2; - } else if((rate > 56e6) && (rate <= 61.44e6)) { - // RX1 + RX2 enabled, 3, 1, 1, 2 - device->regs.rxfilt = B8( 11100010 ) ; - - // TX1 + TX2 enabled, 3, 1, 1, 1 - device->regs.txfilt = B8( 11100001 ) ; - - divfactor = 6; - device->tfir_factor = 1; - } else { - // should never get in here - post_err_msg("[setup_rates] INVALID_CODE_PATH"); - } - - msg("[setup_rates] divfactor=%d", divfactor); - - /* Tune the BBPLL to get the ADC and DAC clocks. */ - const double adcclk = tune_bbvco(device, rate * divfactor); - double dacclk = adcclk; - - /* The DAC clock must be <= 336e6, and is either the ADC clock or 1/2 the - * ADC clock.*/ - if(adcclk > 336e6) { - /* Make the DAC clock = ADC/2, and bypass the TXFIR. */ - device->regs.bbpll = device->regs.bbpll | 0x08; - dacclk = adcclk / 2.0; - } else { - device->regs.bbpll = device->regs.bbpll & 0xF7; - } - - /* Set the dividers / interpolators in AD9361. */ - write_ad9361_reg(device, 0x002, device->regs.txfilt); - write_ad9361_reg(device, 0x003, device->regs.rxfilt); - write_ad9361_reg(device, 0x004, device->regs.inputsel); - write_ad9361_reg(device, 0x00A, device->regs.bbpll); - - msg("[setup_rates] adcclk=%f", adcclk); - device->baseband_bw = (adcclk / divfactor); - - /* - The Tx & Rx FIR calculate 16 taps per clock cycle. This limits the number of available taps to the ratio of DAC_CLK/ADC_CLK - to the input data rate multiplied by 16. For example, if the input data rate is 25 MHz and DAC_CLK is 100 MHz, - then the ratio of DAC_CLK to the input data rate is 100/25 or 4. In this scenario, the total number of taps available is 64. - - Also, whilst the Rx FIR filter always has memory available for 128 taps, the Tx FIR Filter can only support a maximum length of 64 taps - in 1x interpolation mode, and 128 taps in 2x & 4x modes. - */ - const int max_tx_taps = AD9361_MIN(AD9361_MIN((16 * (int)((dacclk / rate) + 0.5)), 128), - (device->tfir_factor==1) ? 64 : 128); - const int max_rx_taps = AD9361_MIN((16 * (int)((adcclk / rate) + 0.5)), 128); - - const int num_tx_taps = get_num_taps(max_tx_taps); - const int num_rx_taps = get_num_taps(max_rx_taps); - - setup_tx_fir(device, num_tx_taps); - setup_rx_fir(device, num_rx_taps); - - return device->baseband_bw; -} - -/*********************************************************************** - * Publicly exported functions to host calls - **********************************************************************/ -void init_ad9361(uint64_t handle) { - ad9361_device_t* device = get_ad9361_device(handle); - /* Initialize shadow registers. */ - device->regs.vcodivs = 0x00; - device->regs.inputsel = 0x30; - device->regs.rxfilt = 0x00; - device->regs.txfilt = 0x00; - device->regs.bbpll = 0x02; - device->regs.bbftune_config = 0x1e; - device->regs.bbftune_mode = 0x1e; - - /* Initialize private VRQ fields. */ - device->rx_freq = 0.0; - device->tx_freq = 0.0; - device->req_rx_freq = 0.0; - device->req_tx_freq = 0.0; - device->baseband_bw = 0.0; - device->req_clock_rate = 0.0; - device->req_coreclk = 0.0; - device->bbpll_freq = 0.0; - device->adcclock_freq = 0.0; - device->rx_bbf_tunediv = 0; - device->curr_gain_table = 0; - device->rx1_gain = 0; - device->rx2_gain = 0; - device->tx1_gain = 0; - device->tx2_gain = 0; - - /* Reset the device. */ - write_ad9361_reg(device, 0x000,0x01); - write_ad9361_reg(device, 0x000,0x00); - ad9361_msleep(20); - - /* There is not a WAT big enough for this. */ - write_ad9361_reg(device, 0x3df, 0x01); - - write_ad9361_reg(device, 0x2a6, 0x0e); // Enable master bias - write_ad9361_reg(device, 0x2a8, 0x0e); // Set bandgap trim - - /* Set RFPLL ref clock scale to REFCLK * 2 */ - write_ad9361_reg(device, 0x2ab, 0x07); - write_ad9361_reg(device, 0x2ac, 0xff); - - /* Enable clocks. */ - switch (ad9361_client_get_clocking_mode(device->product)) { - case AD9361_XTAL_N_CLK_PATH: { - write_ad9361_reg(device, 0x009, 0x17); - } break; - - case AD9361_XTAL_P_CLK_PATH: { - write_ad9361_reg(device, 0x009, 0x07); - write_ad9361_reg(device, 0x292, 0x08); - write_ad9361_reg(device, 0x293, 0x80); - write_ad9361_reg(device, 0x294, 0x00); - write_ad9361_reg(device, 0x295, 0x14); - } break; - - default: - post_err_msg("NOT IMPLEMENTED"); - } - ad9361_msleep(20); - - /* Tune the BBPLL, write TX and RX FIRS. */ - setup_rates(device, 50e6); - - /* Setup data ports (FDD dual port DDR): - * FDD dual port DDR CMOS no swap. - * Force TX on one port, RX on the other. */ - switch (ad9361_client_get_digital_interface_mode(device->product)) { - case AD9361_DDR_FDD_LVCMOS: { - write_ad9361_reg(device, 0x010, 0xc8); - write_ad9361_reg(device, 0x011, 0x00); - write_ad9361_reg(device, 0x012, 0x02); - } break; - - case AD9361_DDR_FDD_LVDS: { - write_ad9361_reg(device, 0x010, 0xcc); - write_ad9361_reg(device, 0x011, 0x00); - write_ad9361_reg(device, 0x012, 0x10); - - //LVDS Specific - write_ad9361_reg(device, 0x03C, 0x23); - write_ad9361_reg(device, 0x03D, 0xFF); - write_ad9361_reg(device, 0x03E, 0x0F); - } break; - - default: - post_err_msg("NOT IMPLEMENTED"); - } - - /* Data delay for TX and RX data clocks */ - digital_interface_delays_t timing = ad9361_client_get_digital_interface_timing(device->product); - uint8_t rx_delays = ((timing.rx_clk_delay & 0xF) << 4) | (timing.rx_data_delay & 0xF); - uint8_t tx_delays = ((timing.tx_clk_delay & 0xF) << 4) | (timing.tx_data_delay & 0xF); - write_ad9361_reg(device, 0x006, rx_delays); - write_ad9361_reg(device, 0x007, tx_delays); - - /* Setup AuxDAC */ - write_ad9361_reg(device, 0x018, 0x00); // AuxDAC1 Word[9:2] - write_ad9361_reg(device, 0x019, 0x00); // AuxDAC2 Word[9:2] - write_ad9361_reg(device, 0x01A, 0x00); // AuxDAC1 Config and Word[1:0] - write_ad9361_reg(device, 0x01B, 0x00); // AuxDAC2 Config and Word[1:0] - write_ad9361_reg(device, 0x022, 0x4A); // Invert Bypassed LNA - write_ad9361_reg(device, 0x023, 0xFF); // AuxDAC Manaul/Auto Control - write_ad9361_reg(device, 0x026, 0x00); // AuxDAC Manual Select Bit/GPO Manual Select - write_ad9361_reg(device, 0x030, 0x00); // AuxDAC1 Rx Delay - write_ad9361_reg(device, 0x031, 0x00); // AuxDAC1 Tx Delay - write_ad9361_reg(device, 0x032, 0x00); // AuxDAC2 Rx Delay - write_ad9361_reg(device, 0x033, 0x00); // AuxDAC2 Tx Delay - - /* Setup AuxADC */ - write_ad9361_reg(device, 0x00B, 0x00); // Temp Sensor Setup (Offset) - write_ad9361_reg(device, 0x00C, 0x00); // Temp Sensor Setup (Temp Window) - write_ad9361_reg(device, 0x00D, 0x03); // Temp Sensor Setup (Periodic Measure) - write_ad9361_reg(device, 0x00F, 0x04); // Temp Sensor Setup (Decimation) - write_ad9361_reg(device, 0x01C, 0x10); // AuxADC Setup (Clock Div) - write_ad9361_reg(device, 0x01D, 0x01); // AuxADC Setup (Decimation/Enable) - - /* Setup control outputs. */ - write_ad9361_reg(device, 0x035, 0x07); - write_ad9361_reg(device, 0x036, 0xFF); - - /* Setup GPO */ - write_ad9361_reg(device, 0x03a, 0x27); //set delay register - write_ad9361_reg(device, 0x020, 0x00); // GPO Auto Enable Setup in RX and TX - write_ad9361_reg(device, 0x027, 0x03); // GPO Manual and GPO auto value in ALERT - write_ad9361_reg(device, 0x028, 0x00); // GPO_0 RX Delay - write_ad9361_reg(device, 0x029, 0x00); // GPO_1 RX Delay - write_ad9361_reg(device, 0x02A, 0x00); // GPO_2 RX Delay - write_ad9361_reg(device, 0x02B, 0x00); // GPO_3 RX Delay - write_ad9361_reg(device, 0x02C, 0x00); // GPO_0 TX Delay - write_ad9361_reg(device, 0x02D, 0x00); // GPO_1 TX Delay - write_ad9361_reg(device, 0x02E, 0x00); // GPO_2 TX Delay - write_ad9361_reg(device, 0x02F, 0x00); // GPO_3 TX Delay - - write_ad9361_reg(device, 0x261, 0x00); // RX LO power - write_ad9361_reg(device, 0x2a1, 0x00); // TX LO power - write_ad9361_reg(device, 0x248, 0x0b); // en RX VCO LDO - write_ad9361_reg(device, 0x288, 0x0b); // en TX VCO LDO - write_ad9361_reg(device, 0x246, 0x02); // pd RX cal Tcf - write_ad9361_reg(device, 0x286, 0x02); // pd TX cal Tcf - write_ad9361_reg(device, 0x249, 0x8e); // rx vco cal length - write_ad9361_reg(device, 0x289, 0x8e); // rx vco cal length - write_ad9361_reg(device, 0x23b, 0x80); // set RX MSB?, FIXME 0x89 magic cp - write_ad9361_reg(device, 0x27b, 0x80); // "" TX //FIXME 0x88 see above - write_ad9361_reg(device, 0x243, 0x0d); // set rx prescaler bias - write_ad9361_reg(device, 0x283, 0x0d); // "" TX - - write_ad9361_reg(device, 0x23d, 0x00); // Clear half VCO cal clock setting - write_ad9361_reg(device, 0x27d, 0x00); // Clear half VCO cal clock setting - - /* The order of the following process is EXTREMELY important. If the - * below functions are modified at all, device initialization and - * calibration might be broken in the process! */ - - write_ad9361_reg(device, 0x015, 0x04); // dual synth mode, synth en ctrl en - write_ad9361_reg(device, 0x014, 0x05); // use SPI for TXNRX ctrl, to ALERT, TX on - write_ad9361_reg(device, 0x013, 0x01); // enable ENSM - ad9361_msleep(1); - - calibrate_synth_charge_pumps(device); - - tune_helper(device, RX_TYPE, 800e6); - tune_helper(device, TX_TYPE, 850e6); - - program_mixer_gm_subtable(device); - program_gain_table(device); - setup_gain_control(device); - - calibrate_baseband_rx_analog_filter(device); - calibrate_baseband_tx_analog_filter(device); - calibrate_rx_TIAs(device); - calibrate_secondary_tx_filter(device); - - setup_adc(device); - - calibrate_tx_quadrature(device); - calibrate_rx_quadrature(device); - - // cals done, set PPORT config - switch (ad9361_client_get_digital_interface_mode(device->product)) { - case AD9361_DDR_FDD_LVCMOS: { - write_ad9361_reg(device, 0x012, 0x02); - } break; - - case AD9361_DDR_FDD_LVDS: { - write_ad9361_reg(device, 0x012, 0x10); - } break; - - default: - post_err_msg("NOT IMPLEMENTED"); - } - - write_ad9361_reg(device, 0x013, 0x01); // Set ENSM FDD bit - write_ad9361_reg(device, 0x015, 0x04); // dual synth mode, synth en ctrl en - - /* Default TX attentuation to 10dB on both TX1 and TX2 */ - write_ad9361_reg(device, 0x073, 0x00); - write_ad9361_reg(device, 0x074, 0x00); - write_ad9361_reg(device, 0x075, 0x00); - write_ad9361_reg(device, 0x076, 0x00); - - /* Setup RSSI Measurements */ - write_ad9361_reg(device, 0x150, 0x0E); // RSSI Measurement Duration 0, 1 - write_ad9361_reg(device, 0x151, 0x00); // RSSI Measurement Duration 2, 3 - write_ad9361_reg(device, 0x152, 0xFF); // RSSI Weighted Multiplier 0 - write_ad9361_reg(device, 0x153, 0x00); // RSSI Weighted Multiplier 1 - write_ad9361_reg(device, 0x154, 0x00); // RSSI Weighted Multiplier 2 - write_ad9361_reg(device, 0x155, 0x00); // RSSI Weighted Multiplier 3 - write_ad9361_reg(device, 0x156, 0x00); // RSSI Delay - write_ad9361_reg(device, 0x157, 0x00); // RSSI Wait - write_ad9361_reg(device, 0x158, 0x0D); // RSSI Mode Select - write_ad9361_reg(device, 0x15C, 0x67); // Power Measurement Duration - - /* Turn on the default RX & TX chains. */ - set_active_chains(handle, true, false, false, false); - - /* Set TXers & RXers on (only works in FDD mode) */ - write_ad9361_reg(device, 0x014, 0x21); -} - - -/* This function sets the RX / TX rate between AD9361 and the FPGA, and - * thus determines the interpolation / decimation required in the FPGA to - * achieve the user's requested rate. - * - * This is the only clock setting function that is exposed to the outside. */ -double set_clock_rate(uint64_t handle, const double req_rate) { - ad9361_device_t* device = get_ad9361_device(handle); - - if(req_rate > 61.44e6) { - post_err_msg("Requested master clock rate outside range"); - } - - msg("[set_clock_rate] req_rate=%.10f", req_rate); - - /* UHD has a habit of requesting the same rate like four times when it - * starts up. This prevents that, and any bugs in user code that request - * the same rate over and over. */ - if(freq_is_nearly_equal(req_rate, device->req_clock_rate)) { - return device->baseband_bw; - } - - /* We must be in the SLEEP / WAIT state to do this. If we aren't already - * there, transition the ENSM to State 0. */ - uint8_t current_state = read_ad9361_reg(device, 0x017) & 0x0F; - switch(current_state) { - case 0x05: - /* We are in the ALERT state. */ - write_ad9361_reg(device, 0x014, 0x21); - ad9361_msleep(5); - write_ad9361_reg(device, 0x014, 0x00); - break; - - case 0x0A: - /* We are in the FDD state. */ - write_ad9361_reg(device, 0x014, 0x00); - break; - - default: - post_err_msg("[set_clock_rate:1] AD9361 in unknown state"); - break; - }; - - /* Store the current chain / antenna selections so that we can restore - * them at the end of this routine; all chains will be enabled from - * within setup_rates for calibration purposes. */ - uint8_t orig_tx_chains = device->regs.txfilt & 0xC0; - uint8_t orig_rx_chains = device->regs.rxfilt & 0xC0; - - /* Call into the clock configuration / settings function. This is where - * all the hard work gets done. */ - double rate = setup_rates(device, req_rate); - - msg("[set_clock_rate] rate=%.10f", rate); - - /* Transition to the ALERT state and calibrate everything. */ - write_ad9361_reg(device, 0x015, 0x04); //dual synth mode, synth en ctrl en - write_ad9361_reg(device, 0x014, 0x05); //use SPI for TXNRX ctrl, to ALERT, TX on - write_ad9361_reg(device, 0x013, 0x01); //enable ENSM - ad9361_msleep(1); - - calibrate_synth_charge_pumps(device); - - tune_helper(device, RX_TYPE, device->rx_freq); - tune_helper(device, TX_TYPE, device->tx_freq); - - program_mixer_gm_subtable(device); - program_gain_table(device); - setup_gain_control(device); - program_gains(handle); - - calibrate_baseband_rx_analog_filter(device); - calibrate_baseband_tx_analog_filter(device); - calibrate_rx_TIAs(device); - calibrate_secondary_tx_filter(device); - - setup_adc(device); - - calibrate_tx_quadrature(device); - calibrate_rx_quadrature(device); - - // cals done, set PPORT config - switch (ad9361_client_get_digital_interface_mode(device->product)) { - case AD9361_DDR_FDD_LVCMOS: { - write_ad9361_reg(device, 0x012, 0x02); - } break; - - case AD9361_DDR_FDD_LVDS: { - write_ad9361_reg(device, 0x012, 0x10); - } break; - - default: - post_err_msg("NOT IMPLEMENTED"); - } - write_ad9361_reg(device, 0x013, 0x01); // Set ENSM FDD bit - write_ad9361_reg(device, 0x015, 0x04); // dual synth mode, synth en ctrl en - - /* End the function in the same state as the entry state. */ - switch(current_state) { - case 0x05: - /* We are already in ALERT. */ - break; - - case 0x0A: - /* Transition back to FDD, and restore the original antenna - * / chain selections. */ - device->regs.txfilt = (device->regs.txfilt & 0x3F) | orig_tx_chains; - device->regs.rxfilt = (device->regs.rxfilt & 0x3F) | orig_rx_chains; - - write_ad9361_reg(device, 0x002, device->regs.txfilt); - write_ad9361_reg(device, 0x003, device->regs.rxfilt); - write_ad9361_reg(device, 0x014, 0x21); - break; - - default: - post_err_msg("[set_clock_rate:2] AD9361 in unknown state"); - break; - }; - - return rate; -} - - -/* Set which of the four TX / RX chains provided by AD9361 are active. - * - * AD9361 provides two sets of chains, Side A and Side B. Each side - * provides one TX antenna, and one RX antenna. The B200 maintains the USRP - * standard of providing one antenna connection that is both TX & RX, and - * one that is RX-only - for each chain. Thus, the possible antenna and - * chain selections are: - * - * B200 Antenna AD9361 Side AD9361 Chain - * ------------------------------------------------------------------- - * TX / RX1 Side A TX1 (when switched to TX) - * TX / RX1 Side A RX1 (when switched to RX) - * RX1 Side A RX1 - * - * TX / RX2 Side B TX2 (when switched to TX) - * TX / RX2 Side B RX2 (when switched to RX) - * RX2 Side B RX2 - */ -void set_active_chains(uint64_t handle, bool tx1, bool tx2, bool rx1, bool rx2) { - ad9361_device_t* device = get_ad9361_device(handle); - - /* Clear out the current active chain settings. */ - device->regs.txfilt = device->regs.txfilt & 0x3F; - device->regs.rxfilt = device->regs.rxfilt & 0x3F; - - /* Turn on the different chains based on the passed parameters. */ - if(tx1) { device->regs.txfilt = device->regs.txfilt | 0x40; } - if(tx2) { device->regs.txfilt = device->regs.txfilt | 0x80; } - if(rx1) { device->regs.rxfilt = device->regs.rxfilt | 0x40; } - if(rx2) { device->regs.rxfilt = device->regs.rxfilt | 0x80; } - - /* Check for FDD state */ - uint8_t set_back_to_fdd = 0; - uint8_t ensm_state = read_ad9361_reg(device, 0x017) & 0x0F; - if (ensm_state == 0xA) // FDD - { - /* Put into ALERT state (via the FDD flush state). */ - write_ad9361_reg(device, 0x014, 0x01); - set_back_to_fdd = 1; - } - - /* Wait for FDD flush state to complete (if necessary) */ - while (ensm_state == 0xA || ensm_state == 0xB) - ensm_state = read_ad9361_reg(device, 0x017) & 0x0F; - - /* Turn on / off the chains. */ - write_ad9361_reg(device, 0x002, device->regs.txfilt); - write_ad9361_reg(device, 0x003, device->regs.rxfilt); - - /* Put back into FDD state if necessary */ - if (set_back_to_fdd) - write_ad9361_reg(device, 0x014, 0x21); -} - -/* Tune the RX or TX frequency. - * - * This is the publicly-accessible tune function. It makes sure the tune - * isn't a redundant request, and if not, passes it on to the class's - * internal tune function. - * - * After tuning, it runs any appropriate calibrations. */ -double tune(uint64_t handle, int which, const double value) { - ad9361_device_t* device = get_ad9361_device(handle); - - if(which == RX_TYPE) { - if(freq_is_nearly_equal(value, device->req_rx_freq)) { - return device->rx_freq; - } - - } else if(which == TX_TYPE) { - if(freq_is_nearly_equal(value, device->req_tx_freq)) { - return device->tx_freq; - } - - } else { - post_err_msg("[tune] INVALID_CODE_PATH"); - } - - /* If we aren't already in the ALERT state, we will need to return to - * the FDD state after tuning. */ - int not_in_alert = 0; - if((read_ad9361_reg(device, 0x017) & 0x0F) != 5) { - /* Force the device into the ALERT state. */ - not_in_alert = 1; - write_ad9361_reg(device, 0x014, 0x01); - } - - /* Tune the RF VCO! */ - double tune_freq = tune_helper(device, which, value); - - /* Run any necessary calibrations / setups */ - if(which == RX_TYPE) { - program_gain_table(device); - } - - /* Update the gain settings. */ - program_gains(handle); - - /* Run the calibration algorithms. */ - calibrate_tx_quadrature(device); - calibrate_rx_quadrature(device); - - /* If we were in the FDD state, return it now. */ - if(not_in_alert) { - write_ad9361_reg(device, 0x014, 0x21); - } - - return tune_freq; -} - -/* Set the gain of RX1, RX2, TX1, or TX2. - * - * Note that the 'value' passed to this function is the actual gain value, - * _not_ the gain index. This is the opposite of the eval software's GUI! - * Also note that the RX chains are done in terms of gain, and the TX chains - * are done in terms of attenuation. */ -double set_gain(uint64_t handle, int which, int n, const double value) { - ad9361_device_t* device = get_ad9361_device(handle); - - if(which == RX_TYPE) { - /* Indexing the gain tables requires an offset from the requested - * amount of total gain in dB: - * < 1300MHz: dB + 5 - * >= 1300MHz and < 4000MHz: dB + 3 - * >= 4000MHz and <= 6000MHz: dB + 14 - */ - int gain_offset = 0; - if(device->rx_freq < 1300e6) { - gain_offset = 5; - } else if(device->rx_freq < 4000e6) { - gain_offset = 3; - } else { - gain_offset = 14; - } - - int gain_index = value + gain_offset; - - /* Clip the gain values to the proper min/max gain values. */ - if(gain_index > 76) gain_index = 76; - if(gain_index < 0) gain_index = 0; - - if(n == 1) { - device->rx1_gain = value; - write_ad9361_reg(device, 0x109, gain_index); - } else { - device->rx2_gain = value; - write_ad9361_reg(device, 0x10c, gain_index); - } - - return gain_index - gain_offset; - } else { - /* Setting the below bits causes a change in the TX attenuation word - * to immediately take effect. */ - write_ad9361_reg(device, 0x077, 0x40); - write_ad9361_reg(device, 0x07c, 0x40); - - /* Each gain step is -0.25dB. Calculate the attenuation necessary - * for the requested gain, convert it into gain steps, then write - * the attenuation word. Max gain (so zero attenuation) is 89.75. */ - double atten = AD9361_MAX_GAIN - value; - int attenreg = atten * 4; - if(n == 1) { - device->tx1_gain = value; - write_ad9361_reg(device, 0x073, attenreg & 0xFF); - write_ad9361_reg(device, 0x074, (attenreg >> 8) & 0x01); - } else { - device->tx2_gain = value; - write_ad9361_reg(device, 0x075, attenreg & 0xFF); - write_ad9361_reg(device, 0x076, (attenreg >> 8) & 0x01); - } - return AD9361_MAX_GAIN - ((double)(attenreg)/ 4); - } -} - -/* This function is responsible to dispatch the vendor request call - * to the proper handler - */ - -void ad9361_dispatch(const char* vrb, char* vrb_out) -{ - memcpy(vrb_out, vrb, AD9361_DISPATCH_PACKET_SIZE); //copy request to response memory - tmp_req_buffer = vrb_out; - - ////////////////////////////////////////////// - - double ret_val = 0.0; - int mask = 0; - - const ad9361_transaction_t *request = (const ad9361_transaction_t *)vrb; - ad9361_transaction_t *response = (ad9361_transaction_t *)vrb_out; - - //msg("[dispatch_vrq] action=%d", request->action); - //msg("[dispatch_vrq] action=%f", (double)request->action); - - switch (request->action) { - case AD9361_ACTION_ECHO: - break; // nothing to do - case AD9361_ACTION_INIT: - init_ad9361(request->handle); - break; - case AD9361_ACTION_SET_RX1_GAIN: - ret_val = set_gain(request->handle,RX_TYPE,1,ad9361_double_unpack(request->value.gain)); - ad9361_double_pack(ret_val, response->value.gain); - break; - case AD9361_ACTION_SET_TX1_GAIN: - ret_val = set_gain(request->handle,TX_TYPE,1,ad9361_double_unpack(request->value.gain)); - ad9361_double_pack(ret_val, response->value.gain); - break; - case AD9361_ACTION_SET_RX2_GAIN: - ret_val = set_gain(request->handle,RX_TYPE,2,ad9361_double_unpack(request->value.gain)); - ad9361_double_pack(ret_val, response->value.gain); - break; - case AD9361_ACTION_SET_TX2_GAIN: - ret_val = set_gain(request->handle,TX_TYPE,2,ad9361_double_unpack(request->value.gain)); - ad9361_double_pack(ret_val, response->value.gain); - break; - case AD9361_ACTION_SET_RX_FREQ: - ret_val = tune(request->handle,RX_TYPE, ad9361_double_unpack(request->value.freq)); - ad9361_double_pack(ret_val, response->value.freq); - break; - case AD9361_ACTION_SET_TX_FREQ: - ret_val = tune(request->handle,TX_TYPE, ad9361_double_unpack(request->value.freq)); - ad9361_double_pack(ret_val, response->value.freq); - break; - case AD9361_ACTION_SET_CODEC_LOOP: - data_port_loopback(request->handle,request->value.codec_loop != 0); - break; - case AD9361_ACTION_SET_CLOCK_RATE: - ret_val = set_clock_rate(request->handle,ad9361_double_unpack(request->value.rate)); - ad9361_double_pack(ret_val, response->value.rate); - break; - case AD9361_ACTION_SET_ACTIVE_CHAINS: - mask = request->value.enable_mask; - set_active_chains(request->handle,mask & 1, mask & 2, mask & 4, mask & 8); - break; - default: - post_err_msg("[ad9361_dispatch] NOT IMPLEMENTED"); - break; - } -} diff --git a/host/lib/usrp/common/ad9361_driver/ad9361_platform.h b/host/lib/usrp/common/ad9361_driver/ad9361_platform.h deleted file mode 100644 index 0444f3159..000000000 --- a/host/lib/usrp/common/ad9361_driver/ad9361_platform.h +++ /dev/null @@ -1,64 +0,0 @@ -// -// Copyright 2014 Ettus Research LLC -// - -#ifndef INCLUDED_AD9361_PLATFORM_H -#define INCLUDED_AD9361_PLATFORM_H - -#include <stdint.h> -#include "ad9361_device.h" - -#ifdef __cplusplus -extern "C" { -#endif - -/*! - * Get chip class from handle - */ -ad9361_device_t* get_ad9361_device(uint64_t handle); - -/*! - * Write a register in the AD9361 space - */ -void write_ad9361_reg(ad9361_device_t* device, uint32_t reg, uint8_t val); - -/*! - * Read a register from the AD9361 space - */ -uint8_t read_ad9361_reg(ad9361_device_t* device, uint32_t reg); - -/*! - * Millisecond sleep - */ -void ad9361_msleep(const uint32_t millis); - -/*! - * Pack a double into 2 uint32s - */ -void ad9361_double_pack(const double input, uint32_t output[2]); - -/*! - * Unpack 2 uint32s into a double - */ -double ad9361_double_unpack(const uint32_t input[2]); - -/*! - * Compute the square root of val - */ -double ad9361_sqrt(double val); - -/*! - * Compute the floor of val - */ -int ad9361_floor_to_int(double val); - -/*! - * Compute the ceil of val - */ -int ad9361_ceil_to_int(double val); - -#ifdef __cplusplus -} -#endif - -#endif /* INCLUDED_AD9361_PLATFORM_H */ diff --git a/host/lib/usrp/common/ad9361_driver/ad9361_transaction.h b/host/lib/usrp/common/ad9361_driver/ad9361_transaction.h deleted file mode 100644 index 06541d2ee..000000000 --- a/host/lib/usrp/common/ad9361_driver/ad9361_transaction.h +++ /dev/null @@ -1,77 +0,0 @@ -// -// Copyright 2014 Ettus Research LLC -// - -#ifndef INCLUDED_AD9361_TRANSACTION_H -#define INCLUDED_AD9361_TRANSACTION_H - -#include <stdint.h> - -#ifdef __cplusplus -extern "C" { -#endif - -//various constants -#define AD9361_TRANSACTION_VERSION 0x5 -#define AD9361_DISPATCH_PACKET_SIZE 64 - -//action types -#define AD9361_ACTION_ECHO 0 -#define AD9361_ACTION_INIT 1 -#define AD9361_ACTION_SET_RX1_GAIN 2 -#define AD9361_ACTION_SET_TX1_GAIN 3 -#define AD9361_ACTION_SET_RX2_GAIN 4 -#define AD9361_ACTION_SET_TX2_GAIN 5 -#define AD9361_ACTION_SET_RX_FREQ 6 -#define AD9361_ACTION_SET_TX_FREQ 7 -#define AD9361_ACTION_SET_CODEC_LOOP 8 -#define AD9361_ACTION_SET_CLOCK_RATE 9 -#define AD9361_ACTION_SET_ACTIVE_CHAINS 10 - -typedef struct -{ - //version is expected to be AD9361_TRANSACTION_VERSION - //check otherwise for compatibility - uint32_t version; - - //sequence number - increment every call for sanity - uint32_t sequence; - - //location info for the ad9361 chip class - uint64_t handle; - - //action tells us what to do, see AD9361_ACTION_* - uint32_t action; - - union - { - //enable mask for chains - uint32_t enable_mask; - - //true to enable codec internal loopback - uint32_t codec_loop; - - //freq holds request LO freq and result from tune - uint32_t freq[2]; - - //gain holds request gain and result from action - uint32_t gain[2]; - - //rate holds request clock rate and result from action - uint32_t rate[2]; - - } value; - - //error message comes back as a reply - - //set to null string for no error \0 - char error_msg[]; - -} ad9361_transaction_t; - -#define AD9361_TRANSACTION_MAX_ERROR_MSG (AD9361_DISPATCH_PACKET_SIZE - (sizeof(ad9361_transaction_t)-4)-1) // -4 for 'error_msg' alignment padding, -1 for terminating \0 - -#ifdef __cplusplus -} -#endif - -#endif /* INCLUDED_AD9361_TRANSACTION_H */ diff --git a/host/lib/usrp/common/ad9361_platform_uhd.cpp b/host/lib/usrp/common/ad9361_platform_uhd.cpp deleted file mode 100644 index 10ea67345..000000000 --- a/host/lib/usrp/common/ad9361_platform_uhd.cpp +++ /dev/null @@ -1,86 +0,0 @@ -// -// Copyright 2014 Ettus Research LLC -// - -#include <uhd/utils/msg.hpp> -#include <cmath> -#include <cstdlib> -#include <cstring> -#include <stdint.h> -#include <ad9361_platform.h> -#include "ad9361_ctrl.hpp" -#include <stdio.h> -#include <boost/date_time/posix_time/posix_time.hpp> -#include <boost/thread/thread.hpp> - -//If the platform for the AD9361 driver is UHD (host) then the handle is simply -//a pointer to a device class instance -ad9361_device_t* get_ad9361_device(uint64_t handle) -{ - return reinterpret_cast<ad9361_device_t*>(reinterpret_cast<void*>(handle)); -} - -uint8_t read_ad9361_reg(ad9361_device_t* device, uint32_t reg) -{ - if (device && device->io_iface) { - //If the platform for the AD9361 driver is UHD (host) then the io_iface is - //a pointer to a ad9361_io implementation - ad9361_io* io_iface = reinterpret_cast<ad9361_io*>(device->io_iface); - return io_iface->peek8(reg); - } else { - return 0; - } -} - -void write_ad9361_reg(ad9361_device_t* device, uint32_t reg, uint8_t val) -{ - if (device && device->io_iface) { - //If the platform for the AD9361 driver is UHD (host) then the io_iface is - //a pointer to a ad9361_io implementation - ad9361_io* io_iface = reinterpret_cast<ad9361_io*>(device->io_iface); - io_iface->poke8(reg, val); - } -} - -typedef union -{ - double d; - uint32_t x[2]; -} ad9361_double_union_t; - -void ad9361_double_pack(const double input, uint32_t output[2]) -{ - ad9361_double_union_t p = {}; - p.d = input; - output[0] = p.x[0]; - output[1] = p.x[1]; -} - -double ad9361_double_unpack(const uint32_t input[2]) -{ - ad9361_double_union_t p = {}; - p.x[0] = input[0]; - p.x[1] = input[1]; - return p.d; -} - -double ad9361_sqrt(double val) -{ - return std::sqrt(val); -} - -void ad9361_msleep(const uint32_t millis) -{ - boost::this_thread::sleep(boost::posix_time::milliseconds(millis)); -} - -int ad9361_floor_to_int(double val) -{ - return static_cast<int>(std::floor(val)); -} - -int ad9361_ceil_to_int(double val) -{ - return static_cast<int>(std::ceil(val)); -} - |