aboutsummaryrefslogtreecommitdiffstats
path: root/host/lib
diff options
context:
space:
mode:
Diffstat (limited to 'host/lib')
-rw-r--r--host/lib/rfnoc/CMakeLists.txt1
-rw-r--r--host/lib/rfnoc/duc_block_control.cpp524
2 files changed, 525 insertions, 0 deletions
diff --git a/host/lib/rfnoc/CMakeLists.txt b/host/lib/rfnoc/CMakeLists.txt
index 963458fe6..a88507dcd 100644
--- a/host/lib/rfnoc/CMakeLists.txt
+++ b/host/lib/rfnoc/CMakeLists.txt
@@ -58,6 +58,7 @@ LIBUHD_APPEND_SOURCES(
# Default block control classes:
${CMAKE_CURRENT_SOURCE_DIR}/block_control.cpp
${CMAKE_CURRENT_SOURCE_DIR}/ddc_block_control.cpp
+ ${CMAKE_CURRENT_SOURCE_DIR}/duc_block_control.cpp
${CMAKE_CURRENT_SOURCE_DIR}/ddc_block_ctrl_impl.cpp
${CMAKE_CURRENT_SOURCE_DIR}/duc_block_ctrl_impl.cpp
${CMAKE_CURRENT_SOURCE_DIR}/fir_block_ctrl_impl.cpp
diff --git a/host/lib/rfnoc/duc_block_control.cpp b/host/lib/rfnoc/duc_block_control.cpp
new file mode 100644
index 000000000..0d10aee69
--- /dev/null
+++ b/host/lib/rfnoc/duc_block_control.cpp
@@ -0,0 +1,524 @@
+//
+// Copyright 2019 Ettus Research, a National Instruments Brand
+//
+// SPDX-License-Identifier: GPL-3.0-or-later
+//
+
+#include <uhd/exception.hpp>
+#include <uhd/rfnoc/defaults.hpp>
+#include <uhd/rfnoc/duc_block_control.hpp>
+#include <uhd/rfnoc/property.hpp>
+#include <uhd/rfnoc/registry.hpp>
+#include <uhd/types/ranges.hpp>
+#include <uhd/utils/log.hpp>
+#include <uhd/utils/math.hpp>
+#include <uhdlib/usrp/cores/dsp_core_utils.hpp>
+#include <uhdlib/utils/compat_check.hpp>
+#include <uhdlib/utils/math.hpp>
+#include <boost/math/special_functions/round.hpp>
+#include <set>
+#include <string>
+
+namespace {
+
+constexpr double DEFAULT_SCALING = 1.0;
+constexpr int DEFAULT_INTERP = 1;
+constexpr double DEFAULT_FREQ = 0.0;
+const uhd::rfnoc::io_type_t DEFAULT_TYPE = uhd::rfnoc::IO_TYPE_SC16;
+
+//! Space (in bytes) between register banks per channel
+constexpr uint32_t REG_CHAN_OFFSET = 2048;
+
+} // namespace
+
+using namespace uhd::rfnoc;
+
+const uint16_t duc_block_control::MINOR_COMPAT = 0;
+const uint16_t duc_block_control::MAJOR_COMPAT = 0;
+
+const uint32_t duc_block_control::RB_COMPAT_NUM = 0; // read this first
+const uint32_t duc_block_control::RB_NUM_HB = 8;
+const uint32_t duc_block_control::RB_CIC_MAX_INTERP = 16;
+
+const uint32_t duc_block_control::SR_N_ADDR = 128 * 8;
+const uint32_t duc_block_control::SR_M_ADDR = 129 * 8;
+const uint32_t duc_block_control::SR_CONFIG_ADDR = 130 * 8;
+const uint32_t duc_block_control::SR_INTERP_ADDR = 131 * 8;
+const uint32_t duc_block_control::SR_FREQ_ADDR = 132 * 8;
+const uint32_t duc_block_control::SR_SCALE_IQ_ADDR = 133 * 8;
+
+class duc_block_control_impl : public duc_block_control
+{
+public:
+ RFNOC_BLOCK_CONSTRUCTOR(duc_block_control)
+ , _fpga_compat(regs().peek32(RB_COMPAT_NUM)),
+ _num_halfbands(regs().peek32(RB_NUM_HB)),
+ _cic_max_interp(regs().peek32(RB_CIC_MAX_INTERP)),
+ _residual_scaling(get_num_input_ports(), DEFAULT_SCALING)
+ {
+ UHD_ASSERT_THROW(get_num_input_ports() == get_num_output_ports());
+ UHD_ASSERT_THROW(_cic_max_interp > 0 && _cic_max_interp <= 0xFF);
+ uhd::assert_fpga_compat(MAJOR_COMPAT,
+ MINOR_COMPAT,
+ _fpga_compat,
+ get_unique_id(),
+ get_unique_id(),
+ false /* Let it slide if minors mismatch */
+ );
+ RFNOC_LOG_DEBUG("Loading DUC with " << _num_halfbands
+ << " halfbands and "
+ "max CIC interpolation "
+ << _cic_max_interp);
+ // Load list of valid interpolation values
+ std::set<size_t> interps{1}; // 1 is always a valid interpolation
+ for (size_t hb = 0; hb < _num_halfbands; hb++) {
+ for (size_t cic_interp = 1; cic_interp <= _cic_max_interp; cic_interp++) {
+ interps.insert((1 << hb) * cic_interp);
+ }
+ }
+ for (size_t interp : interps) {
+ _valid_interps.push_back(uhd::range_t(double(interp)));
+ }
+
+ // Initialize properties. It is very important to first reserve the
+ // space, because we use push_back() further down, and properties must
+ // not change their base address after registration and resolver
+ // creation.
+ _samp_rate_in.reserve(get_num_ports());
+ _samp_rate_out.reserve(get_num_ports());
+ _scaling_in.reserve(get_num_ports());
+ _scaling_out.reserve(get_num_ports());
+ _interp.reserve(get_num_ports());
+ _freq.reserve(get_num_ports());
+ _type_in.reserve(get_num_ports());
+ _type_out.reserve(get_num_ports());
+ for (size_t chan = 0; chan < get_num_ports(); chan++) {
+ _register_props(chan);
+ }
+ register_issue_stream_cmd();
+ }
+
+ double set_freq(const double freq,
+ const size_t chan,
+ const boost::optional<uhd::time_spec_t> time)
+ {
+ // Store the current command time so we can restore it later
+ auto prev_cmd_time = get_command_time(chan);
+ if (time) {
+ set_command_time(time.get(), chan);
+ }
+ // This will trigger property propagation:
+ set_property<double>("freq", freq, chan);
+ set_command_time(prev_cmd_time, chan);
+ return get_freq(chan);
+ }
+
+ double get_freq(const size_t chan) const
+ {
+ return _freq.at(chan).get();
+ }
+
+ uhd::freq_range_t get_frequency_range(const size_t chan) const
+ {
+ const double input_rate =
+ _samp_rate_in.at(chan).is_valid() ? _samp_rate_in.at(chan).get() : 1.0;
+ // TODO add steps
+ return uhd::freq_range_t(-input_rate / 2, input_rate / 2);
+ }
+
+ double get_input_rate(const size_t chan) const
+ {
+ return _samp_rate_in.at(chan).is_valid() ? _samp_rate_in.at(chan).get() : 1.0;
+ }
+
+ double get_output_rate(const size_t chan) const
+ {
+ return _samp_rate_out.at(chan).is_valid() ? _samp_rate_out.at(chan).get() : 1.0;
+ }
+
+ uhd::meta_range_t get_input_rates(const size_t chan) const
+ {
+ uhd::meta_range_t result;
+ if (!_samp_rate_out.at(chan).is_valid()) {
+ result.push_back(uhd::range_t(1.0));
+ return result;
+ }
+ const double output_rate = _samp_rate_out.at(chan).get();
+ // The interpolations are stored in order (from smallest to biggest), so
+ // iterate in reverse order so we can add rates from smallest to biggest
+ for (auto it = _valid_interps.rbegin(); it != _valid_interps.rend(); ++it) {
+ result.push_back(uhd::range_t(output_rate / it->start()));
+ }
+ return result;
+ }
+
+ double set_input_rate(const double rate, const size_t chan)
+ {
+ if (_samp_rate_out.at(chan).is_valid()) {
+ const int coerced_interp = coerce_interp(get_output_rate(chan) / rate);
+ set_property<int>("interp", coerced_interp, chan);
+ } else {
+ RFNOC_LOG_DEBUG(
+ "Property samp_rate@"
+ << chan
+ << " is not valid, attempting to set input rate via the edge property.");
+ set_property<double>("samp_rate", rate, {res_source_info::INPUT_EDGE, chan});
+ }
+ return _samp_rate_in.at(chan).get();
+ }
+
+private:
+ //! Shorthand for num ports, since num input ports always equals num output ports
+ inline size_t get_num_ports()
+ {
+ return get_num_input_ports();
+ }
+
+ inline uint32_t get_addr(const uint32_t base_addr, const size_t chan)
+ {
+ return base_addr + REG_CHAN_OFFSET * chan;
+ }
+
+ /**************************************************************************
+ * Initialization
+ *************************************************************************/
+ void _register_props(const size_t chan)
+ {
+ // Create actual properties and store them
+ _samp_rate_in.push_back(
+ property_t<double>(PROP_KEY_SAMP_RATE, {res_source_info::INPUT_EDGE, chan}));
+ _samp_rate_out.push_back(
+ property_t<double>(PROP_KEY_SAMP_RATE, {res_source_info::OUTPUT_EDGE, chan}));
+ _scaling_in.push_back(
+ property_t<double>(PROP_KEY_SCALING, {res_source_info::INPUT_EDGE, chan}));
+ _scaling_out.push_back(
+ property_t<double>(PROP_KEY_SCALING, {res_source_info::OUTPUT_EDGE, chan}));
+ _interp.push_back(property_t<int>(
+ PROP_KEY_INTERP, DEFAULT_INTERP, {res_source_info::USER, chan}));
+ _freq.push_back(property_t<double>(
+ PROP_KEY_FREQ, DEFAULT_FREQ, {res_source_info::USER, chan}));
+ _type_in.emplace_back(property_t<std::string>(
+ PROP_KEY_TYPE, IO_TYPE_SC16, {res_source_info::INPUT_EDGE, chan}));
+ _type_out.emplace_back(property_t<std::string>(
+ PROP_KEY_TYPE, IO_TYPE_SC16, {res_source_info::OUTPUT_EDGE, chan}));
+ UHD_ASSERT_THROW(_samp_rate_in.size() == chan + 1);
+ UHD_ASSERT_THROW(_samp_rate_out.size() == chan + 1);
+ UHD_ASSERT_THROW(_scaling_in.size() == chan + 1);
+ UHD_ASSERT_THROW(_scaling_out.size() == chan + 1);
+ UHD_ASSERT_THROW(_interp.size() == chan + 1);
+ UHD_ASSERT_THROW(_freq.size() == chan + 1);
+ UHD_ASSERT_THROW(_type_in.size() == chan + 1);
+ UHD_ASSERT_THROW(_type_out.size() == chan + 1);
+
+ // give us some shorthands for the rest of this function
+ property_t<double>* samp_rate_in = &_samp_rate_in.back();
+ property_t<double>* samp_rate_out = &_samp_rate_out.back();
+ property_t<double>* scaling_in = &_scaling_in.back();
+ property_t<double>* scaling_out = &_scaling_out.back();
+ property_t<int>* interp = &_interp.back();
+ property_t<double>* freq = &_freq.back();
+ property_t<std::string>* type_in = &_type_in.back();
+ property_t<std::string>* type_out = &_type_out.back();
+
+ // register them
+ register_property(samp_rate_in);
+ register_property(samp_rate_out);
+ register_property(scaling_in);
+ register_property(scaling_out);
+ register_property(interp);
+ register_property(freq);
+ register_property(type_in);
+ register_property(type_out);
+
+ /**********************************************************************
+ * Add resolvers
+ *********************************************************************/
+ // Resolver for _interp: this gets executed when the user directly
+ // modifies interp. the desired behaviour is to coerce it first, then
+ // keep the output rate constant, and re-calculate the input rate.
+ add_property_resolver({interp, scaling_in},
+ {interp, samp_rate_out, samp_rate_in, scaling_in},
+ [this,
+ chan,
+ &interp = *interp,
+ &samp_rate_out = *samp_rate_out,
+ &samp_rate_in = *samp_rate_in,
+ &scaling_in = *scaling_in,
+ &scaling_out = *scaling_out]() {
+ RFNOC_LOG_TRACE("Calling resolver for `interp'@" << chan);
+ interp = coerce_interp(double(interp.get()));
+ // The following function will also update _residual_scaling
+ if (interp.is_dirty()) {
+ set_interp(interp.get(), chan);
+ }
+ if (samp_rate_out.is_valid()) {
+ samp_rate_in = samp_rate_out.get() / interp.get();
+ } else if (samp_rate_in.is_valid()) {
+ samp_rate_out = samp_rate_in.get() * interp.get();
+ }
+ // The scaling is independent of the actual rates
+ if (scaling_out.is_valid()) {
+ scaling_in = scaling_out.get() * _residual_scaling.at(chan);
+ }
+ });
+ // Resolver for _freq: this gets executed when the user directly
+ // modifies _freq.
+ add_property_resolver({freq},
+ {freq},
+ [this, chan, &samp_rate_out = *samp_rate_out, &freq = *freq]() {
+ RFNOC_LOG_TRACE("Calling resolver for `freq'@" << chan);
+ if (samp_rate_out.is_valid()) {
+ const double new_freq =
+ _set_freq(freq.get(), samp_rate_out.get(), chan);
+ // If the frequency we just set is sufficiently close to the old
+ // frequency, don't bother updating the property in software
+ if (!uhd::math::frequencies_are_equal(new_freq, freq.get())) {
+ freq = new_freq;
+ }
+ } else {
+ RFNOC_LOG_DEBUG("Not setting frequency until sampling rate is set.");
+ }
+ });
+ // Resolver for the input rate: we try and match interp so that the
+ // output rate is not modified. if interp needs to be coerced, only then
+ // the output rate is modified.
+ // Note this might also affect the frequency (if the output rate is
+ // modified).
+ add_property_resolver({samp_rate_in},
+ {interp, samp_rate_out},
+ [this,
+ chan,
+ &interp = *interp,
+ &samp_rate_out = *samp_rate_out,
+ &samp_rate_in = *samp_rate_in]() {
+ RFNOC_LOG_TRACE("Calling resolver for `samp_rate_in'@" << chan);
+ if (samp_rate_in.is_valid()) {
+ RFNOC_LOG_TRACE("New samp_rate_in is " << samp_rate_in.get());
+ // If interp is changed, that will take care of scaling
+ if (samp_rate_out.is_valid()) {
+ interp = coerce_interp(samp_rate_out.get() / samp_rate_in.get());
+ }
+ samp_rate_out = samp_rate_in.get() * interp.get();
+ RFNOC_LOG_TRACE("New samp_rate_out is " << samp_rate_out.get());
+ }
+ });
+ // Resolver for the output rate: like the previous one, but flipped.
+ add_property_resolver({samp_rate_out},
+ {interp, samp_rate_in, freq},
+ [this,
+ chan,
+ &interp = *interp,
+ &freq = *freq,
+ &samp_rate_out = *samp_rate_out,
+ &samp_rate_in = *samp_rate_in]() {
+ RFNOC_LOG_TRACE("Calling resolver for `samp_rate_out'@" << chan);
+ if (samp_rate_out.is_valid()) {
+ // If interp is changed, that will take care of scaling
+ if (samp_rate_in.is_valid()) {
+ interp =
+ coerce_interp(int(samp_rate_out.get() / samp_rate_in.get()));
+ }
+ samp_rate_in = samp_rate_out.get() / interp.get();
+ // We now need to force the resolver for freq to run so it can
+ // update its phase increment
+ freq.force_dirty();
+ }
+ });
+ // Resolver for the output rate: like the previous one, but flipped.
+ add_property_resolver({scaling_out},
+ {scaling_in},
+ [this,
+ chan,
+ &interp = *interp,
+ &samp_rate_out = *samp_rate_out,
+ &samp_rate_in = *samp_rate_in,
+ &scaling_in = *scaling_in,
+ &scaling_out = *scaling_out]() {
+ RFNOC_LOG_TRACE("Calling resolver for `scaling_out'@" << chan);
+ // If any of these are dirty, the interp resolver will kick in
+ // and calculate the scaling itself, so we don't do it here to
+ // avoid conflict.
+ if (!interp.is_dirty() && !samp_rate_in.is_dirty()
+ && !samp_rate_out.is_dirty() && scaling_out.is_valid()) {
+ scaling_in = scaling_out.get() * _residual_scaling.at(chan);
+ }
+ });
+ // Resolvers for type: These are constants
+ add_property_resolver({type_in}, {type_in}, [& type_in = *type_in]() {
+ type_in.set(IO_TYPE_SC16);
+ });
+ add_property_resolver({type_out}, {type_out}, [& type_out = *type_out]() {
+ type_out.set(IO_TYPE_SC16);
+ });
+ }
+
+ void register_issue_stream_cmd()
+ {
+ register_action_handler(ACTION_KEY_STREAM_CMD,
+ [this](const res_source_info& src, action_info::sptr action) {
+ stream_cmd_action_info::sptr stream_cmd_action =
+ std::dynamic_pointer_cast<stream_cmd_action_info>(action);
+ if (!stream_cmd_action) {
+ throw uhd::runtime_error(
+ "Received stream_cmd of invalid action type!");
+ }
+ issue_stream_cmd_action_handler(src, stream_cmd_action);
+ });
+ }
+
+ void issue_stream_cmd_action_handler(
+ const res_source_info& src, stream_cmd_action_info::sptr stream_cmd_action)
+ {
+ res_source_info dst_edge{res_source_info::invert_edge(src.type), src.instance};
+ const size_t chan = src.instance;
+ uhd::stream_cmd_t::stream_mode_t stream_mode =
+ stream_cmd_action->stream_cmd.stream_mode;
+ RFNOC_LOG_TRACE("Received stream command: " << char(stream_mode) << " to "
+ << src.to_string()
+ << ", id==" << stream_cmd_action->id);
+ auto new_action = stream_cmd_action_info::make(stream_mode);
+ new_action->stream_cmd = stream_cmd_action->stream_cmd;
+ if (stream_mode == uhd::stream_cmd_t::STREAM_MODE_NUM_SAMPS_AND_DONE
+ || stream_mode == uhd::stream_cmd_t::STREAM_MODE_NUM_SAMPS_AND_MORE) {
+ if (src.type == res_source_info::INPUT_EDGE) {
+ new_action->stream_cmd.num_samps *= _interp.at(chan).get();
+ } else {
+ new_action->stream_cmd.num_samps /= _interp.at(chan).get();
+ }
+ RFNOC_LOG_TRACE("Forwarding num_samps stream command, new value is "
+ << new_action->stream_cmd.num_samps);
+ } else {
+ RFNOC_LOG_TRACE("Forwarding continuous stream command...")
+ }
+
+ post_action(dst_edge, new_action);
+ }
+
+ /**************************************************************************
+ * FPGA communication (register IO)
+ *************************************************************************/
+ /*! Update the interpolation value
+ *
+ * \param interp The new interpolation value.
+ * \throws uhd::assertion_error if interp is not valid.
+ */
+ void set_interp(int interp, const size_t chan)
+ {
+ RFNOC_LOG_TRACE("Set interp to " << interp);
+ // Step 1: Calculate number of halfbands
+ uint32_t hb_enable = 0;
+ uint32_t cic_interp = interp;
+ while ((cic_interp % 2 == 0) and hb_enable < _num_halfbands) {
+ hb_enable++;
+ cic_interp /= 2;
+ }
+ // Step 2: Make sure we can handle the rest with the CIC
+ UHD_ASSERT_THROW(hb_enable <= _num_halfbands);
+ UHD_ASSERT_THROW(cic_interp > 0 and cic_interp <= _cic_max_interp);
+ const uint32_t interp_word = (hb_enable << 8) | cic_interp;
+ regs().poke32(get_addr(SR_INTERP_ADDR, chan), interp_word);
+
+ // Rate change = M/N, where N = 1
+ regs().poke32(get_addr(SR_M_ADDR, chan), interp);
+ // FIXME:
+ // - TwinRX had some issues with N == 1
+ regs().poke32(get_addr(SR_N_ADDR, chan), 1);
+
+ if (cic_interp > 1 and hb_enable == 0) {
+ RFNOC_LOG_WARNING(
+ "The requested interpolation is odd; the user should expect passband "
+ "CIC rolloff.\n"
+ "Select an even interpolation to ensure that a halfband filter is "
+ "enabled.\n");
+ }
+
+ // DDS gain:
+ constexpr double DDS_GAIN = 2.0;
+ // Calculate algorithmic gain of CIC for a given interpolation.
+ // For Ettus CIC R=interp, M=1, N=4. Gain = (R * M) ^ (N - 1)
+ const double cic_gain = std::pow(double(cic_interp * 1), /*N*/ 4 - 1);
+ // The Ettus CIC also tries its best to compensate for the gain by
+ // shifting the CIC output. This reduces the gain by a factor of
+ // 2**ceil(log2(cic_gain))
+ const double total_gain =
+ DDS_GAIN * cic_gain / std::pow(2, uhd::math::ceil_log2(cic_gain));
+ update_scaling(total_gain, chan);
+ }
+
+ //! Update scaling based on the current gain
+ //
+ // Calculates the closest fixpoint value that this block can correct for in
+ // hardware (fixpoint). The residual gain is written to _residual_scaling.
+ void update_scaling(const double dsp_gain, const size_t chan)
+ {
+ constexpr double FIXPOINT_SCALING = 1 << 15;
+ const double compensation_factor = 1. / dsp_gain;
+ // Convert to fixpoint
+ const double target_factor = FIXPOINT_SCALING * compensation_factor;
+ const int32_t actual_factor = boost::math::iround(target_factor);
+ // Write DUC with scaling correction for CIC and DDS that maximizes
+ // dynamic range
+ regs().poke32(get_addr(SR_SCALE_IQ_ADDR, chan), actual_factor);
+
+ // Calculate the error introduced by using fixedpoint representation for
+ // the scaler, can be corrected in host later.
+ _residual_scaling[chan] = dsp_gain * double(actual_factor) / FIXPOINT_SCALING;
+ }
+
+ /*! Return the closest possible interpolation value to the one requested
+ */
+ int coerce_interp(const double requested_interp) const
+ {
+ UHD_ASSERT_THROW(requested_interp >= 0);
+ return static_cast<int>(_valid_interps.clip(requested_interp, true));
+ }
+
+ //! Set the DDS frequency shift the signal to \p requested_freq
+ double _set_freq(
+ const double requested_freq, const double input_rate, const size_t chan)
+ {
+ double actual_freq;
+ int32_t freq_word;
+ std::tie(actual_freq, freq_word) =
+ get_freq_and_freq_word(requested_freq, input_rate);
+ regs().poke32(
+ get_addr(SR_FREQ_ADDR, chan), uint32_t(freq_word), get_command_time(chan));
+ return actual_freq;
+ }
+
+ /**************************************************************************
+ * Attributes
+ *************************************************************************/
+ //! Block compat number
+ const uint32_t _fpga_compat;
+ //! Number of halfbands
+ const size_t _num_halfbands;
+ //! Max CIC interpolation
+ const size_t _cic_max_interp;
+
+ //! List of valid interpolation values
+ uhd::meta_range_t _valid_interps;
+
+ //! Cache the current residual scaling
+ std::vector<double> _residual_scaling;
+
+ //! Properties for type_in (one per port)
+ std::vector<property_t<std::string>> _type_in;
+ //! Properties for type_out (one per port)
+ std::vector<property_t<std::string>> _type_out;
+ //! Properties for samp_rate_in (one per port)
+ std::vector<property_t<double>> _samp_rate_in;
+ //! Properties for samp_rate_out (one per port)
+ std::vector<property_t<double>> _samp_rate_out;
+ //! Properties for scaling_in (one per port)
+ std::vector<property_t<double>> _scaling_in;
+ //! Properties for scaling_out (one per port)
+ std::vector<property_t<double>> _scaling_out;
+ //! Properties for interp (one per port)
+ std::vector<property_t<int>> _interp;
+ //! Properties for freq (one per port)
+ std::vector<property_t<double>> _freq;
+};
+
+UHD_RFNOC_BLOCK_REGISTER_DIRECT(
+ duc_block_control, 0xD0C00000, "DUC", CLOCK_KEY_GRAPH, "bus_clk")