diff options
Diffstat (limited to 'host/lib')
-rw-r--r-- | host/lib/usrp/cores/rx_dsp_core_3000.cpp | 14 | ||||
-rw-r--r-- | host/lib/usrp/cores/tx_dsp_core_3000.cpp | 10 |
2 files changed, 12 insertions, 12 deletions
diff --git a/host/lib/usrp/cores/rx_dsp_core_3000.cpp b/host/lib/usrp/cores/rx_dsp_core_3000.cpp index 7104d51a0..325ff5569 100644 --- a/host/lib/usrp/cores/rx_dsp_core_3000.cpp +++ b/host/lib/usrp/cores/rx_dsp_core_3000.cpp @@ -37,7 +37,6 @@ template <class T> T ceil_log2(T num){ using namespace uhd; const double rx_dsp_core_3000::DEFAULT_CORDIC_FREQ = 0.0; -const double rx_dsp_core_3000::DEFAULT_DDS_FREQ = 0.0; const double rx_dsp_core_3000::DEFAULT_RATE = 1e6; rx_dsp_core_3000::~rx_dsp_core_3000(void){ @@ -193,23 +192,24 @@ public: // Caclulate algorithmic gain of CIC for a given decimation. // For Ettus CIC R=decim, M=1, N=4. Gain = (R * M) ^ N const double rate_pow = std::pow(double(decim & 0xff), 4); - // Calculate compensation gain values for algorithmic gain of and CIC taking into account + // Calculate compensation gain values for algorithmic gain of CORDIC and CIC taking into account // gain compensation blocks already hardcoded in place in DDC (that provide simple 1/2^n gain compensation). + // CORDIC algorithmic gain limits asymptotically around 1.647 after many iterations. // // The polar rotation of [I,Q] = [1,1] by Pi/8 also yields max magnitude of SQRT(2) (~1.4142) however - // input to the DDS thats outside the unit circle can only be sourced from a saturated RF frontend. + // input to the CORDIC thats outside the unit circle can only be sourced from a saturated RF frontend. // To provide additional dynamic range head room accordingly using scale factor applied at egress from DDC would // cost us small signal performance, thus we do no provide compensation gain for a saturated front end and allow // the signal to clip in the H/W as needed. If we wished to avoid the signal clipping in these circumstances then adjust code to read: // _scaling_adjustment = std::pow(2, ceil_log2(rate_pow))/(1.648*rate_pow*1.415); - _scaling_adjustment = std::pow(2, ceil_log2(rate_pow))/(2.0*rate_pow); + _scaling_adjustment = std::pow(2, ceil_log2(rate_pow))/(1.648*rate_pow); this->update_scalar(); return _tick_rate/decim_rate; } - // Calculate compensation gain values for algorithmic gain of DDS and CIC taking into account + // Calculate compensation gain values for algorithmic gain of CORDIC and CIC taking into account // gain compensation blocks already hardcoded in place in DDC (that provide simple 1/2^n gain compensation). // Further more factor in OTW format which adds further gain factor to weight output samples correctly. void update_scalar(void){ @@ -217,7 +217,7 @@ public: const int32_t actual_scalar = boost::math::iround(target_scalar); // Calculate the error introduced by using integer representation for the scalar, can be corrected in host later. _fxpt_scalar_correction = target_scalar/actual_scalar; - // Write DDC with scaling correction for CIC and DDS that maximizes dynamic range in 32/16/12/8bits. + // Write DDC with scaling correction for CIC and CORDIC that maximizes dynamic range in 32/16/12/8bits. _iface->poke32(REG_DSP_RX_SCALE_IQ, actual_scalar); } @@ -283,7 +283,7 @@ public: .set_coercer(boost::bind(&rx_dsp_core_3000::set_host_rate, this, _1)) ; subtree->create<double>("freq/value") - .set(DEFAULT_DDS_FREQ) + .set(DEFAULT_CORDIC_FREQ) .set_coercer(boost::bind(&rx_dsp_core_3000::set_freq, this, _1)) .set_publisher([this](){ return this->get_freq(); }) ; diff --git a/host/lib/usrp/cores/tx_dsp_core_3000.cpp b/host/lib/usrp/cores/tx_dsp_core_3000.cpp index d548c543f..af0587c7f 100644 --- a/host/lib/usrp/cores/tx_dsp_core_3000.cpp +++ b/host/lib/usrp/cores/tx_dsp_core_3000.cpp @@ -28,7 +28,6 @@ template <class T> T ceil_log2(T num){ using namespace uhd; const double tx_dsp_core_3000::DEFAULT_CORDIC_FREQ = 0.0; -const double tx_dsp_core_3000::DEFAULT_DDS_FREQ = 0.0; const double tx_dsp_core_3000::DEFAULT_RATE = 1e6; tx_dsp_core_3000::~tx_dsp_core_3000(void){ @@ -105,15 +104,16 @@ public: // Caclulate algorithmic gain of CIC for a given interpolation // For Ettus CIC R=decim, M=1, N=3. Gain = (R * M) ^ N const double rate_pow = std::pow(double(interp & 0xff), 3); - // Calculate compensation gain values for algorithmic gain of DDS and CIC taking into account + // Calculate compensation gain values for algorithmic gain of CORDIC and CIC taking into account // gain compensation blocks already hardcoded in place in DDC (that provide simple 1/2^n gain compensation). - _scaling_adjustment = std::pow(2, ceil_log2(rate_pow))/(rate_pow); + // CORDIC algorithmic gain limits asymptotically around 1.647 after many iterations. + _scaling_adjustment = std::pow(2, ceil_log2(rate_pow))/(1.648*rate_pow); this->update_scalar(); return _tick_rate/interp_rate; } - // Calculate compensation gain values for algorithmic gain of DDS and CIC taking into account + // Calculate compensation gain values for algorithmic gain of CORDIC and CIC taking into account // gain compensation blocks already hardcoded in place in DDC (that provide simple 1/2^n gain compensation). // Further more factor in OTW format which adds further gain factor to weight output samples correctly. void update_scalar(void){ @@ -183,7 +183,7 @@ public: .set_coercer(boost::bind(&tx_dsp_core_3000::set_host_rate, this, _1)) ; subtree->create<double>("freq/value") - .set(DEFAULT_DDS_FREQ) + .set(DEFAULT_CORDIC_FREQ) .set_coercer(boost::bind(&tx_dsp_core_3000::set_freq, this, _1)) .set_publisher([this](){ return this->get_freq(); }) ; |