aboutsummaryrefslogtreecommitdiffstats
path: root/host/lib
diff options
context:
space:
mode:
Diffstat (limited to 'host/lib')
-rw-r--r--host/lib/usrp/common/ad9361_driver/ad9361_device.cpp3823
-rw-r--r--host/lib/usrp/common/ad9361_driver/ad9361_device.h250
2 files changed, 2039 insertions, 2034 deletions
diff --git a/host/lib/usrp/common/ad9361_driver/ad9361_device.cpp b/host/lib/usrp/common/ad9361_driver/ad9361_device.cpp
index ead4c6619..c0cc285e2 100644
--- a/host/lib/usrp/common/ad9361_driver/ad9361_device.cpp
+++ b/host/lib/usrp/common/ad9361_driver/ad9361_device.cpp
@@ -1,1909 +1,1914 @@
-//
-// Copyright 2014 Ettus Research LLC
-//
-
-#include "ad9361_filter_taps.h"
-#include "ad9361_gain_tables.h"
-#include "ad9361_synth_lut.h"
-#include "ad9361_client.h"
-#include "ad9361_device.h"
-#include <cstring>
-#include <cmath>
-#include <uhd/exception.hpp>
-#include <uhd/utils/log.hpp>
-#include <boost/date_time/posix_time/posix_time.hpp>
-#include <boost/thread/thread.hpp>
-#include <boost/scoped_array.hpp>
-#include <boost/format.hpp>
-
-////////////////////////////////////////////////////////////
-// the following macros evaluate to a compile time constant
-// macros By Tom Torfs - donated to the public domain
-
-/* turn a numeric literal into a hex constant
-(avoids problems with leading zeroes)
-8-bit constants max value 0x11111111, always fits in unsigned long
-*/
-#define HEX__(n) 0x##n##LU
-
-/* 8-bit conversion function */
-#define B8__(x) ((x&0x0000000FLU)?1:0) \
-+((x&0x000000F0LU)?2:0) \
-+((x&0x00000F00LU)?4:0) \
-+((x&0x0000F000LU)?8:0) \
-+((x&0x000F0000LU)?16:0) \
-+((x&0x00F00000LU)?32:0) \
-+((x&0x0F000000LU)?64:0) \
-+((x&0xF0000000LU)?128:0)
-
-/* for upto 8-bit binary constants */
-#define B8(d) ((unsigned char)B8__(HEX__(d)))
-////////////////////////////////////////////////////////////
-
-
-namespace uhd { namespace usrp {
-
-/* This is a simple comparison for very large double-precision floating
- * point numbers. It is used to prevent re-tunes for frequencies that are
- * the same but not 'exactly' because of data precision issues. */
-// TODO: see if we can avoid the need for this function
-int freq_is_nearly_equal(double a, double b) {
- return std::max(a,b) - std::min(a,b) < 1;
-}
-
-/***********************************************************************
- * Filter functions
- **********************************************************************/
-
-/* This function takes in the calculated maximum number of FIR taps, and
- * returns a number of taps that makes AD9361 happy. */
-int get_num_taps(int max_num_taps) {
-
- int num_taps = 0;
- int num_taps_list[] = {16, 32, 48, 64, 80, 96, 112, 128};
- int i;
- for(i = 1; i < 8; i++) {
- if(max_num_taps >= num_taps_list[i]) {
- continue;
- } else {
- num_taps = num_taps_list[i - 1];
- break;
- }
- } if(num_taps == 0) { num_taps = 128; }
-
- return num_taps;
-}
-
-/* Program either the RX or TX FIR filter.
- *
- * The process is the same for both filters, but the function must be told
- * how many taps are in the filter, and given a vector of the taps
- * themselves. */
-
-void ad9361_device_t::_program_fir_filter(direction_t direction, int num_taps, boost::uint16_t *coeffs)
-{
- boost::uint16_t base;
-
- /* RX and TX filters use largely identical sets of programming registers.
- Select the appropriate bank of registers here. */
- if (direction == RX) {
- base = 0x0f0;
- } else {
- base = 0x060;
- }
-
- /* Encode number of filter taps for programming register */
- boost::uint8_t reg_numtaps = (((num_taps / 16) - 1) & 0x07) << 5;
-
- /* Turn on the filter clock. */
- _io_iface->poke8(base + 5, reg_numtaps | 0x1a);
- boost::this_thread::sleep(boost::posix_time::milliseconds(1));
-
- /* Zero the unused taps just in case they have stale data */
- int addr;
- for (addr = num_taps; addr < 128; addr++) {
- _io_iface->poke8(base + 0, addr);
- _io_iface->poke8(base + 1, 0x0);
- _io_iface->poke8(base + 2, 0x0);
- _io_iface->poke8(base + 5, reg_numtaps | 0x1e);
- _io_iface->poke8(base + 4, 0x00);
- _io_iface->poke8(base + 4, 0x00);
- }
-
- /* Iterate through indirect programming of filter coeffs using ADI recomended procedure */
- for (addr = 0; addr < num_taps; addr++) {
- _io_iface->poke8(base + 0, addr);
- _io_iface->poke8(base + 1, (coeffs[addr]) & 0xff);
- _io_iface->poke8(base + 2, (coeffs[addr] >> 8) & 0xff);
- _io_iface->poke8(base + 5, reg_numtaps | 0x1e);
- _io_iface->poke8(base + 4, 0x00);
- _io_iface->poke8(base + 4, 0x00);
- }
-
- /* UG-671 states (page 25) (paraphrased and clarified):
- " After the table has been programmed, write to register BASE+5 with the write bit D2 cleared and D1 high.
- Then, write to register BASE+5 again with D1 clear, thus ensuring that the write bit resets internally
- before the clock stops. Wait 4 sample clock periods after setting D2 high while that data writes into the table"
- */
-
- _io_iface->poke8(base + 5, reg_numtaps | 0x1A);
- if (direction == RX) {
- _io_iface->poke8(base + 5, reg_numtaps | 0x18);
- _io_iface->poke8(base + 6, 0x02); /* Also turn on -6dB Rx gain here, to stop filter overfow.*/
- } else {
- _io_iface->poke8(base + 5, reg_numtaps | 0x19); /* Also turn on -6dB Tx gain here, to stop filter overfow.*/
- }
-}
-
-
-/* Program the RX FIR Filter. */
-void ad9361_device_t::_setup_rx_fir(size_t num_taps)
-{
- boost::scoped_array<boost::uint16_t> coeffs(new boost::uint16_t[num_taps]);
- for (size_t i = 0; i < num_taps; i++) {
- switch (num_taps) {
- case 128:
- coeffs[i] = boost::uint16_t(hb127_coeffs[i]);
- break;
- case 96:
- coeffs[i] = boost::uint16_t(hb95_coeffs[i]);
- break;
- case 64:
- coeffs[i] = boost::uint16_t(hb63_coeffs[i]);
- break;
- case 48:
- coeffs[i] = boost::uint16_t(hb47_coeffs[i]);
- break;
- default:
- throw uhd::runtime_error("[ad9361_device_t] Unsupported number of Rx FIR taps.");
- }
- }
-
- _program_fir_filter(RX, num_taps, coeffs.get());
-}
-
-/* Program the TX FIR Filter. */
-void ad9361_device_t::_setup_tx_fir(size_t num_taps)
-{
- boost::scoped_array<boost::uint16_t> coeffs(new boost::uint16_t[num_taps]);
- for (size_t i = 0; i < num_taps; i++) {
- switch (num_taps) {
- case 128:
- coeffs[i] = boost::uint16_t(hb127_coeffs[i]);
- break;
- case 96:
- coeffs[i] = boost::uint16_t(hb95_coeffs[i]);
- break;
- case 64:
- coeffs[i] = boost::uint16_t(hb63_coeffs[i]);
- break;
- case 48:
- coeffs[i] = boost::uint16_t(hb47_coeffs[i]);
- break;
- default:
- throw uhd::runtime_error("[ad9361_device_t] Unsupported number of Tx FIR taps.");
- }
- }
-
- _program_fir_filter(TX, num_taps, coeffs.get());
-}
-
-/***********************************************************************
- * Calibration functions
- ***********************************************************************/
-
-/* Calibrate and lock the BBPLL.
- *
- * This function should be called anytime the BBPLL is tuned. */
-void ad9361_device_t::_calibrate_lock_bbpll()
-{
- _io_iface->poke8(0x03F, 0x05); // Start the BBPLL calibration
- _io_iface->poke8(0x03F, 0x01); // Clear the 'start' bit
-
- /* Increase BBPLL KV and phase margin. */
- _io_iface->poke8(0x04c, 0x86);
- _io_iface->poke8(0x04d, 0x01);
- _io_iface->poke8(0x04d, 0x05);
-
- /* Wait for BBPLL lock. */
- size_t count = 0;
- while (!(_io_iface->peek8(0x05e) & 0x80)) {
- if (count > 1000) {
- throw uhd::runtime_error("[ad9361_device_t] BBPLL not locked");
- break;
- }
- count++;
- boost::this_thread::sleep(boost::posix_time::milliseconds(2));
- }
-}
-
-/* Calibrate the synthesizer charge pumps.
- *
- * Technically, this calibration only needs to be done once, at device
- * initialization. */
-void ad9361_device_t::_calibrate_synth_charge_pumps()
-{
- /* If this function ever gets called, and the ENSM isn't already in the
- * ALERT state, then something has gone horribly wrong. */
- if ((_io_iface->peek8(0x017) & 0x0F) != 5) {
- throw uhd::runtime_error("[ad9361_device_t] AD9361 not in ALERT during cal");
- }
-
- /* Calibrate the RX synthesizer charge pump. */
- size_t count = 0;
- _io_iface->poke8(0x23d, 0x04);
- while (!(_io_iface->peek8(0x244) & 0x80)) {
- if (count > 5) {
- throw uhd::runtime_error("[ad9361_device_t] RX charge pump cal failure");
- break;
- }
- count++;
- boost::this_thread::sleep(boost::posix_time::milliseconds(1));
- }
- _io_iface->poke8(0x23d, 0x00);
-
- /* Calibrate the TX synthesizer charge pump. */
- count = 0;
- _io_iface->poke8(0x27d, 0x04);
- while (!(_io_iface->peek8(0x284) & 0x80)) {
- if (count > 5) {
- throw uhd::runtime_error("[ad9361_device_t] TX charge pump cal failure");
- break;
- }
- count++;
- boost::this_thread::sleep(boost::posix_time::milliseconds(1));
- }
- _io_iface->poke8(0x27d, 0x00);
-}
-
-/* Calibrate the analog BB RX filter.
- *
- * Note that the filter calibration depends heavily on the baseband
- * bandwidth, so this must be re-done after any change to the RX sample
- * rate. */
-double ad9361_device_t::_calibrate_baseband_rx_analog_filter()
-{
- /* For filter tuning, baseband BW is half the complex BW, and must be
- * between 28e6 and 0.2e6. */
- double bbbw = _baseband_bw / 2.0;
- if (bbbw > 28e6) {
- bbbw = 28e6;
- } else if (bbbw < 0.20e6) {
- bbbw = 0.20e6;
- }
-
- double rxtune_clk = ((1.4 * bbbw * 2 * M_PI) / M_LN2);
- _rx_bbf_tunediv = std::min<boost::uint16_t>(511, std::ceil<boost::uint16_t>(_bbpll_freq / rxtune_clk));
- _regs.bbftune_config = (_regs.bbftune_config & 0xFE)
- | ((_rx_bbf_tunediv >> 8) & 0x0001);
-
- double bbbw_mhz = bbbw / 1e6;
- double temp = ((bbbw_mhz - std::floor(bbbw_mhz)) * 1000) / 7.8125;
- boost::uint8_t bbbw_khz = std::min<boost::uint8_t>(127, (std::floor<boost::uint8_t>(temp + 0.5)));
-
- /* Set corner frequencies and dividers. */
- _io_iface->poke8(0x1fb, (boost::uint8_t) (bbbw_mhz));
- _io_iface->poke8(0x1fc, bbbw_khz);
- _io_iface->poke8(0x1f8, (_rx_bbf_tunediv & 0x00FF));
- _io_iface->poke8(0x1f9, _regs.bbftune_config);
-
- /* RX Mix Voltage settings - only change with apps engineer help. */
- _io_iface->poke8(0x1d5, 0x3f);
- _io_iface->poke8(0x1c0, 0x03);
-
- /* Enable RX1 & RX2 filter tuners. */
- _io_iface->poke8(0x1e2, 0x02);
- _io_iface->poke8(0x1e3, 0x02);
-
- /* Run the calibration! */
- size_t count = 0;
- _io_iface->poke8(0x016, 0x80);
- while (_io_iface->peek8(0x016) & 0x80) {
- if (count > 100) {
- throw uhd::runtime_error("[ad9361_device_t] RX baseband filter cal FAILURE");
- break;
- }
- count++;
- boost::this_thread::sleep(boost::posix_time::milliseconds(1));
- }
-
- /* Disable RX1 & RX2 filter tuners. */
- _io_iface->poke8(0x1e2, 0x03);
- _io_iface->poke8(0x1e3, 0x03);
-
- return bbbw;
-}
-
-/* Calibrate the analog BB TX filter.
- *
- * Note that the filter calibration depends heavily on the baseband
- * bandwidth, so this must be re-done after any change to the TX sample
- * rate. */
-double ad9361_device_t::_calibrate_baseband_tx_analog_filter()
-{
- /* For filter tuning, baseband BW is half the complex BW, and must be
- * between 28e6 and 0.2e6. */
- double bbbw = _baseband_bw / 2.0;
- if (bbbw > 20e6) {
- bbbw = 20e6;
- } else if (bbbw < 0.625e6) {
- bbbw = 0.625e6;
- }
-
- double txtune_clk = ((1.6 * bbbw * 2 * M_PI) / M_LN2);
- boost::uint16_t txbbfdiv = std::min<boost::uint16_t>(511, (std::ceil<boost::uint16_t>(_bbpll_freq / txtune_clk)));
- _regs.bbftune_mode = (_regs.bbftune_mode & 0xFE)
- | ((txbbfdiv >> 8) & 0x0001);
-
- /* Program the divider values. */
- _io_iface->poke8(0x0d6, (txbbfdiv & 0x00FF));
- _io_iface->poke8(0x0d7, _regs.bbftune_mode);
-
- /* Enable the filter tuner. */
- _io_iface->poke8(0x0ca, 0x22);
-
- /* Calibrate! */
- size_t count = 0;
- _io_iface->poke8(0x016, 0x40);
- while (_io_iface->peek8(0x016) & 0x40) {
- if (count > 100) {
- throw uhd::runtime_error("[ad9361_device_t] TX baseband filter cal FAILURE");
- break;
- }
-
- count++;
- boost::this_thread::sleep(boost::posix_time::milliseconds(1));
- }
-
- /* Disable the filter tuner. */
- _io_iface->poke8(0x0ca, 0x26);
-
- return bbbw;
-}
-
-/* Calibrate the secondary TX filter.
- *
- * This filter also depends on the TX sample rate, so if a rate change is
- * made, the previous calibration will no longer be valid. */
-void ad9361_device_t::_calibrate_secondary_tx_filter()
-{
- /* For filter tuning, baseband BW is half the complex BW, and must be
- * between 20e6 and 0.53e6. */
- double bbbw = _baseband_bw / 2.0;
- if (bbbw > 20e6) {
- bbbw = 20e6;
- } else if (bbbw < 0.53e6) {
- bbbw = 0.53e6;
- }
-
- double bbbw_mhz = bbbw / 1e6;
-
- /* Start with a resistor value of 100 Ohms. */
- int res = 100;
-
- /* Calculate target corner frequency. */
- double corner_freq = 5 * bbbw_mhz * 2 * M_PI;
-
- /* Iterate through RC values to determine correct combination. */
- int cap = 0;
- int i;
- for (i = 0; i <= 3; i++) {
- cap = (std::floor<int>(0.5 + ((1 / ((corner_freq * res) * 1e6)) * 1e12)))
- - 12;
-
- if (cap <= 63) {
- break;
- }
-
- res = res * 2;
- }
- if (cap > 63) {
- cap = 63;
- }
-
- boost::uint8_t reg0d0, reg0d1, reg0d2;
-
- /* Translate baseband bandwidths to register settings. */
- if ((bbbw_mhz * 2) <= 9) {
- reg0d0 = 0x59;
- } else if (((bbbw_mhz * 2) > 9) && ((bbbw_mhz * 2) <= 24)) {
- reg0d0 = 0x56;
- } else if ((bbbw_mhz * 2) > 24) {
- reg0d0 = 0x57;
- } else {
- throw uhd::runtime_error("[ad9361_device_t] Cal2ndTxFil: INVALID_CODE_PATH bad bbbw_mhz");
- reg0d0 = 0x00;
- }
-
- /* Translate resistor values to register settings. */
- if (res == 100) {
- reg0d1 = 0x0c;
- } else if (res == 200) {
- reg0d1 = 0x04;
- } else if (res == 400) {
- reg0d1 = 0x03;
- } else if (res == 800) {
- reg0d1 = 0x01;
- } else {
- reg0d1 = 0x0c;
- }
-
- reg0d2 = cap;
-
- /* Program the above-calculated values. Sweet. */
- _io_iface->poke8(0x0d2, reg0d2);
- _io_iface->poke8(0x0d1, reg0d1);
- _io_iface->poke8(0x0d0, reg0d0);
-}
-
-/* Calibrate the RX TIAs.
- *
- * Note that the values in the TIA register, after calibration, vary with
- * the RX gain settings. */
-void ad9361_device_t::_calibrate_rx_TIAs()
-{
- boost::uint8_t reg1eb = _io_iface->peek8(0x1eb) & 0x3F;
- boost::uint8_t reg1ec = _io_iface->peek8(0x1ec) & 0x7F;
- boost::uint8_t reg1e6 = _io_iface->peek8(0x1e6) & 0x07;
- boost::uint8_t reg1db = 0x00;
- boost::uint8_t reg1dc = 0x00;
- boost::uint8_t reg1dd = 0x00;
- boost::uint8_t reg1de = 0x00;
- boost::uint8_t reg1df = 0x00;
-
- /* For calibration, baseband BW is half the complex BW, and must be
- * between 28e6 and 0.2e6. */
- double bbbw = _baseband_bw / 2.0;
- if (bbbw > 20e6) {
- bbbw = 20e6;
- } else if (bbbw < 0.20e6) {
- bbbw = 0.20e6;
- }
- double ceil_bbbw_mhz = std::ceil(bbbw / 1e6);
-
- /* Do some crazy resistor and capacitor math. */
- int Cbbf = (reg1eb * 160) + (reg1ec * 10) + 140;
- int R2346 = 18300 * (reg1e6 & 0x07);
- double CTIA_fF = (Cbbf * R2346 * 0.56) / 3500;
-
- /* Translate baseband BW to register settings. */
- if (ceil_bbbw_mhz <= 3) {
- reg1db = 0xe0;
- } else if ((ceil_bbbw_mhz > 3) && (ceil_bbbw_mhz <= 10)) {
- reg1db = 0x60;
- } else if (ceil_bbbw_mhz > 10) {
- reg1db = 0x20;
- } else {
- throw uhd::runtime_error("[ad9361_device_t] CalRxTias: INVALID_CODE_PATH bad bbbw_mhz");
- }
-
- if (CTIA_fF > 2920) {
- reg1dc = 0x40;
- reg1de = 0x40;
- boost::uint8_t temp = (boost::uint8_t) std::min<boost::uint8_t>(127,
- (std::floor<boost::uint8_t>(0.5 + ((CTIA_fF - 400.0) / 320.0))));
- reg1dd = temp;
- reg1df = temp;
- } else {
- boost::uint8_t temp = std::floor<boost::uint8_t>(0.5 + ((CTIA_fF - 400.0) / 40.0))
- + 0x40;
- reg1dc = temp;
- reg1de = temp;
- reg1dd = 0;
- reg1df = 0;
- }
-
- /* w00t. Settings calculated. Program them and roll out. */
- _io_iface->poke8(0x1db, reg1db);
- _io_iface->poke8(0x1dd, reg1dd);
- _io_iface->poke8(0x1df, reg1df);
- _io_iface->poke8(0x1dc, reg1dc);
- _io_iface->poke8(0x1de, reg1de);
-}
-
-/* Setup the AD9361 ADC.
- *
- * There are 40 registers that control the ADC's operation, most of the
- * values of which must be derived mathematically, dependent on the current
- * setting of the BBPLL. Note that the order of calculation is critical, as
- * some of the 40 registers depend on the values in others. */
-void ad9361_device_t::_setup_adc()
-{
- double bbbw_mhz = (((_bbpll_freq / 1e6) / _rx_bbf_tunediv) * M_LN2) \
- / (1.4 * 2 * M_PI);
-
- /* For calibration, baseband BW is half the complex BW, and must be
- * between 28e6 and 0.2e6. */
- if(bbbw_mhz > 28) {
- bbbw_mhz = 28;
- } else if (bbbw_mhz < 0.20) {
- bbbw_mhz = 0.20;
- }
-
- boost::uint8_t rxbbf_c3_msb = _io_iface->peek8(0x1eb) & 0x3F;
- boost::uint8_t rxbbf_c3_lsb = _io_iface->peek8(0x1ec) & 0x7F;
- boost::uint8_t rxbbf_r2346 = _io_iface->peek8(0x1e6) & 0x07;
-
- double fsadc = _adcclock_freq / 1e6;
-
- /* Sort out the RC time constant for our baseband bandwidth... */
- double rc_timeconst = 0.0;
- if(bbbw_mhz < 18) {
- rc_timeconst = (1 / ((1.4 * 2 * M_PI) \
- * (18300 * rxbbf_r2346)
- * ((160e-15 * rxbbf_c3_msb)
- + (10e-15 * rxbbf_c3_lsb) + 140e-15)
- * (bbbw_mhz * 1e6)));
- } else {
- rc_timeconst = (1 / ((1.4 * 2 * M_PI) \
- * (18300 * rxbbf_r2346)
- * ((160e-15 * rxbbf_c3_msb)
- + (10e-15 * rxbbf_c3_lsb) + 140e-15)
- * (bbbw_mhz * 1e6) * (1 + (0.01 * (bbbw_mhz - 18)))));
- }
-
- double scale_res = sqrt(1 / rc_timeconst);
- double scale_cap = sqrt(1 / rc_timeconst);
-
- double scale_snr = (_adcclock_freq < 80e6) ? 1.0 : 1.584893192;
- double maxsnr = 640 / 160;
-
- /* Calculate the values for all 40 settings registers.
- *
- * DO NOT TOUCH THIS UNLESS YOU KNOW EXACTLY WHAT YOU ARE DOING. kthx.*/
- boost::uint8_t data[40];
- data[0] = 0; data[1] = 0; data[2] = 0; data[3] = 0x24;
- data[4] = 0x24; data[5] = 0; data[6] = 0;
- data[7] = std::min<boost::uint8_t>(124, (std::floor<boost::uint8_t>(-0.5
- + (80.0 * scale_snr * scale_res
- * std::min<double>(1.0, sqrt(maxsnr * fsadc / 640.0))))));
- double data007 = data[7];
- data[8] = std::min<boost::uint8_t>(255, (std::floor<boost::uint8_t>(0.5
- + ((20.0 * (640.0 / fsadc) * ((data007 / 80.0))
- / (scale_res * scale_cap))))));
- data[10] = std::min<boost::uint8_t>(127, (std::floor<boost::uint8_t>(-0.5 + (77.0 * scale_res
- * std::min<double>(1.0, sqrt(maxsnr * fsadc / 640.0))))));
- double data010 = data[10];
- data[9] = std::min<boost::uint8_t>(127, (std::floor<boost::uint8_t>(0.8 * data010)));
- data[11] = std::min<boost::uint8_t>(255, (std::floor<boost::uint8_t>(0.5
- + (20.0 * (640.0 / fsadc) * ((data010 / 77.0)
- / (scale_res * scale_cap))))));
- data[12] = std::min<boost::uint8_t>(127, (std::floor<boost::uint8_t>(-0.5
- + (80.0 * scale_res * std::min<double>(1.0,
- sqrt(maxsnr * fsadc / 640.0))))));
- double data012 = data[12];
- data[13] = std::min<boost::uint8_t>(255, (std::floor<boost::uint8_t>(-1.5
- + (20.0 * (640.0 / fsadc) * ((data012 / 80.0)
- / (scale_res * scale_cap))))));
- data[14] = 21 * (std::floor<boost::uint8_t>(0.1 * 640.0 / fsadc));
- data[15] = std::min<boost::uint8_t>(127, (1.025 * data007));
- double data015 = data[15];
- data[16] = std::min<boost::uint8_t>(127, (std::floor<boost::uint8_t>((data015
- * (0.98 + (0.02 * std::max<double>(1.0,
- (640.0 / fsadc) / maxsnr)))))));
- data[17] = data[15];
- data[18] = std::min<boost::uint8_t>(127, (0.975 * (data010)));
- double data018 = data[18];
- data[19] = std::min<boost::uint8_t>(127, (std::floor<boost::uint8_t>((data018
- * (0.98 + (0.02 * std::max<double>(1.0,
- (640.0 / fsadc) / maxsnr)))))));
- data[20] = data[18];
- data[21] = std::min<boost::uint8_t>(127, (0.975 * data012));
- double data021 = data[21];
- data[22] = std::min<boost::uint8_t>(127, (std::floor<boost::uint8_t>((data021
- * (0.98 + (0.02 * std::max<double>(1.0,
- (640.0 / fsadc) / maxsnr)))))));
- data[23] = data[21];
- data[24] = 0x2e;
- data[25] = std::floor<boost::uint8_t>(128.0 + std::min<double>(63.0,
- 63.0 * (fsadc / 640.0)));
- data[26] = std::floor<boost::uint8_t>(std::min<double>(63.0, 63.0 * (fsadc / 640.0)
- * (0.92 + (0.08 * (640.0 / fsadc)))));
- data[27] = std::floor<boost::uint8_t>(std::min<double>(63.0,
- 32.0 * sqrt(fsadc / 640.0)));
- data[28] = std::floor<boost::uint8_t>(128.0 + std::min<double>(63.0,
- 63.0 * (fsadc / 640.0)));
- data[29] = std::floor<boost::uint8_t>(std::min<double>(63.0,
- 63.0 * (fsadc / 640.0)
- * (0.92 + (0.08 * (640.0 / fsadc)))));
- data[30] = std::floor<boost::uint8_t>(std::min<double>(63.0,
- 32.0 * sqrt(fsadc / 640.0)));
- data[31] = std::floor<boost::uint8_t>(128.0 + std::min<double>(63.0,
- 63.0 * (fsadc / 640.0)));
- data[32] = std::floor<boost::uint8_t>(std::min<double>(63.0,
- 63.0 * (fsadc / 640.0) * (0.92
- + (0.08 * (640.0 / fsadc)))));
- data[33] = std::floor<boost::uint8_t>(std::min<double>(63.0,
- 63.0 * sqrt(fsadc / 640.0)));
- data[34] = std::min<boost::uint8_t>(127, (std::floor<boost::uint8_t>(64.0
- * sqrt(fsadc / 640.0))));
- data[35] = 0x40;
- data[36] = 0x40;
- data[37] = 0x2c;
- data[38] = 0x00;
- data[39] = 0x00;
-
- /* Program the registers! */
- for(size_t i = 0; i < 40; i++) {
- _io_iface->poke8(0x200+i, data[i]);
- }
-}
-
-/* Calibrate the baseband DC offset.
- *
- * Note that this function is called from within the TX quadrature
- * calibration function! */
-void ad9361_device_t::_calibrate_baseband_dc_offset()
-{
- _io_iface->poke8(0x193, 0x3f); // Calibration settings
- _io_iface->poke8(0x190, 0x0f); // Set tracking coefficient
- //write_ad9361_reg(device, 0x190, /*0x0f*//*0xDF*/0x80*1 | 0x40*1 | (16+8/*+4*/)); // Set tracking coefficient: don't *4 counter, do decim /4, increased gain shift
- _io_iface->poke8(0x194, 0x01); // More calibration settings
-
- /* Start that calibration, baby. */
- size_t count = 0;
- _io_iface->poke8(0x016, 0x01);
- while (_io_iface->peek8(0x016) & 0x01) {
- if (count > 100) {
- throw uhd::runtime_error("[ad9361_device_t] Baseband DC Offset Calibration Failure");
- break;
- }
- count++;
- boost::this_thread::sleep(boost::posix_time::milliseconds(5));
- }
-}
-
-/* Calibrate the RF DC offset.
- *
- * Note that this function is called from within the TX quadrature
- * calibration function. */
-void ad9361_device_t::_calibrate_rf_dc_offset()
-{
- /* Some settings are frequency-dependent. */
- if (_rx_freq < 4e9) {
- _io_iface->poke8(0x186, 0x32); // RF DC Offset count
- _io_iface->poke8(0x187, 0x24);
- _io_iface->poke8(0x188, 0x05);
- } else {
- _io_iface->poke8(0x186, 0x28); // RF DC Offset count
- _io_iface->poke8(0x187, 0x34);
- _io_iface->poke8(0x188, 0x06);
- }
-
- _io_iface->poke8(0x185, 0x20); // RF DC Offset wait count
- _io_iface->poke8(0x18b, 0x83);
- _io_iface->poke8(0x189, 0x30);
-
- /* Run the calibration! */
- size_t count = 0;
- _io_iface->poke8(0x016, 0x02);
- while (_io_iface->peek8(0x016) & 0x02) {
- if (count > 100) {
- throw uhd::runtime_error("[ad9361_device_t] RF DC Offset Calibration Failure");
- break;
- }
- count++;
- boost::this_thread::sleep(boost::posix_time::milliseconds(50));
- }
-}
-
-/* Start the RX quadrature calibration.
- *
- * Note that we are using AD9361's 'tracking' feature for RX quadrature
- * calibration, so once it starts it continues to free-run during operation.
- * It should be re-run for large frequency changes. */
-void ad9361_device_t::_calibrate_rx_quadrature()
-{
- /* Configure RX Quadrature calibration settings. */
- _io_iface->poke8(0x168, 0x03); // Set tone level for cal
- _io_iface->poke8(0x16e, 0x25); // RX Gain index to use for cal
- _io_iface->poke8(0x16a, 0x75); // Set Kexp phase
- _io_iface->poke8(0x16b, 0x15); // Set Kexp amplitude
- _io_iface->poke8(0x169, 0xcf); // Continuous tracking mode
- _io_iface->poke8(0x18b, 0xad);
-}
-
-/* TX quadtrature calibration routine.
- *
- * The TX quadrature needs to be done twice, once for each TX chain, with
- * only one register change in between. Thus, this function enacts the
- * calibrations, and it is called from calibrate_tx_quadrature. */
-void ad9361_device_t::_tx_quadrature_cal_routine() {
- /* This is a weird process, but here is how it works:
- * 1) Read the calibrated NCO frequency bits out of 0A3.
- * 2) Write the two bits to the RX NCO freq part of 0A0.
- * 3) Re-read 0A3 to get bits [5:0] because maybe they changed?
- * 4) Update only the TX NCO freq bits in 0A3.
- * 5) Profit (I hope). */
- boost::uint8_t reg0a3 = _io_iface->peek8(0x0a3);
- boost::uint8_t nco_freq = (reg0a3 & 0xC0);
- _io_iface->poke8(0x0a0, 0x15 | (nco_freq >> 1));
- reg0a3 = _io_iface->peek8(0x0a3);
- _io_iface->poke8(0x0a3, (reg0a3 & 0x3F) | nco_freq);
-
- /* It is possible to reach a configuration that won't operate correctly,
- * where the two test tones used for quadrature calibration are outside
- * of the RX BBF, and therefore don't make it to the ADC. We will check
- * for that scenario here. */
- double max_cal_freq = (((_baseband_bw * _tfir_factor)
- * ((nco_freq >> 6) + 1)) / 32) * 2;
- double bbbw = _baseband_bw / 2.0; // bbbw represents the one-sided BW
- if (bbbw > 28e6) {
- bbbw = 28e6;
- } else if (bbbw < 0.20e6) {
- bbbw = 0.20e6;
- }
- if (max_cal_freq > bbbw)
- throw uhd::runtime_error("[ad9361_device_t] max_cal_freq > bbbw");
-
- _io_iface->poke8(0x0a1, 0x7B); // Set tracking coefficient
- _io_iface->poke8(0x0a9, 0xff); // Cal count
- _io_iface->poke8(0x0a2, 0x7f); // Cal Kexp
- _io_iface->poke8(0x0a5, 0x01); // Cal magnitude threshold VVVV
- _io_iface->poke8(0x0a6, 0x01);
-
- /* The gain table index used for calibration must be adjusted for the
- * mid-table to get a TIA index = 1 and LPF index = 0. */
- if ((_rx_freq >= 1300e6) && (_rx_freq < 4000e6)) {
- _io_iface->poke8(0x0aa, 0x22); // Cal gain table index
- } else {
- _io_iface->poke8(0x0aa, 0x25); // Cal gain table index
- }
-
- _io_iface->poke8(0x0a4, 0xf0); // Cal setting conut
- _io_iface->poke8(0x0ae, 0x00); // Cal LPF gain index (split mode)
-
- /* First, calibrate the baseband DC offset. */
- _calibrate_baseband_dc_offset();
-
- /* Second, calibrate the RF DC offset. */
- _calibrate_rf_dc_offset();
-
- /* Now, calibrate the TX quadrature! */
- size_t count = 0;
- _io_iface->poke8(0x016, 0x10);
- while (_io_iface->peek8(0x016) & 0x10) {
- if (count > 100) {
- throw uhd::runtime_error("[ad9361_device_t] TX Quadrature Calibration Failure");
- break;
- }
- count++;
- boost::this_thread::sleep(boost::posix_time::milliseconds(10));
- }
-}
-
-/* Run the TX quadrature calibration.
- *
- * Note that from within this function we are also triggering the baseband
- * and RF DC calibrations. */
-void ad9361_device_t::_calibrate_tx_quadrature()
-{
- /* Make sure we are, in fact, in the ALERT state. If not, something is
- * terribly wrong in the driver execution flow. */
- if ((_io_iface->peek8(0x017) & 0x0F) != 5) {
- throw uhd::runtime_error("[ad9361_device_t] TX Quad Cal started, but not in ALERT");
- }
-
- /* Turn off free-running and continuous calibrations. Note that this
- * will get turned back on at the end of the RX calibration routine. */
- _io_iface->poke8(0x169, 0xc0);
-
- /* This calibration must be done in a certain order, and for both TX_A
- * and TX_B, separately. Store the original setting so that we can
- * restore it later. */
- boost::uint8_t orig_reg_inputsel = _regs.inputsel;
-
- /***********************************************************************
- * TX1/2-A Calibration
- **********************************************************************/
- _regs.inputsel = _regs.inputsel & 0xBF;
- _io_iface->poke8(0x004, _regs.inputsel);
-
- _tx_quadrature_cal_routine();
-
- /***********************************************************************
- * TX1/2-B Calibration
- **********************************************************************/
- _regs.inputsel = _regs.inputsel | 0x40;
- _io_iface->poke8(0x004, _regs.inputsel);
-
- _tx_quadrature_cal_routine();
-
- /***********************************************************************
- * fin
- **********************************************************************/
- _regs.inputsel = orig_reg_inputsel;
- _io_iface->poke8(0x004, orig_reg_inputsel);
-}
-
-
-/***********************************************************************
- * Other Misc Setup Functions
- ***********************************************************************/
-
-/* Program the mixer gain table.
- *
- * Note that this table is fixed for all frequency settings. */
-void ad9361_device_t::_program_mixer_gm_subtable()
-{
- boost::uint8_t gain[] = { 0x78, 0x74, 0x70, 0x6C, 0x68, 0x64, 0x60, 0x5C, 0x58,
- 0x54, 0x50, 0x4C, 0x48, 0x30, 0x18, 0x00 };
- boost::uint8_t gm[] = { 0x00, 0x0D, 0x15, 0x1B, 0x21, 0x25, 0x29, 0x2C, 0x2F, 0x31,
- 0x33, 0x34, 0x35, 0x3A, 0x3D, 0x3E };
-
- /* Start the clock. */
- _io_iface->poke8(0x13f, 0x02);
-
- /* Program the GM Sub-table. */
- int i;
- for (i = 15; i >= 0; i--) {
- _io_iface->poke8(0x138, i);
- _io_iface->poke8(0x139, gain[(15 - i)]);
- _io_iface->poke8(0x13A, 0x00);
- _io_iface->poke8(0x13B, gm[(15 - i)]);
- _io_iface->poke8(0x13F, 0x06);
- _io_iface->poke8(0x13C, 0x00);
- _io_iface->poke8(0x13C, 0x00);
- }
-
- /* Clear write bit and stop clock. */
- _io_iface->poke8(0x13f, 0x02);
- _io_iface->poke8(0x13C, 0x00);
- _io_iface->poke8(0x13C, 0x00);
- _io_iface->poke8(0x13f, 0x00);
-}
-
-/* Program the gain table.
- *
- * There are three different gain tables for different frequency ranges! */
-void ad9361_device_t::_program_gain_table() {
- /* Figure out which gain table we should be using for our current
- * frequency band. */
- boost::uint8_t (*gain_table)[5] = NULL;
- boost::uint8_t new_gain_table;
- if (_rx_freq < 1300e6) {
- gain_table = gain_table_sub_1300mhz;
- new_gain_table = 1;
- } else if (_rx_freq < 4e9) {
- gain_table = gain_table_1300mhz_to_4000mhz;
- new_gain_table = 2;
- } else if (_rx_freq <= 6e9) {
- gain_table = gain_table_4000mhz_to_6000mhz;
- new_gain_table = 3;
- } else {
- throw uhd::runtime_error("[ad9361_device_t] Wrong _rx_freq value");
- new_gain_table = 1;
- }
-
- /* Only re-program the gain table if there has been a band change. */
- if (_curr_gain_table == new_gain_table) {
- return;
- } else {
- _curr_gain_table = new_gain_table;
- }
-
- /* Okay, we have to program a new gain table. Sucks, brah. Start the
- * gain table clock. */
- _io_iface->poke8(0x137, 0x1A);
-
- /* IT'S PROGRAMMING TIME. */
- boost::uint8_t index = 0;
- for (; index < 77; index++) {
- _io_iface->poke8(0x130, index);
- _io_iface->poke8(0x131, gain_table[index][1]);
- _io_iface->poke8(0x132, gain_table[index][2]);
- _io_iface->poke8(0x133, gain_table[index][3]);
- _io_iface->poke8(0x137, 0x1E);
- _io_iface->poke8(0x134, 0x00);
- _io_iface->poke8(0x134, 0x00);
- }
-
- /* Everything above the 77th index is zero. */
- for (; index < 91; index++) {
- _io_iface->poke8(0x130, index);
- _io_iface->poke8(0x131, 0x00);
- _io_iface->poke8(0x132, 0x00);
- _io_iface->poke8(0x133, 0x00);
- _io_iface->poke8(0x137, 0x1E);
- _io_iface->poke8(0x134, 0x00);
- _io_iface->poke8(0x134, 0x00);
- }
-
- /* Clear the write bit and stop the gain clock. */
- _io_iface->poke8(0x137, 0x1A);
- _io_iface->poke8(0x134, 0x00);
- _io_iface->poke8(0x134, 0x00);
- _io_iface->poke8(0x137, 0x00);
-}
-
-/* Setup gain control registers.
- *
- * This really only needs to be done once, at initialization. */
-void ad9361_device_t::_setup_gain_control()
-{
- _io_iface->poke8(0x0FA, 0xE0); // Gain Control Mode Select
- _io_iface->poke8(0x0FB, 0x08); // Table, Digital Gain, Man Gain Ctrl
- _io_iface->poke8(0x0FC, 0x23); // Incr Step Size, ADC Overrange Size
- _io_iface->poke8(0x0FD, 0x4C); // Max Full/LMT Gain Table Index
- _io_iface->poke8(0x0FE, 0x44); // Decr Step Size, Peak Overload Time
- _io_iface->poke8(0x100, 0x6F); // Max Digital Gain
- _io_iface->poke8(0x104, 0x2F); // ADC Small Overload Threshold
- _io_iface->poke8(0x105, 0x3A); // ADC Large Overload Threshold
- _io_iface->poke8(0x107, 0x31); // Large LMT Overload Threshold
- _io_iface->poke8(0x108, 0x39); // Small LMT Overload Threshold
- _io_iface->poke8(0x109, 0x23); // Rx1 Full/LMT Gain Index
- _io_iface->poke8(0x10A, 0x58); // Rx1 LPF Gain Index
- _io_iface->poke8(0x10B, 0x00); // Rx1 Digital Gain Index
- _io_iface->poke8(0x10C, 0x23); // Rx2 Full/LMT Gain Index
- _io_iface->poke8(0x10D, 0x18); // Rx2 LPF Gain Index
- _io_iface->poke8(0x10E, 0x00); // Rx2 Digital Gain Index
- _io_iface->poke8(0x114, 0x30); // Low Power Threshold
- _io_iface->poke8(0x11A, 0x27); // Initial LMT Gain Limit
- _io_iface->poke8(0x081, 0x00); // Tx Symbol Gain Control
-}
-
-/* Setup the RX or TX synthesizers.
- *
- * This setup depends on a fixed look-up table, which is stored in an
- * included header file. The table is indexed based on the passed VCO rate.
- */
-void ad9361_device_t::_setup_synth(direction_t direction, double vcorate)
-{
- /* The vcorates in the vco_index array represent lower boundaries for
- * rates. Once we find a match, we use that index to look-up the rest of
- * the register values in the LUT. */
- int vcoindex = 0;
- for (size_t i = 0; i < 53; i++) {
- vcoindex = i;
- if (vcorate > vco_index[i]) {
- break;
- }
- }
- if (vcoindex > 53)
- throw uhd::runtime_error("[ad9361_device_t] vcoindex > 53");
-
- /* Parse the values out of the LUT based on our calculated index... */
- boost::uint8_t vco_output_level = synth_cal_lut[vcoindex][0];
- boost::uint8_t vco_varactor = synth_cal_lut[vcoindex][1];
- boost::uint8_t vco_bias_ref = synth_cal_lut[vcoindex][2];
- boost::uint8_t vco_bias_tcf = synth_cal_lut[vcoindex][3];
- boost::uint8_t vco_cal_offset = synth_cal_lut[vcoindex][4];
- boost::uint8_t vco_varactor_ref = synth_cal_lut[vcoindex][5];
- boost::uint8_t charge_pump_curr = synth_cal_lut[vcoindex][6];
- boost::uint8_t loop_filter_c2 = synth_cal_lut[vcoindex][7];
- boost::uint8_t loop_filter_c1 = synth_cal_lut[vcoindex][8];
- boost::uint8_t loop_filter_r1 = synth_cal_lut[vcoindex][9];
- boost::uint8_t loop_filter_c3 = synth_cal_lut[vcoindex][10];
- boost::uint8_t loop_filter_r3 = synth_cal_lut[vcoindex][11];
-
- /* ... annnd program! */
- if (direction == RX) {
- _io_iface->poke8(0x23a, 0x40 | vco_output_level);
- _io_iface->poke8(0x239, 0xC0 | vco_varactor);
- _io_iface->poke8(0x242, vco_bias_ref | (vco_bias_tcf << 3));
- _io_iface->poke8(0x238, (vco_cal_offset << 3));
- _io_iface->poke8(0x245, 0x00);
- _io_iface->poke8(0x251, vco_varactor_ref);
- _io_iface->poke8(0x250, 0x70);
- _io_iface->poke8(0x23b, 0x80 | charge_pump_curr);
- _io_iface->poke8(0x23e, loop_filter_c1 | (loop_filter_c2 << 4));
- _io_iface->poke8(0x23f, loop_filter_c3 | (loop_filter_r1 << 4));
- _io_iface->poke8(0x240, loop_filter_r3);
- } else if (direction == TX) {
- _io_iface->poke8(0x27a, 0x40 | vco_output_level);
- _io_iface->poke8(0x279, 0xC0 | vco_varactor);
- _io_iface->poke8(0x282, vco_bias_ref | (vco_bias_tcf << 3));
- _io_iface->poke8(0x278, (vco_cal_offset << 3));
- _io_iface->poke8(0x285, 0x00);
- _io_iface->poke8(0x291, vco_varactor_ref);
- _io_iface->poke8(0x290, 0x70);
- _io_iface->poke8(0x27b, 0x80 | charge_pump_curr);
- _io_iface->poke8(0x27e, loop_filter_c1 | (loop_filter_c2 << 4));
- _io_iface->poke8(0x27f, loop_filter_c3 | (loop_filter_r1 << 4));
- _io_iface->poke8(0x280, loop_filter_r3);
- } else {
- throw uhd::runtime_error("[ad9361_device_t] [_setup_synth] INVALID_CODE_PATH");
- }
-}
-
-
-/* Tune the baseband VCO.
- *
- * This clock signal is what gets fed to the ADCs and DACs. This function is
- * not exported outside of this file, and is invoked based on the rate
- * fed to the public set_clock_rate function. */
-double ad9361_device_t::_tune_bbvco(const double rate)
-{
- UHD_LOG << boost::format("[ad9361_device_t::_tune_bbvco] rate=%.10f\n") % rate;
-
- /* Let's not re-tune to the same frequency over and over... */
- if (freq_is_nearly_equal(rate, _req_coreclk)) {
- return _adcclock_freq;
- }
-
- _req_coreclk = rate;
-
- const double fref = 40e6;
- const int modulus = 2088960;
- const double vcomax = 1430e6;
- const double vcomin = 672e6;
- double vcorate;
- int vcodiv;
-
- /* Iterate over VCO dividers until appropriate divider is found. */
- int i = 1;
- for (; i <= 6; i++) {
- vcodiv = 1 << i;
- vcorate = rate * vcodiv;
-
- if (vcorate >= vcomin && vcorate <= vcomax)
- break;
- }
- if (i == 7)
- throw uhd::runtime_error("[ad9361_device_t] _tune_bbvco: wrong vcorate");
-
- UHD_LOG << boost::format("[ad9361_device_t::_tune_bbvco] vcodiv=%d vcorate=%.10f\n") % vcodiv % vcorate;
- /* Fo = Fref * (Nint + Nfrac / mod) */
- int nint = vcorate / fref;
- UHD_LOG << boost::format("[ad9361_device_t::_tune_bbvco] (nint)=%.10f\n") % (vcorate / fref);
- int nfrac = lround(((vcorate / fref) - (double) nint) * (double) modulus);
- UHD_LOG << boost::format("[ad9361_device_t::_tune_bbvco] (nfrac)=%.10f\n") % (((vcorate / fref) - (double) nint) * (double) modulus);
- UHD_LOG << boost::format("[ad9361_device_t::_tune_bbvco] nint=%d nfrac=%d\n") % nint % nfrac;
- double actual_vcorate = fref
- * ((double) nint + ((double) nfrac / (double) modulus));
-
- /* Scale CP current according to VCO rate */
- const double icp_baseline = 150e-6;
- const double freq_baseline = 1280e6;
- double icp = icp_baseline * (actual_vcorate / freq_baseline);
- int icp_reg = (icp / 25e-6) - 1;
-
- _io_iface->poke8(0x045, 0x00); // REFCLK / 1 to BBPLL
- _io_iface->poke8(0x046, icp_reg & 0x3F); // CP current
- _io_iface->poke8(0x048, 0xe8); // BBPLL loop filters
- _io_iface->poke8(0x049, 0x5b); // BBPLL loop filters
- _io_iface->poke8(0x04a, 0x35); // BBPLL loop filters
-
- _io_iface->poke8(0x04b, 0xe0);
- _io_iface->poke8(0x04e, 0x10); // Max accuracy
-
- _io_iface->poke8(0x043, nfrac & 0xFF); // Nfrac[7:0]
- _io_iface->poke8(0x042, (nfrac >> 8) & 0xFF); // Nfrac[15:8]
- _io_iface->poke8(0x041, (nfrac >> 16) & 0xFF); // Nfrac[23:16]
- _io_iface->poke8(0x044, nint); // Nint
-
- _calibrate_lock_bbpll();
-
- _regs.bbpll = (_regs.bbpll & 0xF8) | i;
-
- _bbpll_freq = actual_vcorate;
- _adcclock_freq = (actual_vcorate / vcodiv);
-
- return _adcclock_freq;
-}
-
-/* This function re-programs all of the gains in the system.
- *
- * Because the gain values match to different gain indices based on the
- * current operating band, this function can be called to update all gain
- * settings to the appropriate index after a re-tune. */
-void ad9361_device_t::_reprogram_gains()
-{
- set_gain(RX, CHAIN_1,_rx1_gain);
- set_gain(RX, CHAIN_2,_rx2_gain);
- set_gain(TX, CHAIN_1,_tx1_gain);
- set_gain(TX, CHAIN_2,_tx2_gain);
-}
-
-/* This is the internal tune function, not available for a host call.
- *
- * Calculate the VCO settings for the requested frquency, and then either
- * tune the RX or TX VCO. */
-double ad9361_device_t::_tune_helper(direction_t direction, const double value)
-{
- /* The RFPLL runs from 6 GHz - 12 GHz */
- const double fref = 80e6;
- const int modulus = 8388593;
- const double vcomax = 12e9;
- const double vcomin = 6e9;
- double vcorate;
- int vcodiv;
-
- /* Iterate over VCO dividers until appropriate divider is found. */
- int i;
- for (i = 0; i <= 6; i++) {
- vcodiv = 2 << i;
- vcorate = value * vcodiv;
- if (vcorate >= vcomin && vcorate <= vcomax)
- break;
- }
- if (i == 7)
- throw uhd::runtime_error("[ad9361_device_t] RFVCO can't find valid VCO rate!");
-
- int nint = vcorate / fref;
- int nfrac = ((vcorate / fref) - nint) * modulus;
-
- double actual_vcorate = fref * (nint + (double) (nfrac) / modulus);
- double actual_lo = actual_vcorate / vcodiv;
-
- if (direction == RX) {
-
- _req_rx_freq = value;
-
- /* Set band-specific settings. */
- if (value < _client_params->get_band_edge(AD9361_RX_BAND0)) {
- _regs.inputsel = (_regs.inputsel & 0xC0) | 0x30;
- } else if ((value
- >= _client_params->get_band_edge(AD9361_RX_BAND0))
- && (value
- < _client_params->get_band_edge(AD9361_RX_BAND1))) {
- _regs.inputsel = (_regs.inputsel & 0xC0) | 0x0C;
- } else if ((value
- >= _client_params->get_band_edge(AD9361_RX_BAND1))
- && (value <= 6e9)) {
- _regs.inputsel = (_regs.inputsel & 0xC0) | 0x03;
- } else {
- throw uhd::runtime_error("[ad9361_device_t] [_tune_helper] INVALID_CODE_PATH");
- }
-
- _io_iface->poke8(0x004, _regs.inputsel);
-
- /* Store vcodiv setting. */
- _regs.vcodivs = (_regs.vcodivs & 0xF0) | (i & 0x0F);
-
- /* Setup the synthesizer. */
- _setup_synth(RX, actual_vcorate);
-
- /* Tune!!!! */
- _io_iface->poke8(0x233, nfrac & 0xFF);
- _io_iface->poke8(0x234, (nfrac >> 8) & 0xFF);
- _io_iface->poke8(0x235, (nfrac >> 16) & 0xFF);
- _io_iface->poke8(0x232, (nint >> 8) & 0xFF);
- _io_iface->poke8(0x231, nint & 0xFF);
- _io_iface->poke8(0x005, _regs.vcodivs);
-
- /* Lock the PLL! */
- boost::this_thread::sleep(boost::posix_time::milliseconds(2));
- if ((_io_iface->peek8(0x247) & 0x02) == 0) {
- throw uhd::runtime_error("[ad9361_device_t] RX PLL NOT LOCKED");
- }
-
- _rx_freq = actual_lo;
-
- return actual_lo;
-
- } else {
-
- _req_tx_freq = value;
-
- /* Set band-specific settings. */
- if (value < _client_params->get_band_edge(AD9361_TX_BAND0)) {
- _regs.inputsel = _regs.inputsel | 0x40;
- } else if ((value
- >= _client_params->get_band_edge(AD9361_TX_BAND0))
- && (value <= 6e9)) {
- _regs.inputsel = _regs.inputsel & 0xBF;
- } else {
- throw uhd::runtime_error("[ad9361_device_t] [_tune_helper] INVALID_CODE_PATH");
- }
-
- _io_iface->poke8(0x004, _regs.inputsel);
-
- /* Store vcodiv setting. */
- _regs.vcodivs = (_regs.vcodivs & 0x0F) | ((i & 0x0F) << 4);
-
- /* Setup the synthesizer. */
- _setup_synth(TX, actual_vcorate);
-
- /* Tune it, homey. */
- _io_iface->poke8(0x273, nfrac & 0xFF);
- _io_iface->poke8(0x274, (nfrac >> 8) & 0xFF);
- _io_iface->poke8(0x275, (nfrac >> 16) & 0xFF);
- _io_iface->poke8(0x272, (nint >> 8) & 0xFF);
- _io_iface->poke8(0x271, nint & 0xFF);
- _io_iface->poke8(0x005, _regs.vcodivs);
-
- /* Lock the PLL! */
- boost::this_thread::sleep(boost::posix_time::milliseconds(2));
- if ((_io_iface->peek8(0x287) & 0x02) == 0) {
- throw uhd::runtime_error("[ad9361_device_t] TX PLL NOT LOCKED");
- }
-
- _tx_freq = actual_lo;
-
- return actual_lo;
- }
-}
-
-/* Configure the various clock / sample rates in the RX and TX chains.
- *
- * Functionally, this function configures AD9361's RX and TX rates. For
- * a requested TX & RX rate, it sets the interpolation & decimation filters,
- * and tunes the VCO that feeds the ADCs and DACs.
- */
-double ad9361_device_t::_setup_rates(const double rate)
-{
- /* If we make it into this function, then we are tuning to a new rate.
- * Store the new rate. */
- _req_clock_rate = rate;
-
- /* Set the decimation and interpolation values in the RX and TX chains.
- * This also switches filters in / out. Note that all transmitters and
- * receivers have to be turned on for the calibration portion of
- * bring-up, and then they will be switched out to reflect the actual
- * user-requested antenna selections. */
- int divfactor = 0;
- _tfir_factor = 0;
- if (rate < 0.33e6) {
- // RX1 + RX2 enabled, 3, 2, 2, 4
- _regs.rxfilt = B8(11101111);
-
- // TX1 + TX2 enabled, 3, 2, 2, 4
- _regs.txfilt = B8(11101111);
-
- divfactor = 48;
- _tfir_factor = 2;
- } else if (rate < 0.66e6) {
- // RX1 + RX2 enabled, 2, 2, 2, 4
- _regs.rxfilt = B8(11011111);
-
- // TX1 + TX2 enabled, 2, 2, 2, 4
- _regs.txfilt = B8(11011111);
-
- divfactor = 32;
- _tfir_factor = 2;
- } else if (rate <= 20e6) {
- // RX1 + RX2 enabled, 2, 2, 2, 2
- _regs.rxfilt = B8(11011110);
-
- // TX1 + TX2 enabled, 2, 2, 2, 2
- _regs.txfilt = B8(11011110);
-
- divfactor = 16;
- _tfir_factor = 2;
- } else if ((rate > 20e6) && (rate < 23e6)) {
- // RX1 + RX2 enabled, 3, 2, 2, 2
- _regs.rxfilt = B8(11101110);
-
- // TX1 + TX2 enabled, 3, 1, 2, 2
- _regs.txfilt = B8(11100110);
-
- divfactor = 24;
- _tfir_factor = 2;
- } else if ((rate >= 23e6) && (rate < 41e6)) {
- // RX1 + RX2 enabled, 2, 2, 2, 2
- _regs.rxfilt = B8(11011110);
-
- // TX1 + TX2 enabled, 1, 2, 2, 2
- _regs.txfilt = B8(11001110);
-
- divfactor = 16;
- _tfir_factor = 2;
- } else if ((rate >= 41e6) && (rate <= 56e6)) {
- // RX1 + RX2 enabled, 3, 1, 2, 2
- _regs.rxfilt = B8(11100110);
-
- // TX1 + TX2 enabled, 3, 1, 1, 2
- _regs.txfilt = B8(11100010);
-
- divfactor = 12;
- _tfir_factor = 2;
- } else if ((rate > 56e6) && (rate <= 61.44e6)) {
- // RX1 + RX2 enabled, 3, 1, 1, 2
- _regs.rxfilt = B8(11100010);
-
- // TX1 + TX2 enabled, 3, 1, 1, 1
- _regs.txfilt = B8(11100001);
-
- divfactor = 6;
- _tfir_factor = 1;
- } else {
- // should never get in here
- throw uhd::runtime_error("[ad9361_device_t] [_setup_rates] INVALID_CODE_PATH");
- }
-
- UHD_LOG << boost::format("[ad9361_device_t::_setup_rates] divfactor=%d\n") % divfactor;
-
- /* Tune the BBPLL to get the ADC and DAC clocks. */
- const double adcclk = _tune_bbvco(rate * divfactor);
- double dacclk = adcclk;
-
- /* The DAC clock must be <= 336e6, and is either the ADC clock or 1/2 the
- * ADC clock.*/
- if (adcclk > 336e6) {
- /* Make the DAC clock = ADC/2, and bypass the TXFIR. */
- _regs.bbpll = _regs.bbpll | 0x08;
- dacclk = adcclk / 2.0;
- } else {
- _regs.bbpll = _regs.bbpll & 0xF7;
- }
-
- /* Set the dividers / interpolators in AD9361. */
- _io_iface->poke8(0x002, _regs.txfilt);
- _io_iface->poke8(0x003, _regs.rxfilt);
- _io_iface->poke8(0x004, _regs.inputsel);
- _io_iface->poke8(0x00A, _regs.bbpll);
-
- UHD_LOG << boost::format("[ad9361_device_t::_setup_rates] adcclk=%f\n") % adcclk;
- _baseband_bw = (adcclk / divfactor);
-
- /*
- The Tx & Rx FIR calculate 16 taps per clock cycle. This limits the number of available taps to the ratio of DAC_CLK/ADC_CLK
- to the input data rate multiplied by 16. For example, if the input data rate is 25 MHz and DAC_CLK is 100 MHz,
- then the ratio of DAC_CLK to the input data rate is 100/25 or 4. In this scenario, the total number of taps available is 64.
-
- Also, whilst the Rx FIR filter always has memory available for 128 taps, the Tx FIR Filter can only support a maximum length of 64 taps
- in 1x interpolation mode, and 128 taps in 2x & 4x modes.
- */
- const size_t max_tx_taps = std::min<size_t>(
- std::min<size_t>((16 * (int)((dacclk / rate) + 0.5)), 128),
- (_tfir_factor == 1) ? 64 : 128);
- const size_t max_rx_taps = std::min<size_t>((16 * (size_t)((adcclk / rate) + 0.5)),
- 128);
-
- const size_t num_tx_taps = get_num_taps(max_tx_taps);
- const size_t num_rx_taps = get_num_taps(max_rx_taps);
-
- _setup_tx_fir(num_tx_taps);
- _setup_rx_fir(num_rx_taps);
-
- return _baseband_bw;
-}
-
-/***********************************************************************
- * Publicly exported functions to host calls
- **********************************************************************/
-void ad9361_device_t::initialize()
-{
- boost::lock_guard<boost::recursive_mutex> lock(_mutex);
-
- /* Initialize shadow registers. */
- _regs.vcodivs = 0x00;
- _regs.inputsel = 0x30;
- _regs.rxfilt = 0x00;
- _regs.txfilt = 0x00;
- _regs.bbpll = 0x02;
- _regs.bbftune_config = 0x1e;
- _regs.bbftune_mode = 0x1e;
-
- /* Initialize private VRQ fields. */
- _rx_freq = 0.0;
- _tx_freq = 0.0;
- _req_rx_freq = 0.0;
- _req_tx_freq = 0.0;
- _baseband_bw = 0.0;
- _req_clock_rate = 0.0;
- _req_coreclk = 0.0;
- _bbpll_freq = 0.0;
- _adcclock_freq = 0.0;
- _rx_bbf_tunediv = 0;
- _curr_gain_table = 0;
- _rx1_gain = 0;
- _rx2_gain = 0;
- _tx1_gain = 0;
- _tx2_gain = 0;
-
- /* Reset the device. */
- _io_iface->poke8(0x000, 0x01);
- _io_iface->poke8(0x000, 0x00);
- boost::this_thread::sleep(boost::posix_time::milliseconds(20));
-
- /* There is not a WAT big enough for this. */
- _io_iface->poke8(0x3df, 0x01);
-
- _io_iface->poke8(0x2a6, 0x0e); // Enable master bias
- _io_iface->poke8(0x2a8, 0x0e); // Set bandgap trim
-
- /* Set RFPLL ref clock scale to REFCLK * 2 */
- _io_iface->poke8(0x2ab, 0x07);
- _io_iface->poke8(0x2ac, 0xff);
-
- /* Enable clocks. */
- switch (_client_params->get_clocking_mode()) {
- case AD9361_XTAL_N_CLK_PATH: {
- _io_iface->poke8(0x009, 0x17);
- } break;
-
- case AD9361_XTAL_P_CLK_PATH: {
- _io_iface->poke8(0x009, 0x07);
- _io_iface->poke8(0x292, 0x08);
- _io_iface->poke8(0x293, 0x80);
- _io_iface->poke8(0x294, 0x00);
- _io_iface->poke8(0x295, 0x14);
- } break;
-
- default:
- throw uhd::runtime_error("[ad9361_device_t] NOT IMPLEMENTED");
- }
- boost::this_thread::sleep(boost::posix_time::milliseconds(20));
-
- /* Tune the BBPLL, write TX and RX FIRS. */
- _setup_rates(50e6);
-
- /* Setup data ports (FDD dual port DDR):
- * FDD dual port DDR CMOS no swap.
- * Force TX on one port, RX on the other. */
- switch (_client_params->get_digital_interface_mode()) {
- case AD9361_DDR_FDD_LVCMOS: {
- _io_iface->poke8(0x010, 0xc8);
- _io_iface->poke8(0x011, 0x00);
- _io_iface->poke8(0x012, 0x02);
- } break;
-
- case AD9361_DDR_FDD_LVDS: {
- _io_iface->poke8(0x010, 0xcc);
- _io_iface->poke8(0x011, 0x00);
- _io_iface->poke8(0x012, 0x10);
-
- //LVDS Specific
- _io_iface->poke8(0x03C, 0x23);
- _io_iface->poke8(0x03D, 0xFF);
- _io_iface->poke8(0x03E, 0x0F);
- } break;
-
- default:
- throw uhd::runtime_error("[ad9361_device_t] NOT IMPLEMENTED");
- }
-
- /* Data delay for TX and RX data clocks */
- digital_interface_delays_t timing =
- _client_params->get_digital_interface_timing();
- boost::uint8_t rx_delays = ((timing.rx_clk_delay & 0xF) << 4)
- | (timing.rx_data_delay & 0xF);
- boost::uint8_t tx_delays = ((timing.tx_clk_delay & 0xF) << 4)
- | (timing.tx_data_delay & 0xF);
- _io_iface->poke8(0x006, rx_delays);
- _io_iface->poke8(0x007, tx_delays);
-
- /* Setup AuxDAC */
- _io_iface->poke8(0x018, 0x00); // AuxDAC1 Word[9:2]
- _io_iface->poke8(0x019, 0x00); // AuxDAC2 Word[9:2]
- _io_iface->poke8(0x01A, 0x00); // AuxDAC1 Config and Word[1:0]
- _io_iface->poke8(0x01B, 0x00); // AuxDAC2 Config and Word[1:0]
- _io_iface->poke8(0x022, 0x4A); // Invert Bypassed LNA
- _io_iface->poke8(0x023, 0xFF); // AuxDAC Manaul/Auto Control
- _io_iface->poke8(0x026, 0x00); // AuxDAC Manual Select Bit/GPO Manual Select
- _io_iface->poke8(0x030, 0x00); // AuxDAC1 Rx Delay
- _io_iface->poke8(0x031, 0x00); // AuxDAC1 Tx Delay
- _io_iface->poke8(0x032, 0x00); // AuxDAC2 Rx Delay
- _io_iface->poke8(0x033, 0x00); // AuxDAC2 Tx Delay
-
- /* Setup AuxADC */
- _io_iface->poke8(0x00B, 0x00); // Temp Sensor Setup (Offset)
- _io_iface->poke8(0x00C, 0x00); // Temp Sensor Setup (Temp Window)
- _io_iface->poke8(0x00D, 0x03); // Temp Sensor Setup (Periodic Measure)
- _io_iface->poke8(0x00F, 0x04); // Temp Sensor Setup (Decimation)
- _io_iface->poke8(0x01C, 0x10); // AuxADC Setup (Clock Div)
- _io_iface->poke8(0x01D, 0x01); // AuxADC Setup (Decimation/Enable)
-
- /* Setup control outputs. */
- _io_iface->poke8(0x035, 0x07);
- _io_iface->poke8(0x036, 0xFF);
-
- /* Setup GPO */
- _io_iface->poke8(0x03a, 0x27); //set delay register
- _io_iface->poke8(0x020, 0x00); // GPO Auto Enable Setup in RX and TX
- _io_iface->poke8(0x027, 0x03); // GPO Manual and GPO auto value in ALERT
- _io_iface->poke8(0x028, 0x00); // GPO_0 RX Delay
- _io_iface->poke8(0x029, 0x00); // GPO_1 RX Delay
- _io_iface->poke8(0x02A, 0x00); // GPO_2 RX Delay
- _io_iface->poke8(0x02B, 0x00); // GPO_3 RX Delay
- _io_iface->poke8(0x02C, 0x00); // GPO_0 TX Delay
- _io_iface->poke8(0x02D, 0x00); // GPO_1 TX Delay
- _io_iface->poke8(0x02E, 0x00); // GPO_2 TX Delay
- _io_iface->poke8(0x02F, 0x00); // GPO_3 TX Delay
-
- _io_iface->poke8(0x261, 0x00); // RX LO power
- _io_iface->poke8(0x2a1, 0x00); // TX LO power
- _io_iface->poke8(0x248, 0x0b); // en RX VCO LDO
- _io_iface->poke8(0x288, 0x0b); // en TX VCO LDO
- _io_iface->poke8(0x246, 0x02); // pd RX cal Tcf
- _io_iface->poke8(0x286, 0x02); // pd TX cal Tcf
- _io_iface->poke8(0x249, 0x8e); // rx vco cal length
- _io_iface->poke8(0x289, 0x8e); // rx vco cal length
- _io_iface->poke8(0x23b, 0x80); // set RX MSB?, FIXME 0x89 magic cp
- _io_iface->poke8(0x27b, 0x80); // "" TX //FIXME 0x88 see above
- _io_iface->poke8(0x243, 0x0d); // set rx prescaler bias
- _io_iface->poke8(0x283, 0x0d); // "" TX
-
- _io_iface->poke8(0x23d, 0x00); // Clear half VCO cal clock setting
- _io_iface->poke8(0x27d, 0x00); // Clear half VCO cal clock setting
-
- /* The order of the following process is EXTREMELY important. If the
- * below functions are modified at all, device initialization and
- * calibration might be broken in the process! */
-
- _io_iface->poke8(0x015, 0x04); // dual synth mode, synth en ctrl en
- _io_iface->poke8(0x014, 0x05); // use SPI for TXNRX ctrl, to ALERT, TX on
- _io_iface->poke8(0x013, 0x01); // enable ENSM
- boost::this_thread::sleep(boost::posix_time::milliseconds(1));
-
- _calibrate_synth_charge_pumps();
-
- _tune_helper(RX, 800e6);
- _tune_helper(TX, 850e6);
-
- _program_mixer_gm_subtable();
- _program_gain_table();
- _setup_gain_control();
-
- _calibrate_baseband_rx_analog_filter();
- _calibrate_baseband_tx_analog_filter();
- _calibrate_rx_TIAs();
- _calibrate_secondary_tx_filter();
-
- _setup_adc();
-
- _calibrate_tx_quadrature();
- _calibrate_rx_quadrature();
-
- // cals done, set PPORT config
- switch (_client_params->get_digital_interface_mode()) {
- case AD9361_DDR_FDD_LVCMOS: {
- _io_iface->poke8(0x012, 0x02);
- } break;
-
- case AD9361_DDR_FDD_LVDS: {
- _io_iface->poke8(0x012, 0x10);
- } break;
-
- default:
- throw uhd::runtime_error("[ad9361_device_t] NOT IMPLEMENTED");
- }
-
- _io_iface->poke8(0x013, 0x01); // Set ENSM FDD bit
- _io_iface->poke8(0x015, 0x04); // dual synth mode, synth en ctrl en
-
- /* Default TX attentuation to 10dB on both TX1 and TX2 */
- _io_iface->poke8(0x073, 0x00);
- _io_iface->poke8(0x074, 0x00);
- _io_iface->poke8(0x075, 0x00);
- _io_iface->poke8(0x076, 0x00);
-
- /* Setup RSSI Measurements */
- _io_iface->poke8(0x150, 0x0E); // RSSI Measurement Duration 0, 1
- _io_iface->poke8(0x151, 0x00); // RSSI Measurement Duration 2, 3
- _io_iface->poke8(0x152, 0xFF); // RSSI Weighted Multiplier 0
- _io_iface->poke8(0x153, 0x00); // RSSI Weighted Multiplier 1
- _io_iface->poke8(0x154, 0x00); // RSSI Weighted Multiplier 2
- _io_iface->poke8(0x155, 0x00); // RSSI Weighted Multiplier 3
- _io_iface->poke8(0x156, 0x00); // RSSI Delay
- _io_iface->poke8(0x157, 0x00); // RSSI Wait
- _io_iface->poke8(0x158, 0x0D); // RSSI Mode Select
- _io_iface->poke8(0x15C, 0x67); // Power Measurement Duration
-
- /* Turn on the default RX & TX chains. */
- set_active_chains(true, false, false, false);
-
- /* Set TXers & RXers on (only works in FDD mode) */
- _io_iface->poke8(0x014, 0x21);
-}
-
-
-/* This function sets the RX / TX rate between AD9361 and the FPGA, and
- * thus determines the interpolation / decimation required in the FPGA to
- * achieve the user's requested rate.
- *
- * This is the only clock setting function that is exposed to the outside. */
-double ad9361_device_t::set_clock_rate(const double req_rate)
-{
- boost::lock_guard<boost::recursive_mutex> lock(_mutex);
-
- if (req_rate > 61.44e6) {
- throw uhd::runtime_error("[ad9361_device_t] Requested master clock rate outside range");
- }
-
- UHD_LOG << boost::format("[ad9361_device_t::set_clock_rate] req_rate=%.10f\n") % req_rate;
-
- /* UHD has a habit of requesting the same rate like four times when it
- * starts up. This prevents that, and any bugs in user code that request
- * the same rate over and over. */
- if (freq_is_nearly_equal(req_rate, _req_clock_rate)) {
- return _baseband_bw;
- }
-
- /* We must be in the SLEEP / WAIT state to do this. If we aren't already
- * there, transition the ENSM to State 0. */
- boost::uint8_t current_state = _io_iface->peek8(0x017) & 0x0F;
- switch (current_state) {
- case 0x05:
- /* We are in the ALERT state. */
- _io_iface->poke8(0x014, 0x21);
- boost::this_thread::sleep(boost::posix_time::milliseconds(5));
- _io_iface->poke8(0x014, 0x00);
- break;
-
- case 0x0A:
- /* We are in the FDD state. */
- _io_iface->poke8(0x014, 0x00);
- break;
-
- default:
- throw uhd::runtime_error("[ad9361_device_t] [set_clock_rate:1] AD9361 in unknown state");
- break;
- };
-
- /* Store the current chain / antenna selections so that we can restore
- * them at the end of this routine; all chains will be enabled from
- * within setup_rates for calibration purposes. */
- boost::uint8_t orig_tx_chains = _regs.txfilt & 0xC0;
- boost::uint8_t orig_rx_chains = _regs.rxfilt & 0xC0;
-
- /* Call into the clock configuration / settings function. This is where
- * all the hard work gets done. */
- double rate = _setup_rates(req_rate);
-
- UHD_LOG << boost::format("[ad9361_device_t::set_clock_rate] rate=%.10f\n") % rate;
-
- /* Transition to the ALERT state and calibrate everything. */
- _io_iface->poke8(0x015, 0x04); //dual synth mode, synth en ctrl en
- _io_iface->poke8(0x014, 0x05); //use SPI for TXNRX ctrl, to ALERT, TX on
- _io_iface->poke8(0x013, 0x01); //enable ENSM
- boost::this_thread::sleep(boost::posix_time::milliseconds(1));
-
- _calibrate_synth_charge_pumps();
-
- _tune_helper(RX, _rx_freq);
- _tune_helper(TX, _tx_freq);
-
- _program_mixer_gm_subtable();
- _program_gain_table();
- _setup_gain_control();
- _reprogram_gains();
-
- _calibrate_baseband_rx_analog_filter();
- _calibrate_baseband_tx_analog_filter();
- _calibrate_rx_TIAs();
- _calibrate_secondary_tx_filter();
-
- _setup_adc();
-
- _calibrate_tx_quadrature();
- _calibrate_rx_quadrature();
-
- // cals done, set PPORT config
- switch (_client_params->get_digital_interface_mode()) {
- case AD9361_DDR_FDD_LVCMOS: {
- _io_iface->poke8(0x012, 0x02);
- }break;
-
- case AD9361_DDR_FDD_LVDS: {
- _io_iface->poke8(0x012, 0x10);
- }break;
-
- default:
- throw uhd::runtime_error("[ad9361_device_t] NOT IMPLEMENTED");
- }
- _io_iface->poke8(0x013, 0x01); // Set ENSM FDD bit
- _io_iface->poke8(0x015, 0x04); // dual synth mode, synth en ctrl en
-
- /* End the function in the same state as the entry state. */
- switch (current_state) {
- case 0x05:
- /* We are already in ALERT. */
- break;
-
- case 0x0A:
- /* Transition back to FDD, and restore the original antenna
- * / chain selections. */
- _regs.txfilt = (_regs.txfilt & 0x3F) | orig_tx_chains;
- _regs.rxfilt = (_regs.rxfilt & 0x3F) | orig_rx_chains;
-
- _io_iface->poke8(0x002, _regs.txfilt);
- _io_iface->poke8(0x003, _regs.rxfilt);
- _io_iface->poke8(0x014, 0x21);
- break;
-
- default:
- throw uhd::runtime_error("[ad9361_device_t] [set_clock_rate:2] AD9361 in unknown state");
- break;
- };
-
- return rate;
-}
-
-
-/* Set which of the four TX / RX chains provided by AD9361 are active.
- *
- * AD9361 provides two sets of chains, Side A and Side B. Each side
- * provides one TX antenna, and one RX antenna. The B200 maintains the USRP
- * standard of providing one antenna connection that is both TX & RX, and
- * one that is RX-only - for each chain. Thus, the possible antenna and
- * chain selections are:
- *
- * B200 Antenna AD9361 Side AD9361 Chain
- * -------------------------------------------------------------------
- * TX / RX1 Side A TX1 (when switched to TX)
- * TX / RX1 Side A RX1 (when switched to RX)
- * RX1 Side A RX1
- *
- * TX / RX2 Side B TX2 (when switched to TX)
- * TX / RX2 Side B RX2 (when switched to RX)
- * RX2 Side B RX2
- */
-void ad9361_device_t::set_active_chains(bool tx1, bool tx2, bool rx1, bool rx2)
-{
- boost::lock_guard<boost::recursive_mutex> lock(_mutex);
-
- /* Clear out the current active chain settings. */
- _regs.txfilt = _regs.txfilt & 0x3F;
- _regs.rxfilt = _regs.rxfilt & 0x3F;
-
- /* Turn on the different chains based on the passed parameters. */
- if (tx1) {
- _regs.txfilt = _regs.txfilt | 0x40;
- }
- if (tx2) {
- _regs.txfilt = _regs.txfilt | 0x80;
- }
- if (rx1) {
- _regs.rxfilt = _regs.rxfilt | 0x40;
- }
- if (rx2) {
- _regs.rxfilt = _regs.rxfilt | 0x80;
- }
-
- /* Check for FDD state */
- boost::uint8_t set_back_to_fdd = 0;
- boost::uint8_t ensm_state = _io_iface->peek8(0x017) & 0x0F;
- if (ensm_state == 0xA) // FDD
- {
- /* Put into ALERT state (via the FDD flush state). */
- _io_iface->poke8(0x014, 0x01);
- set_back_to_fdd = 1;
- }
-
- /* Wait for FDD flush state to complete (if necessary) */
- while (ensm_state == 0xA || ensm_state == 0xB)
- ensm_state = _io_iface->peek8(0x017) & 0x0F;
-
- /* Turn on / off the chains. */
- _io_iface->poke8(0x002, _regs.txfilt);
- _io_iface->poke8(0x003, _regs.rxfilt);
-
- /* Put back into FDD state if necessary */
- if (set_back_to_fdd)
- _io_iface->poke8(0x014, 0x21);
-}
-
-/* Tune the RX or TX frequency.
- *
- * This is the publicly-accessible tune function. It makes sure the tune
- * isn't a redundant request, and if not, passes it on to the class's
- * internal tune function.
- *
- * After tuning, it runs any appropriate calibrations. */
-double ad9361_device_t::tune(direction_t direction, const double value)
-{
- boost::lock_guard<boost::recursive_mutex> lock(_mutex);
-
- if (direction == RX) {
- if (freq_is_nearly_equal(value, _req_rx_freq)) {
- return _rx_freq;
- }
-
- } else if (direction == TX) {
- if (freq_is_nearly_equal(value, _req_tx_freq)) {
- return _tx_freq;
- }
-
- } else {
- throw uhd::runtime_error("[ad9361_device_t] [tune] INVALID_CODE_PATH");
- }
-
- /* If we aren't already in the ALERT state, we will need to return to
- * the FDD state after tuning. */
- int not_in_alert = 0;
- if ((_io_iface->peek8(0x017) & 0x0F) != 5) {
- /* Force the device into the ALERT state. */
- not_in_alert = 1;
- _io_iface->poke8(0x014, 0x01);
- }
-
- /* Tune the RF VCO! */
- double tune_freq = _tune_helper(direction, value);
-
- /* Run any necessary calibrations / setups */
- if (direction == RX) {
- _program_gain_table();
- }
-
- /* Update the gain settings. */
- _reprogram_gains();
-
- /* Run the calibration algorithms. */
- _calibrate_tx_quadrature();
- _calibrate_rx_quadrature();
-
- /* If we were in the FDD state, return it now. */
- if (not_in_alert) {
- _io_iface->poke8(0x014, 0x21);
- }
-
- return tune_freq;
-}
-
-/* Set the gain of RX1, RX2, TX1, or TX2.
- *
- * Note that the 'value' passed to this function is the actual gain value,
- * _not_ the gain index. This is the opposite of the eval software's GUI!
- * Also note that the RX chains are done in terms of gain, and the TX chains
- * are done in terms of attenuation. */
-double ad9361_device_t::set_gain(direction_t direction, chain_t chain, const double value)
-{
- boost::lock_guard<boost::recursive_mutex> lock(_mutex);
-
- if (direction == RX) {
- /* Indexing the gain tables requires an offset from the requested
- * amount of total gain in dB:
- * < 1300MHz: dB + 5
- * >= 1300MHz and < 4000MHz: dB + 3
- * >= 4000MHz and <= 6000MHz: dB + 14
- */
- int gain_offset = 0;
- if (_rx_freq < 1300e6) {
- gain_offset = 5;
- } else if (_rx_freq < 4000e6) {
- gain_offset = 3;
- } else {
- gain_offset = 14;
- }
-
- int gain_index = value + gain_offset;
-
- /* Clip the gain values to the proper min/max gain values. */
- if (gain_index > 76)
- gain_index = 76;
- if (gain_index < 0)
- gain_index = 0;
-
- if (chain == CHAIN_1) {
- _rx1_gain = value;
- _io_iface->poke8(0x109, gain_index);
- } else {
- _rx2_gain = value;
- _io_iface->poke8(0x10c, gain_index);
- }
-
- return gain_index - gain_offset;
- } else {
- /* Setting the below bits causes a change in the TX attenuation word
- * to immediately take effect. */
- _io_iface->poke8(0x077, 0x40);
- _io_iface->poke8(0x07c, 0x40);
-
- /* Each gain step is -0.25dB. Calculate the attenuation necessary
- * for the requested gain, convert it into gain steps, then write
- * the attenuation word. Max gain (so zero attenuation) is 89.75. */
- double atten = AD9361_MAX_GAIN - value;
- int attenreg = atten * 4;
- if (chain == CHAIN_1) {
- _tx1_gain = value;
- _io_iface->poke8(0x073, attenreg & 0xFF);
- _io_iface->poke8(0x074, (attenreg >> 8) & 0x01);
- } else {
- _tx2_gain = value;
- _io_iface->poke8(0x075, attenreg & 0xFF);
- _io_iface->poke8(0x076, (attenreg >> 8) & 0x01);
- }
- return AD9361_MAX_GAIN - ((double) (attenreg) / 4);
- }
-}
-
-void ad9361_device_t::output_test_tone()
-{
- boost::lock_guard<boost::recursive_mutex> lock(_mutex);
- /* Output a 480 kHz tone at 800 MHz */
- _io_iface->poke8(0x3F4, 0x0B);
- _io_iface->poke8(0x3FC, 0xFF);
- _io_iface->poke8(0x3FD, 0xFF);
- _io_iface->poke8(0x3FE, 0x3F);
-}
-
-void ad9361_device_t::data_port_loopback(const bool loopback_enabled)
-{
- boost::lock_guard<boost::recursive_mutex> lock(_mutex);
- _io_iface->poke8(0x3F5, (loopback_enabled ? 0x01 : 0x00));
-}
-
-}}
+//
+// Copyright 2014 Ettus Research LLC
+//
+
+#include "ad9361_filter_taps.h"
+#include "ad9361_gain_tables.h"
+#include "ad9361_synth_lut.h"
+#include "ad9361_client.h"
+#include "ad9361_device.h"
+#define _USE_MATH_DEFINES
+#include <cmath>
+#include <uhd/exception.hpp>
+#include <uhd/utils/log.hpp>
+#include <boost/cstdint.hpp>
+#include <boost/date_time/posix_time/posix_time.hpp>
+#include <boost/thread/thread.hpp>
+#include <boost/scoped_array.hpp>
+#include <boost/format.hpp>
+#include <boost/math/special_functions.hpp>
+
+////////////////////////////////////////////////////////////
+// the following macros evaluate to a compile time constant
+// macros By Tom Torfs - donated to the public domain
+
+/* turn a numeric literal into a hex constant
+(avoids problems with leading zeroes)
+8-bit constants max value 0x11111111, always fits in unsigned long
+*/
+#define HEX__(n) 0x##n##LU
+
+/* 8-bit conversion function */
+#define B8__(x) ((x&0x0000000FLU)?1:0) \
++((x&0x000000F0LU)?2:0) \
++((x&0x00000F00LU)?4:0) \
++((x&0x0000F000LU)?8:0) \
++((x&0x000F0000LU)?16:0) \
++((x&0x00F00000LU)?32:0) \
++((x&0x0F000000LU)?64:0) \
++((x&0xF0000000LU)?128:0)
+
+/* for upto 8-bit binary constants */
+#define B8(d) ((unsigned char)B8__(HEX__(d)))
+////////////////////////////////////////////////////////////
+
+
+namespace uhd { namespace usrp {
+
+/* This is a simple comparison for very large double-precision floating
+ * point numbers. It is used to prevent re-tunes for frequencies that are
+ * the same but not 'exactly' because of data precision issues. */
+// TODO: see if we can avoid the need for this function
+int freq_is_nearly_equal(double a, double b) {
+ return std::max(a,b) - std::min(a,b) < 1;
+}
+
+/***********************************************************************
+ * Filter functions
+ **********************************************************************/
+
+/* This function takes in the calculated maximum number of FIR taps, and
+ * returns a number of taps that makes AD9361 happy. */
+int get_num_taps(int max_num_taps) {
+
+ int num_taps = 0;
+ int num_taps_list[] = {16, 32, 48, 64, 80, 96, 112, 128};
+ int i;
+ for(i = 1; i < 8; i++) {
+ if(max_num_taps >= num_taps_list[i]) {
+ continue;
+ } else {
+ num_taps = num_taps_list[i - 1];
+ break;
+ }
+ } if(num_taps == 0) { num_taps = 128; }
+
+ return num_taps;
+}
+
+const double ad9361_device_t::AD9361_MAX_GAIN = 89.75;
+const double ad9361_device_t::AD9361_MAX_CLOCK_RATE = 61.44e6;
+
+
+/* Program either the RX or TX FIR filter.
+ *
+ * The process is the same for both filters, but the function must be told
+ * how many taps are in the filter, and given a vector of the taps
+ * themselves. */
+
+void ad9361_device_t::_program_fir_filter(direction_t direction, int num_taps, boost::uint16_t *coeffs)
+{
+ boost::uint16_t base;
+
+ /* RX and TX filters use largely identical sets of programming registers.
+ Select the appropriate bank of registers here. */
+ if (direction == RX) {
+ base = 0x0f0;
+ } else {
+ base = 0x060;
+ }
+
+ /* Encode number of filter taps for programming register */
+ boost::uint8_t reg_numtaps = (((num_taps / 16) - 1) & 0x07) << 5;
+
+ /* Turn on the filter clock. */
+ _io_iface->poke8(base + 5, reg_numtaps | 0x1a);
+ boost::this_thread::sleep(boost::posix_time::milliseconds(1));
+
+ /* Zero the unused taps just in case they have stale data */
+ int addr;
+ for (addr = num_taps; addr < 128; addr++) {
+ _io_iface->poke8(base + 0, addr);
+ _io_iface->poke8(base + 1, 0x0);
+ _io_iface->poke8(base + 2, 0x0);
+ _io_iface->poke8(base + 5, reg_numtaps | 0x1e);
+ _io_iface->poke8(base + 4, 0x00);
+ _io_iface->poke8(base + 4, 0x00);
+ }
+
+ /* Iterate through indirect programming of filter coeffs using ADI recomended procedure */
+ for (addr = 0; addr < num_taps; addr++) {
+ _io_iface->poke8(base + 0, addr);
+ _io_iface->poke8(base + 1, (coeffs[addr]) & 0xff);
+ _io_iface->poke8(base + 2, (coeffs[addr] >> 8) & 0xff);
+ _io_iface->poke8(base + 5, reg_numtaps | 0x1e);
+ _io_iface->poke8(base + 4, 0x00);
+ _io_iface->poke8(base + 4, 0x00);
+ }
+
+ /* UG-671 states (page 25) (paraphrased and clarified):
+ " After the table has been programmed, write to register BASE+5 with the write bit D2 cleared and D1 high.
+ Then, write to register BASE+5 again with D1 clear, thus ensuring that the write bit resets internally
+ before the clock stops. Wait 4 sample clock periods after setting D2 high while that data writes into the table"
+ */
+
+ _io_iface->poke8(base + 5, reg_numtaps | 0x1A);
+ if (direction == RX) {
+ _io_iface->poke8(base + 5, reg_numtaps | 0x18);
+ _io_iface->poke8(base + 6, 0x02); /* Also turn on -6dB Rx gain here, to stop filter overfow.*/
+ } else {
+ _io_iface->poke8(base + 5, reg_numtaps | 0x19); /* Also turn on -6dB Tx gain here, to stop filter overfow.*/
+ }
+}
+
+
+/* Program the RX FIR Filter. */
+void ad9361_device_t::_setup_rx_fir(size_t num_taps)
+{
+ boost::scoped_array<boost::uint16_t> coeffs(new boost::uint16_t[num_taps]);
+ for (size_t i = 0; i < num_taps; i++) {
+ switch (num_taps) {
+ case 128:
+ coeffs[i] = boost::uint16_t(hb127_coeffs[i]);
+ break;
+ case 96:
+ coeffs[i] = boost::uint16_t(hb95_coeffs[i]);
+ break;
+ case 64:
+ coeffs[i] = boost::uint16_t(hb63_coeffs[i]);
+ break;
+ case 48:
+ coeffs[i] = boost::uint16_t(hb47_coeffs[i]);
+ break;
+ default:
+ throw uhd::runtime_error("[ad9361_device_t] Unsupported number of Rx FIR taps.");
+ }
+ }
+
+ _program_fir_filter(RX, num_taps, coeffs.get());
+}
+
+/* Program the TX FIR Filter. */
+void ad9361_device_t::_setup_tx_fir(size_t num_taps)
+{
+ boost::scoped_array<boost::uint16_t> coeffs(new boost::uint16_t[num_taps]);
+ for (size_t i = 0; i < num_taps; i++) {
+ switch (num_taps) {
+ case 128:
+ coeffs[i] = boost::uint16_t(hb127_coeffs[i]);
+ break;
+ case 96:
+ coeffs[i] = boost::uint16_t(hb95_coeffs[i]);
+ break;
+ case 64:
+ coeffs[i] = boost::uint16_t(hb63_coeffs[i]);
+ break;
+ case 48:
+ coeffs[i] = boost::uint16_t(hb47_coeffs[i]);
+ break;
+ default:
+ throw uhd::runtime_error("[ad9361_device_t] Unsupported number of Tx FIR taps.");
+ }
+ }
+
+ _program_fir_filter(TX, num_taps, coeffs.get());
+}
+
+/***********************************************************************
+ * Calibration functions
+ ***********************************************************************/
+
+/* Calibrate and lock the BBPLL.
+ *
+ * This function should be called anytime the BBPLL is tuned. */
+void ad9361_device_t::_calibrate_lock_bbpll()
+{
+ _io_iface->poke8(0x03F, 0x05); // Start the BBPLL calibration
+ _io_iface->poke8(0x03F, 0x01); // Clear the 'start' bit
+
+ /* Increase BBPLL KV and phase margin. */
+ _io_iface->poke8(0x04c, 0x86);
+ _io_iface->poke8(0x04d, 0x01);
+ _io_iface->poke8(0x04d, 0x05);
+
+ /* Wait for BBPLL lock. */
+ size_t count = 0;
+ while (!(_io_iface->peek8(0x05e) & 0x80)) {
+ if (count > 1000) {
+ throw uhd::runtime_error("[ad9361_device_t] BBPLL not locked");
+ break;
+ }
+ count++;
+ boost::this_thread::sleep(boost::posix_time::milliseconds(2));
+ }
+}
+
+/* Calibrate the synthesizer charge pumps.
+ *
+ * Technically, this calibration only needs to be done once, at device
+ * initialization. */
+void ad9361_device_t::_calibrate_synth_charge_pumps()
+{
+ /* If this function ever gets called, and the ENSM isn't already in the
+ * ALERT state, then something has gone horribly wrong. */
+ if ((_io_iface->peek8(0x017) & 0x0F) != 5) {
+ throw uhd::runtime_error("[ad9361_device_t] AD9361 not in ALERT during cal");
+ }
+
+ /* Calibrate the RX synthesizer charge pump. */
+ size_t count = 0;
+ _io_iface->poke8(0x23d, 0x04);
+ while (!(_io_iface->peek8(0x244) & 0x80)) {
+ if (count > 5) {
+ throw uhd::runtime_error("[ad9361_device_t] RX charge pump cal failure");
+ break;
+ }
+ count++;
+ boost::this_thread::sleep(boost::posix_time::milliseconds(1));
+ }
+ _io_iface->poke8(0x23d, 0x00);
+
+ /* Calibrate the TX synthesizer charge pump. */
+ count = 0;
+ _io_iface->poke8(0x27d, 0x04);
+ while (!(_io_iface->peek8(0x284) & 0x80)) {
+ if (count > 5) {
+ throw uhd::runtime_error("[ad9361_device_t] TX charge pump cal failure");
+ break;
+ }
+ count++;
+ boost::this_thread::sleep(boost::posix_time::milliseconds(1));
+ }
+ _io_iface->poke8(0x27d, 0x00);
+}
+
+/* Calibrate the analog BB RX filter.
+ *
+ * Note that the filter calibration depends heavily on the baseband
+ * bandwidth, so this must be re-done after any change to the RX sample
+ * rate. */
+double ad9361_device_t::_calibrate_baseband_rx_analog_filter()
+{
+ /* For filter tuning, baseband BW is half the complex BW, and must be
+ * between 28e6 and 0.2e6. */
+ double bbbw = _baseband_bw / 2.0;
+ if (bbbw > 28e6) {
+ bbbw = 28e6;
+ } else if (bbbw < 0.20e6) {
+ bbbw = 0.20e6;
+ }
+
+ double rxtune_clk = ((1.4 * bbbw * 2 * M_PI) / M_LN2);
+ _rx_bbf_tunediv = std::min<boost::uint16_t>(511, boost::uint16_t(std::ceil(_bbpll_freq / rxtune_clk)));
+ _regs.bbftune_config = (_regs.bbftune_config & 0xFE)
+ | ((_rx_bbf_tunediv >> 8) & 0x0001);
+
+ double bbbw_mhz = bbbw / 1e6;
+ double temp = ((bbbw_mhz - std::floor(bbbw_mhz)) * 1000) / 7.8125;
+ boost::uint8_t bbbw_khz = std::min<boost::uint8_t>(127, boost::uint8_t(std::floor(temp + 0.5)));
+
+ /* Set corner frequencies and dividers. */
+ _io_iface->poke8(0x1fb, (boost::uint8_t) (bbbw_mhz));
+ _io_iface->poke8(0x1fc, bbbw_khz);
+ _io_iface->poke8(0x1f8, (_rx_bbf_tunediv & 0x00FF));
+ _io_iface->poke8(0x1f9, _regs.bbftune_config);
+
+ /* RX Mix Voltage settings - only change with apps engineer help. */
+ _io_iface->poke8(0x1d5, 0x3f);
+ _io_iface->poke8(0x1c0, 0x03);
+
+ /* Enable RX1 & RX2 filter tuners. */
+ _io_iface->poke8(0x1e2, 0x02);
+ _io_iface->poke8(0x1e3, 0x02);
+
+ /* Run the calibration! */
+ size_t count = 0;
+ _io_iface->poke8(0x016, 0x80);
+ while (_io_iface->peek8(0x016) & 0x80) {
+ if (count > 100) {
+ throw uhd::runtime_error("[ad9361_device_t] RX baseband filter cal FAILURE");
+ break;
+ }
+ count++;
+ boost::this_thread::sleep(boost::posix_time::milliseconds(1));
+ }
+
+ /* Disable RX1 & RX2 filter tuners. */
+ _io_iface->poke8(0x1e2, 0x03);
+ _io_iface->poke8(0x1e3, 0x03);
+
+ return bbbw;
+}
+
+/* Calibrate the analog BB TX filter.
+ *
+ * Note that the filter calibration depends heavily on the baseband
+ * bandwidth, so this must be re-done after any change to the TX sample
+ * rate. */
+double ad9361_device_t::_calibrate_baseband_tx_analog_filter()
+{
+ /* For filter tuning, baseband BW is half the complex BW, and must be
+ * between 28e6 and 0.2e6. */
+ double bbbw = _baseband_bw / 2.0;
+ if (bbbw > 20e6) {
+ bbbw = 20e6;
+ } else if (bbbw < 0.625e6) {
+ bbbw = 0.625e6;
+ }
+
+ double txtune_clk = ((1.6 * bbbw * 2 * M_PI) / M_LN2);
+ boost::uint16_t txbbfdiv = std::min<boost::uint16_t>(511, boost::uint16_t(std::ceil(_bbpll_freq / txtune_clk)));
+ _regs.bbftune_mode = (_regs.bbftune_mode & 0xFE)
+ | ((txbbfdiv >> 8) & 0x0001);
+
+ /* Program the divider values. */
+ _io_iface->poke8(0x0d6, (txbbfdiv & 0x00FF));
+ _io_iface->poke8(0x0d7, _regs.bbftune_mode);
+
+ /* Enable the filter tuner. */
+ _io_iface->poke8(0x0ca, 0x22);
+
+ /* Calibrate! */
+ size_t count = 0;
+ _io_iface->poke8(0x016, 0x40);
+ while (_io_iface->peek8(0x016) & 0x40) {
+ if (count > 100) {
+ throw uhd::runtime_error("[ad9361_device_t] TX baseband filter cal FAILURE");
+ break;
+ }
+
+ count++;
+ boost::this_thread::sleep(boost::posix_time::milliseconds(1));
+ }
+
+ /* Disable the filter tuner. */
+ _io_iface->poke8(0x0ca, 0x26);
+
+ return bbbw;
+}
+
+/* Calibrate the secondary TX filter.
+ *
+ * This filter also depends on the TX sample rate, so if a rate change is
+ * made, the previous calibration will no longer be valid. */
+void ad9361_device_t::_calibrate_secondary_tx_filter()
+{
+ /* For filter tuning, baseband BW is half the complex BW, and must be
+ * between 20e6 and 0.53e6. */
+ double bbbw = _baseband_bw / 2.0;
+ if (bbbw > 20e6) {
+ bbbw = 20e6;
+ } else if (bbbw < 0.53e6) {
+ bbbw = 0.53e6;
+ }
+
+ double bbbw_mhz = bbbw / 1e6;
+
+ /* Start with a resistor value of 100 Ohms. */
+ int res = 100;
+
+ /* Calculate target corner frequency. */
+ double corner_freq = 5 * bbbw_mhz * 2 * M_PI;
+
+ /* Iterate through RC values to determine correct combination. */
+ int cap = 0;
+ int i;
+ for (i = 0; i <= 3; i++) {
+ cap = static_cast<int>(std::floor(0.5 + ((1 / ((corner_freq * res) * 1e6)) * 1e12)))
+ - 12;
+
+ if (cap <= 63) {
+ break;
+ }
+
+ res = res * 2;
+ }
+ if (cap > 63) {
+ cap = 63;
+ }
+
+ boost::uint8_t reg0d0, reg0d1, reg0d2;
+
+ /* Translate baseband bandwidths to register settings. */
+ if ((bbbw_mhz * 2) <= 9) {
+ reg0d0 = 0x59;
+ } else if (((bbbw_mhz * 2) > 9) && ((bbbw_mhz * 2) <= 24)) {
+ reg0d0 = 0x56;
+ } else if ((bbbw_mhz * 2) > 24) {
+ reg0d0 = 0x57;
+ } else {
+ throw uhd::runtime_error("[ad9361_device_t] Cal2ndTxFil: INVALID_CODE_PATH bad bbbw_mhz");
+ reg0d0 = 0x00;
+ }
+
+ /* Translate resistor values to register settings. */
+ if (res == 100) {
+ reg0d1 = 0x0c;
+ } else if (res == 200) {
+ reg0d1 = 0x04;
+ } else if (res == 400) {
+ reg0d1 = 0x03;
+ } else if (res == 800) {
+ reg0d1 = 0x01;
+ } else {
+ reg0d1 = 0x0c;
+ }
+
+ reg0d2 = cap;
+
+ /* Program the above-calculated values. Sweet. */
+ _io_iface->poke8(0x0d2, reg0d2);
+ _io_iface->poke8(0x0d1, reg0d1);
+ _io_iface->poke8(0x0d0, reg0d0);
+}
+
+/* Calibrate the RX TIAs.
+ *
+ * Note that the values in the TIA register, after calibration, vary with
+ * the RX gain settings. */
+void ad9361_device_t::_calibrate_rx_TIAs()
+{
+ boost::uint8_t reg1eb = _io_iface->peek8(0x1eb) & 0x3F;
+ boost::uint8_t reg1ec = _io_iface->peek8(0x1ec) & 0x7F;
+ boost::uint8_t reg1e6 = _io_iface->peek8(0x1e6) & 0x07;
+ boost::uint8_t reg1db = 0x00;
+ boost::uint8_t reg1dc = 0x00;
+ boost::uint8_t reg1dd = 0x00;
+ boost::uint8_t reg1de = 0x00;
+ boost::uint8_t reg1df = 0x00;
+
+ /* For calibration, baseband BW is half the complex BW, and must be
+ * between 28e6 and 0.2e6. */
+ double bbbw = _baseband_bw / 2.0;
+ if (bbbw > 20e6) {
+ bbbw = 20e6;
+ } else if (bbbw < 0.20e6) {
+ bbbw = 0.20e6;
+ }
+ double ceil_bbbw_mhz = std::ceil(bbbw / 1e6);
+
+ /* Do some crazy resistor and capacitor math. */
+ int Cbbf = (reg1eb * 160) + (reg1ec * 10) + 140;
+ int R2346 = 18300 * (reg1e6 & 0x07);
+ double CTIA_fF = (Cbbf * R2346 * 0.56) / 3500;
+
+ /* Translate baseband BW to register settings. */
+ if (ceil_bbbw_mhz <= 3) {
+ reg1db = 0xe0;
+ } else if ((ceil_bbbw_mhz > 3) && (ceil_bbbw_mhz <= 10)) {
+ reg1db = 0x60;
+ } else if (ceil_bbbw_mhz > 10) {
+ reg1db = 0x20;
+ } else {
+ throw uhd::runtime_error("[ad9361_device_t] CalRxTias: INVALID_CODE_PATH bad bbbw_mhz");
+ }
+
+ if (CTIA_fF > 2920) {
+ reg1dc = 0x40;
+ reg1de = 0x40;
+ boost::uint8_t temp = (boost::uint8_t) std::min<boost::uint8_t>(127,
+ boost::uint8_t(std::floor(0.5 + ((CTIA_fF - 400.0) / 320.0))));
+ reg1dd = temp;
+ reg1df = temp;
+ } else {
+ boost::uint8_t temp = boost::uint8_t(std::floor(0.5 + ((CTIA_fF - 400.0) / 40.0)) + 0x40);
+ reg1dc = temp;
+ reg1de = temp;
+ reg1dd = 0;
+ reg1df = 0;
+ }
+
+ /* w00t. Settings calculated. Program them and roll out. */
+ _io_iface->poke8(0x1db, reg1db);
+ _io_iface->poke8(0x1dd, reg1dd);
+ _io_iface->poke8(0x1df, reg1df);
+ _io_iface->poke8(0x1dc, reg1dc);
+ _io_iface->poke8(0x1de, reg1de);
+}
+
+/* Setup the AD9361 ADC.
+ *
+ * There are 40 registers that control the ADC's operation, most of the
+ * values of which must be derived mathematically, dependent on the current
+ * setting of the BBPLL. Note that the order of calculation is critical, as
+ * some of the 40 registers depend on the values in others. */
+void ad9361_device_t::_setup_adc()
+{
+ double bbbw_mhz = (((_bbpll_freq / 1e6) / _rx_bbf_tunediv) * M_LN2) \
+ / (1.4 * 2 * M_PI);
+
+ /* For calibration, baseband BW is half the complex BW, and must be
+ * between 28e6 and 0.2e6. */
+ if(bbbw_mhz > 28) {
+ bbbw_mhz = 28;
+ } else if (bbbw_mhz < 0.20) {
+ bbbw_mhz = 0.20;
+ }
+
+ boost::uint8_t rxbbf_c3_msb = _io_iface->peek8(0x1eb) & 0x3F;
+ boost::uint8_t rxbbf_c3_lsb = _io_iface->peek8(0x1ec) & 0x7F;
+ boost::uint8_t rxbbf_r2346 = _io_iface->peek8(0x1e6) & 0x07;
+
+ double fsadc = _adcclock_freq / 1e6;
+
+ /* Sort out the RC time constant for our baseband bandwidth... */
+ double rc_timeconst = 0.0;
+ if(bbbw_mhz < 18) {
+ rc_timeconst = (1 / ((1.4 * 2 * M_PI) \
+ * (18300 * rxbbf_r2346)
+ * ((160e-15 * rxbbf_c3_msb)
+ + (10e-15 * rxbbf_c3_lsb) + 140e-15)
+ * (bbbw_mhz * 1e6)));
+ } else {
+ rc_timeconst = (1 / ((1.4 * 2 * M_PI) \
+ * (18300 * rxbbf_r2346)
+ * ((160e-15 * rxbbf_c3_msb)
+ + (10e-15 * rxbbf_c3_lsb) + 140e-15)
+ * (bbbw_mhz * 1e6) * (1 + (0.01 * (bbbw_mhz - 18)))));
+ }
+
+ double scale_res = sqrt(1 / rc_timeconst);
+ double scale_cap = sqrt(1 / rc_timeconst);
+
+ double scale_snr = (_adcclock_freq < 80e6) ? 1.0 : 1.584893192;
+ double maxsnr = 640 / 160;
+
+ /* Calculate the values for all 40 settings registers.
+ *
+ * DO NOT TOUCH THIS UNLESS YOU KNOW EXACTLY WHAT YOU ARE DOING. kthx.*/
+ boost::uint8_t data[40];
+ data[0] = 0; data[1] = 0; data[2] = 0; data[3] = 0x24;
+ data[4] = 0x24; data[5] = 0; data[6] = 0;
+ data[7] = std::min<boost::uint8_t>(124, boost::uint8_t(std::floor(-0.5
+ + (80.0 * scale_snr * scale_res
+ * std::min<double>(1.0, sqrt(maxsnr * fsadc / 640.0))))));
+ double data007 = data[7];
+ data[8] = std::min<boost::uint8_t>(255, boost::uint8_t(std::floor(0.5
+ + ((20.0 * (640.0 / fsadc) * ((data007 / 80.0))
+ / (scale_res * scale_cap))))));
+ data[10] = std::min<boost::uint8_t>(127, boost::uint8_t(std::floor(-0.5 + (77.0 * scale_res
+ * std::min<double>(1.0, sqrt(maxsnr * fsadc / 640.0))))));
+ double data010 = data[10];
+ data[9] = std::min<boost::uint8_t>(127, boost::uint8_t(std::floor(0.8 * data010)));
+ data[11] = std::min<boost::uint8_t>(255, boost::uint8_t(std::floor(0.5
+ + (20.0 * (640.0 / fsadc) * ((data010 / 77.0)
+ / (scale_res * scale_cap))))));
+ data[12] = std::min<boost::uint8_t>(127, boost::uint8_t(std::floor(-0.5
+ + (80.0 * scale_res * std::min<double>(1.0,
+ sqrt(maxsnr * fsadc / 640.0))))));
+ double data012 = data[12];
+ data[13] = std::min<boost::uint8_t>(255, boost::uint8_t(std::floor(-1.5
+ + (20.0 * (640.0 / fsadc) * ((data012 / 80.0)
+ / (scale_res * scale_cap))))));
+ data[14] = 21 * boost::uint8_t(std::floor(0.1 * 640.0 / fsadc));
+ data[15] = std::min<boost::uint8_t>(127, boost::uint8_t(1.025 * data007));
+ double data015 = data[15];
+ data[16] = std::min<boost::uint8_t>(127, boost::uint8_t(std::floor((data015
+ * (0.98 + (0.02 * std::max<double>(1.0,
+ (640.0 / fsadc) / maxsnr)))))));
+ data[17] = data[15];
+ data[18] = std::min<boost::uint8_t>(127, boost::uint8_t(0.975 * (data010)));
+ double data018 = data[18];
+ data[19] = std::min<boost::uint8_t>(127, boost::uint8_t(std::floor((data018
+ * (0.98 + (0.02 * std::max<double>(1.0,
+ (640.0 / fsadc) / maxsnr)))))));
+ data[20] = data[18];
+ data[21] = std::min<boost::uint8_t>(127, boost::uint8_t(0.975 * data012));
+ double data021 = data[21];
+ data[22] = std::min<boost::uint8_t>(127, boost::uint8_t(std::floor((data021
+ * (0.98 + (0.02 * std::max<double>(1.0,
+ (640.0 / fsadc) / maxsnr)))))));
+ data[23] = data[21];
+ data[24] = 0x2e;
+ data[25] = boost::uint8_t(std::floor(128.0 + std::min<double>(63.0,
+ 63.0 * (fsadc / 640.0))));
+ data[26] = boost::uint8_t(std::floor(std::min<double>(63.0, 63.0 * (fsadc / 640.0)
+ * (0.92 + (0.08 * (640.0 / fsadc))))));
+ data[27] = boost::uint8_t(std::floor(std::min<double>(63.0,
+ 32.0 * sqrt(fsadc / 640.0))));
+ data[28] = boost::uint8_t(std::floor(128.0 + std::min<double>(63.0,
+ 63.0 * (fsadc / 640.0))));
+ data[29] = boost::uint8_t(std::floor(std::min<double>(63.0,
+ 63.0 * (fsadc / 640.0)
+ * (0.92 + (0.08 * (640.0 / fsadc))))));
+ data[30] = boost::uint8_t(std::floor(std::min<double>(63.0,
+ 32.0 * sqrt(fsadc / 640.0))));
+ data[31] = boost::uint8_t(std::floor(128.0 + std::min<double>(63.0,
+ 63.0 * (fsadc / 640.0))));
+ data[32] = boost::uint8_t(std::floor(std::min<double>(63.0,
+ 63.0 * (fsadc / 640.0) * (0.92
+ + (0.08 * (640.0 / fsadc))))));
+ data[33] = boost::uint8_t(std::floor(std::min<double>(63.0,
+ 63.0 * sqrt(fsadc / 640.0))));
+ data[34] = std::min<boost::uint8_t>(127, boost::uint8_t(std::floor(64.0
+ * sqrt(fsadc / 640.0))));
+ data[35] = 0x40;
+ data[36] = 0x40;
+ data[37] = 0x2c;
+ data[38] = 0x00;
+ data[39] = 0x00;
+
+ /* Program the registers! */
+ for(size_t i = 0; i < 40; i++) {
+ _io_iface->poke8(0x200+i, data[i]);
+ }
+}
+
+/* Calibrate the baseband DC offset.
+ *
+ * Note that this function is called from within the TX quadrature
+ * calibration function! */
+void ad9361_device_t::_calibrate_baseband_dc_offset()
+{
+ _io_iface->poke8(0x193, 0x3f); // Calibration settings
+ _io_iface->poke8(0x190, 0x0f); // Set tracking coefficient
+ //write_ad9361_reg(device, 0x190, /*0x0f*//*0xDF*/0x80*1 | 0x40*1 | (16+8/*+4*/)); // Set tracking coefficient: don't *4 counter, do decim /4, increased gain shift
+ _io_iface->poke8(0x194, 0x01); // More calibration settings
+
+ /* Start that calibration, baby. */
+ size_t count = 0;
+ _io_iface->poke8(0x016, 0x01);
+ while (_io_iface->peek8(0x016) & 0x01) {
+ if (count > 100) {
+ throw uhd::runtime_error("[ad9361_device_t] Baseband DC Offset Calibration Failure");
+ break;
+ }
+ count++;
+ boost::this_thread::sleep(boost::posix_time::milliseconds(5));
+ }
+}
+
+/* Calibrate the RF DC offset.
+ *
+ * Note that this function is called from within the TX quadrature
+ * calibration function. */
+void ad9361_device_t::_calibrate_rf_dc_offset()
+{
+ /* Some settings are frequency-dependent. */
+ if (_rx_freq < 4e9) {
+ _io_iface->poke8(0x186, 0x32); // RF DC Offset count
+ _io_iface->poke8(0x187, 0x24);
+ _io_iface->poke8(0x188, 0x05);
+ } else {
+ _io_iface->poke8(0x186, 0x28); // RF DC Offset count
+ _io_iface->poke8(0x187, 0x34);
+ _io_iface->poke8(0x188, 0x06);
+ }
+
+ _io_iface->poke8(0x185, 0x20); // RF DC Offset wait count
+ _io_iface->poke8(0x18b, 0x83);
+ _io_iface->poke8(0x189, 0x30);
+
+ /* Run the calibration! */
+ size_t count = 0;
+ _io_iface->poke8(0x016, 0x02);
+ while (_io_iface->peek8(0x016) & 0x02) {
+ if (count > 100) {
+ throw uhd::runtime_error("[ad9361_device_t] RF DC Offset Calibration Failure");
+ break;
+ }
+ count++;
+ boost::this_thread::sleep(boost::posix_time::milliseconds(50));
+ }
+}
+
+/* Start the RX quadrature calibration.
+ *
+ * Note that we are using AD9361's 'tracking' feature for RX quadrature
+ * calibration, so once it starts it continues to free-run during operation.
+ * It should be re-run for large frequency changes. */
+void ad9361_device_t::_calibrate_rx_quadrature()
+{
+ /* Configure RX Quadrature calibration settings. */
+ _io_iface->poke8(0x168, 0x03); // Set tone level for cal
+ _io_iface->poke8(0x16e, 0x25); // RX Gain index to use for cal
+ _io_iface->poke8(0x16a, 0x75); // Set Kexp phase
+ _io_iface->poke8(0x16b, 0x15); // Set Kexp amplitude
+ _io_iface->poke8(0x169, 0xcf); // Continuous tracking mode
+ _io_iface->poke8(0x18b, 0xad);
+}
+
+/* TX quadtrature calibration routine.
+ *
+ * The TX quadrature needs to be done twice, once for each TX chain, with
+ * only one register change in between. Thus, this function enacts the
+ * calibrations, and it is called from calibrate_tx_quadrature. */
+void ad9361_device_t::_tx_quadrature_cal_routine() {
+ /* This is a weird process, but here is how it works:
+ * 1) Read the calibrated NCO frequency bits out of 0A3.
+ * 2) Write the two bits to the RX NCO freq part of 0A0.
+ * 3) Re-read 0A3 to get bits [5:0] because maybe they changed?
+ * 4) Update only the TX NCO freq bits in 0A3.
+ * 5) Profit (I hope). */
+ boost::uint8_t reg0a3 = _io_iface->peek8(0x0a3);
+ boost::uint8_t nco_freq = (reg0a3 & 0xC0);
+ _io_iface->poke8(0x0a0, 0x15 | (nco_freq >> 1));
+ reg0a3 = _io_iface->peek8(0x0a3);
+ _io_iface->poke8(0x0a3, (reg0a3 & 0x3F) | nco_freq);
+
+ /* It is possible to reach a configuration that won't operate correctly,
+ * where the two test tones used for quadrature calibration are outside
+ * of the RX BBF, and therefore don't make it to the ADC. We will check
+ * for that scenario here. */
+ double max_cal_freq = (((_baseband_bw * _tfir_factor)
+ * ((nco_freq >> 6) + 1)) / 32) * 2;
+ double bbbw = _baseband_bw / 2.0; // bbbw represents the one-sided BW
+ if (bbbw > 28e6) {
+ bbbw = 28e6;
+ } else if (bbbw < 0.20e6) {
+ bbbw = 0.20e6;
+ }
+ if (max_cal_freq > bbbw)
+ throw uhd::runtime_error("[ad9361_device_t] max_cal_freq > bbbw");
+
+ _io_iface->poke8(0x0a1, 0x7B); // Set tracking coefficient
+ _io_iface->poke8(0x0a9, 0xff); // Cal count
+ _io_iface->poke8(0x0a2, 0x7f); // Cal Kexp
+ _io_iface->poke8(0x0a5, 0x01); // Cal magnitude threshold VVVV
+ _io_iface->poke8(0x0a6, 0x01);
+
+ /* The gain table index used for calibration must be adjusted for the
+ * mid-table to get a TIA index = 1 and LPF index = 0. */
+ if ((_rx_freq >= 1300e6) && (_rx_freq < 4000e6)) {
+ _io_iface->poke8(0x0aa, 0x22); // Cal gain table index
+ } else {
+ _io_iface->poke8(0x0aa, 0x25); // Cal gain table index
+ }
+
+ _io_iface->poke8(0x0a4, 0xf0); // Cal setting conut
+ _io_iface->poke8(0x0ae, 0x00); // Cal LPF gain index (split mode)
+
+ /* First, calibrate the baseband DC offset. */
+ _calibrate_baseband_dc_offset();
+
+ /* Second, calibrate the RF DC offset. */
+ _calibrate_rf_dc_offset();
+
+ /* Now, calibrate the TX quadrature! */
+ size_t count = 0;
+ _io_iface->poke8(0x016, 0x10);
+ while (_io_iface->peek8(0x016) & 0x10) {
+ if (count > 100) {
+ throw uhd::runtime_error("[ad9361_device_t] TX Quadrature Calibration Failure");
+ break;
+ }
+ count++;
+ boost::this_thread::sleep(boost::posix_time::milliseconds(10));
+ }
+}
+
+/* Run the TX quadrature calibration.
+ *
+ * Note that from within this function we are also triggering the baseband
+ * and RF DC calibrations. */
+void ad9361_device_t::_calibrate_tx_quadrature()
+{
+ /* Make sure we are, in fact, in the ALERT state. If not, something is
+ * terribly wrong in the driver execution flow. */
+ if ((_io_iface->peek8(0x017) & 0x0F) != 5) {
+ throw uhd::runtime_error("[ad9361_device_t] TX Quad Cal started, but not in ALERT");
+ }
+
+ /* Turn off free-running and continuous calibrations. Note that this
+ * will get turned back on at the end of the RX calibration routine. */
+ _io_iface->poke8(0x169, 0xc0);
+
+ /* This calibration must be done in a certain order, and for both TX_A
+ * and TX_B, separately. Store the original setting so that we can
+ * restore it later. */
+ boost::uint8_t orig_reg_inputsel = _regs.inputsel;
+
+ /***********************************************************************
+ * TX1/2-A Calibration
+ **********************************************************************/
+ _regs.inputsel = _regs.inputsel & 0xBF;
+ _io_iface->poke8(0x004, _regs.inputsel);
+
+ _tx_quadrature_cal_routine();
+
+ /***********************************************************************
+ * TX1/2-B Calibration
+ **********************************************************************/
+ _regs.inputsel = _regs.inputsel | 0x40;
+ _io_iface->poke8(0x004, _regs.inputsel);
+
+ _tx_quadrature_cal_routine();
+
+ /***********************************************************************
+ * fin
+ **********************************************************************/
+ _regs.inputsel = orig_reg_inputsel;
+ _io_iface->poke8(0x004, orig_reg_inputsel);
+}
+
+
+/***********************************************************************
+ * Other Misc Setup Functions
+ ***********************************************************************/
+
+/* Program the mixer gain table.
+ *
+ * Note that this table is fixed for all frequency settings. */
+void ad9361_device_t::_program_mixer_gm_subtable()
+{
+ boost::uint8_t gain[] = { 0x78, 0x74, 0x70, 0x6C, 0x68, 0x64, 0x60, 0x5C, 0x58,
+ 0x54, 0x50, 0x4C, 0x48, 0x30, 0x18, 0x00 };
+ boost::uint8_t gm[] = { 0x00, 0x0D, 0x15, 0x1B, 0x21, 0x25, 0x29, 0x2C, 0x2F, 0x31,
+ 0x33, 0x34, 0x35, 0x3A, 0x3D, 0x3E };
+
+ /* Start the clock. */
+ _io_iface->poke8(0x13f, 0x02);
+
+ /* Program the GM Sub-table. */
+ int i;
+ for (i = 15; i >= 0; i--) {
+ _io_iface->poke8(0x138, i);
+ _io_iface->poke8(0x139, gain[(15 - i)]);
+ _io_iface->poke8(0x13A, 0x00);
+ _io_iface->poke8(0x13B, gm[(15 - i)]);
+ _io_iface->poke8(0x13F, 0x06);
+ _io_iface->poke8(0x13C, 0x00);
+ _io_iface->poke8(0x13C, 0x00);
+ }
+
+ /* Clear write bit and stop clock. */
+ _io_iface->poke8(0x13f, 0x02);
+ _io_iface->poke8(0x13C, 0x00);
+ _io_iface->poke8(0x13C, 0x00);
+ _io_iface->poke8(0x13f, 0x00);
+}
+
+/* Program the gain table.
+ *
+ * There are three different gain tables for different frequency ranges! */
+void ad9361_device_t::_program_gain_table() {
+ /* Figure out which gain table we should be using for our current
+ * frequency band. */
+ boost::uint8_t (*gain_table)[5] = NULL;
+ boost::uint8_t new_gain_table;
+ if (_rx_freq < 1300e6) {
+ gain_table = gain_table_sub_1300mhz;
+ new_gain_table = 1;
+ } else if (_rx_freq < 4e9) {
+ gain_table = gain_table_1300mhz_to_4000mhz;
+ new_gain_table = 2;
+ } else if (_rx_freq <= 6e9) {
+ gain_table = gain_table_4000mhz_to_6000mhz;
+ new_gain_table = 3;
+ } else {
+ throw uhd::runtime_error("[ad9361_device_t] Wrong _rx_freq value");
+ new_gain_table = 1;
+ }
+
+ /* Only re-program the gain table if there has been a band change. */
+ if (_curr_gain_table == new_gain_table) {
+ return;
+ } else {
+ _curr_gain_table = new_gain_table;
+ }
+
+ /* Okay, we have to program a new gain table. Sucks, brah. Start the
+ * gain table clock. */
+ _io_iface->poke8(0x137, 0x1A);
+
+ /* IT'S PROGRAMMING TIME. */
+ boost::uint8_t index = 0;
+ for (; index < 77; index++) {
+ _io_iface->poke8(0x130, index);
+ _io_iface->poke8(0x131, gain_table[index][1]);
+ _io_iface->poke8(0x132, gain_table[index][2]);
+ _io_iface->poke8(0x133, gain_table[index][3]);
+ _io_iface->poke8(0x137, 0x1E);
+ _io_iface->poke8(0x134, 0x00);
+ _io_iface->poke8(0x134, 0x00);
+ }
+
+ /* Everything above the 77th index is zero. */
+ for (; index < 91; index++) {
+ _io_iface->poke8(0x130, index);
+ _io_iface->poke8(0x131, 0x00);
+ _io_iface->poke8(0x132, 0x00);
+ _io_iface->poke8(0x133, 0x00);
+ _io_iface->poke8(0x137, 0x1E);
+ _io_iface->poke8(0x134, 0x00);
+ _io_iface->poke8(0x134, 0x00);
+ }
+
+ /* Clear the write bit and stop the gain clock. */
+ _io_iface->poke8(0x137, 0x1A);
+ _io_iface->poke8(0x134, 0x00);
+ _io_iface->poke8(0x134, 0x00);
+ _io_iface->poke8(0x137, 0x00);
+}
+
+/* Setup gain control registers.
+ *
+ * This really only needs to be done once, at initialization. */
+void ad9361_device_t::_setup_gain_control()
+{
+ _io_iface->poke8(0x0FA, 0xE0); // Gain Control Mode Select
+ _io_iface->poke8(0x0FB, 0x08); // Table, Digital Gain, Man Gain Ctrl
+ _io_iface->poke8(0x0FC, 0x23); // Incr Step Size, ADC Overrange Size
+ _io_iface->poke8(0x0FD, 0x4C); // Max Full/LMT Gain Table Index
+ _io_iface->poke8(0x0FE, 0x44); // Decr Step Size, Peak Overload Time
+ _io_iface->poke8(0x100, 0x6F); // Max Digital Gain
+ _io_iface->poke8(0x104, 0x2F); // ADC Small Overload Threshold
+ _io_iface->poke8(0x105, 0x3A); // ADC Large Overload Threshold
+ _io_iface->poke8(0x107, 0x31); // Large LMT Overload Threshold
+ _io_iface->poke8(0x108, 0x39); // Small LMT Overload Threshold
+ _io_iface->poke8(0x109, 0x23); // Rx1 Full/LMT Gain Index
+ _io_iface->poke8(0x10A, 0x58); // Rx1 LPF Gain Index
+ _io_iface->poke8(0x10B, 0x00); // Rx1 Digital Gain Index
+ _io_iface->poke8(0x10C, 0x23); // Rx2 Full/LMT Gain Index
+ _io_iface->poke8(0x10D, 0x18); // Rx2 LPF Gain Index
+ _io_iface->poke8(0x10E, 0x00); // Rx2 Digital Gain Index
+ _io_iface->poke8(0x114, 0x30); // Low Power Threshold
+ _io_iface->poke8(0x11A, 0x27); // Initial LMT Gain Limit
+ _io_iface->poke8(0x081, 0x00); // Tx Symbol Gain Control
+}
+
+/* Setup the RX or TX synthesizers.
+ *
+ * This setup depends on a fixed look-up table, which is stored in an
+ * included header file. The table is indexed based on the passed VCO rate.
+ */
+void ad9361_device_t::_setup_synth(direction_t direction, double vcorate)
+{
+ /* The vcorates in the vco_index array represent lower boundaries for
+ * rates. Once we find a match, we use that index to look-up the rest of
+ * the register values in the LUT. */
+ int vcoindex = 0;
+ for (size_t i = 0; i < 53; i++) {
+ vcoindex = i;
+ if (vcorate > vco_index[i]) {
+ break;
+ }
+ }
+ if (vcoindex > 53)
+ throw uhd::runtime_error("[ad9361_device_t] vcoindex > 53");
+
+ /* Parse the values out of the LUT based on our calculated index... */
+ boost::uint8_t vco_output_level = synth_cal_lut[vcoindex][0];
+ boost::uint8_t vco_varactor = synth_cal_lut[vcoindex][1];
+ boost::uint8_t vco_bias_ref = synth_cal_lut[vcoindex][2];
+ boost::uint8_t vco_bias_tcf = synth_cal_lut[vcoindex][3];
+ boost::uint8_t vco_cal_offset = synth_cal_lut[vcoindex][4];
+ boost::uint8_t vco_varactor_ref = synth_cal_lut[vcoindex][5];
+ boost::uint8_t charge_pump_curr = synth_cal_lut[vcoindex][6];
+ boost::uint8_t loop_filter_c2 = synth_cal_lut[vcoindex][7];
+ boost::uint8_t loop_filter_c1 = synth_cal_lut[vcoindex][8];
+ boost::uint8_t loop_filter_r1 = synth_cal_lut[vcoindex][9];
+ boost::uint8_t loop_filter_c3 = synth_cal_lut[vcoindex][10];
+ boost::uint8_t loop_filter_r3 = synth_cal_lut[vcoindex][11];
+
+ /* ... annnd program! */
+ if (direction == RX) {
+ _io_iface->poke8(0x23a, 0x40 | vco_output_level);
+ _io_iface->poke8(0x239, 0xC0 | vco_varactor);
+ _io_iface->poke8(0x242, vco_bias_ref | (vco_bias_tcf << 3));
+ _io_iface->poke8(0x238, (vco_cal_offset << 3));
+ _io_iface->poke8(0x245, 0x00);
+ _io_iface->poke8(0x251, vco_varactor_ref);
+ _io_iface->poke8(0x250, 0x70);
+ _io_iface->poke8(0x23b, 0x80 | charge_pump_curr);
+ _io_iface->poke8(0x23e, loop_filter_c1 | (loop_filter_c2 << 4));
+ _io_iface->poke8(0x23f, loop_filter_c3 | (loop_filter_r1 << 4));
+ _io_iface->poke8(0x240, loop_filter_r3);
+ } else if (direction == TX) {
+ _io_iface->poke8(0x27a, 0x40 | vco_output_level);
+ _io_iface->poke8(0x279, 0xC0 | vco_varactor);
+ _io_iface->poke8(0x282, vco_bias_ref | (vco_bias_tcf << 3));
+ _io_iface->poke8(0x278, (vco_cal_offset << 3));
+ _io_iface->poke8(0x285, 0x00);
+ _io_iface->poke8(0x291, vco_varactor_ref);
+ _io_iface->poke8(0x290, 0x70);
+ _io_iface->poke8(0x27b, 0x80 | charge_pump_curr);
+ _io_iface->poke8(0x27e, loop_filter_c1 | (loop_filter_c2 << 4));
+ _io_iface->poke8(0x27f, loop_filter_c3 | (loop_filter_r1 << 4));
+ _io_iface->poke8(0x280, loop_filter_r3);
+ } else {
+ throw uhd::runtime_error("[ad9361_device_t] [_setup_synth] INVALID_CODE_PATH");
+ }
+}
+
+
+/* Tune the baseband VCO.
+ *
+ * This clock signal is what gets fed to the ADCs and DACs. This function is
+ * not exported outside of this file, and is invoked based on the rate
+ * fed to the public set_clock_rate function. */
+double ad9361_device_t::_tune_bbvco(const double rate)
+{
+ UHD_LOG << boost::format("[ad9361_device_t::_tune_bbvco] rate=%.10f\n") % rate;
+
+ /* Let's not re-tune to the same frequency over and over... */
+ if (freq_is_nearly_equal(rate, _req_coreclk)) {
+ return _adcclock_freq;
+ }
+
+ _req_coreclk = rate;
+
+ const double fref = 40e6;
+ const int modulus = 2088960;
+ const double vcomax = 1430e6;
+ const double vcomin = 672e6;
+ double vcorate;
+ int vcodiv;
+
+ /* Iterate over VCO dividers until appropriate divider is found. */
+ int i = 1;
+ for (; i <= 6; i++) {
+ vcodiv = 1 << i;
+ vcorate = rate * vcodiv;
+
+ if (vcorate >= vcomin && vcorate <= vcomax)
+ break;
+ }
+ if (i == 7)
+ throw uhd::runtime_error("[ad9361_device_t] _tune_bbvco: wrong vcorate");
+
+ UHD_LOG << boost::format("[ad9361_device_t::_tune_bbvco] vcodiv=%d vcorate=%.10f\n") % vcodiv % vcorate;
+ /* Fo = Fref * (Nint + Nfrac / mod) */
+ int nint = static_cast<int>(vcorate / fref);
+ UHD_LOG << boost::format("[ad9361_device_t::_tune_bbvco] (nint)=%.10f\n") % (vcorate / fref);
+ int nfrac = static_cast<int>(boost::math::round(((vcorate / fref) - (double) nint) * (double) modulus));
+ UHD_LOG << boost::format("[ad9361_device_t::_tune_bbvco] (nfrac)=%.10f\n") % (((vcorate / fref) - (double) nint) * (double) modulus);
+ UHD_LOG << boost::format("[ad9361_device_t::_tune_bbvco] nint=%d nfrac=%d\n") % nint % nfrac;
+ double actual_vcorate = fref
+ * ((double) nint + ((double) nfrac / (double) modulus));
+
+ /* Scale CP current according to VCO rate */
+ const double icp_baseline = 150e-6;
+ const double freq_baseline = 1280e6;
+ double icp = icp_baseline * (actual_vcorate / freq_baseline);
+ int icp_reg = static_cast<int>(icp / 25e-6) - 1;
+
+ _io_iface->poke8(0x045, 0x00); // REFCLK / 1 to BBPLL
+ _io_iface->poke8(0x046, icp_reg & 0x3F); // CP current
+ _io_iface->poke8(0x048, 0xe8); // BBPLL loop filters
+ _io_iface->poke8(0x049, 0x5b); // BBPLL loop filters
+ _io_iface->poke8(0x04a, 0x35); // BBPLL loop filters
+
+ _io_iface->poke8(0x04b, 0xe0);
+ _io_iface->poke8(0x04e, 0x10); // Max accuracy
+
+ _io_iface->poke8(0x043, nfrac & 0xFF); // Nfrac[7:0]
+ _io_iface->poke8(0x042, (nfrac >> 8) & 0xFF); // Nfrac[15:8]
+ _io_iface->poke8(0x041, (nfrac >> 16) & 0xFF); // Nfrac[23:16]
+ _io_iface->poke8(0x044, nint); // Nint
+
+ _calibrate_lock_bbpll();
+
+ _regs.bbpll = (_regs.bbpll & 0xF8) | i;
+
+ _bbpll_freq = actual_vcorate;
+ _adcclock_freq = (actual_vcorate / vcodiv);
+
+ return _adcclock_freq;
+}
+
+/* This function re-programs all of the gains in the system.
+ *
+ * Because the gain values match to different gain indices based on the
+ * current operating band, this function can be called to update all gain
+ * settings to the appropriate index after a re-tune. */
+void ad9361_device_t::_reprogram_gains()
+{
+ set_gain(RX, CHAIN_1,_rx1_gain);
+ set_gain(RX, CHAIN_2,_rx2_gain);
+ set_gain(TX, CHAIN_1,_tx1_gain);
+ set_gain(TX, CHAIN_2,_tx2_gain);
+}
+
+/* This is the internal tune function, not available for a host call.
+ *
+ * Calculate the VCO settings for the requested frquency, and then either
+ * tune the RX or TX VCO. */
+double ad9361_device_t::_tune_helper(direction_t direction, const double value)
+{
+ /* The RFPLL runs from 6 GHz - 12 GHz */
+ const double fref = 80e6;
+ const int modulus = 8388593;
+ const double vcomax = 12e9;
+ const double vcomin = 6e9;
+ double vcorate;
+ int vcodiv;
+
+ /* Iterate over VCO dividers until appropriate divider is found. */
+ int i;
+ for (i = 0; i <= 6; i++) {
+ vcodiv = 2 << i;
+ vcorate = value * vcodiv;
+ if (vcorate >= vcomin && vcorate <= vcomax)
+ break;
+ }
+ if (i == 7)
+ throw uhd::runtime_error("[ad9361_device_t] RFVCO can't find valid VCO rate!");
+
+ int nint = static_cast<int>(vcorate / fref);
+ int nfrac = static_cast<int>(((vcorate / fref) - nint) * modulus);
+
+ double actual_vcorate = fref * (nint + (double) (nfrac) / modulus);
+ double actual_lo = actual_vcorate / vcodiv;
+
+ if (direction == RX) {
+
+ _req_rx_freq = value;
+
+ /* Set band-specific settings. */
+ if (value < _client_params->get_band_edge(AD9361_RX_BAND0)) {
+ _regs.inputsel = (_regs.inputsel & 0xC0) | 0x30;
+ } else if ((value
+ >= _client_params->get_band_edge(AD9361_RX_BAND0))
+ && (value
+ < _client_params->get_band_edge(AD9361_RX_BAND1))) {
+ _regs.inputsel = (_regs.inputsel & 0xC0) | 0x0C;
+ } else if ((value
+ >= _client_params->get_band_edge(AD9361_RX_BAND1))
+ && (value <= 6e9)) {
+ _regs.inputsel = (_regs.inputsel & 0xC0) | 0x03;
+ } else {
+ throw uhd::runtime_error("[ad9361_device_t] [_tune_helper] INVALID_CODE_PATH");
+ }
+
+ _io_iface->poke8(0x004, _regs.inputsel);
+
+ /* Store vcodiv setting. */
+ _regs.vcodivs = (_regs.vcodivs & 0xF0) | (i & 0x0F);
+
+ /* Setup the synthesizer. */
+ _setup_synth(RX, actual_vcorate);
+
+ /* Tune!!!! */
+ _io_iface->poke8(0x233, nfrac & 0xFF);
+ _io_iface->poke8(0x234, (nfrac >> 8) & 0xFF);
+ _io_iface->poke8(0x235, (nfrac >> 16) & 0xFF);
+ _io_iface->poke8(0x232, (nint >> 8) & 0xFF);
+ _io_iface->poke8(0x231, nint & 0xFF);
+ _io_iface->poke8(0x005, _regs.vcodivs);
+
+ /* Lock the PLL! */
+ boost::this_thread::sleep(boost::posix_time::milliseconds(2));
+ if ((_io_iface->peek8(0x247) & 0x02) == 0) {
+ throw uhd::runtime_error("[ad9361_device_t] RX PLL NOT LOCKED");
+ }
+
+ _rx_freq = actual_lo;
+
+ return actual_lo;
+
+ } else {
+
+ _req_tx_freq = value;
+
+ /* Set band-specific settings. */
+ if (value < _client_params->get_band_edge(AD9361_TX_BAND0)) {
+ _regs.inputsel = _regs.inputsel | 0x40;
+ } else if ((value
+ >= _client_params->get_band_edge(AD9361_TX_BAND0))
+ && (value <= 6e9)) {
+ _regs.inputsel = _regs.inputsel & 0xBF;
+ } else {
+ throw uhd::runtime_error("[ad9361_device_t] [_tune_helper] INVALID_CODE_PATH");
+ }
+
+ _io_iface->poke8(0x004, _regs.inputsel);
+
+ /* Store vcodiv setting. */
+ _regs.vcodivs = (_regs.vcodivs & 0x0F) | ((i & 0x0F) << 4);
+
+ /* Setup the synthesizer. */
+ _setup_synth(TX, actual_vcorate);
+
+ /* Tune it, homey. */
+ _io_iface->poke8(0x273, nfrac & 0xFF);
+ _io_iface->poke8(0x274, (nfrac >> 8) & 0xFF);
+ _io_iface->poke8(0x275, (nfrac >> 16) & 0xFF);
+ _io_iface->poke8(0x272, (nint >> 8) & 0xFF);
+ _io_iface->poke8(0x271, nint & 0xFF);
+ _io_iface->poke8(0x005, _regs.vcodivs);
+
+ /* Lock the PLL! */
+ boost::this_thread::sleep(boost::posix_time::milliseconds(2));
+ if ((_io_iface->peek8(0x287) & 0x02) == 0) {
+ throw uhd::runtime_error("[ad9361_device_t] TX PLL NOT LOCKED");
+ }
+
+ _tx_freq = actual_lo;
+
+ return actual_lo;
+ }
+}
+
+/* Configure the various clock / sample rates in the RX and TX chains.
+ *
+ * Functionally, this function configures AD9361's RX and TX rates. For
+ * a requested TX & RX rate, it sets the interpolation & decimation filters,
+ * and tunes the VCO that feeds the ADCs and DACs.
+ */
+double ad9361_device_t::_setup_rates(const double rate)
+{
+ /* If we make it into this function, then we are tuning to a new rate.
+ * Store the new rate. */
+ _req_clock_rate = rate;
+
+ /* Set the decimation and interpolation values in the RX and TX chains.
+ * This also switches filters in / out. Note that all transmitters and
+ * receivers have to be turned on for the calibration portion of
+ * bring-up, and then they will be switched out to reflect the actual
+ * user-requested antenna selections. */
+ int divfactor = 0;
+ _tfir_factor = 0;
+ if (rate < 0.33e6) {
+ // RX1 + RX2 enabled, 3, 2, 2, 4
+ _regs.rxfilt = B8(11101111);
+
+ // TX1 + TX2 enabled, 3, 2, 2, 4
+ _regs.txfilt = B8(11101111);
+
+ divfactor = 48;
+ _tfir_factor = 2;
+ } else if (rate < 0.66e6) {
+ // RX1 + RX2 enabled, 2, 2, 2, 4
+ _regs.rxfilt = B8(11011111);
+
+ // TX1 + TX2 enabled, 2, 2, 2, 4
+ _regs.txfilt = B8(11011111);
+
+ divfactor = 32;
+ _tfir_factor = 2;
+ } else if (rate <= 20e6) {
+ // RX1 + RX2 enabled, 2, 2, 2, 2
+ _regs.rxfilt = B8(11011110);
+
+ // TX1 + TX2 enabled, 2, 2, 2, 2
+ _regs.txfilt = B8(11011110);
+
+ divfactor = 16;
+ _tfir_factor = 2;
+ } else if ((rate > 20e6) && (rate < 23e6)) {
+ // RX1 + RX2 enabled, 3, 2, 2, 2
+ _regs.rxfilt = B8(11101110);
+
+ // TX1 + TX2 enabled, 3, 1, 2, 2
+ _regs.txfilt = B8(11100110);
+
+ divfactor = 24;
+ _tfir_factor = 2;
+ } else if ((rate >= 23e6) && (rate < 41e6)) {
+ // RX1 + RX2 enabled, 2, 2, 2, 2
+ _regs.rxfilt = B8(11011110);
+
+ // TX1 + TX2 enabled, 1, 2, 2, 2
+ _regs.txfilt = B8(11001110);
+
+ divfactor = 16;
+ _tfir_factor = 2;
+ } else if ((rate >= 41e6) && (rate <= 56e6)) {
+ // RX1 + RX2 enabled, 3, 1, 2, 2
+ _regs.rxfilt = B8(11100110);
+
+ // TX1 + TX2 enabled, 3, 1, 1, 2
+ _regs.txfilt = B8(11100010);
+
+ divfactor = 12;
+ _tfir_factor = 2;
+ } else if ((rate > 56e6) && (rate <= 61.44e6)) {
+ // RX1 + RX2 enabled, 3, 1, 1, 2
+ _regs.rxfilt = B8(11100010);
+
+ // TX1 + TX2 enabled, 3, 1, 1, 1
+ _regs.txfilt = B8(11100001);
+
+ divfactor = 6;
+ _tfir_factor = 1;
+ } else {
+ // should never get in here
+ throw uhd::runtime_error("[ad9361_device_t] [_setup_rates] INVALID_CODE_PATH");
+ }
+
+ UHD_LOG << boost::format("[ad9361_device_t::_setup_rates] divfactor=%d\n") % divfactor;
+
+ /* Tune the BBPLL to get the ADC and DAC clocks. */
+ const double adcclk = _tune_bbvco(rate * divfactor);
+ double dacclk = adcclk;
+
+ /* The DAC clock must be <= 336e6, and is either the ADC clock or 1/2 the
+ * ADC clock.*/
+ if (adcclk > 336e6) {
+ /* Make the DAC clock = ADC/2, and bypass the TXFIR. */
+ _regs.bbpll = _regs.bbpll | 0x08;
+ dacclk = adcclk / 2.0;
+ } else {
+ _regs.bbpll = _regs.bbpll & 0xF7;
+ }
+
+ /* Set the dividers / interpolators in AD9361. */
+ _io_iface->poke8(0x002, _regs.txfilt);
+ _io_iface->poke8(0x003, _regs.rxfilt);
+ _io_iface->poke8(0x004, _regs.inputsel);
+ _io_iface->poke8(0x00A, _regs.bbpll);
+
+ UHD_LOG << boost::format("[ad9361_device_t::_setup_rates] adcclk=%f\n") % adcclk;
+ _baseband_bw = (adcclk / divfactor);
+
+ /*
+ The Tx & Rx FIR calculate 16 taps per clock cycle. This limits the number of available taps to the ratio of DAC_CLK/ADC_CLK
+ to the input data rate multiplied by 16. For example, if the input data rate is 25 MHz and DAC_CLK is 100 MHz,
+ then the ratio of DAC_CLK to the input data rate is 100/25 or 4. In this scenario, the total number of taps available is 64.
+
+ Also, whilst the Rx FIR filter always has memory available for 128 taps, the Tx FIR Filter can only support a maximum length of 64 taps
+ in 1x interpolation mode, and 128 taps in 2x & 4x modes.
+ */
+ const size_t max_tx_taps = std::min<size_t>(
+ std::min<size_t>((16 * (int)((dacclk / rate) + 0.5)), 128),
+ (_tfir_factor == 1) ? 64 : 128);
+ const size_t max_rx_taps = std::min<size_t>((16 * (size_t)((adcclk / rate) + 0.5)),
+ 128);
+
+ const size_t num_tx_taps = get_num_taps(max_tx_taps);
+ const size_t num_rx_taps = get_num_taps(max_rx_taps);
+
+ _setup_tx_fir(num_tx_taps);
+ _setup_rx_fir(num_rx_taps);
+
+ return _baseband_bw;
+}
+
+/***********************************************************************
+ * Publicly exported functions to host calls
+ **********************************************************************/
+void ad9361_device_t::initialize()
+{
+ boost::lock_guard<boost::recursive_mutex> lock(_mutex);
+
+ /* Initialize shadow registers. */
+ _regs.vcodivs = 0x00;
+ _regs.inputsel = 0x30;
+ _regs.rxfilt = 0x00;
+ _regs.txfilt = 0x00;
+ _regs.bbpll = 0x02;
+ _regs.bbftune_config = 0x1e;
+ _regs.bbftune_mode = 0x1e;
+
+ /* Initialize private VRQ fields. */
+ _rx_freq = 0.0;
+ _tx_freq = 0.0;
+ _req_rx_freq = 0.0;
+ _req_tx_freq = 0.0;
+ _baseband_bw = 0.0;
+ _req_clock_rate = 0.0;
+ _req_coreclk = 0.0;
+ _bbpll_freq = 0.0;
+ _adcclock_freq = 0.0;
+ _rx_bbf_tunediv = 0;
+ _curr_gain_table = 0;
+ _rx1_gain = 0;
+ _rx2_gain = 0;
+ _tx1_gain = 0;
+ _tx2_gain = 0;
+
+ /* Reset the device. */
+ _io_iface->poke8(0x000, 0x01);
+ _io_iface->poke8(0x000, 0x00);
+ boost::this_thread::sleep(boost::posix_time::milliseconds(20));
+
+ /* There is not a WAT big enough for this. */
+ _io_iface->poke8(0x3df, 0x01);
+
+ _io_iface->poke8(0x2a6, 0x0e); // Enable master bias
+ _io_iface->poke8(0x2a8, 0x0e); // Set bandgap trim
+
+ /* Set RFPLL ref clock scale to REFCLK * 2 */
+ _io_iface->poke8(0x2ab, 0x07);
+ _io_iface->poke8(0x2ac, 0xff);
+
+ /* Enable clocks. */
+ switch (_client_params->get_clocking_mode()) {
+ case AD9361_XTAL_N_CLK_PATH: {
+ _io_iface->poke8(0x009, 0x17);
+ } break;
+
+ case AD9361_XTAL_P_CLK_PATH: {
+ _io_iface->poke8(0x009, 0x07);
+ _io_iface->poke8(0x292, 0x08);
+ _io_iface->poke8(0x293, 0x80);
+ _io_iface->poke8(0x294, 0x00);
+ _io_iface->poke8(0x295, 0x14);
+ } break;
+
+ default:
+ throw uhd::runtime_error("[ad9361_device_t] NOT IMPLEMENTED");
+ }
+ boost::this_thread::sleep(boost::posix_time::milliseconds(20));
+
+ /* Tune the BBPLL, write TX and RX FIRS. */
+ _setup_rates(50e6);
+
+ /* Setup data ports (FDD dual port DDR):
+ * FDD dual port DDR CMOS no swap.
+ * Force TX on one port, RX on the other. */
+ switch (_client_params->get_digital_interface_mode()) {
+ case AD9361_DDR_FDD_LVCMOS: {
+ _io_iface->poke8(0x010, 0xc8);
+ _io_iface->poke8(0x011, 0x00);
+ _io_iface->poke8(0x012, 0x02);
+ } break;
+
+ case AD9361_DDR_FDD_LVDS: {
+ _io_iface->poke8(0x010, 0xcc);
+ _io_iface->poke8(0x011, 0x00);
+ _io_iface->poke8(0x012, 0x10);
+
+ //LVDS Specific
+ _io_iface->poke8(0x03C, 0x23);
+ _io_iface->poke8(0x03D, 0xFF);
+ _io_iface->poke8(0x03E, 0x0F);
+ } break;
+
+ default:
+ throw uhd::runtime_error("[ad9361_device_t] NOT IMPLEMENTED");
+ }
+
+ /* Data delay for TX and RX data clocks */
+ digital_interface_delays_t timing =
+ _client_params->get_digital_interface_timing();
+ boost::uint8_t rx_delays = ((timing.rx_clk_delay & 0xF) << 4)
+ | (timing.rx_data_delay & 0xF);
+ boost::uint8_t tx_delays = ((timing.tx_clk_delay & 0xF) << 4)
+ | (timing.tx_data_delay & 0xF);
+ _io_iface->poke8(0x006, rx_delays);
+ _io_iface->poke8(0x007, tx_delays);
+
+ /* Setup AuxDAC */
+ _io_iface->poke8(0x018, 0x00); // AuxDAC1 Word[9:2]
+ _io_iface->poke8(0x019, 0x00); // AuxDAC2 Word[9:2]
+ _io_iface->poke8(0x01A, 0x00); // AuxDAC1 Config and Word[1:0]
+ _io_iface->poke8(0x01B, 0x00); // AuxDAC2 Config and Word[1:0]
+ _io_iface->poke8(0x022, 0x4A); // Invert Bypassed LNA
+ _io_iface->poke8(0x023, 0xFF); // AuxDAC Manaul/Auto Control
+ _io_iface->poke8(0x026, 0x00); // AuxDAC Manual Select Bit/GPO Manual Select
+ _io_iface->poke8(0x030, 0x00); // AuxDAC1 Rx Delay
+ _io_iface->poke8(0x031, 0x00); // AuxDAC1 Tx Delay
+ _io_iface->poke8(0x032, 0x00); // AuxDAC2 Rx Delay
+ _io_iface->poke8(0x033, 0x00); // AuxDAC2 Tx Delay
+
+ /* Setup AuxADC */
+ _io_iface->poke8(0x00B, 0x00); // Temp Sensor Setup (Offset)
+ _io_iface->poke8(0x00C, 0x00); // Temp Sensor Setup (Temp Window)
+ _io_iface->poke8(0x00D, 0x03); // Temp Sensor Setup (Periodic Measure)
+ _io_iface->poke8(0x00F, 0x04); // Temp Sensor Setup (Decimation)
+ _io_iface->poke8(0x01C, 0x10); // AuxADC Setup (Clock Div)
+ _io_iface->poke8(0x01D, 0x01); // AuxADC Setup (Decimation/Enable)
+
+ /* Setup control outputs. */
+ _io_iface->poke8(0x035, 0x07);
+ _io_iface->poke8(0x036, 0xFF);
+
+ /* Setup GPO */
+ _io_iface->poke8(0x03a, 0x27); //set delay register
+ _io_iface->poke8(0x020, 0x00); // GPO Auto Enable Setup in RX and TX
+ _io_iface->poke8(0x027, 0x03); // GPO Manual and GPO auto value in ALERT
+ _io_iface->poke8(0x028, 0x00); // GPO_0 RX Delay
+ _io_iface->poke8(0x029, 0x00); // GPO_1 RX Delay
+ _io_iface->poke8(0x02A, 0x00); // GPO_2 RX Delay
+ _io_iface->poke8(0x02B, 0x00); // GPO_3 RX Delay
+ _io_iface->poke8(0x02C, 0x00); // GPO_0 TX Delay
+ _io_iface->poke8(0x02D, 0x00); // GPO_1 TX Delay
+ _io_iface->poke8(0x02E, 0x00); // GPO_2 TX Delay
+ _io_iface->poke8(0x02F, 0x00); // GPO_3 TX Delay
+
+ _io_iface->poke8(0x261, 0x00); // RX LO power
+ _io_iface->poke8(0x2a1, 0x00); // TX LO power
+ _io_iface->poke8(0x248, 0x0b); // en RX VCO LDO
+ _io_iface->poke8(0x288, 0x0b); // en TX VCO LDO
+ _io_iface->poke8(0x246, 0x02); // pd RX cal Tcf
+ _io_iface->poke8(0x286, 0x02); // pd TX cal Tcf
+ _io_iface->poke8(0x249, 0x8e); // rx vco cal length
+ _io_iface->poke8(0x289, 0x8e); // rx vco cal length
+ _io_iface->poke8(0x23b, 0x80); // set RX MSB?, FIXME 0x89 magic cp
+ _io_iface->poke8(0x27b, 0x80); // "" TX //FIXME 0x88 see above
+ _io_iface->poke8(0x243, 0x0d); // set rx prescaler bias
+ _io_iface->poke8(0x283, 0x0d); // "" TX
+
+ _io_iface->poke8(0x23d, 0x00); // Clear half VCO cal clock setting
+ _io_iface->poke8(0x27d, 0x00); // Clear half VCO cal clock setting
+
+ /* The order of the following process is EXTREMELY important. If the
+ * below functions are modified at all, device initialization and
+ * calibration might be broken in the process! */
+
+ _io_iface->poke8(0x015, 0x04); // dual synth mode, synth en ctrl en
+ _io_iface->poke8(0x014, 0x05); // use SPI for TXNRX ctrl, to ALERT, TX on
+ _io_iface->poke8(0x013, 0x01); // enable ENSM
+ boost::this_thread::sleep(boost::posix_time::milliseconds(1));
+
+ _calibrate_synth_charge_pumps();
+
+ _tune_helper(RX, 800e6);
+ _tune_helper(TX, 850e6);
+
+ _program_mixer_gm_subtable();
+ _program_gain_table();
+ _setup_gain_control();
+
+ _calibrate_baseband_rx_analog_filter();
+ _calibrate_baseband_tx_analog_filter();
+ _calibrate_rx_TIAs();
+ _calibrate_secondary_tx_filter();
+
+ _setup_adc();
+
+ _calibrate_tx_quadrature();
+ _calibrate_rx_quadrature();
+
+ // cals done, set PPORT config
+ switch (_client_params->get_digital_interface_mode()) {
+ case AD9361_DDR_FDD_LVCMOS: {
+ _io_iface->poke8(0x012, 0x02);
+ } break;
+
+ case AD9361_DDR_FDD_LVDS: {
+ _io_iface->poke8(0x012, 0x10);
+ } break;
+
+ default:
+ throw uhd::runtime_error("[ad9361_device_t] NOT IMPLEMENTED");
+ }
+
+ _io_iface->poke8(0x013, 0x01); // Set ENSM FDD bit
+ _io_iface->poke8(0x015, 0x04); // dual synth mode, synth en ctrl en
+
+ /* Default TX attentuation to 10dB on both TX1 and TX2 */
+ _io_iface->poke8(0x073, 0x00);
+ _io_iface->poke8(0x074, 0x00);
+ _io_iface->poke8(0x075, 0x00);
+ _io_iface->poke8(0x076, 0x00);
+
+ /* Setup RSSI Measurements */
+ _io_iface->poke8(0x150, 0x0E); // RSSI Measurement Duration 0, 1
+ _io_iface->poke8(0x151, 0x00); // RSSI Measurement Duration 2, 3
+ _io_iface->poke8(0x152, 0xFF); // RSSI Weighted Multiplier 0
+ _io_iface->poke8(0x153, 0x00); // RSSI Weighted Multiplier 1
+ _io_iface->poke8(0x154, 0x00); // RSSI Weighted Multiplier 2
+ _io_iface->poke8(0x155, 0x00); // RSSI Weighted Multiplier 3
+ _io_iface->poke8(0x156, 0x00); // RSSI Delay
+ _io_iface->poke8(0x157, 0x00); // RSSI Wait
+ _io_iface->poke8(0x158, 0x0D); // RSSI Mode Select
+ _io_iface->poke8(0x15C, 0x67); // Power Measurement Duration
+
+ /* Turn on the default RX & TX chains. */
+ set_active_chains(true, false, false, false);
+
+ /* Set TXers & RXers on (only works in FDD mode) */
+ _io_iface->poke8(0x014, 0x21);
+}
+
+
+/* This function sets the RX / TX rate between AD9361 and the FPGA, and
+ * thus determines the interpolation / decimation required in the FPGA to
+ * achieve the user's requested rate.
+ *
+ * This is the only clock setting function that is exposed to the outside. */
+double ad9361_device_t::set_clock_rate(const double req_rate)
+{
+ boost::lock_guard<boost::recursive_mutex> lock(_mutex);
+
+ if (req_rate > 61.44e6) {
+ throw uhd::runtime_error("[ad9361_device_t] Requested master clock rate outside range");
+ }
+
+ UHD_LOG << boost::format("[ad9361_device_t::set_clock_rate] req_rate=%.10f\n") % req_rate;
+
+ /* UHD has a habit of requesting the same rate like four times when it
+ * starts up. This prevents that, and any bugs in user code that request
+ * the same rate over and over. */
+ if (freq_is_nearly_equal(req_rate, _req_clock_rate)) {
+ return _baseband_bw;
+ }
+
+ /* We must be in the SLEEP / WAIT state to do this. If we aren't already
+ * there, transition the ENSM to State 0. */
+ boost::uint8_t current_state = _io_iface->peek8(0x017) & 0x0F;
+ switch (current_state) {
+ case 0x05:
+ /* We are in the ALERT state. */
+ _io_iface->poke8(0x014, 0x21);
+ boost::this_thread::sleep(boost::posix_time::milliseconds(5));
+ _io_iface->poke8(0x014, 0x00);
+ break;
+
+ case 0x0A:
+ /* We are in the FDD state. */
+ _io_iface->poke8(0x014, 0x00);
+ break;
+
+ default:
+ throw uhd::runtime_error("[ad9361_device_t] [set_clock_rate:1] AD9361 in unknown state");
+ break;
+ };
+
+ /* Store the current chain / antenna selections so that we can restore
+ * them at the end of this routine; all chains will be enabled from
+ * within setup_rates for calibration purposes. */
+ boost::uint8_t orig_tx_chains = _regs.txfilt & 0xC0;
+ boost::uint8_t orig_rx_chains = _regs.rxfilt & 0xC0;
+
+ /* Call into the clock configuration / settings function. This is where
+ * all the hard work gets done. */
+ double rate = _setup_rates(req_rate);
+
+ UHD_LOG << boost::format("[ad9361_device_t::set_clock_rate] rate=%.10f\n") % rate;
+
+ /* Transition to the ALERT state and calibrate everything. */
+ _io_iface->poke8(0x015, 0x04); //dual synth mode, synth en ctrl en
+ _io_iface->poke8(0x014, 0x05); //use SPI for TXNRX ctrl, to ALERT, TX on
+ _io_iface->poke8(0x013, 0x01); //enable ENSM
+ boost::this_thread::sleep(boost::posix_time::milliseconds(1));
+
+ _calibrate_synth_charge_pumps();
+
+ _tune_helper(RX, _rx_freq);
+ _tune_helper(TX, _tx_freq);
+
+ _program_mixer_gm_subtable();
+ _program_gain_table();
+ _setup_gain_control();
+ _reprogram_gains();
+
+ _calibrate_baseband_rx_analog_filter();
+ _calibrate_baseband_tx_analog_filter();
+ _calibrate_rx_TIAs();
+ _calibrate_secondary_tx_filter();
+
+ _setup_adc();
+
+ _calibrate_tx_quadrature();
+ _calibrate_rx_quadrature();
+
+ // cals done, set PPORT config
+ switch (_client_params->get_digital_interface_mode()) {
+ case AD9361_DDR_FDD_LVCMOS: {
+ _io_iface->poke8(0x012, 0x02);
+ }break;
+
+ case AD9361_DDR_FDD_LVDS: {
+ _io_iface->poke8(0x012, 0x10);
+ }break;
+
+ default:
+ throw uhd::runtime_error("[ad9361_device_t] NOT IMPLEMENTED");
+ }
+ _io_iface->poke8(0x013, 0x01); // Set ENSM FDD bit
+ _io_iface->poke8(0x015, 0x04); // dual synth mode, synth en ctrl en
+
+ /* End the function in the same state as the entry state. */
+ switch (current_state) {
+ case 0x05:
+ /* We are already in ALERT. */
+ break;
+
+ case 0x0A:
+ /* Transition back to FDD, and restore the original antenna
+ * / chain selections. */
+ _regs.txfilt = (_regs.txfilt & 0x3F) | orig_tx_chains;
+ _regs.rxfilt = (_regs.rxfilt & 0x3F) | orig_rx_chains;
+
+ _io_iface->poke8(0x002, _regs.txfilt);
+ _io_iface->poke8(0x003, _regs.rxfilt);
+ _io_iface->poke8(0x014, 0x21);
+ break;
+
+ default:
+ throw uhd::runtime_error("[ad9361_device_t] [set_clock_rate:2] AD9361 in unknown state");
+ break;
+ };
+
+ return rate;
+}
+
+
+/* Set which of the four TX / RX chains provided by AD9361 are active.
+ *
+ * AD9361 provides two sets of chains, Side A and Side B. Each side
+ * provides one TX antenna, and one RX antenna. The B200 maintains the USRP
+ * standard of providing one antenna connection that is both TX & RX, and
+ * one that is RX-only - for each chain. Thus, the possible antenna and
+ * chain selections are:
+ *
+ * B200 Antenna AD9361 Side AD9361 Chain
+ * -------------------------------------------------------------------
+ * TX / RX1 Side A TX1 (when switched to TX)
+ * TX / RX1 Side A RX1 (when switched to RX)
+ * RX1 Side A RX1
+ *
+ * TX / RX2 Side B TX2 (when switched to TX)
+ * TX / RX2 Side B RX2 (when switched to RX)
+ * RX2 Side B RX2
+ */
+void ad9361_device_t::set_active_chains(bool tx1, bool tx2, bool rx1, bool rx2)
+{
+ boost::lock_guard<boost::recursive_mutex> lock(_mutex);
+
+ /* Clear out the current active chain settings. */
+ _regs.txfilt = _regs.txfilt & 0x3F;
+ _regs.rxfilt = _regs.rxfilt & 0x3F;
+
+ /* Turn on the different chains based on the passed parameters. */
+ if (tx1) {
+ _regs.txfilt = _regs.txfilt | 0x40;
+ }
+ if (tx2) {
+ _regs.txfilt = _regs.txfilt | 0x80;
+ }
+ if (rx1) {
+ _regs.rxfilt = _regs.rxfilt | 0x40;
+ }
+ if (rx2) {
+ _regs.rxfilt = _regs.rxfilt | 0x80;
+ }
+
+ /* Check for FDD state */
+ boost::uint8_t set_back_to_fdd = 0;
+ boost::uint8_t ensm_state = _io_iface->peek8(0x017) & 0x0F;
+ if (ensm_state == 0xA) // FDD
+ {
+ /* Put into ALERT state (via the FDD flush state). */
+ _io_iface->poke8(0x014, 0x01);
+ set_back_to_fdd = 1;
+ }
+
+ /* Wait for FDD flush state to complete (if necessary) */
+ while (ensm_state == 0xA || ensm_state == 0xB)
+ ensm_state = _io_iface->peek8(0x017) & 0x0F;
+
+ /* Turn on / off the chains. */
+ _io_iface->poke8(0x002, _regs.txfilt);
+ _io_iface->poke8(0x003, _regs.rxfilt);
+
+ /* Put back into FDD state if necessary */
+ if (set_back_to_fdd)
+ _io_iface->poke8(0x014, 0x21);
+}
+
+/* Tune the RX or TX frequency.
+ *
+ * This is the publicly-accessible tune function. It makes sure the tune
+ * isn't a redundant request, and if not, passes it on to the class's
+ * internal tune function.
+ *
+ * After tuning, it runs any appropriate calibrations. */
+double ad9361_device_t::tune(direction_t direction, const double value)
+{
+ boost::lock_guard<boost::recursive_mutex> lock(_mutex);
+
+ if (direction == RX) {
+ if (freq_is_nearly_equal(value, _req_rx_freq)) {
+ return _rx_freq;
+ }
+
+ } else if (direction == TX) {
+ if (freq_is_nearly_equal(value, _req_tx_freq)) {
+ return _tx_freq;
+ }
+
+ } else {
+ throw uhd::runtime_error("[ad9361_device_t] [tune] INVALID_CODE_PATH");
+ }
+
+ /* If we aren't already in the ALERT state, we will need to return to
+ * the FDD state after tuning. */
+ int not_in_alert = 0;
+ if ((_io_iface->peek8(0x017) & 0x0F) != 5) {
+ /* Force the device into the ALERT state. */
+ not_in_alert = 1;
+ _io_iface->poke8(0x014, 0x01);
+ }
+
+ /* Tune the RF VCO! */
+ double tune_freq = _tune_helper(direction, value);
+
+ /* Run any necessary calibrations / setups */
+ if (direction == RX) {
+ _program_gain_table();
+ }
+
+ /* Update the gain settings. */
+ _reprogram_gains();
+
+ /* Run the calibration algorithms. */
+ _calibrate_tx_quadrature();
+ _calibrate_rx_quadrature();
+
+ /* If we were in the FDD state, return it now. */
+ if (not_in_alert) {
+ _io_iface->poke8(0x014, 0x21);
+ }
+
+ return tune_freq;
+}
+
+/* Set the gain of RX1, RX2, TX1, or TX2.
+ *
+ * Note that the 'value' passed to this function is the actual gain value,
+ * _not_ the gain index. This is the opposite of the eval software's GUI!
+ * Also note that the RX chains are done in terms of gain, and the TX chains
+ * are done in terms of attenuation. */
+double ad9361_device_t::set_gain(direction_t direction, chain_t chain, const double value)
+{
+ boost::lock_guard<boost::recursive_mutex> lock(_mutex);
+
+ if (direction == RX) {
+ /* Indexing the gain tables requires an offset from the requested
+ * amount of total gain in dB:
+ * < 1300MHz: dB + 5
+ * >= 1300MHz and < 4000MHz: dB + 3
+ * >= 4000MHz and <= 6000MHz: dB + 14
+ */
+ int gain_offset = 0;
+ if (_rx_freq < 1300e6) {
+ gain_offset = 5;
+ } else if (_rx_freq < 4000e6) {
+ gain_offset = 3;
+ } else {
+ gain_offset = 14;
+ }
+
+ int gain_index = static_cast<int>(value + gain_offset);
+
+ /* Clip the gain values to the proper min/max gain values. */
+ if (gain_index > 76)
+ gain_index = 76;
+ if (gain_index < 0)
+ gain_index = 0;
+
+ if (chain == CHAIN_1) {
+ _rx1_gain = boost::uint32_t(value);
+ _io_iface->poke8(0x109, gain_index);
+ } else {
+ _rx2_gain = boost::uint32_t(value);
+ _io_iface->poke8(0x10c, gain_index);
+ }
+
+ return gain_index - gain_offset;
+ } else {
+ /* Setting the below bits causes a change in the TX attenuation word
+ * to immediately take effect. */
+ _io_iface->poke8(0x077, 0x40);
+ _io_iface->poke8(0x07c, 0x40);
+
+ /* Each gain step is -0.25dB. Calculate the attenuation necessary
+ * for the requested gain, convert it into gain steps, then write
+ * the attenuation word. Max gain (so zero attenuation) is 89.75. */
+ double atten = AD9361_MAX_GAIN - value;
+ boost::uint32_t attenreg = boost::uint32_t(atten * 4);
+ if (chain == CHAIN_1) {
+ _tx1_gain = boost::uint32_t(value);
+ _io_iface->poke8(0x073, attenreg & 0xFF);
+ _io_iface->poke8(0x074, (attenreg >> 8) & 0x01);
+ } else {
+ _tx2_gain = boost::uint32_t(value);
+ _io_iface->poke8(0x075, attenreg & 0xFF);
+ _io_iface->poke8(0x076, (attenreg >> 8) & 0x01);
+ }
+ return AD9361_MAX_GAIN - ((double) (attenreg) / 4);
+ }
+}
+
+void ad9361_device_t::output_test_tone()
+{
+ boost::lock_guard<boost::recursive_mutex> lock(_mutex);
+ /* Output a 480 kHz tone at 800 MHz */
+ _io_iface->poke8(0x3F4, 0x0B);
+ _io_iface->poke8(0x3FC, 0xFF);
+ _io_iface->poke8(0x3FD, 0xFF);
+ _io_iface->poke8(0x3FE, 0x3F);
+}
+
+void ad9361_device_t::data_port_loopback(const bool loopback_enabled)
+{
+ boost::lock_guard<boost::recursive_mutex> lock(_mutex);
+ _io_iface->poke8(0x3F5, (loopback_enabled ? 0x01 : 0x00));
+}
+
+}}
diff --git a/host/lib/usrp/common/ad9361_driver/ad9361_device.h b/host/lib/usrp/common/ad9361_driver/ad9361_device.h
index 2d067fa7d..5770f332a 100644
--- a/host/lib/usrp/common/ad9361_driver/ad9361_device.h
+++ b/host/lib/usrp/common/ad9361_driver/ad9361_device.h
@@ -1,125 +1,125 @@
-//
-// Copyright 2014 Ettus Research LLC
-//
-
-#ifndef INCLUDED_AD9361_DEVICE_H
-#define INCLUDED_AD9361_DEVICE_H
-
-#include <ad9361_client.h>
-#include <boost/noncopyable.hpp>
-#include <boost/thread/recursive_mutex.hpp>
-
-namespace uhd { namespace usrp {
-
-class ad9361_device_t : public boost::noncopyable
-{
-public:
- enum direction_t { RX, TX };
- enum chain_t { CHAIN_1, CHAIN_2 };
-
- ad9361_device_t(ad9361_params::sptr client, ad9361_io::sptr io_iface) :
- _client_params(client), _io_iface(io_iface) {}
-
- /* Initialize the AD9361 codec. */
- void initialize();
-
- /* This function sets the RX / TX rate between AD9361 and the FPGA, and
- * thus determines the interpolation / decimation required in the FPGA to
- * achieve the user's requested rate.
- */
- double set_clock_rate(const double req_rate);
-
- /* Set which of the four TX / RX chains provided by AD9361 are active.
- *
- * AD9361 provides two sets of chains, Side A and Side B. Each side
- * provides one TX antenna, and one RX antenna. The B200 maintains the USRP
- * standard of providing one antenna connection that is both TX & RX, and
- * one that is RX-only - for each chain. Thus, the possible antenna and
- * chain selections are:
- *
- */
- void set_active_chains(bool tx1, bool tx2, bool rx1, bool rx2);
-
- /* Tune the RX or TX frequency.
- *
- * This is the publicly-accessible tune function. It makes sure the tune
- * isn't a redundant request, and if not, passes it on to the class's
- * internal tune function.
- *
- * After tuning, it runs any appropriate calibrations. */
- double tune(direction_t direction, const double value);
-
- /* Set the gain of RX1, RX2, TX1, or TX2.
- *
- * Note that the 'value' passed to this function is the actual gain value,
- * _not_ the gain index. This is the opposite of the eval software's GUI!
- * Also note that the RX chains are done in terms of gain, and the TX chains
- * are done in terms of attenuation. */
- double set_gain(direction_t direction, chain_t chain, const double value);
-
- /* Make AD9361 output its test tone. */
- void output_test_tone();
-
- /* Turn on/off AD9361's TX port --> RX port loopback. */
- void data_port_loopback(const bool loopback_enabled);
-
- //Constants
- static const double AD9361_MAX_GAIN = 89.75;
- static const double AD9361_MAX_CLOCK_RATE = 61.44e6;
-
-private: //Methods
- void _program_fir_filter(direction_t direction, int num_taps, boost::uint16_t *coeffs);
- void _setup_tx_fir(size_t num_taps);
- void _setup_rx_fir(size_t num_taps);
- void _calibrate_lock_bbpll();
- void _calibrate_synth_charge_pumps();
- double _calibrate_baseband_rx_analog_filter();
- double _calibrate_baseband_tx_analog_filter();
- void _calibrate_secondary_tx_filter();
- void _calibrate_rx_TIAs();
- void _setup_adc();
- void _calibrate_baseband_dc_offset();
- void _calibrate_rf_dc_offset();
- void _calibrate_rx_quadrature();
- void _tx_quadrature_cal_routine();
- void _calibrate_tx_quadrature();
- void _program_mixer_gm_subtable();
- void _program_gain_table();
- void _setup_gain_control();
- void _setup_synth(direction_t direction, double vcorate);
- double _tune_bbvco(const double rate);
- void _reprogram_gains();
- double _tune_helper(direction_t direction, const double value);
- double _setup_rates(const double rate);
-
-private: //Members
- typedef struct {
- boost::uint8_t vcodivs;
- boost::uint8_t inputsel;
- boost::uint8_t rxfilt;
- boost::uint8_t txfilt;
- boost::uint8_t bbpll;
- boost::uint8_t bbftune_config;
- boost::uint8_t bbftune_mode;
- } chip_regs_t;
-
- //Interfaces
- ad9361_params::sptr _client_params;
- ad9361_io::sptr _io_iface;
- //Intermediate state
- double _rx_freq, _tx_freq, _req_rx_freq, _req_tx_freq;
- double _baseband_bw, _bbpll_freq, _adcclock_freq;
- double _req_clock_rate, _req_coreclk;
- boost::uint16_t _rx_bbf_tunediv;
- boost::uint8_t _curr_gain_table;
- boost::uint32_t _rx1_gain, _rx2_gain, _tx1_gain, _tx2_gain;
- boost::int32_t _tfir_factor;
- //Register soft-copies
- chip_regs_t _regs;
- //Synchronization
- boost::recursive_mutex _mutex;
-};
-
-}} //namespace
-
-#endif /* INCLUDED_AD9361_DEVICE_H */
+//
+// Copyright 2014 Ettus Research LLC
+//
+
+#ifndef INCLUDED_AD9361_DEVICE_H
+#define INCLUDED_AD9361_DEVICE_H
+
+#include <ad9361_client.h>
+#include <boost/noncopyable.hpp>
+#include <boost/thread/recursive_mutex.hpp>
+
+namespace uhd { namespace usrp {
+
+class ad9361_device_t : public boost::noncopyable
+{
+public:
+ enum direction_t { RX, TX };
+ enum chain_t { CHAIN_1, CHAIN_2 };
+
+ ad9361_device_t(ad9361_params::sptr client, ad9361_io::sptr io_iface) :
+ _client_params(client), _io_iface(io_iface) {}
+
+ /* Initialize the AD9361 codec. */
+ void initialize();
+
+ /* This function sets the RX / TX rate between AD9361 and the FPGA, and
+ * thus determines the interpolation / decimation required in the FPGA to
+ * achieve the user's requested rate.
+ */
+ double set_clock_rate(const double req_rate);
+
+ /* Set which of the four TX / RX chains provided by AD9361 are active.
+ *
+ * AD9361 provides two sets of chains, Side A and Side B. Each side
+ * provides one TX antenna, and one RX antenna. The B200 maintains the USRP
+ * standard of providing one antenna connection that is both TX & RX, and
+ * one that is RX-only - for each chain. Thus, the possible antenna and
+ * chain selections are:
+ *
+ */
+ void set_active_chains(bool tx1, bool tx2, bool rx1, bool rx2);
+
+ /* Tune the RX or TX frequency.
+ *
+ * This is the publicly-accessible tune function. It makes sure the tune
+ * isn't a redundant request, and if not, passes it on to the class's
+ * internal tune function.
+ *
+ * After tuning, it runs any appropriate calibrations. */
+ double tune(direction_t direction, const double value);
+
+ /* Set the gain of RX1, RX2, TX1, or TX2.
+ *
+ * Note that the 'value' passed to this function is the actual gain value,
+ * _not_ the gain index. This is the opposite of the eval software's GUI!
+ * Also note that the RX chains are done in terms of gain, and the TX chains
+ * are done in terms of attenuation. */
+ double set_gain(direction_t direction, chain_t chain, const double value);
+
+ /* Make AD9361 output its test tone. */
+ void output_test_tone();
+
+ /* Turn on/off AD9361's TX port --> RX port loopback. */
+ void data_port_loopback(const bool loopback_enabled);
+
+ //Constants
+ static const double AD9361_MAX_GAIN;
+ static const double AD9361_MAX_CLOCK_RATE;
+
+private: //Methods
+ void _program_fir_filter(direction_t direction, int num_taps, boost::uint16_t *coeffs);
+ void _setup_tx_fir(size_t num_taps);
+ void _setup_rx_fir(size_t num_taps);
+ void _calibrate_lock_bbpll();
+ void _calibrate_synth_charge_pumps();
+ double _calibrate_baseband_rx_analog_filter();
+ double _calibrate_baseband_tx_analog_filter();
+ void _calibrate_secondary_tx_filter();
+ void _calibrate_rx_TIAs();
+ void _setup_adc();
+ void _calibrate_baseband_dc_offset();
+ void _calibrate_rf_dc_offset();
+ void _calibrate_rx_quadrature();
+ void _tx_quadrature_cal_routine();
+ void _calibrate_tx_quadrature();
+ void _program_mixer_gm_subtable();
+ void _program_gain_table();
+ void _setup_gain_control();
+ void _setup_synth(direction_t direction, double vcorate);
+ double _tune_bbvco(const double rate);
+ void _reprogram_gains();
+ double _tune_helper(direction_t direction, const double value);
+ double _setup_rates(const double rate);
+
+private: //Members
+ typedef struct {
+ boost::uint8_t vcodivs;
+ boost::uint8_t inputsel;
+ boost::uint8_t rxfilt;
+ boost::uint8_t txfilt;
+ boost::uint8_t bbpll;
+ boost::uint8_t bbftune_config;
+ boost::uint8_t bbftune_mode;
+ } chip_regs_t;
+
+ //Interfaces
+ ad9361_params::sptr _client_params;
+ ad9361_io::sptr _io_iface;
+ //Intermediate state
+ double _rx_freq, _tx_freq, _req_rx_freq, _req_tx_freq;
+ double _baseband_bw, _bbpll_freq, _adcclock_freq;
+ double _req_clock_rate, _req_coreclk;
+ boost::uint16_t _rx_bbf_tunediv;
+ boost::uint8_t _curr_gain_table;
+ boost::uint32_t _rx1_gain, _rx2_gain, _tx1_gain, _tx2_gain;
+ boost::int32_t _tfir_factor;
+ //Register soft-copies
+ chip_regs_t _regs;
+ //Synchronization
+ boost::recursive_mutex _mutex;
+};
+
+}} //namespace
+
+#endif /* INCLUDED_AD9361_DEVICE_H */