diff options
Diffstat (limited to 'host/lib/usrp')
20 files changed, 5628 insertions, 8 deletions
diff --git a/host/lib/usrp/CMakeLists.txt b/host/lib/usrp/CMakeLists.txt index f15324608..570972f16 100644 --- a/host/lib/usrp/CMakeLists.txt +++ b/host/lib/usrp/CMakeLists.txt @@ -41,3 +41,4 @@ INCLUDE_SUBDIRECTORY(usrp2) INCLUDE_SUBDIRECTORY(b100) INCLUDE_SUBDIRECTORY(x300) INCLUDE_SUBDIRECTORY(b200) +INCLUDE_SUBDIRECTORY(x400) diff --git a/host/lib/usrp/common/CMakeLists.txt b/host/lib/usrp/common/CMakeLists.txt index a61738743..e37a38110 100644 --- a/host/lib/usrp/common/CMakeLists.txt +++ b/host/lib/usrp/common/CMakeLists.txt @@ -30,6 +30,7 @@ LIBUHD_APPEND_SOURCES( ${CMAKE_CURRENT_SOURCE_DIR}/adf435x.cpp ${CMAKE_CURRENT_SOURCE_DIR}/adf535x.cpp ${CMAKE_CURRENT_SOURCE_DIR}/lmx2592.cpp + ${CMAKE_CURRENT_SOURCE_DIR}/lmx2572.cpp ${CMAKE_CURRENT_SOURCE_DIR}/apply_corrections.cpp ${CMAKE_CURRENT_SOURCE_DIR}/validate_subdev_spec.cpp ${CMAKE_CURRENT_SOURCE_DIR}/recv_packet_demuxer.cpp diff --git a/host/lib/usrp/common/lmx2572.cpp b/host/lib/usrp/common/lmx2572.cpp new file mode 100644 index 000000000..c56478b1d --- /dev/null +++ b/host/lib/usrp/common/lmx2572.cpp @@ -0,0 +1,1030 @@ +// +// Copyright 2020 Ettus Research, A National Instruments Brand +// +// SPDX-License-Identifier: GPL-3.0-or-later +// + + +#include "lmx2572_regs.hpp" +#include <uhd/exception.hpp> +#include <uhd/utils/log.hpp> +#include <uhd/utils/math.hpp> +#include <uhdlib/usrp/common/lmx2572.hpp> +#include <uhdlib/utils/interpolation.hpp> +#include <uhdlib/utils/narrow.hpp> +#include <cmath> +#include <limits> +#include <map> + +namespace { +// LOG ID +constexpr char LOG_ID[] = "LMX2572"; +// Highest LO / output frequency +constexpr double MAX_OUT_FREQ = 6.4e9; // Hz +// Lowest LO / output frequency +constexpr double MIN_OUT_FREQ = 12.5e6; // Hz +// Target loop bandwidth +constexpr double TARGET_LOOP_BANDWIDTH = 75e3; // Hz +// Loop Filter gain setting resistor +constexpr double LOOP_GAIN_SETTING_RESISTANCE = 150; // ohm +// Delay after powerup. TI recommends a 10 ms delay after clearing powerdown +// (not documented in the datasheet). +const uhd::time_spec_t POWERUP_DELAY = uhd::time_spec_t(10e-3); +// Conservative estimate for PLL to lock which includes VCO calibration and PLL settling +constexpr double PLL_LOCK_TIME = 200e-6; // s + +// Valid input/reference frequencies (fOSC) +// +// NOTE: These frequencies are valid for X400/ZBX. If we need to use this +// driver elsewhere, this part needs to be refactored. +const std::set<double> VALID_FOSC{61.44e6, 64e6, 62.5e6, 50e6}; + + +}; // namespace + +//! Control interface for an LMX2572 synthesizer +class lmx2572_impl : public lmx2572_iface +{ +public: + enum class muxout_state_t { LOCKDETECT, SDO }; + + explicit lmx2572_impl( + write_fn_t&& poke_fn, read_fn_t&& peek_fn, sleep_fn_t&& sleep_fn) + : _poke16(std::move(poke_fn)) + , _peek16(std::move(peek_fn)) + , _sleep(std::move(sleep_fn)) + , _regs() + { + _regs.save_state(); + } + + void commit() override + { + UHD_LOG_TRACE(LOG_ID, "Storing register cache to LMX2572..."); + const auto changed_addrs = _regs.get_changed_addrs<uint8_t>(); + for (const auto addr : changed_addrs) { + // We write R0 last, for double-buffering + if (addr == 0) { + continue; + } + _poke16(addr, _regs.get_reg(addr)); + } + _poke16(0, _regs.get_reg(0)); + _regs.save_state(); + UHD_LOG_TRACE(LOG_ID, + "Storing cache complete: Updated " << changed_addrs.size() << " registers."); + } + + bool get_enabled() override + { + // Chip is either in normal operation mode or power down mode + return _regs.powerdown == lmx2572_regs_t::powerdown_t::POWERDOWN_NORMAL_OPERATION; + } + + void set_enabled(const bool enabled) override + { + const bool prev_enabled = get_enabled(); + + _regs.powerdown = enabled + ? lmx2572_regs_t::powerdown_t::POWERDOWN_NORMAL_OPERATION + : lmx2572_regs_t::powerdown_t::POWERDOWN_POWER_DOWN; + _poke16(0, _regs.get_reg(0)); + + if (enabled && !prev_enabled) { + _sleep(POWERUP_DELAY); + } + } + + void reset() override + { + // Power-on Programming Sequence described in the datasheet, + // Section 7.5.1.1 + _regs = lmx2572_regs_t{}; + _regs.reset = lmx2572_regs_t::reset_t::RESET_RESET; + _poke16(0, _regs.get_reg(0)); + // Reset bit is self-clearing, it does not need to be poked twice. We + // manually reset it in the SW cache so we don't accidentally reset again + _regs.reset = lmx2572_regs_t::reset_t::RESET_NORMAL_OPERATION; + // Also enable register readback so we can read back the magic number + // register + _enable_register_readback(true); + // If the LO was previously powered down, the reset above will power it up. On + // power-up, we need to wait for the power up delay recommended by TI. + _sleep(POWERUP_DELAY); + // Check we can read back the last register, which always returns a + // magic constant: + const auto magic125 = _peek16(125); + if (magic125 != 0x2288) { + UHD_LOG_ERROR(LOG_ID, + "Unable to communicate with LMX2572! Expected R125==0x2288, got: " + << std::hex << magic125 << std::dec); + throw uhd::runtime_error("Unable to communicate to LMX2572!"); + } + UHD_LOG_TRACE(LOG_ID, "Communication with LMX2572 successful."); + // Now set _regs into a sensible state + _set_defaults(); + // Now write the regs in reverse order, skipping RO regs + const auto ro_regs = _regs.get_ro_regs(); + // Write R0 last for the double buffering + for (int addr = _regs.get_num_regs() - 2; addr >= 0; addr--) { + if (ro_regs.count(addr)) { + continue; + } + _poke16(uhd::narrow_cast<uint8_t>(addr), _regs.get_reg(addr)); + } + _regs.save_state(); + } + + bool get_lock_status() override + { + // Disable register readback which implicitly enables lock detect mode + _enable_register_readback(false); + // If the PLL is locked we expect to read 0xFFFF from any read + return _peek16(0) == 0xFFFF; + } + + uint16_t peek16(const uint8_t addr) + { + _enable_register_readback(true); + return _peek16(addr); + } + + void set_sync_mode(const bool enable) override + { + _sync_mode = enable; + } + + //! Returns the enabled/disabled state of the phase synchronization + bool get_sync_mode() override + { + return _sync_mode; + } + + void set_output_enable_all(const bool enable) override + { + set_output_enable(RF_OUTPUT_A, enable); + set_output_enable(RF_OUTPUT_B, enable); + } + + void set_output_enable(const output_t output, const bool enable) override + { + if (output == RF_OUTPUT_A) { + _regs.outa_pd = enable ? lmx2572_regs_t::outa_pd_t::OUTA_PD_NORMAL_OPERATION + : lmx2572_regs_t::outa_pd_t::OUTA_PD_POWER_DOWN; + return; + } + if (output == RF_OUTPUT_B) { + _regs.outb_pd = enable ? lmx2572_regs_t::outb_pd_t::OUTB_PD_NORMAL_OPERATION + : lmx2572_regs_t::outb_pd_t::OUTB_PD_POWER_DOWN; + return; + } + UHD_THROW_INVALID_CODE_PATH(); + } + + void set_output_power(const output_t output, const uint8_t power) override + { + if (output == RF_OUTPUT_A) { + _regs.outa_pwr = power; + return; + } + if (output == RF_OUTPUT_B) { + _regs.outb_pwr = power; + return; + } + UHD_THROW_INVALID_CODE_PATH(); + } + + void set_mux_input(const output_t output, const mux_in_t input) override + { + switch (output) { + case RF_OUTPUT_A: { + switch (input) { + case mux_in_t::DIVIDER: + _regs.outa_mux = + lmx2572_regs_t::outa_mux_t::OUTA_MUX_CHANNEL_DIVIDER; + return; + case mux_in_t::VCO: + _regs.outa_mux = lmx2572_regs_t::outa_mux_t::OUTA_MUX_VCO; + return; + case mux_in_t::HIGH_IMPEDANCE: + _regs.outa_mux = + lmx2572_regs_t::outa_mux_t::OUTA_MUX_HIGH_IMPEDANCE; + return; + default: + break; + } + break; + } + case RF_OUTPUT_B: { + switch (input) { + case mux_in_t::DIVIDER: + _regs.outb_mux = + lmx2572_regs_t::outb_mux_t::OUTB_MUX_CHANNEL_DIVIDER; + return; + case mux_in_t::VCO: + _regs.outb_mux = lmx2572_regs_t::outb_mux_t::OUTB_MUX_VCO; + return; + case mux_in_t::HIGH_IMPEDANCE: + _regs.outb_mux = + lmx2572_regs_t::outb_mux_t::OUTB_MUX_HIGH_IMPEDANCE; + return; + case mux_in_t::SYSREF: + _regs.outb_mux = lmx2572_regs_t::outb_mux_t::OUTB_MUX_SYSREF; + return; + default: + break; + } + break; + } + default: + break; + } + UHD_THROW_INVALID_CODE_PATH(); + } + + double set_frequency(const double target_freq, + const double fOSC, + const bool spur_dodging) override + { + // Sanity check + if (target_freq > MAX_OUT_FREQ || target_freq < MIN_OUT_FREQ) { + UHD_LOG_ERROR(LOG_ID, + "Invalid LMX2572 target frequency! Must be in [" + << (MIN_OUT_FREQ / 1e6) << " MHz, " << (MAX_OUT_FREQ / 1e6) + << " MHz]!"); + throw uhd::value_error("Invalid LMX2572 target frequency!"); + } + UHD_ASSERT_THROW(VALID_FOSC.count(fOSC)); + // Create an integer version of fOSC for some of the following + // calculations + const uint64_t fOSC_int = static_cast<uint64_t>(fOSC); + + // 1. Set up output/channel divider value and the output mux + const uint16_t out_D = _set_output_divider(target_freq); + const double fVCO = target_freq * out_D; + UHD_ASSERT_THROW(3200e6 <= fVCO && fVCO <= 6400e6); + + // 2. Configure the reference dividers/multipliers + _set_pll_div_and_mult(target_freq, fVCO, fOSC_int); + + // Calculate phase detector frequency + // See datasheet (Section 7.3.2): + // Equation (1): fPD = fOSC × OSC_2X × MULT / (PLL_R_PRE × PLL_R) + const double fPD = + fOSC * (_regs.osc_2x + 1) * _regs.mult / (_regs.pll_r_pre * _regs.pll_r); + + // pre-3. Identify SYNC category. + // Based on the category, we need to set VCO_PHASE_SYNC_EN appropriately + // and update our p-multiplier. + // Note: In the line below, we use target_freq and not actual_freq. That + // is OK, because we know that _get_sync_cat() only does a check to see + // if target_freq is an integer multiple of fOSC. If that's the case, + // then rounding/coercion errors won't happen between target_freq and + // actual_freq because we can always exactly produce frequencies that + // are integer multiples of fOSC. This way, we don't have a circular + // dependency (because actual_freq depends on p indirectly). + const int p = + _set_phase_sync(_get_sync_cat(_regs.mult, fOSC, target_freq, out_D)); + // P is introduced in Section 7.3.12 - calculate P with adaptation of + // Equation (3). It also comes up again in 8.1.6, although it's not + // called P there any more. There, it is the factor between N' and N. + // P == 2 whenever we're in a sync category where we need to program the + // N-divider with half the "normal" values. In TICS PRO, this value is + // described as "Calculated Included Channel Divide". + + // 3. Calculate N, PLL_NUM and PLL_DEN + const double delta_fVCO = spur_dodging ? 2e6 : 1.0; + // In the next statement, we: + // - Estimate PLL_DEN by PLL_DEN = ceil(fPD * p / delta_fVCO) + // - This value can exceed the limits of uint32_t, so we clamp it between + // 1 and 0xFFFFFFFF (the denominator can also not be zero, so we need + // to catch rounding errors) + // - Finally, convert to uint32_t + const uint32_t PLL_DEN = static_cast<uint32_t>(std::max(1.0, + std::min(std::ceil(fPD * p / delta_fVCO), + double(std::numeric_limits<uint32_t>::max())))); + UHD_ASSERT_THROW(PLL_DEN > 0); + // This is where we do the N=N'/2 division from Section 8.1.6: + const double N_real = fVCO / (fPD * p); + const uint32_t N = static_cast<uint32_t>(std::floor(N_real)); + const uint32_t PLL_NUM = std::round((N_real - double(N)) * PLL_DEN); + + // See datasheet (Section 7.3.4): + // Equation (2): fVCO = fPD * [PLL_N + (PLL_NUM / PLL_DEN)] * p + // Note that p here is the "extra divider in SYNC mode" that is in the + // text, but not listed in Eq. (2) in this section. + const double fVCO_actual = fPD * p * (N + (static_cast<double>(PLL_NUM) / PLL_DEN)); + UHD_ASSERT_THROW(3200e6 <= fVCO_actual && fVCO_actual <= 6400e6); + const double actual_freq = fVCO_actual / out_D; + // clang-format off + UHD_LOG_TRACE(LOG_ID, + "Calculating settings for fTARGET=" << (target_freq / 1e6) + << " MHz, fOSC=" << (fOSC / 1e6) + << " MHz: Target fVCO=" << (fVCO / 1e6) + << " MHz, actual fVCO=" << (fVCO_actual / 1e6) + << " MHz. R_pre=" << _regs.pll_r_pre + << " OSC2X=" << _regs.osc_2x + << " MULT=" << std::to_string(_regs.mult) + << " PLL_R=" << std::to_string(_regs.pll_r) + << " P=" << p + << " N=" << N + << " PLL_DEN=" << PLL_DEN + << " PLL_NUM=" << PLL_NUM + << " CHDIV=" << out_D); + // clang-format on + + // 4. Set frequency dependent registers + _compute_and_set_mult_hi(fOSC); + _set_pll_n(N); // Note: N-divider values already account for + _set_pll_num(PLL_NUM); // N-divider adaptations at this point. No more + _set_pll_den(PLL_DEN); // divide-by-2 necessary. + _set_fcal_hpfd_adj(fPD); + _set_fcal_lpfd_adj(fPD); + _set_pfd_dly(fVCO_actual); + _set_mash_seed(spur_dodging, PLL_NUM, fPD); + + if (get_sync_mode()) { + // From R69 register field description (Table 77): + // The delay should be at least 4 times the PLL lock time. The + // delay is expressed in state machine clock periods where + // state_machine_clock_period = 2^(CAL_CLK_DIV) / fOSC and + // CAL_CLK_DIV is one of {0, 1} + const double period = ((_regs.cal_clk_div == 0) ? 1 : 2) / fOSC; + const uint32_t mash_rst_count = + static_cast<uint32_t>(std::ceil(4 * PLL_LOCK_TIME / period)); + _set_mash_rst_count(mash_rst_count); + } + + // 5. Calculate charge pump gain + _compute_and_set_charge_pump_gain(fVCO_actual, N_real); + + // 6. Calculate VCO calibration values + _compute_and_set_vco_cal(fVCO_actual); + + // 7. Set amplitude on enabled outputs + if (_get_output_enabled(RF_OUTPUT_A)) { + _find_and_set_lo_power(actual_freq, RF_OUTPUT_A); + } + if (_get_output_enabled(RF_OUTPUT_B)) { + _find_and_set_lo_power(actual_freq, RF_OUTPUT_B); + } + + return actual_freq; + } + +private: + /************************************************************************** + * Attributes + *************************************************************************/ + write_fn_t _poke16; + read_fn_t _peek16; + sleep_fn_t _sleep; + lmx2572_regs_t _regs = lmx2572_regs_t(); + muxout_state_t _mux_state = muxout_state_t::SDO; + bool _sync_mode = false; + + /************************************************************************** + * Private Methods + *************************************************************************/ + //! Identify sync category according to Section 8.1.6 of the datasheet. This + // function implements the flowchart (Fig. 170). + sync_cat _get_sync_cat( + const uint8_t M, const double fOSC, const double fOUT, const uint16_t CHDIV) + { + if (!get_sync_mode()) { + return NONE; + } + // Right-hand path of the flowchart: + if (M > 1) { + if (CHDIV > 2) { + return CAT4; + } + if (std::fmod(fOUT, fOSC * M) != 0) { + return CAT4; + } + // In the flow chart, there's a third condition (PLL_NUM == 0) but + // that is implied in the previous condition. Here's the proof: + // 1) Because of the previous condition, we know that + // f_OUT = f_OSC * M * K, where K is an integer. + // We also know that that the doubler is disabled, so we can + // ignore it here. + // 2) PLL_NUM must be zero when f_VCO / f_PD is an integer value: + // + // f_VCO + // N = ----- + // f_PD + // + // 3) We can insert + // f_VCO = f_OUT * D + // and + // f_PD = f_OSC * M / R where R is an integer (R-divider) + // which yields: + // + // f_OUT * D * R + // N = ------------- + // f_OSC * M + // + // 4) Now we can insert 1), which yields + // + // N = K * D * R + // + // D is either 1 or 2, and K and R are integers. Therefore, N + // is an integer too, and PLL_NUM == 0. _ + // |_| + // + // Note: We could simply calculate N here, but that would require + // knowing K and R, which we can avoid with this simple comment. + } + // Left-hand path of the flowchart: + if (M == 1 && std::fmod(fOUT, fOSC) != 0) { + return CAT3; + } + if (M == 1 && CHDIV > 2) { + return CAT2; + } + if (CHDIV == 2) { + return CAT1B; + } + return CAT1A; + } + + //! Enable/disable register readback mode enabled + // SPI MISO is multiplexed to lock detect and register readback. Reading + // any register when the mux is set to lock detect will return just the + // lock detect signal, so ensure we're in readback mode if reads desired + void _enable_register_readback(const bool enable) + { + auto desired_state = enable + ? lmx2572_regs_t::muxout_ld_sel_t::MUXOUT_LD_SEL_REGISTER_READBACK + : lmx2572_regs_t::muxout_ld_sel_t::MUXOUT_LD_SEL_LOCK_DETECT; + if (_regs.muxout_ld_sel != desired_state) { + _regs.muxout_ld_sel = desired_state; + _poke16(0, _regs.get_reg(0)); + } + } + + //! Sets the output divider registers + // + // Configures both the output divider and the output mux. If the divider is + // used, the mux input is set to CHDIV, otherwise, it's set to VCO. + uint16_t _set_output_divider(const double freq) + { + // clang-format off + // Map the desired output / LO frequency to output divider settings + const std::map< + double, + std::tuple<uint16_t, lmx2572_regs_t::chdiv_t> + > out_div_map { + // freq outD chdiv + {25e6, {256, lmx2572_regs_t::chdiv_t::CHDIV_DIVIDE_BY_256}}, + {50e6, {128, lmx2572_regs_t::chdiv_t::CHDIV_DIVIDE_BY_128}}, + {100e6, {64, lmx2572_regs_t::chdiv_t::CHDIV_DIVIDE_BY_64 }}, + {200e6, {32, lmx2572_regs_t::chdiv_t::CHDIV_DIVIDE_BY_32 }}, + {400e6, {16, lmx2572_regs_t::chdiv_t::CHDIV_DIVIDE_BY_16 }}, + {800e6, {8, lmx2572_regs_t::chdiv_t::CHDIV_DIVIDE_BY_8 }}, + {1.6e9, {4, lmx2572_regs_t::chdiv_t::CHDIV_DIVIDE_BY_4 }}, + {3.2e9, {2, lmx2572_regs_t::chdiv_t::CHDIV_DIVIDE_BY_2 }}, + // CHDIV isn't used for out_divider == 1 so use DIVIDE_BY_2 + // We use +1 as an epsilon value here. Upon entering this function + // we already know that that freq <= 6.4e9. We increase the + // boundary here so that upper_bound() will not fail on the + // corner case freq == 6.4e9. + {6.4e9+1, {1, lmx2572_regs_t::chdiv_t::CHDIV_DIVIDE_BY_2 }} + }; + // clang-format on + + uint16_t out_D; + lmx2572_regs_t::chdiv_t chdiv; + auto out_div_it = out_div_map.upper_bound(freq); + UHD_ASSERT_THROW(out_div_it != out_div_map.end()); + std::tie(out_D, chdiv) = out_div_it->second; + _regs.chdiv = lmx2572_regs_t::chdiv_t(chdiv); + // If we're using the output divider, map it to the corresponding output + // mux. Otherwise, connect the VCO directly to the mux. + const mux_in_t input = (out_D > 1) ? mux_in_t::DIVIDER : mux_in_t::VCO; + if (_get_output_enabled(RF_OUTPUT_A)) { + set_mux_input(RF_OUTPUT_A, input); + } + if (_get_output_enabled(RF_OUTPUT_B)) { + set_mux_input(RF_OUTPUT_B, input); + } + + return out_D; + } + + //! Returns the output enabled status of output + bool _get_output_enabled(const output_t output) + { + if (output == RF_OUTPUT_A) { + return _regs.outa_pd == lmx2572_regs_t::outa_pd_t::OUTA_PD_NORMAL_OPERATION; + } else { + return _regs.outb_pd == lmx2572_regs_t::outb_pd_t::OUTB_PD_NORMAL_OPERATION; + } + } + + //! Sets the MASH_RST_COUNT registers + void _set_mash_rst_count(const uint32_t mash_rst_count) + { + _regs.mash_rst_count_upper = uhd::narrow_cast<uint16_t>(mash_rst_count >> 16); + _regs.mash_rst_count_lower = uhd::narrow_cast<uint16_t>(mash_rst_count); + } + + //! Calculate and set the mult_hi register + // + // Sets the MULT_HI bit (needs to be high if the multiplier output frequency + // is larger than 100 MHz). + // + // \param ref_frequency The OSCin signal's frequency. + void _compute_and_set_mult_hi(const double fOSC) + { + const double fMULTout = + (fOSC * (int(_regs.osc_2x) + 1) * _regs.mult) / _regs.pll_r_pre; + _regs.mult_hi = (_regs.mult > 1 && fMULTout > 100e6) + ? lmx2572_regs_t::mult_hi_t::MULT_HI_GREATER_THAN_100M + : lmx2572_regs_t::mult_hi_t::MULT_HI_LESS_THAN_EQUAL_TO_100M; + } + + //! Sets the mash seed value based on fPD and whether spur dodging is enabled + void _set_mash_seed(const bool spur_dodging, const uint32_t PLL_NUM, const double pfd) + { + uint32_t mash_seed = 0; + if (spur_dodging || PLL_NUM == 0) { + // Leave mash_seed set to 0 + } + else { + const std::map<double, uint32_t> seed_map = { + {25e6, 4999}, + {30.72e6, 5531}, + {31.25e6, 5591}, + {32e6, 5657}, + {50e6, 7096}, + {61.44e6, 7841}, + {62.5e6, 7907}, + {64e6, 7993} + }; + mash_seed = seed_map.lower_bound(pfd)->second; + } + _regs.mash_seed_upper = uhd::narrow_cast<uint16_t>(mash_seed >> 16); + _regs.mash_seed_lower = uhd::narrow_cast<uint16_t>(mash_seed); + } + + void _find_and_set_lo_power(const double freq, const output_t output) + { + if (freq < 3e9) { + set_output_power(output, 25); + } else if (3e9 <= freq && freq < 4e9) { + constexpr double slope = 5.0; + constexpr double segment_range = 1e9; + constexpr int power_base = 25; + const double offset = freq - 3e9; + const uint8_t power = + std::round<uint8_t>(power_base + ((offset / segment_range) * slope)); + set_output_power(output, power); + } else if (4e9 <= freq && freq < 5e9) { + constexpr double slope = 10.0; + constexpr double segment_range = 1e9; + constexpr int power_base = 30; + const double offset = freq - 4e9; + const uint8_t power = + std::round<uint8_t>(power_base + ((offset / segment_range) * slope)); + set_output_power(output, power); + } else if (5e9 <= freq && freq < 6.4e9) { + constexpr double slope = 5 / 1.4; + constexpr double segment_range = 1.4e9; + constexpr int power_base = 40; + const double offset = freq - 5e9; + const uint8_t power = + std::round<uint8_t>(power_base + ((offset / segment_range) * slope)); + set_output_power(output, power); + } else if (freq >= 6.4e9) { + set_output_power(output, 45); + } else { + UHD_THROW_INVALID_CODE_PATH(); + } + } + + //! Sets the FCAL_HPFD_ADJ value based on fPD + void _set_fcal_hpfd_adj(const double pfd) + { + // These frequency constants are from the data sheet (Section 7.6.1) + if (pfd <= 37.5e6) { + _regs.fcal_hpfd_adj = 0x0; + } else if (37.5e6 < pfd && pfd <= 75e6) { + _regs.fcal_hpfd_adj = 0x1; + } else if (75e6 < pfd && pfd <= 100e6) { + _regs.fcal_hpfd_adj = 0x2; + } else { // 100 MHz > pfd + _regs.fcal_hpfd_adj = 0x3; + } + } + + //! Sets the FCAL_LPFD_ADJ value based on the fPD (Section 7.6.1) + void _set_fcal_lpfd_adj(const double pfd) + { + // These frequency constants are from the data sheet (Section 7.6.1) + if (pfd >= 10e6) { + _regs.fcal_lpfd_adj = 0x0; + } else if (10e6 > pfd && pfd >= 5e6) { + _regs.fcal_lpfd_adj = 0x1; + } else if (5e6 > pfd && pfd >= 2.5e6) { + _regs.fcal_lpfd_adj = 0x2; + } else { // pfd > 2.5MHz + _regs.fcal_lpfd_adj = 0x3; + } + } + + //! Sets the PFD Delay value based on fVCO (Section 7.3.4) + void _set_pfd_dly(const double fVCO) + { + UHD_ASSERT_THROW(_regs.mash_order == lmx2572_regs_t::MASH_ORDER_THIRD_ORDER); + // Thse constants / values come from the data sheet (Table 3) + if (3.2e9 <= fVCO && fVCO < 4e9) { + _regs.pfd_dly_sel = 2; + } else if (4e9 <= fVCO && fVCO < 4.9e9) { + _regs.pfd_dly_sel = 2; + } else if (4.9e9 <= fVCO && fVCO <= 6.4e9) { + _regs.pfd_dly_sel = 3; + } else { + UHD_THROW_INVALID_CODE_PATH(); + } + } + + //! Sets the PLL divider and multiplier values + void _set_pll_div_and_mult( + const double fTARGET, const double fVCO, const uint64_t fOSC_int) + { + // We want to avoid SYNC category 4 (device unreliable in SYNC mode) so + // fix the pre-divider and multiplier to 1 + // See datasheet (Section 8.1.6) + _regs.pll_r_pre = 1; + _regs.mult = 1; + // Doubler fixed to disabled + _regs.osc_2x = lmx2572_regs_t::osc_2x_t::OSC_2X_DISABLED; + // Post-divider + uint8_t pll_r = 0; + // NOTE: This calculation is designed for the ZBX daughterboard. Should + // we want to reuse this driver elsewhere, we need to factor this out + // and make it a bit nicer. + if (get_sync_mode()) { + if (fTARGET < 3200e6) { + switch (fOSC_int) { + case 61440000: { + if (3200e6 <= fVCO && fVCO < 3950e6) { + pll_r = 2; + } else if (3950e6 <= fVCO && fVCO <= 6400e6) { + pll_r = 1; + } + break; + } + case 64000000: { + if (3200e6 <= fVCO && fVCO < 4100e6) { + pll_r = 2; + } else if (4150e6 < fVCO && fVCO <= 6400e6) { + pll_r = 1; + } + break; + } + case 62500000: { + if (3200e6 <= fVCO && fVCO < 4000e6) { + pll_r = 2; + } else if (4050e6 <= fVCO && fVCO <= 6400e6) { + pll_r = 1; + } + break; + } + case 50000000: { + pll_r = 1; + break; + } + default: + UHD_THROW_INVALID_CODE_PATH(); + } // end switch + } // end if (fTARGET < 3200e6) + else { + pll_r = 1; + } + } else { + pll_r = 1; + } + UHD_ASSERT_THROW(pll_r > 0); + _regs.pll_r = pll_r; + // Section 7.3.2 states to not use both the double and the multiplier + // (M), so let's check we're doing that + UHD_ASSERT_THROW( + _regs.mult == 1 || _regs.osc_2x == lmx2572_regs_t::osc_2x_t::OSC_2X_DISABLED); + } + + //! Set the value of VCO_PHASE_SYNC_EN according to our sync category + // + // Assumption: outa_mux and outb_mux have already been appropriately + // programmed for this use case. + // + // Also calculates the P-value (see set_frequency() for more discussion on + // that value). + int _set_phase_sync(const sync_cat cat) + { + int P = 1; + // We always set the default value for VCO_PHASE_SYNC_EN here. Some + // sync categories do not, in fact, require this bit to be asserted. + // By resetting it here, we can exactly follow the datasheet in the + // following switch statement. + _regs.vco_phase_sync_en = + lmx2572_regs_t::vco_phase_sync_en_t::VCO_PHASE_SYNC_EN_NORMAL_OPERATION; + // This switch statement implements Table 137 from Section 8.1.6 of the + // datasheet. + switch (cat) { + case CAT1A: + UHD_LOG_TRACE(LOG_ID, "Sync Category: 1A"); + // Nothing required in this mode, input and output are always + // at a deterministic phase relationship. + break; + case CAT1B: + UHD_LOG_TRACE(LOG_ID, "Sync Category: 1B"); + // Set VCO_PHASE_SYNC_EN = 1 + _regs.vco_phase_sync_en = lmx2572_regs_t::vco_phase_sync_en_t:: + VCO_PHASE_SYNC_EN_PHASE_SYNC_MODE; + P = 2; + break; + case CAT2: + UHD_LOG_TRACE(LOG_ID, "Sync Category: 2"); + // Note: We assume the existence and usage of the SYNC pin here. + // This means there are no more steps required (Steps 3-6 are + // skipped). + break; + case CAT3: + UHD_LOG_TRACE(LOG_ID, "Sync Category: 3"); + // In this category, we assume that the SYNC signal will be + // applied afterwards, and that timing requirements are met. + if (_regs.outa_mux == lmx2572_regs_t::outa_mux_t::OUTA_MUX_CHANNEL_DIVIDER + || _regs.outb_mux + == lmx2572_regs_t::outb_mux_t::OUTB_MUX_CHANNEL_DIVIDER) { + P = 2; + } + _regs.vco_phase_sync_en = lmx2572_regs_t::vco_phase_sync_en_t:: + VCO_PHASE_SYNC_EN_PHASE_SYNC_MODE; + break; + case CAT4: + UHD_LOG_TRACE(LOG_ID, "Sync Category: 4"); + UHD_LOG_WARNING(LOG_ID, + "PLL programming does not allow reliable phase synchronization!"); + break; + case NONE: + // No phase sync, we're done + break; + default: + UHD_THROW_INVALID_CODE_PATH(); + } + return P; + } + + //! Compute and set charge pump gain register + // TODO: Charge pump settings will eventually come from a + // lookup table in the Cal EEPROM for Charge Pump setting vs. F_CORE VCO_. + void _compute_and_set_charge_pump_gain(const double fVCO_actual, const double N_real) + { + // clang-format off + // Table 135 (VCO Gain) + const std::map< + double, + std::tuple<double, double, uint8_t, uint8_t, uint8_t> + > vco_gain_map { + // fmax fmin fmax vco kmin kmax + {3.65e9, {3.2e9, 3.65e9, 1, 32, 47}}, + {4.2e9, {3.65e9, 4.2e9, 2, 35, 54}}, + {4.65e9, {4.2e9, 4.65e9, 3, 47, 64}}, + {5.2e9, {4.65e9, 5.2e9, 4, 50, 73}}, + {5.75e9, {5.2e9, 5.75e9, 5, 61, 82}}, + {6.4e9, {5.75e9, 6.4e9, 6, 57, 79}} + }; + // clang-format on + double fmin, fmax; + int VCO_CORE; + int KvcoMin, KvcoMax; + auto vco_gain_it = vco_gain_map.lower_bound(fVCO_actual); + UHD_ASSERT_THROW(vco_gain_it != vco_gain_map.end()); + std::tie(fmin, fmax, VCO_CORE, KvcoMin, KvcoMax) = vco_gain_it->second; + double Kvco = uhd::math::linear_interp<double>(fVCO_actual, fmin, KvcoMin, fmax, KvcoMax); + + // Calculate the optimal charge pump current (uA) + const double icp = 2 * uhd::math::PI * TARGET_LOOP_BANDWIDTH * N_real / (Kvco * LOOP_GAIN_SETTING_RESISTANCE); + + // clang-format off + // Table 2 (Charge Pump Gain) + const std::map<double, uint8_t> cpg_map = { + // gain cpg + { 0, 0}, + { 625, 1}, + {1250, 2}, + {1875, 3}, + {2500, 4}, + {3125, 5}, + {3750, 6}, + {4375, 7}, + {5000, 12}, + {5625, 13}, + {6250, 14}, + {6875, 15} + }; + // clang-format on + const uint8_t cpg = uhd::math::at_nearest(cpg_map, icp); + _regs.cpg = cpg; + } + + //! Compute and set VCO calibration values + // This method implements VCO partial assist calibration + // See datasheet (Section 8.1.4.1) + void _compute_and_set_vco_cal(const double fVCO_actual) + { + // clang-format off + // Table 136 + const std::map< + double, + std::tuple<double, double, uint8_t, uint8_t, uint8_t, uint16_t, uint16_t> + > vco_partial_assist_map{ + // fmax fmin fmax vco Cmin Cmax Amin Amax + {3.65e9, {3.2e9, 3.65e9, 1, 131, 19, 138, 137}}, + {4.2e9, {3.65e9, 4.2e9, 2, 143, 25, 162, 142}}, + {4.65e9, {4.2e9, 4.65e9, 3, 135, 34, 126, 114}}, + {5.2e9, {4.65e9, 5.2e9, 4, 136, 25, 195, 172}}, + {5.75e9, {5.2e9, 5.75e9, 5, 133, 20, 190, 163}}, + {6.4e9, {5.75e9, 6.4e9, 6, 151, 27, 256, 204}} + }; + // clang-format on + double fmin, fmax; + uint8_t VCO_CORE, Cmin, Cmax; + uint16_t Amin, Amax; + auto vco_cal_it = vco_partial_assist_map.lower_bound(fVCO_actual); + UHD_ASSERT_THROW(vco_cal_it != vco_partial_assist_map.end()); + std::tie(fmin, fmax, VCO_CORE, Cmin, Cmax, Amin, Amax) = vco_cal_it->second; + + uint16_t VCO_CAPCTRL_STRT = + std::round(Cmin - (fVCO_actual - fmin) * (Cmin - Cmax) / (fmax - fmin)); + // From R78 register field description (Table 86) + const uint16_t VCO_CAPCTRL_STRT_MAX = 183; + VCO_CAPCTRL_STRT = std::min(VCO_CAPCTRL_STRT_MAX, VCO_CAPCTRL_STRT); + + uint16_t VCO_DACISET_STRT = + std::round(Amin - ((fVCO_actual - fmin) * (Amin - Amax) / (fmax - fmin))); + // From R17 register field description (Table 25), 9-bit register + const uint16_t VCO_DACISET_STRT_MAX = 511; // 0x1FF + VCO_DACISET_STRT = std::min(VCO_DACISET_STRT, VCO_DACISET_STRT_MAX); + + _regs.vco_sel = VCO_CORE; + _regs.vco_capctrl_strt = VCO_CAPCTRL_STRT; + _regs.vco_daciset_strt = VCO_DACISET_STRT; + } + + void _set_pll_n(const uint32_t n) + { + UHD_ASSERT_THROW((n & 0x7FFFF) == n); + // The regs object masks internally, this 0x7 is just for the sake of + // reading + _regs.pll_n_upper_3_bits = uhd::narrow_cast<uint16_t>((n >> 16) & 0x7); + _regs.pll_n_lower_16_bits = uhd::narrow_cast<uint16_t>(n); + } + + void _set_pll_num(const uint32_t num) + { + _regs.pll_num_upper = uhd::narrow_cast<uint16_t>(num >> 16); + _regs.pll_num_lower = uhd::narrow_cast<uint16_t>(num); + } + + void _set_pll_den(const uint32_t den) + { + _regs.pll_den_upper = uhd::narrow_cast<uint16_t>(den >> 16); + _regs.pll_den_lower = uhd::narrow_cast<uint16_t>(den); + } + + + // NOTE: Some of these defaults are just sensible defaults, and get + // overwritten as soon as anything interesting happens. Other defaults are + // specific to X400/ZBX. If we want to use this driver for other dboards, + // we should add APIs to set those other things in order not to have a + // leaky abstraction (we'd like to contain lmx2572_regs_t within this file). + void _set_defaults() + { + _regs.ramp_en = lmx2572_regs_t::ramp_en_t::RAMP_EN_NORMAL_OPERATION; + _regs.vco_phase_sync_en = + lmx2572_regs_t::vco_phase_sync_en_t::VCO_PHASE_SYNC_EN_NORMAL_OPERATION; + _regs.add_hold = 0; + _regs.out_mute = lmx2572_regs_t::out_mute_t::OUT_MUTE_MUTED; + _regs.fcal_hpfd_adj = 1; + _regs.fcal_lpfd_adj = 0; + _regs.fcal_en = lmx2572_regs_t::fcal_en_t::FCAL_EN_ENABLE; + _regs.muxout_ld_sel = lmx2572_regs_t::muxout_ld_sel_t::MUXOUT_LD_SEL_LOCK_DETECT; + _regs.reset = lmx2572_regs_t::reset_t::RESET_NORMAL_OPERATION; + _regs.powerdown = lmx2572_regs_t::powerdown_t::POWERDOWN_NORMAL_OPERATION; + + _regs.cal_clk_div = 0; + + _regs.ipbuf_type = lmx2572_regs_t::ipbuf_type_t::IPBUF_TYPE_DIFFERENTIAL; + _regs.ipbuf_term = lmx2572_regs_t::ipbuf_term_t::IPBUF_TERM_INTERNALLY_TERMINATED; + + _regs.out_force = lmx2572_regs_t::out_force_t::OUT_FORCE_USE_OUT_MUTE; + + // set_frequency() implements VCO Partial assist so set the correct modes of + // operation and some defaults (defaults will get overwritten) + // See datasheet (Section 8.1.4) + _regs.vco_daciset_force = + lmx2572_regs_t::vco_daciset_force_t::VCO_DACISET_FORCE_NORMAL_OPERATION; + _regs.vco_capctrl_force = + lmx2572_regs_t::vco_capctrl_force_t::VCO_CAPCTRL_FORCE_NORMAL_OPERATION; + _regs.vco_sel_force = lmx2572_regs_t::vco_sel_force_t::VCO_SEL_FORCE_DISABLED; + _regs.vco_daciset_strt = 0x096; + _regs.vco_sel = 0x6; + _regs.vco_capctrl_strt = 0; + + _regs.mult_hi = lmx2572_regs_t::mult_hi_t::MULT_HI_LESS_THAN_EQUAL_TO_100M; + _regs.osc_2x = lmx2572_regs_t::osc_2x_t::OSC_2X_DISABLED; + + _regs.mult = 1; + + _regs.pll_r = 1; + + _regs.pll_r_pre = 1; + + _regs.cpg = 7; + + _regs.pll_n_upper_3_bits = 0; + _regs.pll_n_lower_16_bits = 0x28; + + _regs.mash_seed_en = lmx2572_regs_t::mash_seed_en_t::MASH_SEED_EN_ENABLED; + _regs.pfd_dly_sel = 0x2; + + _regs.pll_den_upper = 0; + _regs.pll_den_lower = 0; + + _regs.mash_seed_upper = 0; + _regs.mash_seed_lower = 0; + + _regs.pll_num_upper = 0; + _regs.pll_num_lower = 0; + + _regs.outa_pwr = 0; + _regs.outb_pd = lmx2572_regs_t::outb_pd_t::OUTB_PD_POWER_DOWN; + _regs.outa_pd = lmx2572_regs_t::outa_pd_t::OUTA_PD_POWER_DOWN; + _regs.mash_reset_n = + lmx2572_regs_t::mash_reset_n_t::MASH_RESET_N_NORMAL_OPERATION; + _regs.mash_order = lmx2572_regs_t::mash_order_t::MASH_ORDER_THIRD_ORDER; + + _regs.outa_mux = lmx2572_regs_t::outa_mux_t::OUTA_MUX_VCO; + _regs.outb_pwr = 0; + + _regs.outb_mux = lmx2572_regs_t::outb_mux_t::OUTB_MUX_VCO; + + _regs.inpin_ignore = 0; + _regs.inpin_hyst = lmx2572_regs_t::inpin_hyst_t::INPIN_HYST_DISABLED; + _regs.inpin_lvl = lmx2572_regs_t::inpin_lvl_t::INPIN_LVL_INVALID; + _regs.inpin_fmt = + lmx2572_regs_t::inpin_fmt_t::INPIN_FMT_SYNC_EQUALS_SYSREFREQ_EQUALS_CMOS2; + + _regs.ld_type = lmx2572_regs_t::ld_type_t::LD_TYPE_VTUNE_AND_VCOCAL; + + _regs.ld_dly = 100; + // See Table 144 (LDO_DLY Setting) + _regs.ldo_dly = 3; + + _regs.dblbuf_en_0 = lmx2572_regs_t::dblbuf_en_0_t::DBLBUF_EN_0_ENABLED; + _regs.dblbuf_en_1 = lmx2572_regs_t::dblbuf_en_1_t::DBLBUF_EN_1_ENABLED; + _regs.dblbuf_en_2 = lmx2572_regs_t::dblbuf_en_2_t::DBLBUF_EN_2_ENABLED; + _regs.dblbuf_en_3 = lmx2572_regs_t::dblbuf_en_3_t::DBLBUF_EN_3_ENABLED; + _regs.dblbuf_en_4 = lmx2572_regs_t::dblbuf_en_4_t::DBLBUF_EN_4_ENABLED; + _regs.dblbuf_en_5 = lmx2572_regs_t::dblbuf_en_5_t::DBLBUF_EN_5_ENABLED; + + _regs.mash_rst_count_upper = 0; + _regs.mash_rst_count_lower = 0; + + // Always gets set by set_frequency() + _regs.chdiv = lmx2572_regs_t::chdiv_t::CHDIV_DIVIDE_BY_2; + + _regs.ramp_thresh_33rd = 0; + _regs.quick_recal_en = 0; + + _regs.ramp_thresh_upper = 0; + _regs.ramp_thresh_lower = 0; + + _regs.ramp_limit_high_33rd = 0; + _regs.ramp_limit_high_upper = 0; + _regs.ramp_limit_high_lower = 0; + + _regs.ramp_limit_low_33rd = 0; + _regs.ramp_limit_low_upper = 0; + _regs.ramp_limit_low_lower = 0; + + // Per the datasheet, the following fields need to be programmed to specific + // constants which differ from the defaults after a reset occurs + _regs.reg29_reserved0 = 0; + _regs.reg30_reserved0 = 0x18A6; + _regs.reg52_reserved0 = 0x421; + _regs.reg57_reserved0 = 0x20; + _regs.reg78_reserved0 = 1; + } +}; + +lmx2572_iface::sptr lmx2572_iface::make(lmx2572_iface::write_fn_t&& poke_fn, + lmx2572_iface::read_fn_t&& peek_fn, + lmx2572_iface::sleep_fn_t&& sleep_fn) +{ + return std::make_shared<lmx2572_impl>( + std::move(poke_fn), std::move(peek_fn), std::move(sleep_fn)); +} diff --git a/host/lib/usrp/dboard/CMakeLists.txt b/host/lib/usrp/dboard/CMakeLists.txt index 2dd4e7e26..1d31d6930 100644 --- a/host/lib/usrp/dboard/CMakeLists.txt +++ b/host/lib/usrp/dboard/CMakeLists.txt @@ -49,3 +49,10 @@ endif(ENABLE_N300) if(ENABLE_N320) INCLUDE_SUBDIRECTORY(rhodium) endif(ENABLE_N320) +if(ENABLE_MPMD AND ENABLE_EISCAT) + INCLUDE_SUBDIRECTORY(eiscat) +endif(ENABLE_MPMD AND ENABLE_EISCAT) + +if(ENABLE_X400) + INCLUDE_SUBDIRECTORY(zbx) +endif(ENABLE_X400) diff --git a/host/lib/usrp/dboard/zbx/CMakeLists.txt b/host/lib/usrp/dboard/zbx/CMakeLists.txt new file mode 100644 index 000000000..4a4a39d56 --- /dev/null +++ b/host/lib/usrp/dboard/zbx/CMakeLists.txt @@ -0,0 +1,17 @@ +# +# Copyright 2019 Ettus Research, a National Instruments Brand +# +# SPDX-License-Identifier: GPL-3.0-or-later +# + +IF(ENABLE_X400) + LIST(APPEND X410_SOURCES + ${CMAKE_CURRENT_SOURCE_DIR}/zbx_dboard.cpp + ${CMAKE_CURRENT_SOURCE_DIR}/zbx_dboard_init.cpp + ${CMAKE_CURRENT_SOURCE_DIR}/zbx_cpld_ctrl.cpp + ${CMAKE_CURRENT_SOURCE_DIR}/zbx_lo_ctrl.cpp + ${CMAKE_CURRENT_SOURCE_DIR}/zbx_expert.cpp + ) + LIBUHD_APPEND_SOURCES(${X410_SOURCES}) +ENDIF(ENABLE_X400) + diff --git a/host/lib/usrp/dboard/zbx/zbx_cpld_ctrl.cpp b/host/lib/usrp/dboard/zbx/zbx_cpld_ctrl.cpp new file mode 100644 index 000000000..8899f2a18 --- /dev/null +++ b/host/lib/usrp/dboard/zbx/zbx_cpld_ctrl.cpp @@ -0,0 +1,931 @@ +// +// Copyright 2020 Ettus Research, a National Instruments Brand +// +// SPDX-License-Identifier: GPL-3.0-or-later +// + +#include <uhd/utils/log.hpp> +#include <uhdlib/usrp/dboard/zbx/zbx_cpld_ctrl.hpp> +#include <chrono> +#include <map> +#include <thread> + +namespace { +//! The time we need to wait after sending a SPI command +const uhd::time_spec_t SPI_THROTTLE_TIME = uhd::time_spec_t(2e-6); +} // namespace + +namespace uhd { namespace usrp { namespace zbx { + +// clang-format off +const std::unordered_map<size_t, std::unordered_map<zbx_cpld_ctrl::dsa_type, zbx_cpld_regs_t::zbx_cpld_field_t>> + RX_DSA_CPLD_MAP +{ + {0, { + {zbx_cpld_ctrl::dsa_type::DSA1, zbx_cpld_regs_t::zbx_cpld_field_t::RX0_DSA1}, + {zbx_cpld_ctrl::dsa_type::DSA2, zbx_cpld_regs_t::zbx_cpld_field_t::RX0_DSA2}, + {zbx_cpld_ctrl::dsa_type::DSA3A, zbx_cpld_regs_t::zbx_cpld_field_t::RX0_DSA3_A}, + {zbx_cpld_ctrl::dsa_type::DSA3B, zbx_cpld_regs_t::zbx_cpld_field_t::RX0_DSA3_B} + }}, + {1, { + {zbx_cpld_ctrl::dsa_type::DSA1, zbx_cpld_regs_t::zbx_cpld_field_t::RX1_DSA1}, + {zbx_cpld_ctrl::dsa_type::DSA2, zbx_cpld_regs_t::zbx_cpld_field_t::RX1_DSA2}, + {zbx_cpld_ctrl::dsa_type::DSA3A, zbx_cpld_regs_t::zbx_cpld_field_t::RX1_DSA3_A}, + {zbx_cpld_ctrl::dsa_type::DSA3B, zbx_cpld_regs_t::zbx_cpld_field_t::RX1_DSA3_B} + }} +}; + +const std::unordered_map<size_t, std::unordered_map<zbx_cpld_ctrl::dsa_type, zbx_cpld_regs_t::zbx_cpld_field_t>> + TX_DSA_CPLD_MAP +{ + {0, { + {zbx_cpld_ctrl::dsa_type::DSA1, zbx_cpld_regs_t::zbx_cpld_field_t::TX0_DSA1}, + {zbx_cpld_ctrl::dsa_type::DSA2, zbx_cpld_regs_t::zbx_cpld_field_t::TX0_DSA2} + }}, + {1, { + {zbx_cpld_ctrl::dsa_type::DSA1, zbx_cpld_regs_t::zbx_cpld_field_t::TX1_DSA1}, + {zbx_cpld_ctrl::dsa_type::DSA2, zbx_cpld_regs_t::zbx_cpld_field_t::TX1_DSA2} + }} +}; +// clang-format on + + +const std::unordered_map<std::string, zbx_cpld_ctrl::dsa_type> zbx_cpld_ctrl::dsa_map{ + {ZBX_GAIN_STAGE_DSA1, zbx_cpld_ctrl::dsa_type::DSA1}, + {ZBX_GAIN_STAGE_DSA2, zbx_cpld_ctrl::dsa_type::DSA2}, + {ZBX_GAIN_STAGE_DSA3A, zbx_cpld_ctrl::dsa_type::DSA3A}, + {ZBX_GAIN_STAGE_DSA3B, zbx_cpld_ctrl::dsa_type::DSA3B}}; + +zbx_cpld_ctrl::zbx_cpld_ctrl(poke_fn_type&& poke_fn, + peek_fn_type&& peek_fn, + sleep_fn_type&& sleep_fn, + const std::string& log_id) + : _poke32(std::move(poke_fn)) + , _peek32(std::move(peek_fn)) + , _sleep(std::move(sleep_fn)) + , _lo_spi_offset(_regs.get_addr("SPI_READY")) + , _log_id(log_id) +{ + UHD_LOG_TRACE(_log_id, "Entering CPLD ctor..."); + // Reset and stash the regs state. We can't assume the defaults in + // gen_zbx_cpld_regs.py match what's on the hardware. + commit(NO_CHAN, true); + _regs.save_state(); +} + +void zbx_cpld_ctrl::set_scratch(const uint32_t value) +{ + _regs.SCRATCH = value; + commit(NO_CHAN); +} + +uint32_t zbx_cpld_ctrl::get_scratch() +{ + return _peek32(_regs.get_addr("SCRATCH")); +} + +void zbx_cpld_ctrl::set_atr_mode( + const size_t channel, const atr_mode_target target, const atr_mode mode) +{ + UHD_ASSERT_THROW(channel == 0 || channel == 1); + if (target == atr_mode_target::DSA) { + if (channel == 0) { + _regs.RF0_DSA_OPTION = static_cast<zbx_cpld_regs_t::RF0_DSA_OPTION_t>(mode); + } else { + _regs.RF1_DSA_OPTION = static_cast<zbx_cpld_regs_t::RF1_DSA_OPTION_t>(mode); + } + } else { + if (channel == 0) { + _regs.RF0_OPTION = static_cast<zbx_cpld_regs_t::RF0_OPTION_t>(mode); + } else { + _regs.RF1_OPTION = static_cast<zbx_cpld_regs_t::RF1_OPTION_t>(mode); + } + } + commit(channel == 0 ? CHAN0 : CHAN1); +} + +void zbx_cpld_ctrl::set_sw_config( + const size_t channel, const atr_mode_target target, const uint8_t rf_config) +{ + UHD_ASSERT_THROW(channel == 0 || channel == 1); + // clang-format off + static const std::map<std::pair<size_t, atr_mode_target>, zbx_cpld_regs_t::zbx_cpld_field_t> + mode_map{ + {{0, atr_mode_target::PATH_LED}, zbx_cpld_regs_t::zbx_cpld_field_t::SW_RF0_CONFIG }, + {{1, atr_mode_target::PATH_LED}, zbx_cpld_regs_t::zbx_cpld_field_t::SW_RF1_CONFIG }, + {{0, atr_mode_target::DSA }, zbx_cpld_regs_t::zbx_cpld_field_t::SW_RF0_DSA_CONFIG}, + {{1, atr_mode_target::DSA }, zbx_cpld_regs_t::zbx_cpld_field_t::SW_RF1_DSA_CONFIG} + }; + // clang-format on + _regs.set_field(mode_map.at({channel, target}), rf_config); + commit(channel == 0 ? CHAN0 : CHAN1); +} + +uint8_t zbx_cpld_ctrl::get_current_config( + const size_t channel, const atr_mode_target target) +{ + UHD_ASSERT_THROW(channel == 0 || channel == 1); + const uint16_t addr = _regs.get_addr("CURRENT_RF0_CONFIG"); + const uint32_t config_reg = _peek32(addr); + _regs.set_reg(addr, config_reg); + _regs.save_state(); + // clang-format off + static const std::map<std::pair<size_t, atr_mode_target>, zbx_cpld_regs_t::zbx_cpld_field_t> + mode_map{ + {{0, atr_mode_target::PATH_LED}, zbx_cpld_regs_t::zbx_cpld_field_t::CURRENT_RF0_CONFIG }, + {{1, atr_mode_target::PATH_LED}, zbx_cpld_regs_t::zbx_cpld_field_t::CURRENT_RF1_CONFIG }, + {{0, atr_mode_target::DSA}, zbx_cpld_regs_t::zbx_cpld_field_t::CURRENT_RF0_DSA_CONFIG}, + {{1, atr_mode_target::DSA}, zbx_cpld_regs_t::zbx_cpld_field_t::CURRENT_RF1_DSA_CONFIG} + }; + // clang-format on + return _regs.get_field(mode_map.at({channel, target})); +} + +void zbx_cpld_ctrl::set_tx_gain_switches( + const size_t channel, const uint8_t idx, const tx_dsa_type& dsa_steps) +{ + UHD_ASSERT_THROW(channel < ZBX_NUM_CHANS); + + UHD_LOG_TRACE(_log_id, + "Set TX DSA for channel " << channel << ": DSA1=" << dsa_steps[0] << ", DSA2=" + << dsa_steps[1] << ", AMP=" << dsa_steps[2]); + if (channel == 0) { + _regs.TX0_DSA1[idx] = dsa_steps[0]; + _regs.TX0_DSA2[idx] = dsa_steps[1]; + } else if (channel == 1) { + _regs.TX1_DSA1[idx] = dsa_steps[0]; + _regs.TX1_DSA2[idx] = dsa_steps[1]; + } + // Correct amp path gets configured by switch_tx_antenna_switches() + commit(channel == 0 ? CHAN0 : CHAN1); +} + +void zbx_cpld_ctrl::set_rx_gain_switches( + const size_t channel, const uint8_t idx, const rx_dsa_type& dsa_steps) +{ + UHD_LOG_TRACE(_log_id, + "Setting RX DSA for channel " + << channel << ": DSA1=" << dsa_steps[0] << ", DSA2=" << dsa_steps[1] + << ", DSA3A=" << dsa_steps[2] << ", DSA3B=" << dsa_steps[3]); + if (channel == 0) { + _regs.RX0_DSA1[idx] = dsa_steps[0]; + _regs.RX0_DSA2[idx] = dsa_steps[1]; + _regs.RX0_DSA3_A[idx] = dsa_steps[2]; + _regs.RX0_DSA3_B[idx] = dsa_steps[3]; + } else if (channel == 1) { + _regs.RX1_DSA1[idx] = dsa_steps[0]; + _regs.RX1_DSA2[idx] = dsa_steps[1]; + _regs.RX1_DSA3_A[idx] = dsa_steps[2]; + _regs.RX1_DSA3_B[idx] = dsa_steps[3]; + } + commit(channel == 0 ? CHAN0 : CHAN1); +} + +void zbx_cpld_ctrl::set_rx_gain_switches( + const size_t channel, const uint8_t idx, const uint8_t table_idx) +{ + UHD_ASSERT_THROW(channel < ZBX_NUM_CHANS); + UHD_LOG_TRACE(_log_id, + "Setting RX DSA for channel " << channel << " from table index " << table_idx); + if (channel == 0) { + _regs.RX0_TABLE_SELECT[idx] = table_idx; + } else { + _regs.RX1_TABLE_SELECT[idx] = table_idx; + } + commit(channel == 0 ? CHAN0 : CHAN1); +} + +void zbx_cpld_ctrl::set_tx_gain_switches( + const size_t channel, const uint8_t idx, const uint8_t table_idx) +{ + UHD_ASSERT_THROW(channel < ZBX_NUM_CHANS); + UHD_LOG_TRACE(_log_id, + "Setting TX DSA for channel " << channel << " from table index " << table_idx); + if (channel == 0) { + _regs.TX0_TABLE_SELECT[idx] = table_idx; + } else { + _regs.TX1_TABLE_SELECT[idx] = table_idx; + } + commit(channel == 0 ? CHAN0 : CHAN1); +} + +uint8_t zbx_cpld_ctrl::set_tx_dsa( + const size_t channel, const uint8_t idx, const dsa_type tx_dsa, const uint8_t att) +{ + UHD_ASSERT_THROW(channel == 0 || channel == 1); + UHD_ASSERT_THROW(tx_dsa == dsa_type::DSA1 || tx_dsa == dsa_type::DSA2); + const uint8_t att_coerced = std::min(att, ZBX_TX_DSA_MAX_ATT); + _regs.set_field(TX_DSA_CPLD_MAP.at(channel).at(tx_dsa), att_coerced, idx); + commit(channel == 0 ? CHAN0 : CHAN1); + return att_coerced; +} + +uint8_t zbx_cpld_ctrl::set_rx_dsa( + const size_t channel, const uint8_t idx, const dsa_type rx_dsa, const uint8_t att) +{ + UHD_ASSERT_THROW(channel == 0 || channel == 1); + const uint8_t att_coerced = std::min(att, ZBX_RX_DSA_MAX_ATT); + _regs.set_field(RX_DSA_CPLD_MAP.at(channel).at(rx_dsa), att_coerced, idx); + commit(channel == 0 ? CHAN0 : CHAN1); + return att_coerced; +} + +uint8_t zbx_cpld_ctrl::get_tx_dsa(const size_t channel, + const uint8_t idx, + const dsa_type tx_dsa, + const bool update_cache) +{ + UHD_ASSERT_THROW(channel == 0 || channel == 1); + UHD_ASSERT_THROW(tx_dsa == dsa_type::DSA1 || tx_dsa == dsa_type::DSA2); + if (update_cache) { + update_field(TX_DSA_CPLD_MAP.at(channel).at(tx_dsa), idx); + } + return _regs.get_field(TX_DSA_CPLD_MAP.at(channel).at(tx_dsa), idx); +} + +uint8_t zbx_cpld_ctrl::get_rx_dsa(const size_t channel, + const uint8_t idx, + const dsa_type rx_dsa, + const bool update_cache) +{ + UHD_ASSERT_THROW(channel == 0 || channel == 1); + if (update_cache) { + update_field(RX_DSA_CPLD_MAP.at(channel).at(rx_dsa), idx); + } + return _regs.get_field(RX_DSA_CPLD_MAP.at(channel).at(rx_dsa), idx); +} + +void zbx_cpld_ctrl::set_tx_antenna_switches( + const size_t channel, const uint8_t idx, const std::string& antenna, const tx_amp amp) +{ + UHD_ASSERT_THROW(channel < ZBX_NUM_CHANS); + UHD_ASSERT_THROW( + amp == tx_amp::BYPASS || amp == tx_amp::LOWBAND || amp == tx_amp::HIGHBAND); + + // Antenna settings: TX/RX, CAL_LOOPBACK + if (channel == 0) { + if (antenna == ANTENNA_TXRX) { + // clang-format off + static const std::map<tx_amp, + std::pair<zbx_cpld_regs_t::TX0_ANT_11_t, zbx_cpld_regs_t::TX0_ANT_10_t>> amp_map{ + {tx_amp::BYPASS, {zbx_cpld_regs_t::TX0_ANT_11_BYPASS_AMP, zbx_cpld_regs_t::TX0_ANT_10_BYPASS_AMP}}, + {tx_amp::LOWBAND, {zbx_cpld_regs_t::TX0_ANT_11_LOWBAND_AMP, zbx_cpld_regs_t::TX0_ANT_10_LOWBAND_AMP}}, + {tx_amp::HIGHBAND, {zbx_cpld_regs_t::TX0_ANT_11_HIGHBAND_AMP, zbx_cpld_regs_t::TX0_ANT_10_HIGHBAND_AMP}} + }; + // clang-format on + std::tie(_regs.TX0_ANT_11[idx], _regs.TX0_ANT_10[idx]) = amp_map.at(amp); + } else if (antenna == ANTENNA_CAL_LOOPBACK) { + _regs.TX0_ANT_10[idx] = zbx_cpld_regs_t::TX0_ANT_10_CAL_LOOPBACK; + _regs.RX0_ANT_1[idx] = zbx_cpld_regs_t::RX0_ANT_1_CAL_LOOPBACK; + _regs.TX0_ANT_11[idx] = zbx_cpld_regs_t::TX0_ANT_11_BYPASS_AMP; + } else { + UHD_LOG_WARNING(_log_id, + "ZBX Radio: TX Antenna setting not recognized: \"" << antenna.c_str() + << "\""); + } + } else { + // Antenna settings: TX/RX, CAL_LOOPBACK + if (antenna == ANTENNA_TXRX) { + // clang-format off + static const std::map<tx_amp, + std::pair<zbx_cpld_regs_t::TX1_ANT_11_t, zbx_cpld_regs_t::TX1_ANT_10_t>> amp_map{ + {tx_amp::BYPASS, {zbx_cpld_regs_t::TX1_ANT_11_BYPASS_AMP, zbx_cpld_regs_t::TX1_ANT_10_BYPASS_AMP}}, + {tx_amp::LOWBAND, {zbx_cpld_regs_t::TX1_ANT_11_LOWBAND_AMP, zbx_cpld_regs_t::TX1_ANT_10_LOWBAND_AMP}}, + {tx_amp::HIGHBAND, {zbx_cpld_regs_t::TX1_ANT_11_HIGHBAND_AMP, zbx_cpld_regs_t::TX1_ANT_10_HIGHBAND_AMP}} + }; + // clang-format on + std::tie(_regs.TX1_ANT_11[idx], _regs.TX1_ANT_10[idx]) = amp_map.at(amp); + } else if (antenna == ANTENNA_CAL_LOOPBACK) { + _regs.TX1_ANT_10[idx] = zbx_cpld_regs_t::TX1_ANT_10_CAL_LOOPBACK; + _regs.RX1_ANT_1[idx] = zbx_cpld_regs_t::RX1_ANT_1_CAL_LOOPBACK; + _regs.TX1_ANT_11[idx] = zbx_cpld_regs_t::TX1_ANT_11_BYPASS_AMP; + } else { + UHD_LOG_WARNING(_log_id, + "ZBX Radio: TX Antenna setting not recognized: \"" << antenna << "\""); + } + } + commit(channel == 0 ? CHAN0 : CHAN1); +} + +void zbx_cpld_ctrl::set_rx_antenna_switches( + const size_t channel, const uint8_t idx, const std::string& antenna) +{ + UHD_ASSERT_THROW(channel < ZBX_NUM_CHANS); + + // Antenna settings: RX2, TX/RX, CAL_LOOPBACK, TERMINATION + if (channel == 0) { + if (antenna == ANTENNA_TXRX) { + _regs.RX0_ANT_1[idx] = zbx_cpld_regs_t::RX0_ANT_1_TX_RX; + _regs.TX0_ANT_11[idx] = zbx_cpld_regs_t::TX0_ANT_11_TX_RX; + } else if (antenna == ANTENNA_CAL_LOOPBACK) { + _regs.RX0_ANT_1[idx] = zbx_cpld_regs_t::RX0_ANT_1_CAL_LOOPBACK; + _regs.TX0_ANT_10[idx] = zbx_cpld_regs_t::TX0_ANT_10_CAL_LOOPBACK; + _regs.TX0_ANT_11[idx] = zbx_cpld_regs_t::TX0_ANT_11_BYPASS_AMP; + } else if (antenna == ANTENNA_TERMINATION) { + _regs.RX0_ANT_1[idx] = zbx_cpld_regs_t::RX0_ANT_1_TERMINATION; + } else if (antenna == ANTENNA_RX) { + _regs.RX0_ANT_1[idx] = zbx_cpld_regs_t::RX0_ANT_1_RX2; + } else { + UHD_LOG_WARNING(_log_id, + "ZBX Radio: RX Antenna setting not recognized: \"" << antenna << "\""); + } + } else { + if (antenna == ANTENNA_TXRX) { + _regs.RX1_ANT_1[idx] = zbx_cpld_regs_t::RX1_ANT_1_TX_RX; + _regs.TX1_ANT_11[idx] = zbx_cpld_regs_t::TX1_ANT_11_TX_RX; + } else if (antenna == ANTENNA_CAL_LOOPBACK) { + _regs.RX1_ANT_1[idx] = zbx_cpld_regs_t::RX1_ANT_1_CAL_LOOPBACK; + _regs.TX1_ANT_10[idx] = zbx_cpld_regs_t::TX1_ANT_10_CAL_LOOPBACK; + _regs.TX1_ANT_11[idx] = zbx_cpld_regs_t::TX1_ANT_11_BYPASS_AMP; + } else if (antenna == ANTENNA_TERMINATION) { + _regs.RX1_ANT_1[idx] = zbx_cpld_regs_t::RX1_ANT_1_TERMINATION; + } else if (antenna == ANTENNA_RX) { + _regs.RX1_ANT_1[idx] = zbx_cpld_regs_t::RX1_ANT_1_RX2; + } else { + UHD_LOG_WARNING(_log_id, + "ZBX Radio: RX Antenna setting not recognized: \"" << antenna << "\""); + } + } + commit(channel == 0 ? CHAN0 : CHAN1); +} + +tx_amp zbx_cpld_ctrl::get_tx_amp_settings( + const size_t channel, const uint8_t idx, const bool update_cache) +{ + if (channel == 0) { + if (update_cache) { + update_field(zbx_cpld_regs_t::zbx_cpld_field_t::TX0_ANT_10, idx); + update_field(zbx_cpld_regs_t::zbx_cpld_field_t::TX0_ANT_11, idx); + } + if ((_regs.TX0_ANT_11[idx] == zbx_cpld_regs_t::TX0_ANT_11_BYPASS_AMP + && _regs.TX0_ANT_10[idx] != zbx_cpld_regs_t::TX0_ANT_10_BYPASS_AMP) + || (_regs.TX0_ANT_11[idx] == zbx_cpld_regs_t::TX0_ANT_11_HIGHBAND_AMP + && _regs.TX0_ANT_10[idx] != zbx_cpld_regs_t::TX0_ANT_10_HIGHBAND_AMP) + || (_regs.TX0_ANT_11[idx] == zbx_cpld_regs_t::TX0_ANT_11_LOWBAND_AMP + && _regs.TX0_ANT_10[idx] != zbx_cpld_regs_t::TX0_ANT_10_LOWBAND_AMP)) { + UHD_LOG_WARNING( + _log_id, "Detected inconsistency in the TX amp switch settings."); + } + // clang-format off + static const std::map<zbx_cpld_regs_t::TX0_ANT_10_t, tx_amp> amp_map{ + {zbx_cpld_regs_t::TX0_ANT_10_BYPASS_AMP , tx_amp::BYPASS }, + {zbx_cpld_regs_t::TX0_ANT_10_CAL_LOOPBACK, tx_amp::BYPASS }, + {zbx_cpld_regs_t::TX0_ANT_10_LOWBAND_AMP , tx_amp::LOWBAND }, + {zbx_cpld_regs_t::TX0_ANT_10_HIGHBAND_AMP, tx_amp::HIGHBAND} + }; + // clang-format on + return amp_map.at(_regs.TX0_ANT_10[idx]); + } + if (channel == 1) { + if (update_cache) { + update_field(zbx_cpld_regs_t::zbx_cpld_field_t::TX0_ANT_10, idx); + update_field(zbx_cpld_regs_t::zbx_cpld_field_t::TX0_ANT_11, idx); + } + if ((_regs.TX1_ANT_11[idx] == zbx_cpld_regs_t::TX1_ANT_11_BYPASS_AMP + && _regs.TX1_ANT_10[idx] != zbx_cpld_regs_t::TX1_ANT_10_BYPASS_AMP) + || (_regs.TX1_ANT_11[idx] == zbx_cpld_regs_t::TX1_ANT_11_HIGHBAND_AMP + && _regs.TX1_ANT_10[idx] != zbx_cpld_regs_t::TX1_ANT_10_HIGHBAND_AMP) + || (_regs.TX1_ANT_11[idx] == zbx_cpld_regs_t::TX1_ANT_11_LOWBAND_AMP + && _regs.TX1_ANT_10[idx] != zbx_cpld_regs_t::TX1_ANT_10_LOWBAND_AMP)) { + UHD_LOG_WARNING( + _log_id, "Detected inconsistency in the TX amp switch settings."); + } + // clang-format off + static const std::map<zbx_cpld_regs_t::TX1_ANT_10_t, tx_amp> amp_map{ + {zbx_cpld_regs_t::TX1_ANT_10_BYPASS_AMP , tx_amp::BYPASS }, + {zbx_cpld_regs_t::TX1_ANT_10_CAL_LOOPBACK, tx_amp::BYPASS }, + {zbx_cpld_regs_t::TX1_ANT_10_LOWBAND_AMP , tx_amp::LOWBAND }, + {zbx_cpld_regs_t::TX1_ANT_10_HIGHBAND_AMP, tx_amp::HIGHBAND} + }; + // clang-format on + return amp_map.at(_regs.TX1_ANT_10[idx]); + } + UHD_THROW_INVALID_CODE_PATH(); +} + +void zbx_cpld_ctrl::set_rx_rf_filter( + const size_t channel, const uint8_t idx, const uint8_t rf_fir) +{ + UHD_ASSERT_THROW(channel < ZBX_NUM_CHANS && rf_fir < 4); + + if (rf_fir == 0) { + if (channel == 0) { + _regs.RX0_4[idx] = zbx_cpld_regs_t::RX0_4_HIGHBAND; + _regs.RX0_2[idx] = zbx_cpld_regs_t::RX0_2_HIGHBAND; + } else { + _regs.RX1_4[idx] = zbx_cpld_regs_t::RX1_4_HIGHBAND; + _regs.RX1_2[idx] = zbx_cpld_regs_t::RX1_2_HIGHBAND; + } + } else { + // Clang-format likes to "staircase" multiple tertiary statements, it's much + // easier to read lined up + // clang-format off + if (channel == 0) { + _regs.RX0_4[idx] = zbx_cpld_regs_t::RX0_4_LOWBAND; + _regs.RX0_2[idx] = zbx_cpld_regs_t::RX0_2_LOWBAND; + _regs.RX0_RF_11[idx] = rf_fir == 1 ? zbx_cpld_regs_t::RX0_RF_11_RF_1 + : rf_fir == 2 ? zbx_cpld_regs_t::RX0_RF_11_RF_2 + : zbx_cpld_regs_t::RX0_RF_11_RF_3; + _regs.RX0_RF_3[idx] = rf_fir == 1 ? zbx_cpld_regs_t::RX0_RF_3_RF_1 + : rf_fir == 2 ? zbx_cpld_regs_t::RX0_RF_3_RF_2 + : zbx_cpld_regs_t::RX0_RF_3_RF_3; + } else { + _regs.RX1_4[idx] = zbx_cpld_regs_t::RX1_4_LOWBAND; + _regs.RX1_2[idx] = zbx_cpld_regs_t::RX1_2_LOWBAND; + _regs.RX1_RF_11[idx] = rf_fir == 1 ? zbx_cpld_regs_t::RX1_RF_11_RF_1 + : rf_fir == 2 ? zbx_cpld_regs_t::RX1_RF_11_RF_2 + : zbx_cpld_regs_t::RX1_RF_11_RF_3; + _regs.RX1_RF_3[idx] = rf_fir == 1 ? zbx_cpld_regs_t::RX1_RF_3_RF_1 + : rf_fir == 2 ? zbx_cpld_regs_t::RX1_RF_3_RF_2 + : zbx_cpld_regs_t::RX1_RF_3_RF_3; + } + // clang-format on + } + commit(channel == 0 ? CHAN0 : CHAN1); +} + +void zbx_cpld_ctrl::set_rx_if1_filter( + const size_t channel, const uint8_t idx, const uint8_t if1_fir) +{ + UHD_ASSERT_THROW(channel < ZBX_NUM_CHANS && if1_fir != 0 && if1_fir < 5); + + // Clang-format likes to "staircase" multiple tertiary statements, it's much + // easier to read lined up + // clang-format off + if (channel == 0) { + _regs.RX0_IF1_5[idx] = if1_fir == 1 ? zbx_cpld_regs_t::RX0_IF1_5_FILTER_1 + : if1_fir == 2 ? zbx_cpld_regs_t::RX0_IF1_5_FILTER_2 + : if1_fir == 3 ? zbx_cpld_regs_t::RX0_IF1_5_FILTER_3 + : zbx_cpld_regs_t::RX0_IF1_5_FILTER_4; + + _regs.RX0_IF1_6[idx] = if1_fir == 1 ? zbx_cpld_regs_t::RX0_IF1_6_FILTER_1 + : if1_fir == 2 ? zbx_cpld_regs_t::RX0_IF1_6_FILTER_2 + : if1_fir == 3 ? zbx_cpld_regs_t::RX0_IF1_6_FILTER_3 + : zbx_cpld_regs_t::RX0_IF1_6_FILTER_4; + } else { + _regs.RX1_IF1_5[idx] = if1_fir == 1 ? zbx_cpld_regs_t::RX1_IF1_5_FILTER_1 + : if1_fir == 2 ? zbx_cpld_regs_t::RX1_IF1_5_FILTER_2 + : if1_fir == 3 ? zbx_cpld_regs_t::RX1_IF1_5_FILTER_3 + : zbx_cpld_regs_t::RX1_IF1_5_FILTER_4; + + _regs.RX1_IF1_6[idx] = if1_fir == 1 ? zbx_cpld_regs_t::RX1_IF1_6_FILTER_1 + : if1_fir == 2 ? zbx_cpld_regs_t::RX1_IF1_6_FILTER_2 + : if1_fir == 3 ? zbx_cpld_regs_t::RX1_IF1_6_FILTER_3 + : zbx_cpld_regs_t::RX1_IF1_6_FILTER_4; + } + // clang-format on + commit(channel == 0 ? CHAN0 : CHAN1); +} + +void zbx_cpld_ctrl::set_rx_if2_filter( + const size_t channel, const uint8_t idx, const uint8_t if2_fir) +{ + UHD_ASSERT_THROW(channel < ZBX_NUM_CHANS && if2_fir != 0 && if2_fir < 3); + + if (channel == 0) { + _regs.RX0_IF2_7_8[idx] = if2_fir == 1 ? zbx_cpld_regs_t::RX0_IF2_7_8_FILTER_1 + : zbx_cpld_regs_t::RX0_IF2_7_8_FILTER_2; + } else { + _regs.RX1_IF2_7_8[idx] = if2_fir == 1 ? zbx_cpld_regs_t::RX1_IF2_7_8_FILTER_1 + : zbx_cpld_regs_t::RX1_IF2_7_8_FILTER_2; + } + commit(channel == 0 ? CHAN0 : CHAN1); +} + +void zbx_cpld_ctrl::set_tx_rf_filter( + const size_t channel, const uint8_t idx, const uint8_t rf_fir) +{ + UHD_ASSERT_THROW(channel < ZBX_NUM_CHANS && rf_fir < 4); + + if (rf_fir == 0) { + if (channel == 0) { + _regs.TX0_RF_9[idx] = zbx_cpld_regs_t::TX0_RF_9_HIGHBAND; + _regs.TX0_7[idx] = zbx_cpld_regs_t::TX0_7_HIGHBAND; + } else { + _regs.TX1_RF_9[idx] = zbx_cpld_regs_t::TX1_RF_9_HIGHBAND; + _regs.TX1_7[idx] = zbx_cpld_regs_t::TX1_7_HIGHBAND; + } + } else { + // Clang-format likes to "staircase" multiple tertiary statements, it's much + // easier to read lined up + // clang-format off + if (channel == 0) { + _regs.TX0_RF_9[idx] = rf_fir == 1 ? zbx_cpld_regs_t::TX0_RF_9_RF_1 + : rf_fir == 2 ? zbx_cpld_regs_t::TX0_RF_9_RF_2 + : zbx_cpld_regs_t::TX0_RF_9_RF_3; + + _regs.TX0_RF_8[idx] = rf_fir == 1 ? zbx_cpld_regs_t::TX0_RF_8_RF_1 + : rf_fir == 2 ? zbx_cpld_regs_t::TX0_RF_8_RF_2 + : zbx_cpld_regs_t::TX0_RF_8_RF_3; + _regs.TX0_7[idx] = zbx_cpld_regs_t::TX0_7_LOWBAND; + } else { + _regs.TX1_RF_9[idx] = rf_fir == 1 ? zbx_cpld_regs_t::TX1_RF_9_RF_1 + : rf_fir == 2 ? zbx_cpld_regs_t::TX1_RF_9_RF_2 + : zbx_cpld_regs_t::TX1_RF_9_RF_3; + + _regs.TX1_RF_8[idx] = rf_fir == 1 ? zbx_cpld_regs_t::TX1_RF_8_RF_1 + : rf_fir == 2 ? zbx_cpld_regs_t::TX1_RF_8_RF_2 + : zbx_cpld_regs_t::TX1_RF_8_RF_3; + _regs.TX1_7[idx] = zbx_cpld_regs_t::TX1_7_LOWBAND; + } + // clang-format on + } + commit(channel == 0 ? CHAN0 : CHAN1); +} + +void zbx_cpld_ctrl::set_tx_if1_filter( + const size_t channel, const uint8_t idx, const uint8_t if1_fir) +{ + UHD_ASSERT_THROW(channel < ZBX_NUM_CHANS && if1_fir != 0 && if1_fir < 7); + + if (if1_fir < 4) { + // Clang-format likes to "staircase" multiple tertiary statements, it's much + // easier to read lined up + // clang-format off + if (channel == 0) { + _regs.TX0_IF1_6[idx] = zbx_cpld_regs_t::TX0_IF1_6_FILTER_0_3; + _regs.TX0_IF1_3[idx] = zbx_cpld_regs_t::TX0_IF1_3_FILTER_0_3; + _regs.TX0_IF1_4[idx] = if1_fir == 1 ? zbx_cpld_regs_t::TX0_IF1_4_FILTER_1 + : if1_fir == 2 ? zbx_cpld_regs_t::TX0_IF1_4_FILTER_2 + : zbx_cpld_regs_t::TX0_IF1_4_FILTER_3; + + _regs.TX0_IF1_5[idx] = if1_fir == 1 ? zbx_cpld_regs_t::TX0_IF1_5_FILTER_1 + : if1_fir == 2 ? zbx_cpld_regs_t::TX0_IF1_5_FILTER_2 + : zbx_cpld_regs_t::TX0_IF1_5_FILTER_3; + } else { + _regs.TX1_IF1_6[idx] = zbx_cpld_regs_t::TX1_IF1_6_FILTER_0_3; + _regs.TX1_IF1_3[idx] = zbx_cpld_regs_t::TX1_IF1_3_FILTER_0_3; + _regs.TX1_IF1_4[idx] = if1_fir == 1 ? zbx_cpld_regs_t::TX1_IF1_4_FILTER_1 + : if1_fir == 2 ? zbx_cpld_regs_t::TX1_IF1_4_FILTER_2 + : zbx_cpld_regs_t::TX1_IF1_4_FILTER_3; + + _regs.TX1_IF1_5[idx] = if1_fir == 1 ? zbx_cpld_regs_t::TX1_IF1_5_FILTER_1 + : if1_fir == 2 ? zbx_cpld_regs_t::TX1_IF1_5_FILTER_2 + : zbx_cpld_regs_t::TX1_IF1_5_FILTER_3; + } + } else { + if (channel == 0) { + _regs.TX0_IF1_4[idx] = zbx_cpld_regs_t::TX0_IF1_4_TERMINATION; + _regs.TX0_IF1_5[idx] = zbx_cpld_regs_t::TX0_IF1_5_TERMINATION; + _regs.TX0_IF1_3[idx] = if1_fir == 4 ? zbx_cpld_regs_t::TX0_IF1_3_FILTER_4 + : if1_fir == 5 ? zbx_cpld_regs_t::TX0_IF1_3_FILTER_5 + : zbx_cpld_regs_t::TX0_IF1_3_FILTER_6; + + _regs.TX0_IF1_6[idx] = if1_fir == 4 ? zbx_cpld_regs_t::TX0_IF1_6_FILTER_4 + : if1_fir == 5 ? zbx_cpld_regs_t::TX0_IF1_6_FILTER_5 + : zbx_cpld_regs_t::TX0_IF1_6_FILTER_6; + } else { + _regs.TX1_IF1_4[idx] = zbx_cpld_regs_t::TX1_IF1_4_TERMINATION; + _regs.TX1_IF1_5[idx] = zbx_cpld_regs_t::TX1_IF1_5_TERMINATION; + _regs.TX1_IF1_3[idx] = if1_fir == 4 ? zbx_cpld_regs_t::TX1_IF1_3_FILTER_4 + : if1_fir == 5 ? zbx_cpld_regs_t::TX1_IF1_3_FILTER_5 + : zbx_cpld_regs_t::TX1_IF1_3_FILTER_6; + + _regs.TX1_IF1_6[idx] = if1_fir == 4 ? zbx_cpld_regs_t::TX1_IF1_6_FILTER_4 + : if1_fir == 5 ? zbx_cpld_regs_t::TX1_IF1_6_FILTER_5 + : zbx_cpld_regs_t::TX1_IF1_6_FILTER_6; + } + // clang-format on + } + commit(channel == 0 ? CHAN0 : CHAN1); +} + +void zbx_cpld_ctrl::set_tx_if2_filter( + const size_t channel, const uint8_t idx, const uint8_t if2_fir) +{ + UHD_ASSERT_THROW(channel < ZBX_NUM_CHANS && if2_fir != 0 && if2_fir < 3); + + if (channel == 0) { + _regs.TX0_IF2_1_2[idx] = if2_fir == 1 ? zbx_cpld_regs_t::TX0_IF2_1_2_FILTER_1 + : zbx_cpld_regs_t::TX0_IF2_1_2_FILTER_2; + } else { + _regs.TX1_IF2_1_2[idx] = if2_fir == 1 ? zbx_cpld_regs_t::TX1_IF2_1_2_FILTER_1 + : zbx_cpld_regs_t::TX1_IF2_1_2_FILTER_2; + } + commit(channel == 0 ? CHAN0 : CHAN1); +} + +/****************************************************************************** + * LED control + *****************************************************************************/ +void zbx_cpld_ctrl::set_leds(const size_t channel, + const uint8_t idx, + const bool rx, + const bool trx_rx, + const bool trx_tx) +{ + UHD_ASSERT_THROW(channel < ZBX_NUM_CHANS); + if (channel == 0) { + _regs.RX0_RX_LED[idx] = rx ? zbx_cpld_regs_t::RX0_RX_LED_ENABLE + : zbx_cpld_regs_t::RX0_RX_LED_DISABLE; + _regs.RX0_TRX_LED[idx] = trx_rx ? zbx_cpld_regs_t::RX0_TRX_LED_ENABLE + : zbx_cpld_regs_t::RX0_TRX_LED_DISABLE; + _regs.TX0_TRX_LED[idx] = trx_tx ? zbx_cpld_regs_t::TX0_TRX_LED_ENABLE + : zbx_cpld_regs_t::TX0_TRX_LED_DISABLE; + } else { + _regs.RX1_RX_LED[idx] = rx ? zbx_cpld_regs_t::RX1_RX_LED_ENABLE + : zbx_cpld_regs_t::RX1_RX_LED_DISABLE; + _regs.RX1_TRX_LED[idx] = trx_rx ? zbx_cpld_regs_t::RX1_TRX_LED_ENABLE + : zbx_cpld_regs_t::RX1_TRX_LED_DISABLE; + _regs.TX1_TRX_LED[idx] = trx_tx ? zbx_cpld_regs_t::TX1_TRX_LED_ENABLE + : zbx_cpld_regs_t::TX1_TRX_LED_DISABLE; + } + commit(channel == 0 ? CHAN0 : CHAN1); +} + +/****************************************************************************** + * LO control + *****************************************************************************/ +void zbx_cpld_ctrl::lo_poke16(const zbx_lo_t lo, const uint8_t addr, const uint16_t data) +{ + _lo_spi_transact(lo, addr, data, spi_xact_t::WRITE, true); + // We always sleep here, in the assumption that the next poke to the CPLD is + // also a + // SPI transaction. + // Note that this causes minor inefficiencies when stacking SPI writes with + // other, non-SPI pokes (because the last SPI poke will still be followed by + // a sleep, which isn't even necessary). If this becomes an issue, this + // function can be changed to include a flag as an argument whether or not + // to throttle. +} + +uint16_t zbx_cpld_ctrl::lo_peek16(const zbx_lo_t lo, const uint8_t addr) +{ + _lo_spi_transact(lo, addr, 0, spi_xact_t::READ, true); + // Now poll the LO_SPI_READY register until we have good return value + const auto timeout = std::chrono::steady_clock::now() + + std::chrono::milliseconds(ZBX_LO_LOCK_TIMEOUT_MS); + while (std::chrono::steady_clock::now() < timeout) { + _regs.set_reg(_lo_spi_offset, _peek32(_lo_spi_offset)); + if (_regs.DATA_VALID) { + break; + } + } + + // Mark this register clean again + _regs.save_state(); + if (!_regs.DATA_VALID) { + const std::string err_msg = + "Unable to read back from LO SPI! Transaction timed out after " + + std::to_string(ZBX_LO_LOCK_TIMEOUT_MS) + " ms."; + UHD_LOG_ERROR(_log_id, err_msg); + throw uhd::io_error(err_msg); + } + // The read worked. Now we run some sanity checks to make sure we got what + // we expected + UHD_ASSERT_THROW(_regs.ADDRESS == addr); + UHD_ASSERT_THROW(_regs.LO_SELECT == zbx_cpld_regs_t::LO_SELECT_t(lo)); + // All good, return the read value + return _regs.DATA; +} + +bool zbx_cpld_ctrl::lo_spi_ready() +{ + return _peek32(_lo_spi_offset) & (1 << 30); +} + +void zbx_cpld_ctrl::set_lo_source( + const size_t idx, const zbx_lo_t lo, const zbx_lo_source_t lo_source) +{ + // LO source is either internal or external + const bool internal = lo_source == zbx_lo_source_t::internal; + switch (lo) { + case zbx_lo_t::TX0_LO1: + _regs.TX0_LO_14[idx] = internal ? zbx_cpld_regs_t::TX0_LO_14_INTERNAL + : zbx_cpld_regs_t::TX0_LO_14_EXTERNAL; + break; + case zbx_lo_t::TX0_LO2: + _regs.TX0_LO_13[idx] = internal ? zbx_cpld_regs_t::TX0_LO_13_INTERNAL + : zbx_cpld_regs_t::TX0_LO_13_EXTERNAL; + break; + case zbx_lo_t::TX1_LO1: + _regs.TX1_LO_14[idx] = internal ? zbx_cpld_regs_t::TX1_LO_14_INTERNAL + : zbx_cpld_regs_t::TX1_LO_14_EXTERNAL; + break; + case zbx_lo_t::TX1_LO2: + _regs.TX1_LO_13[idx] = internal ? zbx_cpld_regs_t::TX1_LO_13_INTERNAL + : zbx_cpld_regs_t::TX1_LO_13_EXTERNAL; + break; + case zbx_lo_t::RX0_LO1: + _regs.RX0_LO_9[idx] = internal ? zbx_cpld_regs_t::RX0_LO_9_INTERNAL + : zbx_cpld_regs_t::RX0_LO_9_EXTERNAL; + break; + case zbx_lo_t::RX0_LO2: + _regs.RX0_LO_10[idx] = internal ? zbx_cpld_regs_t::RX0_LO_10_INTERNAL + : zbx_cpld_regs_t::RX0_LO_10_EXTERNAL; + break; + case zbx_lo_t::RX1_LO1: + _regs.RX1_LO_9[idx] = internal ? zbx_cpld_regs_t::RX1_LO_9_INTERNAL + : zbx_cpld_regs_t::RX1_LO_9_EXTERNAL; + break; + case zbx_lo_t::RX1_LO2: + _regs.RX1_LO_10[idx] = internal ? zbx_cpld_regs_t::RX1_LO_10_INTERNAL + : zbx_cpld_regs_t::RX1_LO_10_EXTERNAL; + break; + default: + UHD_THROW_INVALID_CODE_PATH(); + } + if (lo == zbx_lo_t::TX0_LO1 || lo == zbx_lo_t::TX0_LO2 || lo == zbx_lo_t::RX0_LO1 + || lo == zbx_lo_t::RX0_LO2) { + commit(CHAN0); + } else { + commit(CHAN1); + } +} + +zbx_lo_source_t zbx_cpld_ctrl::get_lo_source(const size_t idx, zbx_lo_t lo) +{ + switch (lo) { + case zbx_lo_t::TX0_LO1: + return _regs.TX0_LO_14[idx] == zbx_cpld_regs_t::TX0_LO_14_INTERNAL + ? zbx_lo_source_t::internal + : zbx_lo_source_t::external; + case zbx_lo_t::TX0_LO2: + return _regs.TX0_LO_13[idx] == zbx_cpld_regs_t::TX0_LO_13_INTERNAL + ? zbx_lo_source_t::internal + : zbx_lo_source_t::external; + case zbx_lo_t::TX1_LO1: + return _regs.TX1_LO_14[idx] == zbx_cpld_regs_t::TX1_LO_14_INTERNAL + ? zbx_lo_source_t::internal + : zbx_lo_source_t::external; + case zbx_lo_t::TX1_LO2: + return _regs.TX1_LO_13[idx] == zbx_cpld_regs_t::TX1_LO_13_INTERNAL + ? zbx_lo_source_t::internal + : zbx_lo_source_t::external; + case zbx_lo_t::RX0_LO1: + return _regs.RX0_LO_9[idx] == zbx_cpld_regs_t::RX0_LO_9_INTERNAL + ? zbx_lo_source_t::internal + : zbx_lo_source_t::external; + case zbx_lo_t::RX0_LO2: + return _regs.RX0_LO_10[idx] == zbx_cpld_regs_t::RX0_LO_10_INTERNAL + ? zbx_lo_source_t::internal + : zbx_lo_source_t::external; + case zbx_lo_t::RX1_LO1: + return _regs.RX1_LO_9[idx] == zbx_cpld_regs_t::RX1_LO_9_INTERNAL + ? zbx_lo_source_t::internal + : zbx_lo_source_t::external; + case zbx_lo_t::RX1_LO2: + return _regs.RX1_LO_10[idx] == zbx_cpld_regs_t::RX1_LO_10_INTERNAL + ? zbx_lo_source_t::internal + : zbx_lo_source_t::external; + default: + UHD_THROW_INVALID_CODE_PATH(); + } +} + +void zbx_cpld_ctrl::pulse_lo_sync(const size_t ref_chan, const std::vector<zbx_lo_t>& los) +{ + if (_regs.BYPASS_SYNC_REGISTER == zbx_cpld_regs_t::BYPASS_SYNC_REGISTER_ENABLE) { + const std::string err_msg = "Cannot pulse LO SYNC when bypass is enabled!"; + UHD_LOG_ERROR(_log_id, err_msg); + throw uhd::runtime_error(_log_id + err_msg); + } + // Assert a 1 for all LOs to be sync'd + static const std::unordered_map<zbx_lo_t, zbx_cpld_regs_t::zbx_cpld_field_t> + lo_pulse_map{{ + {zbx_lo_t::TX0_LO1, zbx_cpld_regs_t::zbx_cpld_field_t::PULSE_TX0_LO1_SYNC}, + {zbx_lo_t::TX0_LO2, zbx_cpld_regs_t::zbx_cpld_field_t::PULSE_TX0_LO2_SYNC}, + {zbx_lo_t::TX1_LO1, zbx_cpld_regs_t::zbx_cpld_field_t::PULSE_TX1_LO1_SYNC}, + {zbx_lo_t::TX1_LO2, zbx_cpld_regs_t::zbx_cpld_field_t::PULSE_TX1_LO2_SYNC}, + {zbx_lo_t::RX0_LO1, zbx_cpld_regs_t::zbx_cpld_field_t::PULSE_RX0_LO1_SYNC}, + {zbx_lo_t::RX0_LO2, zbx_cpld_regs_t::zbx_cpld_field_t::PULSE_RX0_LO2_SYNC}, + {zbx_lo_t::RX1_LO1, zbx_cpld_regs_t::zbx_cpld_field_t::PULSE_RX1_LO1_SYNC}, + {zbx_lo_t::RX1_LO2, zbx_cpld_regs_t::zbx_cpld_field_t::PULSE_RX1_LO2_SYNC}, + }}; + for (const auto lo : los) { + _regs.set_field(lo_pulse_map.at(lo), 1); + } + commit(ref_chan == 0 ? CHAN0 : CHAN1); + // The bits are strobed, they self-clear. We reflect that here by resetting + // them without another commit: + for (const auto lo_it : lo_pulse_map) { + _regs.set_field(lo_it.second, 0); + } + _regs.save_state(); +} + +void zbx_cpld_ctrl::set_lo_sync_bypass(const bool enable) +{ + _regs.BYPASS_SYNC_REGISTER = enable ? zbx_cpld_regs_t::BYPASS_SYNC_REGISTER_ENABLE + : zbx_cpld_regs_t::BYPASS_SYNC_REGISTER_DISABLE; + commit(NO_CHAN); +} + +void zbx_cpld_ctrl::update_tx_dsa_settings( + const std::vector<uint32_t>& dsa1_table, const std::vector<uint32_t>& dsa2_table) +{ + write_register_vector("TX0_TABLE_DSA1", dsa1_table); + write_register_vector("TX0_TABLE_DSA2", dsa2_table); + write_register_vector("TX1_TABLE_DSA1", dsa1_table); + write_register_vector("TX1_TABLE_DSA2", dsa2_table); + commit(NO_CHAN); +} + +void zbx_cpld_ctrl::update_rx_dsa_settings(const std::vector<uint32_t>& dsa1_table, + const std::vector<uint32_t>& dsa2_table, + const std::vector<uint32_t>& dsa3a_table, + const std::vector<uint32_t>& dsa3b_table) +{ + write_register_vector("RX0_TABLE_DSA1", dsa1_table); + write_register_vector("RX0_TABLE_DSA2", dsa2_table); + write_register_vector("RX0_TABLE_DSA3_A", dsa3a_table); + write_register_vector("RX0_TABLE_DSA3_B", dsa3b_table); + write_register_vector("RX1_TABLE_DSA1", dsa1_table); + write_register_vector("RX1_TABLE_DSA2", dsa2_table); + write_register_vector("RX1_TABLE_DSA3_A", dsa3a_table); + write_register_vector("RX1_TABLE_DSA3_B", dsa3b_table); + commit(NO_CHAN); +} + +/****************************************************************************** + * Private methods + *****************************************************************************/ +void zbx_cpld_ctrl::_lo_spi_transact(const zbx_lo_t lo, + const uint8_t addr, + const uint16_t data, + const spi_xact_t xact_type, + const bool throttle) +{ + // Look up the channel based on the LO, so we can load the correct command + // time for the poke + const chan_t chan = (lo == zbx_lo_t::TX0_LO1 || lo == zbx_lo_t::TX0_LO2 + || lo == zbx_lo_t::RX0_LO1 || lo == zbx_lo_t::RX0_LO2) + ? CHAN0 + : CHAN1; + // Note: For SPI transactions, we can't also be lugging around other + // registers. This means that we assume that the state of _regs is clean. + _regs.ADDRESS = addr; + _regs.DATA = data; + _regs.READ_FLAG = (xact_type == spi_xact_t::WRITE) ? zbx_cpld_regs_t::READ_FLAG_WRITE + : zbx_cpld_regs_t::READ_FLAG_READ; + _regs.LO_SELECT = zbx_cpld_regs_t::LO_SELECT_t(lo); + _regs.START_TRANSACTION = zbx_cpld_regs_t::START_TRANSACTION_ENABLE; + _poke32(_lo_spi_offset, _regs.get_reg(_lo_spi_offset), chan); + _regs.START_TRANSACTION = zbx_cpld_regs_t::START_TRANSACTION_DISABLE; + _regs.save_state(); + // Write complete. Now we need to send a sleep to throttle the SPI + // transactions: + if (throttle) { + _sleep(SPI_THROTTLE_TIME); + } +} + +void zbx_cpld_ctrl::write_register_vector( + const std::string& reg_addr_name, const std::vector<uint32_t>& values) +{ + UHD_LOG_DEBUG( + _log_id, "Write " << values.size() << " values to register " << reg_addr_name); + zbx_cpld_regs_t::zbx_cpld_field_t type = _regs.get_field_type(reg_addr_name); + if (values.size() > _regs.get_array_size(type)) { + const std::string err_msg = "Number of values passed for register vector(" + + std::to_string(values.size()) + + ") exceeds size of register (" + + std::to_string(_regs.get_array_size(type)) + ")"; + UHD_LOG_ERROR(_log_id, err_msg); + throw uhd::runtime_error(err_msg); + } + for (size_t i = 0; i < values.size(); i++) { + _regs.set_field(type, values[i], i); + } +} + +void zbx_cpld_ctrl::commit(const chan_t chan, const bool save_all) +{ + UHD_LOG_TRACE(_log_id, + "Storing register cache " << (save_all ? "completely" : "selectively") + << " to CPLD..."); + const auto changed_addrs = save_all ? _regs.get_all_addrs() + : _regs.get_changed_addrs<size_t>(); + for (const auto addr : changed_addrs) { + _poke32(addr, _regs.get_reg(addr), save_all ? NO_CHAN : chan); + } + _regs.save_state(); + UHD_LOG_TRACE(_log_id, + "Storing cache complete: " + "Updated " + << changed_addrs.size() << " registers."); +} + +void zbx_cpld_ctrl::update_field( + const zbx_cpld_regs_t::zbx_cpld_field_t field, const size_t idx) +{ + const uint16_t addr = _regs.get_addr(field) + 4 * idx; + const uint32_t chip_val = _peek32(addr); + _regs.set_reg(addr, chip_val); + const auto changed_addrs = _regs.get_changed_addrs<size_t>(); + // If this is the only change in our register stack, then we call save_state() + // because we don't want to write this value we just read from the CPLD back + // to it. However, if there are other changes queued up, we'll have to wait + // until the next commit() call. If this is not desired, we need to update + // the regmap code to selectively save state. + if (changed_addrs.empty() + || (changed_addrs.size() == 1 && changed_addrs.count(addr))) { + _regs.save_state(); + } else { + UHD_LOG_DEBUG(_log_id, + "Not saving register state after calling update_field(). This may " + "cause unnecessary writes in the future."); + } +} + +}}} // namespace uhd::usrp::zbx diff --git a/host/lib/usrp/dboard/zbx/zbx_dboard.cpp b/host/lib/usrp/dboard/zbx/zbx_dboard.cpp new file mode 100644 index 000000000..d41302c8f --- /dev/null +++ b/host/lib/usrp/dboard/zbx/zbx_dboard.cpp @@ -0,0 +1,758 @@ +// +// Copyright 2020 Ettus Research, a National Instruments Brand +// +// SPDX-License-Identifier: GPL-3.0-or-later +// + +#include <uhd/types/direction.hpp> +#include <uhd/types/eeprom.hpp> +#include <uhd/utils/algorithm.hpp> +#include <uhd/utils/assert_has.hpp> +#include <uhd/utils/log.hpp> +#include <uhd/utils/math.hpp> +#include <uhdlib/usrp/dboard/zbx/zbx_dboard.hpp> +#include <uhdlib/utils/narrow.hpp> +#include <cstdlib> +#include <sstream> + +namespace uhd { namespace usrp { namespace zbx { + +/****************************************************************************** + * Structors + *****************************************************************************/ +zbx_dboard_impl::zbx_dboard_impl(register_iface& reg_iface, + const size_t reg_base_address, + time_accessor_fn_type&& time_accessor, + const size_t db_idx, + const std::string& radio_slot, + const std::string& rpc_prefix, + const std::string& unique_id, + uhd::usrp::x400_rpc_iface::sptr mb_rpcc, + uhd::usrp::zbx_rpc_iface::sptr rpcc, + uhd::rfnoc::x400::rfdc_control::sptr rfdcc, + uhd::property_tree::sptr tree) + : _unique_id(unique_id) + , _regs(reg_iface) + , _reg_base_address(reg_base_address) + , _time_accessor(time_accessor) + , _radio_slot(radio_slot) + , _db_idx(db_idx) + , _rpc_prefix(rpc_prefix) + , _mb_rpcc(mb_rpcc) + , _rpcc(rpcc) + , _rfdcc(rfdcc) + , _tree(tree) + , _rfdc_rate(_rpcc->get_dboard_sample_rate()) + , _prc_rate(_rpcc->get_dboard_prc_rate()) +{ + RFNOC_LOG_TRACE("Entering zbx_dboard_impl ctor..."); + RFNOC_LOG_TRACE("Radio slot: " << _radio_slot); + + _tx_gain_profile_api = std::make_shared<rf_control::enumerated_gain_profile>( + ZBX_GAIN_PROFILES, ZBX_GAIN_PROFILE_DEFAULT, ZBX_NUM_CHANS); + _rx_gain_profile_api = std::make_shared<rf_control::enumerated_gain_profile>( + ZBX_GAIN_PROFILES, ZBX_GAIN_PROFILE_DEFAULT, ZBX_NUM_CHANS); + + _expert_container = + uhd::experts::expert_factory::create_container("zbx_radio_" + _radio_slot); + _init_cpld(); + _init_peripherals(); + // Prop tree requires the initialization of certain peripherals + _init_prop_tree(); + _expert_container->resolve_all(); +} + +zbx_dboard_impl::~zbx_dboard_impl() +{ + RFNOC_LOG_TRACE("zbx_dboard::dtor() "); +} + +void zbx_dboard_impl::deinit() +{ + _wb_ifaces.clear(); +} + +void zbx_dboard_impl::set_command_time(uhd::time_spec_t time, const size_t chan) +{ + // When the command time gets updated, import it into the expert graph + get_tree() + ->access<time_spec_t>(fs_path("dboard") / "rx_frontends" / chan / "time/cmd") + .set(time); +} + +std::string zbx_dboard_impl::get_unique_id() const +{ + return _unique_id; +} + + +/****************************************************************************** + * API Calls + *****************************************************************************/ +void zbx_dboard_impl::set_tx_antenna(const std::string& ant, const size_t chan) +{ + RFNOC_LOG_TRACE("Setting TX antenna to " << ant << " for chan " << chan); + if (!TX_ANTENNA_NAME_COMPAT_MAP.count(ant)) { + assert_has(TX_ANTENNAS, ant, "tx antenna"); + } + const fs_path fe_path = _get_frontend_path(TX_DIRECTION, chan); + + _tree->access<std::string>(fe_path / "antenna" / "value").set(ant); +} + +void zbx_dboard_impl::set_rx_antenna(const std::string& ant, const size_t chan) +{ + RFNOC_LOG_TRACE("Setting RX antenna to " << ant << " for chan " << chan); + if (!RX_ANTENNA_NAME_COMPAT_MAP.count(ant)) { + assert_has(RX_ANTENNAS, ant, "rx antenna"); + } + + const fs_path fe_path = _get_frontend_path(RX_DIRECTION, chan); + + _tree->access<std::string>(fe_path / "antenna" / "value").set(ant); +} + +double zbx_dboard_impl::set_tx_frequency(const double req_freq, const size_t chan) +{ + const fs_path fe_path = _get_frontend_path(TX_DIRECTION, chan); + + _tree->access<double>(fe_path / "freq").set(req_freq); + + // Our power manager sets a new gain value via the API, based on its new calculations. + // Since the expert nodes are protected by a mutex, it will hang if we try to call + // update_power() from inside the expert resolve methods (resolve() -> update_power() + // -> set_tx_gain -> resolve()) + _tx_pwr_mgr.at(chan)->update_power(); + + return _tree->access<double>(fe_path / "freq").get(); +} + +double zbx_dboard_impl::set_rx_frequency(const double req_freq, const size_t chan) +{ + const fs_path fe_path = _get_frontend_path(RX_DIRECTION, chan); + + _tree->access<double>(fe_path / "freq").set(req_freq); + + // Our power manager sets a new gain value via the API, based on its new calculations. + // Since the expert nodes are protected by a mutex, it will hang if we try to call + // update_power() from inside the expert resolve methods (resolve() -> update_power() + // -> set_rx_gain -> resolve()) + _rx_pwr_mgr.at(chan)->update_power(); + + return _tree->access<double>(fe_path / "freq").get(); +} + +double zbx_dboard_impl::set_tx_bandwidth(const double bandwidth, const size_t chan) +{ + const double bw = get_tx_bandwidth(chan); + if (!uhd::math::frequencies_are_equal(bandwidth, bw)) { + RFNOC_LOG_WARNING("Invalid analog bandwidth: " << (bandwidth / 1e6) << " MHz."); + } + return bw; +} + +double zbx_dboard_impl::get_tx_bandwidth(size_t chan) +{ + return _tree + ->access<double>(_get_frontend_path(TX_DIRECTION, chan) / "bandwidth/value") + .get(); +} + +double zbx_dboard_impl::set_rx_bandwidth(const double bandwidth, const size_t chan) +{ + const double bw = get_rx_bandwidth(chan); + if (!uhd::math::frequencies_are_equal(bandwidth, bw)) { + RFNOC_LOG_WARNING("Invalid analog bandwidth: " << (bandwidth / 1e6) << " MHz."); + } + return bw; +} + +double zbx_dboard_impl::get_rx_bandwidth(size_t chan) +{ + return _tree + ->access<double>(_get_frontend_path(RX_DIRECTION, chan) / "bandwidth/value") + .get(); +} + +double zbx_dboard_impl::set_tx_gain( + const double gain, const std::string& name_, const size_t chan) +{ + // We have to accept the empty string for "all", because that's widely used + // (e.g. by multi_usrp) + const std::string name = name_.empty() ? ZBX_GAIN_STAGE_ALL : name_; + const fs_path gains_path = _get_frontend_path(TX_DIRECTION, chan) / "gains"; + const auto gain_profile = _tx_gain_profile_api->get_gain_profile(chan); + // Default gain profile: Setting anything other than 'all' is forbidden + if (gain_profile == ZBX_GAIN_PROFILE_DEFAULT && name != ZBX_GAIN_STAGE_ALL) { + throw uhd::key_error("Invalid gain name for gain profile 'default': " + name); + } + // Also, when the gain name is all, we have to be in default mode. + if (gain_profile != ZBX_GAIN_PROFILE_DEFAULT && name == ZBX_GAIN_STAGE_ALL) { + throw uhd::key_error( + "Setting overall gain is only valid in gain profile 'default'!"); + } + // The combination of the no-ATR profile, and any gain name other than 'table' + // is not valid. + if (gain_profile == ZBX_GAIN_PROFILE_CPLD_NOATR && name != ZBX_GAIN_STAGE_TABLE) { + throw uhd::key_error("set_tx_gain(): Invalid combination of gain profile " + + gain_profile + " and gain name " + name); + } + // First, we handle the 'table' gain name. It's handled a bit differently + // than the rest. + if (name == ZBX_GAIN_STAGE_TABLE) { + static const uhd::meta_range_t table_range(0, 255, 1); + const uint8_t table_idx = uhd::narrow<uint8_t>(table_range.clip(gain, true)); + if (gain_profile == ZBX_GAIN_PROFILE_CPLD_NOATR) { + _cpld->set_sw_config(chan, zbx_cpld_ctrl::atr_mode_target::DSA, table_idx); + return static_cast<double>(table_idx); + } + if (gain_profile == ZBX_GAIN_PROFILE_MANUAL + || gain_profile == ZBX_GAIN_PROFILE_CPLD) { + _cpld->set_tx_gain_switches(chan, ATR_ADDR_TX, table_idx); + _cpld->set_tx_gain_switches(chan, ATR_ADDR_XX, table_idx); + return static_cast<double>(table_idx); + } + // That covers all the gain profiles for gain name 'table'. + UHD_THROW_INVALID_CODE_PATH(); + } + // Sanity check key. Note we do this after the previous gain stage, because + // it's not a property node. + if (!_tree->exists(gains_path / name)) { + throw uhd::key_error("Invalid TX gain stage: " + name); + } + // This leaves directly setting either the DSAs or the amplifier. This is + // possible in both the manual and CPLD gain profiles. + return _tree->access<double>(gains_path / name / "value").set(gain).get(); +} + +double zbx_dboard_impl::set_rx_gain( + const double gain, const std::string& name_, const size_t chan) +{ + // We have to accept the empty string for "all", because that's widely used + // (e.g. by multi_usrp). + const std::string name = name_.empty() ? ZBX_GAIN_STAGE_ALL : name_; + const fs_path gains_path = _get_frontend_path(RX_DIRECTION, chan) / "gains"; + const auto gain_profile = _rx_gain_profile_api->get_gain_profile(chan); + + // Default gain profile: Setting anything other than ZBX_GAIN_STAGE_ALL is forbidden + if (gain_profile == ZBX_GAIN_PROFILE_DEFAULT && name != ZBX_GAIN_STAGE_ALL) { + throw uhd::key_error("Invalid gain name for gain profile 'default': " + name); + } + // Also, when the gain name is all, we have to be in default mode. + if (gain_profile != ZBX_GAIN_PROFILE_DEFAULT && name == ZBX_GAIN_STAGE_ALL) { + throw uhd::key_error( + "Setting overall gain is only valid in gain profile 'default'!"); + } + // The combination of the no-ATR profile, and any gain name other than 'table' + // is not valid. + if (gain_profile == ZBX_GAIN_PROFILE_CPLD_NOATR && name != ZBX_GAIN_STAGE_TABLE) { + throw uhd::key_error("set_rx_gain(): Invalid combination of gain profile " + + gain_profile + " and gain name " + name); + } + // First, we handle the 'table' gain name. It's a bit different from the + // rest. + if (name == ZBX_GAIN_STAGE_TABLE) { + static const uhd::meta_range_t table_range(0, 255, 1); + const uint8_t table_idx = uhd::narrow<uint8_t>(table_range.clip(gain, true)); + if (gain_profile == ZBX_GAIN_PROFILE_CPLD_NOATR) { + _cpld->set_sw_config(chan, zbx_cpld_ctrl::atr_mode_target::DSA, table_idx); + return static_cast<double>(table_idx); + } + if (gain_profile == ZBX_GAIN_PROFILE_MANUAL + || gain_profile == ZBX_GAIN_PROFILE_CPLD) { + _cpld->set_rx_gain_switches(chan, ATR_ADDR_RX, table_idx); + _cpld->set_rx_gain_switches(chan, ATR_ADDR_XX, table_idx); + return static_cast<double>(table_idx); + } + // That covers all the gain profiles for gain name 'table'. + UHD_THROW_INVALID_CODE_PATH(); + } + // Sanity check key. Note we do this after the previous gain stage, because + // it's not a property node. + if (!_tree->exists(gains_path / name / "value")) { + throw uhd::key_error("Invalid RX gain stage: " + name); + } + return _tree->access<double>(gains_path / name / "value").set(gain).get(); +} + +double zbx_dboard_impl::set_tx_gain(const double gain, const size_t chan) +{ + const auto gain_profile = _tx_gain_profile_api->get_gain_profile(chan); + if (gain_profile == ZBX_GAIN_PROFILE_MANUAL) { + const std::string err_msg = "When using 'manual' gain mode, calling " + "set_tx_gain() without a gain name is not allowed!"; + RFNOC_LOG_ERROR(err_msg); + throw uhd::runtime_error(err_msg); + } + if (gain_profile == ZBX_GAIN_PROFILE_CPLD + || gain_profile == ZBX_GAIN_PROFILE_CPLD_NOATR) { + return set_tx_gain(gain, ZBX_GAIN_STAGE_TABLE, chan); + } + return set_tx_gain(gain, ZBX_GAIN_STAGE_ALL, chan); +} + +double zbx_dboard_impl::set_rx_gain(const double gain, const size_t chan) +{ + const auto gain_profile = _rx_gain_profile_api->get_gain_profile(chan); + if (gain_profile == ZBX_GAIN_PROFILE_MANUAL) { + const std::string err_msg = "When using 'manual' gain mode, calling " + "set_rx_gain() without a gain name is not allowed!"; + RFNOC_LOG_ERROR(err_msg); + throw uhd::runtime_error(err_msg); + } + if (gain_profile == ZBX_GAIN_PROFILE_CPLD + || gain_profile == ZBX_GAIN_PROFILE_CPLD_NOATR) { + return set_rx_gain(gain, ZBX_GAIN_STAGE_TABLE, chan); + } + return set_rx_gain(gain, ZBX_GAIN_STAGE_ALL, chan); +} + +double zbx_dboard_impl::get_tx_gain(const size_t chan) +{ + const auto gain_profile = _tx_gain_profile_api->get_gain_profile(chan); + if (gain_profile == ZBX_GAIN_PROFILE_CPLD + || gain_profile == ZBX_GAIN_PROFILE_CPLD_NOATR) { + return get_tx_gain(ZBX_GAIN_STAGE_TABLE, chan); + } + if (gain_profile == ZBX_GAIN_PROFILE_DEFAULT) { + return get_tx_gain(ZBX_GAIN_STAGE_ALL, chan); + } + throw uhd::runtime_error( + "get_tx_gain(): When in 'manual' gain profile, a gain name is required!"); +} + +double zbx_dboard_impl::get_rx_gain(const size_t chan) +{ + const auto gain_profile = _rx_gain_profile_api->get_gain_profile(chan); + if (gain_profile == ZBX_GAIN_PROFILE_CPLD + || gain_profile == ZBX_GAIN_PROFILE_CPLD_NOATR) { + return get_rx_gain(ZBX_GAIN_STAGE_TABLE, chan); + } + if (gain_profile == ZBX_GAIN_PROFILE_DEFAULT) { + return get_rx_gain(ZBX_GAIN_STAGE_ALL, chan); + } + throw uhd::runtime_error( + "get_rx_gain(): When in 'manual' gain profile, a gain name is required!"); +} + +double zbx_dboard_impl::get_tx_gain(const std::string& name_, const size_t chan) +{ + // We have to accept the empty string for "all", because that's widely used + // (e.g. by multi_usrp) + const std::string name = name_.empty() ? ZBX_GAIN_STAGE_ALL : name_; + const fs_path gains_path = _get_frontend_path(TX_DIRECTION, chan) / "gains"; + const auto gain_profile = _tx_gain_profile_api->get_gain_profile(chan); + // Overall gain: Only reliable in 'default' mode. We warn, not throw, in + // the other modes. That's because reading back the overall gain is common + // diagnostic for many existing applications. + if (name == ZBX_GAIN_STAGE_ALL && gain_profile != ZBX_GAIN_PROFILE_DEFAULT) { + RFNOC_LOG_WARNING("get_tx_gain(): Trying to read back overall gain in " + "non-default gain profile is undefined."); + } + // Table gain: Returns the current DSA table index. + if (name == ZBX_GAIN_STAGE_TABLE) { + return static_cast<double>( + _cpld->get_current_config(chan, zbx_cpld_ctrl::atr_mode_target::DSA)); + } + // Otherwise: DSA or amp. Sanity check key is valid. Because the table gain + // is not a property tree node, this check comes after the previous if-clause. + if (!_tree->exists(gains_path / name / "value")) { + RFNOC_LOG_ERROR("get_tx_gain(): Invalid gain name `" << name << "'"); + throw uhd::key_error(std::string("get_tx_gain(): Invalid gain name: ") + name); + } + // We're not yet done: If we're in CPLD/table profiles, we peek the current + // DSA settings and apply them to the local cache. + // Note: This means we have a different behaviour between directly accessing + // the prop tree, or accessing the C++ API. + if ((name == ZBX_GAIN_STAGE_DSA1 || name == ZBX_GAIN_STAGE_DSA2) + && (gain_profile == ZBX_GAIN_PROFILE_CPLD + || gain_profile == ZBX_GAIN_PROFILE_CPLD_NOATR)) { + const uint8_t idx = + (gain_profile == ZBX_GAIN_PROFILE_CPLD_NOATR) + ? _cpld->get_current_config(chan, zbx_cpld_ctrl::atr_mode_target::DSA) + : ATR_ADDR_TX; + constexpr bool update_cache = true; // Make sure to peek the actual value + const auto dsa = (name == ZBX_GAIN_STAGE_DSA1) ? zbx_cpld_ctrl::dsa_type::DSA1 + : zbx_cpld_ctrl::dsa_type::DSA2; + const uint8_t dsa_val = _cpld->get_tx_dsa(chan, idx, dsa, update_cache); + // Update the tree because we're good citizens, and if we switch the + // gain profile from 'table' to 'manual', we want everything to be + // consistent. This will not cause a poke to the CPLD, b/c the experts + // won't write gains in this gain profile. + // Note that the other DSA values in the tree are not updated automatically, + // which is why we can't write DSA values to the CPLD in this mode. If + // we want to allow writing DSA values in this mode, we need to update + // everything here, or put some more cleverness into the programming + // expert. + _tree->access<double>(gains_path / name / "value") + .set(ZBX_TX_DSA_MAX_ATT - dsa_val); + } + // Now return the value from the tree + return _tree->access<double>(gains_path / name / "value").get(); +} + +double zbx_dboard_impl::get_rx_gain(const std::string& name_, const size_t chan) +{ + // We have to accept the empty string for "all", because that's widely used + // (e.g. by multi_usrp) + const std::string name = name_.empty() ? ZBX_GAIN_STAGE_ALL : name_; + const fs_path gains_path = _get_frontend_path(RX_DIRECTION, chan) / "gains"; + const auto gain_profile = _rx_gain_profile_api->get_gain_profile(chan); + // Overall gain: Only reliable in 'default' mode. We warn, not throw, in + // the other modes. That's because reading back the overall gain is common + // diagnostic for many existing applications. + if (name == ZBX_GAIN_STAGE_ALL && gain_profile != ZBX_GAIN_PROFILE_DEFAULT) { + RFNOC_LOG_WARNING("get_rx_gain(): Trying to read back overall gain in " + "non-default gain profile is undefined."); + } + // Table gain: Returns the current DSA table index. + if (name == ZBX_GAIN_STAGE_TABLE) { + return static_cast<double>( + _cpld->get_current_config(chan, zbx_cpld_ctrl::atr_mode_target::DSA)); + } + // Otherwise: DSA. Sanity check key is valid. Because the table gain is not + // a property tree node, this check comes after the previous if-clause. + if (!_tree->exists(gains_path / name / "value")) { + RFNOC_LOG_ERROR("get_rx_gain(): Invalid gain name `" << name << "'"); + throw uhd::key_error(std::string("get_rx_gain(): Invalid gain name: ") + name); + } + // We're not yet done: If we're in CPLD/table profiles, we peek the current + // DSA settings and apply them to the local cache. + // Note: This means we have a different behaviour between directly accessing + // the prop tree, or accessing the C++ API. + if (gain_profile == ZBX_GAIN_PROFILE_CPLD + || gain_profile == ZBX_GAIN_PROFILE_CPLD_NOATR) { + const uint8_t idx = + (gain_profile == ZBX_GAIN_PROFILE_CPLD_NOATR) + ? _cpld->get_current_config(chan, zbx_cpld_ctrl::atr_mode_target::DSA) + : ATR_ADDR_RX; + constexpr bool update_cache = true; // Make sure to peek the actual value + static const std::map<std::string, zbx_cpld_ctrl::dsa_type> dsa_map{ + {ZBX_GAIN_STAGE_DSA1, zbx_cpld_ctrl::dsa_type::DSA1}, + {ZBX_GAIN_STAGE_DSA2, zbx_cpld_ctrl::dsa_type::DSA2}, + {ZBX_GAIN_STAGE_DSA3A, zbx_cpld_ctrl::dsa_type::DSA3A}, + {ZBX_GAIN_STAGE_DSA3B, zbx_cpld_ctrl::dsa_type::DSA3B}, + }; + const auto dsa = dsa_map.at(name); + const uint8_t dsa_val = _cpld->get_rx_dsa(chan, idx, dsa, update_cache); + // Update the tree because we're good citizens, and if we switch the + // gain profile from 'table' to 'manual', we want everything to be + // consistent. This will not cause a poke to the CPLD, b/c the experts + // won't write gains in this gain profile. + // Note that the other DSA values in the tree are not updated automatically, + // which is why we can't write DSA values to the CPLD in this profile. If + // we want to allow writing DSA values in this profile, we need to update + // everything here, or put some more cleverness into the programming + // expert. + _tree->access<double>(gains_path / name / "value") + .set(static_cast<double>(ZBX_RX_DSA_MAX_ATT - dsa_val)); + } + return _tree->access<double>(gains_path / name / "value").get(); +} + +std::vector<std::string> zbx_dboard_impl::get_tx_gain_names(const size_t chan) const +{ + UHD_ASSERT_THROW(chan < ZBX_NUM_CHANS); + const std::string gain_profile = _tx_gain_profile_api->get_gain_profile(chan); + + if (gain_profile == ZBX_GAIN_PROFILE_DEFAULT) { + return {ZBX_GAIN_STAGE_ALL}; + } + if (gain_profile == ZBX_GAIN_PROFILE_CPLD + || gain_profile == ZBX_GAIN_PROFILE_CPLD_NOATR) { + return {ZBX_GAIN_STAGE_TABLE}; + } + return ZBX_TX_GAIN_STAGES; +} + +std::vector<std::string> zbx_dboard_impl::get_rx_gain_names(const size_t chan) const +{ + UHD_ASSERT_THROW(chan < ZBX_NUM_CHANS); + const std::string gain_profile = _rx_gain_profile_api->get_gain_profile(chan); + + if (gain_profile == ZBX_GAIN_PROFILE_DEFAULT) { + return {ZBX_GAIN_STAGE_ALL}; + } + if (gain_profile == ZBX_GAIN_PROFILE_CPLD + || gain_profile == ZBX_GAIN_PROFILE_CPLD_NOATR) { + return {ZBX_GAIN_STAGE_TABLE}; + } + return ZBX_RX_GAIN_STAGES; +} + +const std::string zbx_dboard_impl::get_tx_lo_source( + const std::string& name, const size_t chan) +{ + const fs_path fe_path = _get_frontend_path(TX_DIRECTION, chan); + if (!_tree->exists(fe_path / "ch" / name)) { + throw uhd::value_error("get_tx_lo_source(): Invalid LO name: " + name); + } + + const zbx_lo_source_t lo_source = + _tree->access<zbx_lo_source_t>(fe_path / "ch" / name / "source").get(); + return lo_source == zbx_lo_source_t::internal ? "internal" : "external"; +} + +const std::string zbx_dboard_impl::get_rx_lo_source( + const std::string& name, const size_t chan) +{ + const fs_path fe_path = _get_frontend_path(RX_DIRECTION, chan); + if (!_tree->exists(fe_path / "ch" / name)) { + throw uhd::value_error("get_rx_lo_source(): Invalid LO name: " + name); + } + + const zbx_lo_source_t lo_source = + _tree->access<zbx_lo_source_t>(fe_path / "ch" / name / "source").get(); + return lo_source == zbx_lo_source_t::internal ? "internal" : "external"; +} + +void zbx_dboard_impl::set_rx_lo_source( + const std::string& src, const std::string& name, const size_t chan) +{ + RFNOC_LOG_TRACE("set_rx_lo_source(name=" << name << ", src=" << src << ")"); + const fs_path fe_path = _get_frontend_path(RX_DIRECTION, chan); + if (!_tree->exists(fe_path / "ch" / name)) { + throw uhd::value_error("set_rx_lo_source(): Invalid LO name: " + name); + } + + _tree->access<zbx_lo_source_t>(fe_path / "ch" / name / "source") + .set(src == "internal" ? zbx_lo_source_t::internal : zbx_lo_source_t::external); +} + +void zbx_dboard_impl::set_tx_lo_source( + const std::string& src, const std::string& name, const size_t chan) +{ + RFNOC_LOG_TRACE("set_tx_lo_source(name=" << name << ", src=" << src << ")"); + const fs_path fe_path = _get_frontend_path(TX_DIRECTION, chan); + if (!_tree->exists(fe_path / "ch" / name)) { + throw uhd::value_error("set_tx_lo_source(): Invalid LO name: " + name); + } + + _tree->access<zbx_lo_source_t>(fe_path / "ch" / name / "source") + .set(src == "internal" ? zbx_lo_source_t::internal : zbx_lo_source_t::external); +} + +double zbx_dboard_impl::set_tx_lo_freq( + double freq, const std::string& name, const size_t chan) +{ + RFNOC_LOG_TRACE("set_tx_lo_freq(freq=" << freq << ", name=" << name << ")"); + const fs_path fe_path = _get_frontend_path(TX_DIRECTION, chan); + assert_has(ZBX_LOS, name); + + return _tree->access<double>(fe_path / "los" / name / "freq" / "value").set(freq).get(); +} + +double zbx_dboard_impl::get_tx_lo_freq(const std::string& name, const size_t chan) +{ + RFNOC_LOG_TRACE("get_tx_lo_freq(name=" << name << ")"); + const fs_path fe_path = _get_frontend_path(TX_DIRECTION, chan); + assert_has(ZBX_LOS, name); + + return _tree->access<double>(fe_path / "los" / name / "freq" / "value").get(); +} + +freq_range_t zbx_dboard_impl::_get_lo_freq_range( + const std::string& name, const size_t /*chan*/) const +{ + if (name == ZBX_LO1 || name == ZBX_LO2) { + // Note this doesn't include the LO step size. The LO step size is only + // used when the LO frequencies are automatically calculated (which is + // the normal use case). When setting LO frequencies manually, it is + // possible to set LOs to values outside of the step size. + return freq_range_t{LMX2572_MIN_FREQ, LMX2572_MAX_FREQ}; + } + if (name == RFDC_NCO) { + // It might make sense to constrain the possible NCO values more, since + // the bandpass filters for IF2 only allow a certain range. Note that LO1 + // and LO2 freq ranges are also constrained by their analog filters. + // But in principle, this is the range for the NCO... so why not. + return freq_range_t{0.0, _rfdc_rate}; + } + throw uhd::value_error("Invalid LO name: " + name); +} + +double zbx_dboard_impl::set_rx_lo_freq( + double freq, const std::string& name, const size_t chan) +{ + RFNOC_LOG_TRACE("set_rx_lo_freq(freq=" << freq << ", name=" << name << ")"); + const fs_path fe_path = _get_frontend_path(RX_DIRECTION, chan); + assert_has(ZBX_LOS, name); + + return _tree->access<double>(fe_path / "los" / name / "freq" / "value") + .set(freq) + .get(); +} + +double zbx_dboard_impl::get_rx_lo_freq(const std::string& name, size_t chan) +{ + RFNOC_LOG_TRACE("get_rx_lo_freq(name=" << name << ")"); + const fs_path fe_path = _get_frontend_path(RX_DIRECTION, chan); + assert_has(ZBX_LOS, name); + + return _tree->access<double>(fe_path / "los" / name / "freq" / "value").get(); +} + +std::string zbx_dboard_impl::get_tx_antenna(size_t chan) const +{ + const fs_path fe_path = _get_frontend_path(TX_DIRECTION, chan); + return _tree->access<std::string>(fe_path / "antenna" / "value").get(); +} + +std::string zbx_dboard_impl::get_rx_antenna(size_t chan) const +{ + const fs_path fe_path = _get_frontend_path(RX_DIRECTION, chan); + return _tree->access<std::string>(fe_path / "antenna" / "value").get(); +} + +double zbx_dboard_impl::get_tx_frequency(size_t chan) +{ + const fs_path fe_path = _get_frontend_path(TX_DIRECTION, chan); + return _tree->access<double>(fe_path / "freq").get(); +} + +double zbx_dboard_impl::get_rx_frequency(size_t chan) +{ + const fs_path fe_path = _get_frontend_path(RX_DIRECTION, chan); + return _tree->access<double>(fe_path / "freq").get(); +} + +void zbx_dboard_impl::set_tx_tune_args(const uhd::device_addr_t&, const size_t) +{ + RFNOC_LOG_TRACE("tune_args not supported by this radio."); +} + +void zbx_dboard_impl::set_rx_tune_args(const uhd::device_addr_t&, const size_t) +{ + RFNOC_LOG_TRACE("tune_args not supported by this radio."); +} + +void zbx_dboard_impl::set_rx_agc(const bool, const size_t) +{ + throw uhd::not_implemented_error("set_rx_agc() is not supported on this radio!"); +} + +uhd::gain_range_t zbx_dboard_impl::get_tx_gain_range( + const std::string& name, const size_t chan) const +{ + // We have to accept the empty string for "all", because that's widely used + // (e.g. by multi_usrp) + if (!name.empty() && name != ZBX_GAIN_STAGE_ALL) { + throw uhd::value_error( + std::string("get_tx_gain_range(): Unknown gain name '") + name + "'!"); + } + return get_tx_gain_range(chan); +} + +uhd::gain_range_t zbx_dboard_impl::get_rx_gain_range( + const std::string& name, const size_t chan) const +{ + // We have to accept the empty string for "all", because that's widely used + // (e.g. by multi_usrp) + if (!name.empty() && name != ZBX_GAIN_STAGE_ALL) { + throw uhd::value_error( + std::string("get_rx_gain_range(): Unknown gain name '") + name + "'!"); + } + return get_rx_gain_range(chan); +} + +void zbx_dboard_impl::set_rx_lo_export_enabled(bool, const std::string&, const size_t) +{ + throw uhd::not_implemented_error( + "set_rx_lo_export_enabled is not supported on this radio"); +} + +bool zbx_dboard_impl::get_rx_lo_export_enabled(const std::string&, const size_t) +{ + return false; +} + +void zbx_dboard_impl::set_tx_lo_export_enabled(bool, const std::string&, const size_t) +{ + throw uhd::not_implemented_error( + "set_rx_lo_export_enabled is not supported on this radio"); +} + +bool zbx_dboard_impl::get_tx_lo_export_enabled(const std::string&, const size_t) +{ + return false; +} + +/****************************************************************************** + * EEPROM API + *****************************************************************************/ +eeprom_map_t zbx_dboard_impl::get_db_eeprom() +{ + return _mb_rpcc->get_db_eeprom(_db_idx); +} + +size_t zbx_dboard_impl::get_chan_from_dboard_fe( + const std::string& fe, const uhd::direction_t) const +{ + if (fe == "0") { + return 0; + } + if (fe == "1") { + return 1; + } + throw uhd::key_error(std::string("[X400] Invalid frontend: ") + fe); +} + +std::string zbx_dboard_impl::get_dboard_fe_from_chan( + const size_t chan, const uhd::direction_t) const +{ + if (chan == 0) { + return "0"; + } + if (chan == 1) { + return "1"; + } + throw uhd::lookup_error( + std::string("[X400] Invalid channel: ") + std::to_string(chan)); +} + +/********************************************************************* + * Private misc/calculative helper functions + **********************************************************************/ + +bool zbx_dboard_impl::_get_all_los_locked(const direction_t dir, const size_t chan) +{ + const fs_path fe_path = _get_frontend_path(dir, chan); + + const bool is_lo1_enabled = _tree->access<bool>(fe_path / ZBX_LO1 / "enabled").get(); + const bool is_lo1_locked = + _lo_ctrl_map.at(zbx_lo_ctrl::lo_string_to_enum(dir, chan, ZBX_LO1)) + ->get_lock_status(); + // LO2 is always enabled via center frequency tuning, but users may manually disable + // it + const bool is_lo2_enabled = _tree->access<bool>(fe_path / ZBX_LO2 / "enabled").get(); + const bool is_lo2_locked = + _lo_ctrl_map.at(zbx_lo_ctrl::lo_string_to_enum(dir, chan, ZBX_LO2)) + ->get_lock_status(); + // We only care about the lock status if it's enabled (lowband center frequency) + // That means we have set it to true if is_lo[1,2]_enabled is *false*, but check for + // the lock if is_lo[1,2]_enabled is *true* + return (!is_lo1_enabled || is_lo1_locked) && (!is_lo2_enabled || is_lo2_locked); +} + +fs_path zbx_dboard_impl::_get_frontend_path( + const direction_t dir, const size_t chan_idx) const +{ + UHD_ASSERT_THROW(chan_idx < ZBX_NUM_CHANS); + const std::string frontend = dir == TX_DIRECTION ? "tx_frontends" : "rx_frontends"; + return fs_path("dboard") / frontend / chan_idx; +} + +std::vector<uhd::usrp::pwr_cal_mgr::sptr>& zbx_dboard_impl::get_pwr_mgr( + uhd::direction_t trx) +{ + switch (trx) { + case uhd::RX_DIRECTION: + return _rx_pwr_mgr; + case uhd::TX_DIRECTION: + return _tx_pwr_mgr; + default: + UHD_THROW_INVALID_CODE_PATH(); + } +} + +}}} // namespace uhd::usrp::zbx diff --git a/host/lib/usrp/dboard/zbx/zbx_dboard_init.cpp b/host/lib/usrp/dboard/zbx/zbx_dboard_init.cpp new file mode 100644 index 000000000..e6bbf2798 --- /dev/null +++ b/host/lib/usrp/dboard/zbx/zbx_dboard_init.cpp @@ -0,0 +1,685 @@ +// +// Copyright 2020 Ettus Research, a National Instruments Brand +// +// SPDX-License-Identifier: GPL-3.0-or-later +// + +#include <uhd/cal/database.hpp> +#include <uhd/exception.hpp> +#include <uhd/property_tree.hpp> +#include <uhd/property_tree.ipp> +#include <uhd/rfnoc/register_iface.hpp> +#include <uhd/transport/chdr.hpp> +#include <uhd/types/direction.hpp> +#include <uhd/types/eeprom.hpp> +#include <uhd/types/ranges.hpp> +#include <uhd/types/sensors.hpp> +#include <uhd/utils/log.hpp> +#include <uhdlib/experts/expert_container.hpp> +#include <uhdlib/experts/expert_factory.hpp> +#include <uhdlib/rfnoc/reg_iface_adapter.hpp> +#include <uhdlib/usrp/dboard/zbx/zbx_constants.hpp> +#include <uhdlib/usrp/dboard/zbx/zbx_dboard.hpp> +#include <uhdlib/usrp/dboard/zbx/zbx_expert.hpp> +#include <boost/algorithm/string.hpp> +#include <sstream> +#include <vector> + +using namespace uhd; +using namespace uhd::experts; +using namespace uhd::rfnoc; + +// ostream << operator overloads for our enum classes, so that property nodes of that type +// can be added to our expert graph +namespace uhd { namespace experts { + +std::ostream& operator<<( + std::ostream& os, const ::uhd::usrp::zbx::zbx_lo_source_t& lo_source) +{ + switch (lo_source) { + case ::uhd::usrp::zbx::zbx_lo_source_t::internal: + os << "internal"; + return os; + case ::uhd::usrp::zbx::zbx_lo_source_t::external: + os << "external"; + return os; + default: + UHD_THROW_INVALID_CODE_PATH(); + } +} + +std::ostream& operator<<( + std::ostream& os, const ::uhd::usrp::zbx::zbx_cpld_ctrl::atr_mode& atr) +{ + switch (atr) { + case ::uhd::usrp::zbx::zbx_cpld_ctrl::atr_mode::SW_DEFINED: + os << "SW_DEFINED"; + return os; + case ::uhd::usrp::zbx::zbx_cpld_ctrl::atr_mode::CLASSIC_ATR: + os << "CLASSIC ATR"; + return os; + case ::uhd::usrp::zbx::zbx_cpld_ctrl::atr_mode::FPGA_STATE: + os << "FPGA_STATE"; + return os; + default: + UHD_THROW_INVALID_CODE_PATH(); + } +} +}} // namespace uhd::experts + +namespace uhd { namespace usrp { namespace zbx { + +void zbx_dboard_impl::_init_cpld() +{ + // CPLD + RFNOC_LOG_TRACE("Initializing CPLD..."); + _cpld = std::make_shared<zbx_cpld_ctrl>( + [this]( + const uint32_t addr, const uint32_t data, const zbx_cpld_ctrl::chan_t chan) { + const auto time_spec = (chan == zbx_cpld_ctrl::NO_CHAN) + ? time_spec_t::ASAP + : (chan == zbx_cpld_ctrl::CHAN1) + ? _time_accessor(1) + : _time_accessor(0); + _regs.poke32(_reg_base_address + addr, data, time_spec); + }, + [this](const uint32_t addr) { + // We don't do timed peeks, so no chan parameter here. + return _regs.peek32(_reg_base_address + addr); + }, + [this](const uhd::time_spec_t& sleep_time) { _regs.sleep(sleep_time); }, + get_unique_id() + "::CPLD"); + UHD_ASSERT_THROW(_cpld); + // We don't have access to the scratch register, so we use the config + // registers to test communication. This also does some basic sanity check + // of the CPLDs logic. + RFNOC_LOG_TRACE("Testing CPLD communication..."); + const uint32_t random_value = static_cast<uint32_t>(time(NULL)); + _cpld->set_scratch(random_value); + UHD_ASSERT_THROW(_cpld->get_scratch() == random_value); + // Now go to classic ATR mode + RFNOC_LOG_TRACE("CPLD communication good. Switching to classic ATR mode."); + for (size_t i = 0; i < ZBX_NUM_CHANS; ++i) { + _cpld->set_atr_mode( + i, zbx_cpld_ctrl::atr_mode_target::DSA, zbx_cpld_ctrl::atr_mode::CLASSIC_ATR); + _cpld->set_atr_mode(i, + zbx_cpld_ctrl::atr_mode_target::PATH_LED, + zbx_cpld_ctrl::atr_mode::CLASSIC_ATR); + } +} + +void zbx_dboard_impl::_init_peripherals() +{ + RFNOC_LOG_TRACE("Initializing peripherals..."); + // Load DSA cal data (rx and tx) + constexpr char dsa_step_filename_tx[] = "zbx_dsa_tx"; + constexpr char dsa_step_filename_rx[] = "zbx_dsa_rx"; + uhd::eeprom_map_t eeprom_map = get_db_eeprom(); + const std::string db_serial(eeprom_map["serial"].begin(), eeprom_map["serial"].end()); + if (uhd::usrp::cal::database::has_cal_data( + dsa_step_filename_tx, db_serial, uhd::usrp::cal::source::ANY)) { + RFNOC_LOG_TRACE("load binary TX DSA steps from database..."); + const auto tx_dsa_data = uhd::usrp::cal::database::read_cal_data( + dsa_step_filename_tx, db_serial, uhd::usrp::cal::source::ANY); + RFNOC_LOG_TRACE("create TX DSA object..."); + _tx_dsa_cal = uhd::usrp::cal::zbx_tx_dsa_cal::make(); + RFNOC_LOG_TRACE("store deserialized TX DSA data into object..."); + _tx_dsa_cal->deserialize(tx_dsa_data); + } else { + RFNOC_LOG_ERROR("Could not find TX DSA cal data!"); + throw uhd::runtime_error("Could not find TX DSA cal data!"); + } + if (uhd::usrp::cal::database::has_cal_data( + dsa_step_filename_rx, db_serial, uhd::usrp::cal::source::ANY)) { + // read binary blob without knowledge about content + RFNOC_LOG_TRACE("load binary RX DSA steps from database..."); + const auto rx_dsa_data = uhd::usrp::cal::database::read_cal_data( + dsa_step_filename_rx, db_serial, uhd::usrp::cal::source::ANY); + + RFNOC_LOG_TRACE("create RX DSA object..."); + _rx_dsa_cal = uhd::usrp::cal::zbx_rx_dsa_cal::make(); + + RFNOC_LOG_TRACE("store deserialized RX DSA data into object..."); + _rx_dsa_cal->deserialize(rx_dsa_data); + } else { + RFNOC_LOG_ERROR("Could not find RX DSA cal data!"); + throw uhd::runtime_error("Could not find RX DSA cal data!"); + } +} + +void zbx_dboard_impl::_init_prop_tree() +{ + auto subtree = get_tree()->subtree(fs_path("dboard")); + + // Construct RX frontend + for (size_t chan_idx = 0; chan_idx < ZBX_NUM_CHANS; chan_idx++) { + const fs_path fe_path = fs_path("rx_frontends") / chan_idx; + + // Command time needs to be shadowed into the property tree so we can use + // it in the expert graph. TX and RX share the command time, so we could + // put it onto its own sub-tree, or copy the property between TX and RX. + // With respect to TwinRX and trying to keep the tree lean and browsable, + // we compromise and put the command time onto the RX frontend path, even + // though it's also valid for TX. + // This data node will be used for scheduling the other experts: + expert_factory::add_data_node<time_spec_t>( + _expert_container, fe_path / "time/fe", time_spec_t(0.0)); + // This prop node will be used to import the command time into the + // graph: + expert_factory::add_prop_node<time_spec_t>( + _expert_container, subtree, fe_path / "time/cmd", time_spec_t(0.0)); + + _init_frontend_subtree(subtree, RX_DIRECTION, chan_idx, fe_path); + + // The time nodes get connected with one scheduling expert per channel: + expert_factory::add_worker_node<zbx_scheduling_expert>( + _expert_container, _expert_container->node_retriever(), fe_path); + } + + // Construct TX frontend + // Note: the TX frontend uses the RX property tree, this must + // be constructed after the RX frontend + for (size_t chan_idx = 0; chan_idx < ZBX_NUM_CHANS; chan_idx++) { + const fs_path fe_path = fs_path("tx_frontends") / chan_idx; + _init_frontend_subtree(subtree, TX_DIRECTION, chan_idx, fe_path); + } + + // Now add the sync worker: + expert_factory::add_worker_node<zbx_sync_expert>(_expert_container, + _expert_container->node_retriever(), + fs_path("tx_frontends"), + fs_path("rx_frontends"), + _rfdcc, + _cpld); + + subtree->create<eeprom_map_t>("eeprom") + .add_coerced_subscriber([this](const eeprom_map_t&) { + throw uhd::runtime_error("Attempting to update daughterboard eeprom!"); + }) + .set_publisher([this]() { return get_db_eeprom(); }); +} + +void zbx_dboard_impl::_init_frontend_subtree(uhd::property_tree::sptr subtree, + const uhd::direction_t trx, + const size_t chan_idx, + const fs_path fe_path) +{ + static constexpr char ZBX_FE_NAME[] = "ZBX"; + + RFNOC_LOG_TRACE("Adding non-RFNoC block properties for channel " + << chan_idx << " to prop tree path " << fe_path); + // Standard attributes + subtree->create<std::string>(fe_path / "name").set(ZBX_FE_NAME); + subtree->create<std::string>(fe_path / "connection").set("IQ"); + + _init_frequency_prop_tree(subtree, _expert_container, fe_path); + _init_gain_prop_tree(subtree, _expert_container, trx, chan_idx, fe_path); + _init_antenna_prop_tree(subtree, _expert_container, trx, chan_idx, fe_path); + _init_lo_prop_tree(subtree, _expert_container, trx, chan_idx, fe_path); + _init_programming_prop_tree(subtree, _expert_container, fe_path); + _init_experts(subtree, _expert_container, trx, chan_idx, fe_path); +} + + +uhd::usrp::pwr_cal_mgr::sptr zbx_dboard_impl::_init_power_cal( + uhd::property_tree::sptr subtree, + const uhd::direction_t trx, + const size_t chan_idx, + const fs_path fe_path) +{ + const std::string DIR = (trx == TX_DIRECTION) ? "TX" : "RX"; + + uhd::eeprom_map_t eeprom_map = get_db_eeprom(); + /* The cal serial is the DB serial plus the FE name */ + const std::string db_serial(eeprom_map["serial"].begin(), eeprom_map["serial"].end()); + const std::string cal_serial = + db_serial + "#" + subtree->access<std::string>(fe_path / "name").get(); + /* Now create a gain group for this. */ + /* _?x_gain_groups won't work, because it doesn't group the */ + /* gains the way we want them to be grouped. */ + auto ggroup = uhd::gain_group::make(); + ggroup->register_fcns(HW_GAIN_STAGE, + {[this, trx, chan_idx]() { + return trx == TX_DIRECTION ? get_tx_gain_range(chan_idx) + : get_rx_gain_range(chan_idx); + }, + [this, trx, chan_idx]() { + return trx == TX_DIRECTION ? get_tx_gain(ZBX_GAIN_STAGE_ALL, chan_idx) + : get_rx_gain(ZBX_GAIN_STAGE_ALL, chan_idx); + }, + [this, trx, chan_idx](const double gain) { + trx == TX_DIRECTION ? set_tx_gain(gain, chan_idx) + : set_rx_gain(gain, chan_idx); + }}, + 10 /* High priority */); + /* If we had a digital (baseband) gain, we would register it here,*/ + /* so that the power manager would know to use it as a */ + /* backup gain stage. */ + /* Note that such a baseband gain might not be available */ + /* on the LV version. */ + return uhd::usrp::pwr_cal_mgr::make( + cal_serial, + "X400-CAL-" + DIR, + [this, trx, chan_idx]() { + return trx == TX_DIRECTION ? get_tx_frequency(chan_idx) + : get_rx_frequency(chan_idx); + }, + [this, + trx_str = (trx == TX_DIRECTION ? "tx" : "rx"), + fe_path, + subtree, + chan_str = std::to_string(chan_idx)]() -> std::string { + const std::string antenna = pwr_cal_mgr::sanitize_antenna_name( + subtree->access<std::string>(fe_path / "antenna/value").get()); + // The lookup key for X410 + ZBX shall start with x4xx_pwr_zbx. + // Should we rev the ZBX in a way that would make generic cal data + // unsuitable between revs, then we need to check the rev (or PID) + // here and generate a different key prefix (e.g. x4xx_pwr_zbxD_ or + // something like that). + return std::string("x4xx_pwr_zbx_") + trx_str + "_" + chan_str + "_" + + antenna; + }, + ggroup); +} + +void zbx_dboard_impl::_init_experts(uhd::property_tree::sptr subtree, + expert_container::sptr expert, + const uhd::direction_t trx, + const size_t chan_idx, + const fs_path fe_path) +{ + RFNOC_LOG_TRACE(fe_path + ", Creating experts..."); + + get_pwr_mgr(trx).insert(get_pwr_mgr(trx).begin() + chan_idx, + _init_power_cal(subtree, trx, chan_idx, fe_path)); + + // NOTE: THE ORDER OF EXPERT INITIALIZATION MATTERS + // After construction, all nodes (properties and experts) are marked dirty. Any + // subsequent calls to the container will trigger a resolve_all(), in which case + // the nodes are all resolved in REVERSE ORDER of construction, like a stack. With + // that in mind, we have to initialize the experts in line with that reverse order, + // because some experts rely on each other's construction/resolution to avoid + // errors (e.g., gain expert's dsa_cal is dependant on frequency be's coerced + // frequency, which is nan on dual_prop_node construction) After construction and + // subsequent resolution, the nodes will follow simple topological ruling as long + // as we only change one property at a time. + + // The current order should be: + // Frequency FE Expert -> LO Expert(s) -> MPM Expert -> Frequency BE Expert -> Gain + // Expert -> Programming Expert + + if (trx == TX_DIRECTION) { + expert_factory::add_worker_node<zbx_tx_programming_expert>(expert, + expert->node_retriever(), + fe_path, + fs_path("rx_frontends") / chan_idx, + chan_idx, + _tx_dsa_cal, + _cpld); + + expert_factory::add_worker_node<zbx_tx_gain_expert>(expert, + expert->node_retriever(), + fe_path, + chan_idx, + get_pwr_mgr(trx).at(chan_idx), + _tx_dsa_cal); + } else { + expert_factory::add_worker_node<zbx_rx_programming_expert>( + expert, expert->node_retriever(), fe_path, chan_idx, _rx_dsa_cal, _cpld); + + expert_factory::add_worker_node<zbx_rx_gain_expert>(expert, + expert->node_retriever(), + fe_path, + chan_idx, + get_pwr_mgr(trx).at(chan_idx), + _rx_dsa_cal); + } + + expert_factory::add_worker_node<zbx_freq_be_expert>( + expert, expert->node_retriever(), fe_path, trx, chan_idx); + + expert_factory::add_worker_node<zbx_band_inversion_expert>( + expert, expert->node_retriever(), fe_path, trx, chan_idx, _db_idx, _rpcc); + + + // Initialize our LO Control Experts + for (auto lo_select : ZBX_LOS) { + if (lo_select == RFDC_NCO) { + expert_factory::add_worker_node<zbx_rfdc_freq_expert>(expert, + expert->node_retriever(), + fe_path, + trx, + chan_idx, + _rpc_prefix, + _db_idx, + _mb_rpcc); + } else { + const zbx_lo_t lo = zbx_lo_ctrl::lo_string_to_enum(trx, chan_idx, lo_select); + std::shared_ptr<zbx_lo_ctrl> lo_ctrl = std::make_shared<zbx_lo_ctrl>( + lo, + [this, lo](const uint32_t addr, const uint16_t data) { + _cpld->lo_poke16(lo, addr, data); + }, + [this, lo](const uint32_t addr) { return _cpld->lo_peek16(lo, addr); }, + [this](const uhd::time_spec_t& sleep_time) { _regs.sleep(sleep_time); }, + LMX2572_DEFAULT_FREQ, + _prc_rate, + false); + expert_factory::add_worker_node<zbx_lo_expert>(expert, + expert->node_retriever(), + fe_path, + trx, + chan_idx, + lo_select, + lo_ctrl); + _lo_ctrl_map.insert({lo, lo_ctrl}); + } + } + + const double lo_step_size = _prc_rate / ZBX_RELATIVE_LO_STEP_SIZE; + RFNOC_LOG_DEBUG("LO step size: " << (lo_step_size / 1e6) << " MHz.") + expert_factory::add_worker_node<zbx_freq_fe_expert>(expert, + expert->node_retriever(), + fe_path, + trx, + chan_idx, + _rfdc_rate, + lo_step_size); + RFNOC_LOG_TRACE(fe_path + ", Experts created"); +} + +void zbx_dboard_impl::_init_frequency_prop_tree(uhd::property_tree::sptr subtree, + expert_container::sptr expert, + const fs_path fe_path) +{ + expert_factory::add_dual_prop_node<double>( + expert, subtree, fe_path / "freq", ZBX_DEFAULT_FREQ, AUTO_RESOLVE_ON_WRITE); + expert_factory::add_dual_prop_node<double>( + expert, subtree, fe_path / "if_freq", 0.0, AUTO_RESOLVE_ON_WRITE); + expert_factory::add_data_node<bool>(expert, fe_path / "is_highband", false); + expert_factory::add_data_node<int>( + expert, fe_path / "mixer1_m", 0, AUTO_RESOLVE_ON_WRITE); + expert_factory::add_data_node<int>( + expert, fe_path / "mixer1_n", 0, AUTO_RESOLVE_ON_WRITE); + expert_factory::add_data_node<int>( + expert, fe_path / "mixer2_m", 0, AUTO_RESOLVE_ON_WRITE); + expert_factory::add_data_node<int>( + expert, fe_path / "mixer2_n", 0, AUTO_RESOLVE_ON_WRITE); + expert_factory::add_data_node<bool>( + expert, fe_path / "band_inverted", false, AUTO_RESOLVE_ON_WRITE); + + subtree->create<double>(fe_path / "bandwidth" / "value") + .set(ZBX_DEFAULT_BANDWIDTH) + .set_coercer([](const double) { return ZBX_DEFAULT_BANDWIDTH; }); + subtree->create<meta_range_t>(fe_path / "bandwidth" / "range") + .set({ZBX_DEFAULT_BANDWIDTH, ZBX_DEFAULT_BANDWIDTH}) + .set_coercer([](const meta_range_t&) { + return meta_range_t(ZBX_DEFAULT_BANDWIDTH, ZBX_DEFAULT_BANDWIDTH); + }); + subtree->create<meta_range_t>(fe_path / "freq" / "range") + .set(ZBX_FREQ_RANGE) + .add_coerced_subscriber([](const meta_range_t&) { + throw uhd::runtime_error("Attempting to update freq range!"); + }); +} + +void zbx_dboard_impl::_init_gain_prop_tree(uhd::property_tree::sptr subtree, + expert_container::sptr expert, + const uhd::direction_t trx, + const size_t chan_idx, + const fs_path fe_path) +{ + // First, overall gain nodes + const auto gain_base_path = fe_path / "gains"; + expert_factory::add_dual_prop_node<double>(expert, + subtree, + gain_base_path / ZBX_GAIN_STAGE_ALL / "value", + trx == TX_DIRECTION ? TX_MIN_GAIN : RX_MIN_GAIN, + AUTO_RESOLVE_ON_WRITE); + subtree->create<meta_range_t>(fe_path / "gains" / "all" / "range") + .add_coerced_subscriber([](const meta_range_t&) { + throw uhd::runtime_error("Attempting to update gain range!"); + }) + .set_publisher([this, trx, chan_idx]() { + return (trx == TX_DIRECTION) ? this->get_tx_gain_range(chan_idx) + : this->get_rx_gain_range(chan_idx); + }); + // Then, individual DSA/amp gain nodes + if (trx == TX_DIRECTION) { + // DSAs + for (const auto dsa : {ZBX_GAIN_STAGE_DSA1, ZBX_GAIN_STAGE_DSA2}) { + const auto gain_path = gain_base_path / dsa; + expert_factory::add_dual_prop_node<double>( + expert, subtree, gain_path / "value", 0, AUTO_RESOLVE_ON_WRITE); + subtree->create<meta_range_t>(gain_path / "range") + .set(uhd::meta_range_t(0, ZBX_TX_DSA_MAX_ATT, 1.0)); + expert_factory::add_worker_node<zbx_gain_coercer_expert>(_expert_container, + _expert_container->node_retriever(), + gain_path / "value", + uhd::meta_range_t(0, ZBX_TX_DSA_MAX_ATT, 1.0)); + } + // Amp + const auto amp_path = gain_base_path / ZBX_GAIN_STAGE_AMP; + expert_factory::add_dual_prop_node<double>(expert, + subtree, + amp_path / "value", + ZBX_TX_LOWBAND_GAIN, + AUTO_RESOLVE_ON_WRITE); + uhd::meta_range_t amp_gain_range; + for (const auto tx_gain_pair : ZBX_TX_GAIN_AMP_MAP) { + amp_gain_range.push_back(uhd::range_t(tx_gain_pair.first)); + } + subtree->create<meta_range_t>(amp_path / "range").set(amp_gain_range); + expert_factory::add_worker_node<zbx_gain_coercer_expert>(_expert_container, + _expert_container->node_retriever(), + amp_path / "value", + amp_gain_range); + } else { + // RX only has DSAs + for (const auto dsa : {ZBX_GAIN_STAGE_DSA1, + ZBX_GAIN_STAGE_DSA2, + ZBX_GAIN_STAGE_DSA3A, + ZBX_GAIN_STAGE_DSA3B}) { + const auto gain_path = gain_base_path / dsa; + expert_factory::add_dual_prop_node<double>( + expert, subtree, gain_path / "value", 0, AUTO_RESOLVE_ON_WRITE); + subtree->create<meta_range_t>(gain_path / "range") + .set(uhd::meta_range_t(0, ZBX_RX_DSA_MAX_ATT, 1.0)); + expert_factory::add_worker_node<zbx_gain_coercer_expert>(_expert_container, + _expert_container->node_retriever(), + gain_path / "value", + uhd::meta_range_t(0, ZBX_RX_DSA_MAX_ATT, 1.0)); + } + } + + const uhd::fs_path gain_profile_path = gain_base_path / "all" / "profile"; + expert_factory::add_prop_node<std::string>(expert, + subtree, + gain_profile_path, + ZBX_GAIN_PROFILE_DEFAULT, + AUTO_RESOLVE_ON_WRITE); + auto& gain_profile = (trx == TX_DIRECTION) ? _tx_gain_profile_api + : _rx_gain_profile_api; + auto& other_dir_gp = (trx == TX_DIRECTION) ? _rx_gain_profile_api + : _tx_gain_profile_api; + auto gain_profile_subscriber = [this, other_dir_gp, trx]( + const std::string& profile, const size_t chan) { + // Upon changing the gain profile, we need to import the new value into + // the property tree. + const auto path = fs_path("dboard") + / (trx == TX_DIRECTION ? "tx_frontends" : "rx_frontends") / chan + / "gains" / "all" / "profile"; + get_tree()->access<std::string>(path).set(profile); + // The CPLD does not have the option to have different ATR modes for RX + // and TX (it does have different modes for channel 0 and 1 though). + // This means we have to match up the gain profiles between RX and TX. + // The ZBX_GAIN_PROFILE_CPLD_NOATR profile uses the SW_DEFINED mode, + // and all the others use CLASSIC_ATR. So either both match + // ZBX_GAIN_PROFILE_CPLD_NOATR, or none do. + // This will not cause a loop, because the other_dir_gp will already + // match this one by the time we call it. + if ((profile == ZBX_GAIN_PROFILE_CPLD_NOATR + && other_dir_gp->get_gain_profile(chan) != ZBX_GAIN_PROFILE_CPLD_NOATR) + || (profile != ZBX_GAIN_PROFILE_CPLD_NOATR + && other_dir_gp->get_gain_profile(chan) == ZBX_GAIN_PROFILE_CPLD_NOATR)) { + RFNOC_LOG_DEBUG("Channel " << chan << ": Setting gain profile to `" << profile + << "' for both TX and RX."); + other_dir_gp->set_gain_profile(profile, chan); + } + }; + + gain_profile->add_subscriber(std::move(gain_profile_subscriber)); +} + +void zbx_dboard_impl::_init_antenna_prop_tree(uhd::property_tree::sptr subtree, + expert_container::sptr expert, + const uhd::direction_t trx, + const size_t chan_idx, + const fs_path fe_path) +{ + const std::string default_ant = trx == TX_DIRECTION ? DEFAULT_TX_ANTENNA + : DEFAULT_RX_ANTENNA; + expert_factory::add_prop_node<std::string>(expert, + subtree, + fe_path / "antenna" / "value", + default_ant, + AUTO_RESOLVE_ON_WRITE); + subtree->access<std::string>(fe_path / "antenna" / "value") + .set_coercer([trx](const std::string& ant_name) { + const auto ant_map = trx == TX_DIRECTION ? TX_ANTENNA_NAME_COMPAT_MAP + : RX_ANTENNA_NAME_COMPAT_MAP; + return ant_map.count(ant_name) ? ant_map.at(ant_name) : ant_name; + }); + subtree->create<std::vector<std::string>>(fe_path / "antenna" / "options") + .set(trx == TX_DIRECTION ? get_tx_antennas(chan_idx) : get_rx_antennas(chan_idx)) + .add_coerced_subscriber([](const std::vector<std::string>&) { + throw uhd::runtime_error("Attempting to update antenna options!"); + }); +} + +void zbx_dboard_impl::_init_programming_prop_tree(uhd::property_tree::sptr subtree, + expert_container::sptr expert, + const fs_path fe_path) +{ + expert_factory::add_prop_node<int>( + expert, subtree, fe_path / "rf" / "filter", 1, AUTO_RESOLVE_ON_WRITE); + expert_factory::add_prop_node<int>( + expert, subtree, fe_path / "if1" / "filter", 1, AUTO_RESOLVE_ON_WRITE); + expert_factory::add_prop_node<int>( + expert, subtree, fe_path / "if2" / "filter", 1, AUTO_RESOLVE_ON_WRITE); + expert_factory::add_prop_node<zbx_cpld_ctrl::atr_mode>(expert, + subtree, + fe_path / "atr_mode", + zbx_cpld_ctrl::atr_mode::CLASSIC_ATR, + AUTO_RESOLVE_ON_WRITE); +} + +void zbx_dboard_impl::_init_lo_prop_tree(uhd::property_tree::sptr subtree, + expert_container::sptr expert, + const uhd::direction_t trx, + const size_t chan_idx, + const fs_path fe_path) +{ + // Analog LO Specific + for (const std::string lo : {ZBX_LO1, ZBX_LO2}) { + expert_factory::add_prop_node<zbx_lo_source_t>(expert, + subtree, + fe_path / "ch" / lo / "source", + ZBX_DEFAULT_LO_SOURCE, + AUTO_RESOLVE_ON_WRITE); + expert_factory::add_prop_node<bool>( + expert, subtree, fe_path / lo / "enabled", false, AUTO_RESOLVE_ON_WRITE); + expert_factory::add_prop_node<bool>( + expert, subtree, fe_path / lo / "test_mode", false, AUTO_RESOLVE_ON_WRITE); + expert_factory::add_dual_prop_node<double>(expert, + subtree, + fe_path / "los" / lo / "freq" / "value", + LMX2572_DEFAULT_FREQ, + AUTO_RESOLVE_ON_WRITE); + + subtree->create<meta_range_t>(fe_path / "los" / lo / "freq/range") + .set_publisher( + [this, lo, chan_idx]() { return this->_get_lo_freq_range(lo, chan_idx); }) + .add_coerced_subscriber([](const meta_range_t&) { + throw uhd::runtime_error("Attempting to update freq range!"); + }); + subtree->create<std::vector<std::string>>(fe_path / "los" / lo / "source/options") + .set_publisher([this, lo, trx, chan_idx]() { + return trx == TX_DIRECTION ? this->get_tx_lo_sources(lo, chan_idx) + : this->get_rx_lo_sources(lo, chan_idx); + }) + .add_coerced_subscriber([](const std::vector<std::string>&) { + throw uhd::runtime_error("Attempting to update LO source options!"); + }); + + subtree + ->create<sensor_value_t>( + fe_path / "sensors" / boost::algorithm::to_lower_copy(lo) + "_locked") + .add_coerced_subscriber([](const sensor_value_t&) { + throw uhd::runtime_error("Attempting to write to sensor!"); + }) + .set_publisher([this, lo, trx, chan_idx]() { + return sensor_value_t(lo, + this->_lo_ctrl_map + .at(zbx_lo_ctrl::lo_string_to_enum(trx, chan_idx, lo)) + ->get_lock_status(), + "locked", + "unlocked"); + }); + } + + // The NCO gets a sub-node called 'reset'. It is read/write: Write will + // perform a reset, and read will return the reset status. The latter is + // also returned in the 'locked' sensor for the NCO, but the 'nco_locked' + // sensor node is read-only, and returns a sensor_value_t (not a bool). + // This node is primarily used for debugging, but can also serve as a manual + // reset line for the NCOs. + const auto nco = (trx == TX_DIRECTION) + ? (chan_idx == 0 ? rfdc_control::rfdc_type::TX0 + : rfdc_control::rfdc_type::TX1) + : (chan_idx == 0 ? rfdc_control::rfdc_type::RX0 + : rfdc_control::rfdc_type::RX1); + subtree->create<bool>(fe_path / "los" / RFDC_NCO / "reset") + .set_publisher([this]() { return this->_rfdcc->get_nco_reset_done(); }) + .add_coerced_subscriber([this, nco, chan_idx](const bool&) { + RFNOC_LOG_TRACE("Resetting NCO " << size_t(nco) << ", chan " << chan_idx); + this->_rfdcc->reset_ncos({nco}, this->_time_accessor(chan_idx)); + }); + + expert_factory::add_dual_prop_node<double>(expert, + subtree, + fe_path / "los" / RFDC_NCO / "freq" / "value", + // Initialize with current value + _mb_rpcc->rfdc_get_nco_freq(trx == TX_DIRECTION ? "tx" : "rx", _db_idx, chan_idx), + AUTO_RESOLVE_ON_WRITE); + + expert_factory::add_prop_node<zbx_lo_source_t>(expert, + subtree, + fe_path / "ch" / RFDC_NCO / "source", + ZBX_DEFAULT_LO_SOURCE, + AUTO_RESOLVE_ON_WRITE); + + // LO lock sensor + // We can't make this its own property value because it has to have access to two + // containers (two instances of zbx lo expert) + subtree->create<sensor_value_t>(fe_path / "sensors" / "lo_locked") + .set(sensor_value_t("all_los", false, "locked", "unlocked")) + .add_coerced_subscriber([](const sensor_value_t&) { + throw uhd::runtime_error("Attempting to write to sensor!"); + }) + .set_publisher([this, trx, chan_idx]() { + return sensor_value_t("all_los", + this->_get_all_los_locked(trx, chan_idx), + "locked", + "unlocked"); + }); + subtree->create<sensor_value_t>(fe_path / "sensors" / "nco_locked") + .add_coerced_subscriber([](const sensor_value_t&) { + throw uhd::runtime_error("Attempting to write to sensor!"); + }) + .set_publisher([this]() { + return sensor_value_t( + RFDC_NCO, this->_rfdcc->get_nco_reset_done(), "locked", "unlocked"); + }); +} +}}} // namespace uhd::usrp::zbx diff --git a/host/lib/usrp/dboard/zbx/zbx_expert.cpp b/host/lib/usrp/dboard/zbx/zbx_expert.cpp new file mode 100644 index 000000000..79e13e230 --- /dev/null +++ b/host/lib/usrp/dboard/zbx/zbx_expert.cpp @@ -0,0 +1,672 @@ +// +// Copyright 2020 Ettus Research, a National Instruments Brand +// +// SPDX-License-Identifier: GPL-3.0-or-later +// + +#include <uhd/utils/assert_has.hpp> +#include <uhd/utils/log.hpp> +#include <uhd/utils/math.hpp> +#include <uhdlib/usrp/dboard/zbx/zbx_expert.hpp> +#include <uhdlib/utils/interpolation.hpp> +#include <uhdlib/utils/narrow.hpp> +#include <algorithm> +#include <array> + +using namespace uhd; + +namespace uhd { namespace usrp { namespace zbx { + +namespace { + +/********************************************************************* + * Misc/calculative helper functions + **********************************************************************/ +bool _is_band_highband(const tune_map_item_t tune_setting) +{ + // Lowband frequency paths do not utilize an RF filter + return tune_setting.rf_fir == 0; +} + +tune_map_item_t _get_tune_settings(const double freq, const uhd::direction_t trx) +{ + auto tune_setting = trx == RX_DIRECTION ? rx_tune_map.begin() : tx_tune_map.begin(); + + auto tune_settings_end = trx == RX_DIRECTION ? rx_tune_map.end() : tx_tune_map.end(); + + for (; tune_setting != tune_settings_end; ++tune_setting) { + if (tune_setting->max_band_freq >= freq) { + return *tune_setting; + } + } + // Didn't find a tune setting. This frequency should have been clipped, this is an + // internal error. + UHD_THROW_INVALID_CODE_PATH(); +} + +bool _is_band_inverted(const uhd::direction_t trx, + const double if2_freq, + const double rfdc_rate, + const tune_map_item_t tune_setting) +{ + const bool is_if2_nyquist2 = if2_freq > (rfdc_rate / 2); + + // We count the number of inversions introduced by the signal chain, starting + // at the RFDC + const int num_inversions = + // If we're in the second Nyquist zone, we're inverted + int(is_if2_nyquist2) + + // LO2 mixer may invert + int(tune_setting.mix2_m == -1) + + // LO1 mixer can only invert in the lowband + int(!_is_band_highband(tune_setting) && tune_setting.mix1_m == -1); + + // In the RX direction, an extra inversion is needed + // TODO: We don't know where this is coming from + const bool num_inversions_is_odd = num_inversions % 2 != 0; + if (trx == RX_DIRECTION) { + return !num_inversions_is_odd; + } else { + return num_inversions_is_odd; + } +} + +double _calc_lo2_freq( + const double if1_freq, const double if2_freq, const int mix2_m, const int mix2_n) +{ + return (if2_freq - (mix2_m * if1_freq)) / mix2_n; +} + +double _calc_if2_freq( + const double if1_freq, const double lo2_freq, const int mix2_m, const int mix2_n) +{ + return mix2_n * lo2_freq + mix2_m * if1_freq; +} + +std::string _get_trx_string(const direction_t dir) +{ + if (dir == RX_DIRECTION) { + return "rx"; + } else if (dir == TX_DIRECTION) { + return "tx"; + } else { + UHD_THROW_INVALID_CODE_PATH(); + } +} + +// For various RF performance considerations (such as spur reduction), different bands +// vary between using fixed IF1 and/or IF2 or using variable IF1 and/or IF2. Bands with a +// fixed IF1/IF2 have ifX_freq_min == IFX_freq_max, and _calc_ifX_freq() will return that +// single value. Bands with variable IF1/IF2 will shift the IFX based on where in the RF +// band we are tuning by using linear interpolation. (if1 calculation takes place only if +// tune frequency is lowband) +double _calc_if1_freq(const double tune_freq, const tune_map_item_t tune_setting) +{ + if (tune_setting.if1_freq_min == tune_setting.if1_freq_max) { + return tune_setting.if1_freq_min; + } + + return uhd::math::linear_interp(tune_freq, + tune_setting.min_band_freq, + tune_setting.if1_freq_min, + tune_setting.max_band_freq, + tune_setting.if1_freq_max); +} + +double _calc_ideal_if2_freq(const double tune_freq, const tune_map_item_t tune_setting) +{ + // linear_interp() wants to interpolate and will throw if these are identical: + if (tune_setting.if2_freq_min == tune_setting.if2_freq_max) { + return tune_setting.if2_freq_min; + } + + return uhd::math::linear_interp(tune_freq, + tune_setting.min_band_freq, + tune_setting.if2_freq_min, + tune_setting.max_band_freq, + tune_setting.if2_freq_max); +} + +} // namespace + +/*!--------------------------------------------------------- + * EXPERT RESOLVE FUNCTIONS + * + * This sections contains all expert resolve functions. + * These methods are triggered by any of the bound accessors becoming "dirty", + * or changing value + * -------------------------------------------------------- + */ +void zbx_scheduling_expert::resolve() +{ + // We currently have no fancy scheduling, but here is where we'd add it if + // we need to do that (e.g., plan out SYNC pulse timing vs. NCO timing etc.) + _frontend_time = _command_time; +} + +void zbx_freq_fe_expert::resolve() +{ + const double tune_freq = ZBX_FREQ_RANGE.clip(_desired_frequency); + _tune_settings = _get_tune_settings(tune_freq, _trx); + + // Set mixer values so the backend expert knows how to calculate final frequency + _mixer1_m = _tune_settings.mix1_m; + _mixer1_n = _tune_settings.mix1_n; + _mixer2_m = _tune_settings.mix2_m; + _mixer2_n = _tune_settings.mix2_n; + + _is_highband = _is_band_highband(_tune_settings); + _lo1_enabled = !_is_highband.get(); + + double if1_freq = tune_freq; + const double lo_step = _lo_freq_range.step(); + // If we need to apply an offset to avoid injection locking, we need to + // offset in different directions for different channels on the same zbx + const double lo_offset_sign = (_chan == 0) ? -1 : 1; + // In high band, LO1 is not needed (the signal is already at a high enough + // frequency for the second stage) + if (_lo1_enabled) { + // Calculate the ideal IF1: + if1_freq = _calc_if1_freq(tune_freq, _tune_settings); + // We calculate the LO1 frequency by first shifting the tune frequency to the + // desired IF, and then applying an offset such that CH0 and CH1 tune to distinct + // LO1 frequencies: This is done to prevent the LO's from interfering with each + // other in a phenomenon known as injection locking. + const double lo1_freq = + if1_freq + (_tune_settings.mix1_n * tune_freq) + (lo_offset_sign * lo_step); + // Now, quantize the LO frequency to the nearest valid value: + _desired_lo1_frequency = _lo_freq_range.clip(lo1_freq, true); + // Because LO1 frequency probably changed during quantization, we simply + // re-calculate the now-valid IF1 (the following equation is the same as + // the LO1 frequency calculation, but solved for if1_freq): + if1_freq = _desired_lo1_frequency - (_tune_settings.mix1_n * tune_freq); + } + + _lo2_enabled = true; + // Calculate ideal IF2 frequency: + const double if2_freq = _calc_ideal_if2_freq(tune_freq, _tune_settings); + // Calculate LO2 frequency from that: + _desired_lo2_frequency = _calc_lo2_freq(if1_freq, if2_freq, _mixer2_m, _mixer2_n); + // Similar to LO1, apply an offset such that CH0 and CH1 tune to distinct LO2 + // frequencies to prevent potential interference between CH0 and CH1 LO2's from + // injection locking: In highband (LO1 disabled), this must explicitly be done below. + // In lowband (LO1 enabled), the LO1 will have already been shifted and, as a result, + // the LO2's will have already been shifted to compensate for LO1 in previous + // function. Note that in lowband, the LO1's and LO2's will be offset between CH0 and + // CH1; however, they will be offset in opposite direction such that the NCO frequency + // will be the same between CH0 and CH1. This is not the case for highband (only LO2 + // and they must be offset). + if (!_lo1_enabled) { + _desired_lo2_frequency = _desired_lo2_frequency + (lo_offset_sign * lo_step); + } + // Now, quantize the LO frequency to the nearest valid value: + _desired_lo2_frequency = _lo_freq_range.clip(_desired_lo2_frequency, true); + // Calculate actual IF2 frequency from LO2 and IF1 frequencies: + _desired_if2_frequency = + _calc_if2_freq(if1_freq, _desired_lo2_frequency, _mixer2_m, _mixer2_n); + + // If the frequency is in a different tuning band, we need to switch filters + _rf_filter = _tune_settings.rf_fir; + _if1_filter = _tune_settings.if1_fir; + _if2_filter = _tune_settings.if2_fir; + _band_inverted = + _is_band_inverted(_trx, _desired_if2_frequency, _rfdc_rate, _tune_settings); +} + + +void zbx_freq_be_expert::resolve() +{ + if (_is_highband) { + _coerced_frequency = + ((_coerced_if2_frequency - (_coerced_lo2_frequency * _mixer2_n)) / _mixer2_m); + } else { + _coerced_frequency = + (_coerced_lo1_frequency + + ((_coerced_lo2_frequency * _mixer2_n - _coerced_if2_frequency) + / _mixer2_m)) + / _mixer1_n; + } + + // Users may change individual settings (LO frequencies, if2 frequencies) and throw + // the output frequency out of range. We have to stop here so that the gain API + // doesn't panic (Clipping here would have no effect on the actual output signal) + using namespace uhd::math::fp_compare; + if (fp_compare_delta<double>(_coerced_frequency.get()) < ZBX_MIN_FREQ + || fp_compare_delta<double>(_coerced_frequency.get()) > ZBX_MAX_FREQ) { + UHD_LOG_WARNING(get_name(), + "Resulting coerced frequency " << _coerced_frequency.get() + << " is out of range!"); + } +} + +void zbx_lo_expert::resolve() +{ + if (_test_mode_enabled.is_dirty()) { + _lo_ctrl->set_lo_test_mode_enabled(_test_mode_enabled); + } + + if (_set_is_enabled.is_dirty()) { + _lo_ctrl->set_lo_port_enabled(_set_is_enabled); + } + + if (_set_is_enabled && _desired_lo_frequency.is_dirty()) { + const double clipped_lo_freq = std::max( + LMX2572_MIN_FREQ, std::min(_desired_lo_frequency.get(), LMX2572_MAX_FREQ)); + _coerced_lo_frequency = _lo_ctrl->set_lo_freq(clipped_lo_freq); + UHD_LOG_TRACE(get_name(), + "Requested " << _get_trx_string(_trx) << _chan << " frequency " + << (_desired_lo_frequency / 1e6) << "MHz was coerced to " + << (_coerced_lo_frequency / 1e6) << "MHz"); + } +} + +void zbx_gain_coercer_expert::resolve() +{ + _gain_coerced = _valid_range.clip(_gain_desired, true); +} + +void zbx_tx_gain_expert::resolve() +{ + if (_profile != ZBX_GAIN_PROFILE_DEFAULT) { + return; + } + + // If a user passes in a gain value, we have to set the Power API tracking mode + if (_gain_in.is_dirty()) { + _power_mgr->set_tracking_mode(uhd::usrp::pwr_cal_mgr::tracking_mode::TRACK_GAIN); + } + + // Now we do the overall gain setting + // Look up DSA values by gain + _gain_out = ZBX_TX_GAIN_RANGE.clip(_gain_in, true); + const size_t gain_idx = _gain_out / TX_GAIN_STEP; + // Clip _frequency to valid ZBX range to avoid errors in the scenario when user + // manually configures LO frequencies and causes an illegal overall frequency + auto dsa_settings = + _dsa_cal->get_dsa_setting(ZBX_FREQ_RANGE.clip(_frequency), gain_idx); + // Now write to downstream nodes, converting attenuations to gains: + _dsa1 = static_cast<double>(ZBX_TX_DSA_MAX_ATT - dsa_settings[0]); + _dsa2 = static_cast<double>(ZBX_TX_DSA_MAX_ATT - dsa_settings[1]); + // Convert amp index to gain + _amp_gain = ZBX_TX_AMP_GAIN_MAP.at(static_cast<tx_amp>(dsa_settings[2])); +} + +void zbx_rx_gain_expert::resolve() +{ + if (_profile != ZBX_GAIN_PROFILE_DEFAULT) { + return; + } + + // If a user passes in a gain value, we have to set the Power API tracking mode + if (_gain_in.is_dirty()) { + _power_mgr->set_tracking_mode(uhd::usrp::pwr_cal_mgr::tracking_mode::TRACK_GAIN); + } + + // Now we do the overall gain setting + if (_frequency.get() <= RX_LOW_FREQ_MAX_GAIN_CUTOFF) { + _gain_out = ZBX_RX_LOW_FREQ_GAIN_RANGE.clip(_gain_in, true); + } else { + _gain_out = ZBX_RX_GAIN_RANGE.clip(_gain_in, true); + } + // Now we do the overall gain setting + // Look up DSA values by gain + const size_t gain_idx = _gain_out / RX_GAIN_STEP; + // Clip _frequency to valid ZBX range to avoid errors in the scenario when user + // manually configures LO frequencies and causes an illegal overall frequency + auto dsa_settings = + _dsa_cal->get_dsa_setting(ZBX_FREQ_RANGE.clip(_frequency), gain_idx); + // Now write to downstream nodes, converting attenuation to gains: + _dsa1 = ZBX_RX_DSA_MAX_ATT - dsa_settings[0]; + _dsa2 = ZBX_RX_DSA_MAX_ATT - dsa_settings[1]; + _dsa3a = ZBX_RX_DSA_MAX_ATT - dsa_settings[2]; + _dsa3b = ZBX_RX_DSA_MAX_ATT - dsa_settings[3]; +} + +void zbx_tx_programming_expert::resolve() +{ + if (_profile.is_dirty()) { + if (_profile == ZBX_GAIN_PROFILE_DEFAULT || _profile == ZBX_GAIN_PROFILE_MANUAL + || _profile == ZBX_GAIN_PROFILE_CPLD) { + _cpld->set_atr_mode(_chan, + zbx_cpld_ctrl::atr_mode_target::DSA, + zbx_cpld_ctrl::atr_mode::CLASSIC_ATR); + } else { + _cpld->set_atr_mode(_chan, + zbx_cpld_ctrl::atr_mode_target::DSA, + zbx_cpld_ctrl::atr_mode::SW_DEFINED); + } + } + + // If we're in any of the table modes, then we don't write DSA and amp values + // A note on caching: The CPLD object caches state, and only pokes the CPLD + // if it's changed. However, all DSAs are on the same register. That means + // the DSA register changes, all DSA values written to the CPLD will come + // from the input data nodes to this worker node. This can overwrite DSA + // values if the cached version and the actual value on the CPLD differ. + if (_profile == ZBX_GAIN_PROFILE_DEFAULT || _profile == ZBX_GAIN_PROFILE_MANUAL) { + // Convert gains back to attenuation + zbx_cpld_ctrl::tx_dsa_type dsa_settings = { + uhd::narrow_cast<uint32_t>(ZBX_TX_DSA_MAX_ATT - _dsa1.get()), + uhd::narrow_cast<uint32_t>(ZBX_TX_DSA_MAX_ATT - _dsa2.get())}; + _cpld->set_tx_gain_switches(_chan, ATR_ADDR_TX, dsa_settings); + _cpld->set_tx_gain_switches(_chan, ATR_ADDR_XX, dsa_settings); + } + + // If frequency changed, we might have changed bands and the CPLD dsa tables need to + // be reloaded + // TODO: This is a major hack, and these tables should be loaded outside of the + // tuning call. This means every tuning request involves a large amount of CPLD + // writes. + // We only write when we aren't using a command time, otherwise all those CPLD + // commands will line up in the CPLD command queue, and diminish any purpose + // of timed commands in the first place + // Clip _frequency to valid ZBX range to avoid errors in the scenario when user + // manually configures LO frequencies and causes an illegal overall frequency + if (_command_time == 0.0) { + _cpld->update_tx_dsa_settings( + _dsa_cal->get_band_settings(ZBX_FREQ_RANGE.clip(_frequency), 0 /*dsa1*/), + _dsa_cal->get_band_settings(ZBX_FREQ_RANGE.clip(_frequency), 1 /*dsa2*/)); + } + + for (const size_t idx : ATR_ADDRS) { + _cpld->set_lo_source(idx, + zbx_lo_ctrl::lo_string_to_enum(TX_DIRECTION, _chan, ZBX_LO1), + _lo1_source); + _cpld->set_lo_source(idx, + zbx_lo_ctrl::lo_string_to_enum(TX_DIRECTION, _chan, ZBX_LO2), + _lo2_source); + + _cpld->set_tx_rf_filter(_chan, idx, _rf_filter); + _cpld->set_tx_if1_filter(_chan, idx, _if1_filter); + _cpld->set_tx_if2_filter(_chan, idx, _if2_filter); + } + + // Convert amp gain to amp index + UHD_ASSERT_THROW(ZBX_TX_GAIN_AMP_MAP.count(_amp_gain.get())); + const tx_amp amp = ZBX_TX_GAIN_AMP_MAP.at(_amp_gain.get()); + _cpld->set_tx_antenna_switches(_chan, ATR_ADDR_0X, _antenna, tx_amp::BYPASS); + _cpld->set_tx_antenna_switches(_chan, ATR_ADDR_RX, _antenna, tx_amp::BYPASS); + _cpld->set_tx_antenna_switches(_chan, ATR_ADDR_TX, _antenna, amp); + _cpld->set_tx_antenna_switches(_chan, ATR_ADDR_XX, _antenna, amp); + + // We do not update LEDs on switching TX antenna value by definition +} + +void zbx_rx_programming_expert::resolve() +{ + if (_profile.is_dirty()) { + if (_profile == ZBX_GAIN_PROFILE_DEFAULT || _profile == ZBX_GAIN_PROFILE_MANUAL + || _profile == ZBX_GAIN_PROFILE_CPLD) { + _cpld->set_atr_mode(_chan, + zbx_cpld_ctrl::atr_mode_target::DSA, + zbx_cpld_ctrl::atr_mode::CLASSIC_ATR); + } else { + _cpld->set_atr_mode(_chan, + zbx_cpld_ctrl::atr_mode_target::DSA, + zbx_cpld_ctrl::atr_mode::SW_DEFINED); + } + } + + // If we're in any of the table modes, then we don't write DSA values + // A note on caching: The CPLD object caches state, and only pokes the CPLD + // if it's changed. However, all DSAs are on the same register. That means + // the DSA register changes, all DSA values written to the CPLD will come + // from the input data nodes to this worker node. This can overwrite DSA + // values if the cached version and the actual value on the CPLD differ. + if (_profile == ZBX_GAIN_PROFILE_DEFAULT || _profile == ZBX_GAIN_PROFILE_MANUAL) { + zbx_cpld_ctrl::rx_dsa_type dsa_settings = { + uhd::narrow_cast<uint32_t>(ZBX_RX_DSA_MAX_ATT - _dsa1.get()), + uhd::narrow_cast<uint32_t>(ZBX_RX_DSA_MAX_ATT - _dsa2.get()), + uhd::narrow_cast<uint32_t>(ZBX_RX_DSA_MAX_ATT - _dsa3a.get()), + uhd::narrow_cast<uint32_t>(ZBX_RX_DSA_MAX_ATT - _dsa3b.get())}; + _cpld->set_rx_gain_switches(_chan, ATR_ADDR_RX, dsa_settings); + _cpld->set_rx_gain_switches(_chan, ATR_ADDR_XX, dsa_settings); + } + + + // If frequency changed, we might have changed bands and the CPLD dsa tables need to + // be reloaded + // TODO: This is a major hack, and these tables should be loaded outside of the + // tuning call. This means every tuning request involves a large amount of CPLD + // writes. + // We only write when we aren't using a command time, otherwise all those CPLD + // commands will line up in the CPLD command queue, and diminish any purpose + // of timed commands in the first place + // Clip _frequency to valid ZBX range to avoid errors in the scenario when user + // manually configures LO frequencies and causes an illegal overall frequency + if (_command_time == 0.0) { + _cpld->update_rx_dsa_settings( + _dsa_cal->get_band_settings(ZBX_FREQ_RANGE.clip(_frequency), 0 /*dsa1*/), + _dsa_cal->get_band_settings(ZBX_FREQ_RANGE.clip(_frequency), 1 /*dsa2*/), + _dsa_cal->get_band_settings(ZBX_FREQ_RANGE.clip(_frequency), 2 /*dsa3a*/), + _dsa_cal->get_band_settings(ZBX_FREQ_RANGE.clip(_frequency), 3 /*dsa3b*/)); + } + + for (const size_t idx : ATR_ADDRS) { + _cpld->set_lo_source(idx, + zbx_lo_ctrl::lo_string_to_enum(RX_DIRECTION, _chan, ZBX_LO1), + _lo1_source); + _cpld->set_lo_source(idx, + zbx_lo_ctrl::lo_string_to_enum(RX_DIRECTION, _chan, ZBX_LO2), + _lo2_source); + + // If using the TX/RX terminal, only configure the ATR RX state since the + // state of the switch at other times is controlled by TX + if (_antenna != ANTENNA_TXRX || idx == ATR_ADDR_RX) { + _cpld->set_rx_antenna_switches(_chan, idx, _antenna); + } + + _cpld->set_rx_rf_filter(_chan, idx, _rf_filter); + _cpld->set_rx_if1_filter(_chan, idx, _if1_filter); + _cpld->set_rx_if2_filter(_chan, idx, _if2_filter); + } + + _update_leds(); +} + +void zbx_rx_programming_expert::_update_leds() +{ + if (_atr_mode != zbx_cpld_ctrl::atr_mode::CLASSIC_ATR) { + return; + } + // We default to the RX1 LED for all RX antenna values that are not TX/RX0 + const bool rx_on_trx = _antenna == ANTENNA_TXRX; + // clang-format off + // G==Green, R==Red RX2 TX/RX-G TX/RX-R + _cpld->set_leds(_chan, ATR_ADDR_0X, false, false, false); + _cpld->set_leds(_chan, ATR_ADDR_RX, !rx_on_trx, rx_on_trx, false); + _cpld->set_leds(_chan, ATR_ADDR_TX, false, false, true ); + _cpld->set_leds(_chan, ATR_ADDR_XX, !rx_on_trx, rx_on_trx, true ); + // clang-format on +} + +void zbx_band_inversion_expert::resolve() +{ + _rpcc->enable_iq_swap(_is_band_inverted.get(), _get_trx_string(_trx), _chan); +} + +void zbx_rfdc_freq_expert::resolve() +{ + // Because we can configure both IF2 and the RFDC NCO frequency, these may + // come into conflict. We choose IF2 over RFDC in that case. In other words + // the only time we choose the desired RFDC frequency over the IF2 (when in + // conflict) is when the RFDC freq was changed directly. + const double desired_rfdc_freq = [&]() -> double { + if (_rfdc_freq_desired.is_dirty() && !_if2_frequency_desired.is_dirty()) { + return _rfdc_freq_desired; + } + return _if2_frequency_desired; + }(); + + _rfdc_freq_coerced = _rpcc->rfdc_set_nco_freq( + _get_trx_string(_trx), _db_idx, _chan, desired_rfdc_freq); + _if2_frequency_coerced = _rfdc_freq_coerced; +} + +void zbx_sync_expert::resolve() +{ + // Some local helper consts + // clang-format off + constexpr std::array<std::array<zbx_lo_t, 4>, 2> los{{{ + zbx_lo_t::RX0_LO1, + zbx_lo_t::RX0_LO2, + zbx_lo_t::TX0_LO1, + zbx_lo_t::TX0_LO2 + }, { + zbx_lo_t::RX1_LO1, + zbx_lo_t::RX1_LO2, + zbx_lo_t::TX1_LO1, + zbx_lo_t::TX1_LO2 + }}}; + constexpr std::array<std::array<rfdc_control::rfdc_type, 2>, 2> ncos{{ + {rfdc_control::rfdc_type::RX0, rfdc_control::rfdc_type::TX0}, + {rfdc_control::rfdc_type::RX1, rfdc_control::rfdc_type::TX1} + }}; + // clang-format on + + // Now do some timing checks + const std::vector<bool> chan_needs_sync = {_fe_time.at(0) != uhd::time_spec_t::ASAP, + _fe_time.at(1) != uhd::time_spec_t::ASAP}; + // If there's no command time, no need to synchronize anything + if (!chan_needs_sync[0] && !chan_needs_sync[1]) { + UHD_LOG_TRACE(get_name(), "No command time: Skipping phase sync."); + return; + } + const bool times_match = _fe_time.at(0) == _fe_time.at(1); + + // ** Find LOs to synchronize ********************************************* + // Find dirty LOs which need sync'ing + std::set<zbx_lo_t> los_to_sync; + for (const size_t chan : ZBX_CHANNELS) { + if (chan_needs_sync[chan]) { + for (const auto& lo_idx : los[chan]) { + if (_lo_freqs.at(lo_idx).is_dirty()) { + los_to_sync.insert(lo_idx); + } + } + } + } + + // ** Find NCOs to synchronize ******************************************** + // Same rules apply as for LOs. + std::set<rfdc_control::rfdc_type> ncos_to_sync; + for (const size_t chan : ZBX_CHANNELS) { + if (chan_needs_sync[chan]) { + for (const auto& nco_idx : ncos[chan]) { + if (_nco_freqs.at(nco_idx).is_dirty()) { + ncos_to_sync.insert(nco_idx); + } + } + } + } + + // ** Find ADC/DAC gearboxes to synchronize ******************************* + // Gearboxes are special, because they only need to be synchronized once + // per session, assuming the command time has been set. Unfortunately we + // have no way here to know if the timekeeper time was updated, but it is + // well documented that in order to synchronize devices, one first has to + // make sure the timekeepers are running in sync (by calling + // set_time_next_pps() accordingly). + // The logic we use here is that we will always have to update the NCO when + // doing a synced tune, so we update all the gearboxes for the NCOs -- but + // only if they have not yet been synchronized. + std::set<rfdc_control::rfdc_type> gearboxes_to_sync; + if (!_adcs_synced) { + for (const auto rfdc : + {rfdc_control::rfdc_type::RX0, rfdc_control::rfdc_type::RX1}) { + if (ncos_to_sync.count(rfdc)) { + gearboxes_to_sync.insert(rfdc); + // Technically, they're not synced yet but this saves us from + // having to look up which RFDCs map to RX again later + _adcs_synced = true; + } + } + } + if (!_dacs_synced) { + for (const auto rfdc : + {rfdc_control::rfdc_type::TX0, rfdc_control::rfdc_type::TX1}) { + if (ncos_to_sync.count(rfdc)) { + gearboxes_to_sync.insert(rfdc); + // Technically, they're not synced yet but this saves us from + // having to look up which RFDCs map to TX again later + _dacs_synced = true; + } + } + } + + // ** Do synchronization ************************************************** + // This is where we orchestrate the sync commands. If sync commands happen + // at different times, we make sure to send out the earlier one first. + // If we need to schedule things a bit differently, e.g., we need to + // manually calculate offsets from the command time so that LO and NCO sync + // pulses line up, it most likely makes sense to use the scheduling expert + // for that, and calculate different times for different events there. + if (times_match) { + UHD_LOG_TRACE(get_name(), + "Syncing all channels: " << los_to_sync.size() << " LO(s), " + << ncos_to_sync.size() << " NCO(s), and " + << gearboxes_to_sync.size() << " gearbox(es).") + if (!gearboxes_to_sync.empty()) { + _rfdcc->reset_gearboxes( + std::vector<rfdc_control::rfdc_type>( + gearboxes_to_sync.cbegin(), gearboxes_to_sync.cend()), + _fe_time.at(0).get()); + } + if (!los_to_sync.empty()) { + _cpld->pulse_lo_sync( + 0, std::vector<zbx_lo_t>(los_to_sync.cbegin(), los_to_sync.cend())); + } + if (!ncos_to_sync.empty()) { + _rfdcc->reset_ncos(std::vector<rfdc_control::rfdc_type>( + ncos_to_sync.cbegin(), ncos_to_sync.cend()), + _fe_time.at(0).get()); + } + } else { + // If the command times differ, we need to manually reorder the commands + // such that the channel with the earlier time gets precedence + const size_t first_sync_chan = + (times_match || (_fe_time.at(0) <= _fe_time.at(1))) ? 0 : 1; + const auto sync_order = (first_sync_chan == 0) ? std::vector<size_t>{0, 1} + : std::vector<size_t>{1, 0}; + for (const size_t chan : sync_order) { + std::vector<zbx_lo_t> this_chan_los; + for (const zbx_lo_t lo_idx : los[chan]) { + if (los_to_sync.count(lo_idx)) { + this_chan_los.push_back(lo_idx); + } + } + + std::vector<rfdc_control::rfdc_type> this_chan_ncos; + for (const auto nco_idx : ncos[chan]) { + if (ncos_to_sync.count(nco_idx)) { + this_chan_ncos.push_back(nco_idx); + } + } + std::vector<rfdc_control::rfdc_type> this_chan_gearboxes; + for (const auto gb_idx : ncos[chan]) { + if (gearboxes_to_sync.count(gb_idx)) { + this_chan_gearboxes.push_back(gb_idx); + } + } + UHD_LOG_TRACE(get_name(), + "Syncing channel " << chan << ": " << this_chan_los.size() + << " LO(s) and " << this_chan_ncos.size() + << " NCO(s)."); + if (!this_chan_gearboxes.empty()) { + UHD_LOG_TRACE(get_name(), + "Resetting " << this_chan_gearboxes.size() << " gearboxes."); + _rfdcc->reset_gearboxes(this_chan_gearboxes, _fe_time.at(chan).get()); + } + if (!this_chan_los.empty()) { + _cpld->pulse_lo_sync(chan, this_chan_los); + } + if (!this_chan_ncos.empty()) { + _rfdcc->reset_ncos(this_chan_ncos, _fe_time.at(chan).get()); + } + } + } +} // zbx_sync_expert::resolve() + +// End expert resolve sections + +}}} // namespace uhd::usrp::zbx diff --git a/host/lib/usrp/dboard/zbx/zbx_lo_ctrl.cpp b/host/lib/usrp/dboard/zbx/zbx_lo_ctrl.cpp new file mode 100644 index 000000000..1af665207 --- /dev/null +++ b/host/lib/usrp/dboard/zbx/zbx_lo_ctrl.cpp @@ -0,0 +1,162 @@ +// +// Copyright 2020 Ettus Research, a National Instruments Brand +// +// SPDX-License-Identifier: GPL-3.0-or-later +// + +#include <uhd/exception.hpp> +#include <uhd/utils/log.hpp> +#include <uhdlib/usrp/dboard/zbx/zbx_lo_ctrl.hpp> +#include <thread> + +namespace uhd { namespace usrp { namespace zbx { + +zbx_lo_ctrl::zbx_lo_ctrl(zbx_lo_t lo, + lmx2572_iface::write_fn_t&& poke16, + lmx2572_iface::read_fn_t&& peek16, + lmx2572_iface::sleep_fn_t&& sleep, + const double default_frequency, + const double db_prc_rate, + const bool testing_mode_enabled) + : _lo(lo) + , _log_id(ZBX_LO_LOG_ID.at(lo)) + , _freq(default_frequency) + , _db_prc_rate(db_prc_rate) + , _testing_mode_enabled(testing_mode_enabled) +{ + _lmx = lmx2572_iface::make(std::move(poke16), std::move(peek16), std::move(sleep)); + UHD_ASSERT_THROW(_lmx); + UHD_LOG_TRACE(_log_id, "LO initialized..."); + _lmx->reset(); + + set_lo_port_enabled(true); + // In ZBX, we always run the LOs in sync mode. It is theoretically possible + // to not do so, but we gain nothing by doing that. + _lmx->set_sync_mode(true); + set_lo_freq(LMX2572_DEFAULT_FREQ); + wait_for_lo_lock(); +} + +double zbx_lo_ctrl::set_lo_freq(const double freq) +{ + UHD_ASSERT_THROW(_lmx); + UHD_LOG_TRACE(_log_id, "Setting LO frequency " << freq / 1e6 << " MHz"); + + _freq = _lmx->set_frequency(freq, + _db_prc_rate, + false /*TODO: get_spur_dodging()*/); + _lmx->commit(); + return _freq; +} + +double zbx_lo_ctrl::get_lo_freq() +{ + return _freq; +} + +void zbx_lo_ctrl::wait_for_lo_lock() +{ + UHD_LOG_TRACE(_log_id, "Waiting for LO lock, " << ZBX_LO_LOCK_TIMEOUT_MS << " ms"); + const auto timeout = std::chrono::steady_clock::now() + + std::chrono::milliseconds(ZBX_LO_LOCK_TIMEOUT_MS); + while (std::chrono::steady_clock::now() < timeout && !get_lock_status()) { + std::this_thread::sleep_for(std::chrono::milliseconds(1)); + } + if (!get_lock_status()) { + // If we can't lock our LO, this could be a lot of possible issues + throw uhd::runtime_error(_log_id + " has failed to lock!"); + } +} + +bool zbx_lo_ctrl::get_lock_status() +{ + return _lmx->get_lock_status(); +} + +void zbx_lo_ctrl::set_lo_port_enabled(bool enable) +{ + UHD_LOG_TRACE(_log_id, + "Enabling LO " << (_testing_mode_enabled ? "test" : "output") << " port"); + + // We want to set the output port regardless of test mode being enabled + _lmx->set_output_enable(_get_output_port(false), enable); + + if (_testing_mode_enabled && enable) { + // If testing mode is enabled, also set the test port + _lmx->set_output_enable(_get_output_port(true), true); + } else { + // If testing mode is disabled, test port should be disabled + _lmx->set_output_enable(_get_output_port(true), false); + _lmx->set_mux_input( + _get_output_port(true), lmx2572_iface::mux_in_t::HIGH_IMPEDANCE); + } + + _lmx->set_enabled(enable); + _lmx->commit(); +} + +bool zbx_lo_ctrl::get_lo_port_enabled() +{ + return _lmx->get_enabled(); +} + +void zbx_lo_ctrl::set_lo_test_mode_enabled(bool enable) +{ + _testing_mode_enabled = enable; + set_lo_port_enabled(get_lo_port_enabled()); +} + +bool zbx_lo_ctrl::get_lo_test_mode_enabled() +{ + return _testing_mode_enabled; +} + +zbx_lo_t zbx_lo_ctrl::lo_string_to_enum( + const uhd::direction_t trx, const size_t channel, const std::string name) +{ + if (trx == TX_DIRECTION) { + if (channel == 0) { + if (name == ZBX_LO1) { + return zbx_lo_t::TX0_LO1; + } else if (name == ZBX_LO2) { + return zbx_lo_t::TX0_LO2; + } + } else if (channel == 1) { + if (name == ZBX_LO1) { + return zbx_lo_t::TX1_LO1; + } else if (name == ZBX_LO2) { + return zbx_lo_t::TX1_LO2; + } + } + } else { + if (channel == 0) { + if (name == ZBX_LO1) { + return zbx_lo_t::RX0_LO1; + } else if (name == ZBX_LO2) { + return zbx_lo_t::RX0_LO2; + } + } else if (channel == 1) { + if (name == ZBX_LO1) { + return zbx_lo_t::RX1_LO1; + } else if (name == ZBX_LO2) { + return zbx_lo_t::RX1_LO2; + } + } + } + UHD_THROW_INVALID_CODE_PATH(); +} + +lmx2572_iface::output_t zbx_lo_ctrl::_get_output_port(bool testing_mode) +{ + // Note: The LO output ports here are dependent to the LO and zbx hardware + // configuration, in no particular order (zbx radio configuration output vs. + // test port output) + if (!testing_mode) { + // Rev B has all LO outputs on Port A + return lmx2572_iface::output_t::RF_OUTPUT_A; + } else { + return lmx2572_iface::output_t::RF_OUTPUT_B; + } +} + +}}} // namespace uhd::usrp::zbx diff --git a/host/lib/usrp/mpmd/mpmd_devices.hpp b/host/lib/usrp/mpmd/mpmd_devices.hpp index 9cc046037..689e5c981 100644 --- a/host/lib/usrp/mpmd/mpmd_devices.hpp +++ b/host/lib/usrp/mpmd/mpmd_devices.hpp @@ -19,6 +19,6 @@ static const std::vector<std::string> MPM_DEVICE_TYPES = { MPM_CATCHALL_DEVICE_TYPE, "n3xx", "e3xx", -}; + "x4xx"}; #endif /* INCLUDED_MPMD_DEVICES_HPP */ diff --git a/host/lib/usrp/mpmd/mpmd_image_loader.cpp b/host/lib/usrp/mpmd/mpmd_image_loader.cpp index 145ad70c9..c15c4832c 100644 --- a/host/lib/usrp/mpmd/mpmd_image_loader.cpp +++ b/host/lib/usrp/mpmd/mpmd_image_loader.cpp @@ -10,10 +10,13 @@ #include <uhd/device.hpp> #include <uhd/exception.hpp> #include <uhd/image_loader.hpp> +#include <uhd/rfnoc/radio_control.hpp> +#include <uhd/rfnoc_graph.hpp> #include <uhd/types/component_file.hpp> #include <uhd/types/eeprom.hpp> #include <uhd/utils/paths.hpp> #include <uhd/utils/static.hpp> +#include <uhdlib/features/fpga_load_notification_iface.hpp> #include <uhdlib/utils/prefs.hpp> #include <boost/algorithm/string.hpp> #include <boost/archive/iterators/binary_from_base64.hpp> @@ -368,6 +371,19 @@ static bool mpmd_image_loader(const image_loader::image_loader_args_t& image_loa mpmd_send_fpga_to_device(image_loader_args, dev_addr); + { + // All MPM devices use RFNoC + auto graph = rfnoc::rfnoc_graph::make(find_hint); + for (size_t mb_index = 0; mb_index < graph->get_num_mboards(); mb_index++) { + auto mboard = graph->get_mb_controller(mb_index); + if (mboard->has_feature<uhd::features::fpga_load_notification_iface>()) { + auto& notifier = + mboard->get_feature<uhd::features::fpga_load_notification_iface>(); + notifier.onload(); + } + } + } + return true; } @@ -385,4 +401,5 @@ UHD_STATIC_BLOCK(register_mpm_image_loader) // time being image_loader::register_image_loader("n3xx", mpmd_image_loader, recovery_instructions); image_loader::register_image_loader("e3xx", mpmd_image_loader, recovery_instructions); + image_loader::register_image_loader("x4xx", mpmd_image_loader, recovery_instructions); } diff --git a/host/lib/usrp/mpmd/mpmd_mb_controller.cpp b/host/lib/usrp/mpmd/mpmd_mb_controller.cpp index dba8713c4..9bbd324b0 100644 --- a/host/lib/usrp/mpmd/mpmd_mb_controller.cpp +++ b/host/lib/usrp/mpmd/mpmd_mb_controller.cpp @@ -14,6 +14,44 @@ namespace { constexpr size_t MPMD_DEFAULT_LONG_TIMEOUT = 30000; // ms } // namespace +mpmd_mb_controller::fpga_onload::fpga_onload() +{} + +void mpmd_mb_controller::fpga_onload::onload() +{ + for (auto& cb : _cbs) + { + if (auto spt = cb.lock()) + { + spt->onload(); + } + } +} + +void mpmd_mb_controller::fpga_onload::request_cb(uhd::features::fpga_load_notification_iface::sptr handler) +{ + _cbs.emplace_back(handler); +} + +mpmd_mb_controller::ref_clk_calibration::ref_clk_calibration(uhd::usrp::mpmd_rpc_iface::sptr rpcc) + : _rpcc(rpcc) +{} + +void mpmd_mb_controller::ref_clk_calibration::set_ref_clk_tuning_word(uint32_t tuning_word) +{ + _rpcc->set_ref_clk_tuning_word(tuning_word); +} + +uint32_t mpmd_mb_controller::ref_clk_calibration::get_ref_clk_tuning_word() +{ + return _rpcc->get_ref_clk_tuning_word(); +} + +void mpmd_mb_controller::ref_clk_calibration::store_ref_clk_tuning_word(uint32_t tuning_word) +{ + _rpcc->store_ref_clk_tuning_word(tuning_word); +} + mpmd_mb_controller::mpmd_mb_controller( uhd::usrp::mpmd_rpc_iface::sptr rpcc, uhd::device_addr_t device_info) : _rpc(rpcc), _device_info(device_info) @@ -33,6 +71,14 @@ mpmd_mb_controller::mpmd_mb_controller( for (const auto& bank : _gpio_banks) { _gpio_srcs.insert({bank, _rpc->get_gpio_srcs(bank)}); } + + _fpga_onload = std::make_shared<fpga_onload>(); + register_feature(_fpga_onload); + + if (_rpc->supports_feature("ref_clk_calibration")) { + _ref_clk_cal = std::make_shared<ref_clk_calibration>(_rpc); + register_feature(_ref_clk_cal); + } } /****************************************************************************** @@ -142,16 +188,22 @@ std::vector<device_addr_t> mpmd_mb_controller::get_sync_sources() return result; } -void mpmd_mb_controller::set_clock_source_out(const bool /*enb*/) +void mpmd_mb_controller::set_clock_source_out(const bool enb) { - throw uhd::not_implemented_error( - "set_clock_source_out() not implemented on this device!"); + _rpc->set_clock_source_out(enb); } -void mpmd_mb_controller::set_time_source_out(const bool /*enb*/) +void mpmd_mb_controller::set_time_source_out(const bool enb) { - throw uhd::not_implemented_error( - "set_time_source_out() not implemented on this device!"); + if (_rpc->supports_feature("time_export")) + { + _rpc->set_trigger_io(enb ? "pps_output" : "off"); + } + else + { + throw uhd::not_implemented_error( + "set_time_source_out() not implemented on this device!"); + } } sensor_value_t mpmd_mb_controller::get_sensor(const std::string& name) diff --git a/host/lib/usrp/x300/x300_mb_controller.hpp b/host/lib/usrp/x300/x300_mb_controller.hpp index 6cfa3f525..a0ffb0654 100644 --- a/host/lib/usrp/x300/x300_mb_controller.hpp +++ b/host/lib/usrp/x300/x300_mb_controller.hpp @@ -11,6 +11,7 @@ #include "x300_device_args.hpp" #include "x300_radio_mbc_iface.hpp" #include "x300_regs.hpp" +#include <uhdlib/features/discoverable_feature_registry.hpp> #include <uhd/rfnoc/mb_controller.hpp> #include <uhd/types/sensors.hpp> #include <uhd/types/wb_iface.hpp> @@ -28,7 +29,8 @@ namespace uhd { namespace rfnoc { * - Controlling all time- and clock-related settings * - Initialize and hold the GPS control */ -class x300_mb_controller : public mb_controller +class x300_mb_controller : public mb_controller, + public ::uhd::features::discoverable_feature_registry { public: /************************************************************************** diff --git a/host/lib/usrp/x400/CMakeLists.txt b/host/lib/usrp/x400/CMakeLists.txt new file mode 100644 index 000000000..b3efe3b60 --- /dev/null +++ b/host/lib/usrp/x400/CMakeLists.txt @@ -0,0 +1,20 @@ +# +# Copyright 2020 Ettus Research, a National Instruments Brand +# +# SPDX-License-Identifier: GPL-3.0-or-later +# + +######################################################################## +# This file included, use CMake directory variables +######################################################################## + +LIBUHD_APPEND_SOURCES( + ${CMAKE_CURRENT_SOURCE_DIR}/adc_self_calibration.cpp + ${CMAKE_CURRENT_SOURCE_DIR}/x400_radio_control.cpp + ${CMAKE_CURRENT_SOURCE_DIR}/x400_rfdc_control.cpp +) + +if(ENABLE_DPDK) + include_directories(${DPDK_INCLUDE_DIRS}) + add_definitions(-DHAVE_DPDK) +endif(ENABLE_DPDK) diff --git a/host/lib/usrp/x400/adc_self_calibration.cpp b/host/lib/usrp/x400/adc_self_calibration.cpp new file mode 100644 index 000000000..7deba7725 --- /dev/null +++ b/host/lib/usrp/x400/adc_self_calibration.cpp @@ -0,0 +1,196 @@ +// +// Copyright 2020 Ettus Research, a National Instruments Brand +// +// SPDX-License-Identifier: GPL-3.0-or-later +// + +#include "adc_self_calibration.hpp" +#include <uhd/utils/log.hpp> +#include <uhd/utils/scope_exit.hpp> +#include <chrono> +#include <thread> + +using namespace std::chrono_literals; + +namespace uhd { namespace features { + +adc_self_calibration::adc_self_calibration(uhd::usrp::x400_rpc_iface::sptr rpcc, + const std::string rpc_prefix, + const std::string unique_id, + size_t db_number, + uhd::usrp::x400::x400_dboard_iface::sptr daughterboard) + : _rpcc(rpcc) + , _rpc_prefix(rpc_prefix) + , _db_number(db_number) + , _daughterboard(daughterboard) + , _unique_id(unique_id) +{ +} + +void adc_self_calibration::run(size_t chan) +{ + const auto tx_gain_profile = + _daughterboard->get_tx_gain_profile_api()->get_gain_profile(chan); + const auto rx_gain_profile = + _daughterboard->get_rx_gain_profile_api()->get_gain_profile(chan); + if (tx_gain_profile != "default" || rx_gain_profile != "default") { + throw uhd::runtime_error("Cannot run ADC self calibration when gain " + "profile for RX or TX is not 'default'."); + } + + // The frequency that we need to feed into the ADC is, by decree, + // 13109 / 32768 times the ADC sample rate. (approx. 1.2GHz for a 3Gsps rate) + const double spll_freq = _rpcc->get_spll_freq(); + const double cal_tone_freq = spll_freq * 13109.0 / 32768.0; + + const auto cal_params = _daughterboard->get_adc_self_cal_params(cal_tone_freq); + + // Switch to CAL_LOOPBACK and save the current antenna + const auto rx_antenna = _daughterboard->get_rx_antenna(chan); + const auto tx_antenna = _daughterboard->get_tx_antenna(chan); + + auto reset_antennas = uhd::utils::scope_exit::make([&]() { + _daughterboard->set_rx_antenna(rx_antenna, chan); + _daughterboard->set_tx_antenna(tx_antenna, chan); + + // Waiting here allows some CPLD registers to be set. It's not clear + // to me why we require this wait. See azdo #1473824 + constexpr auto fudge_time = 100ms; + std::this_thread::sleep_for(fudge_time); + }); + + _daughterboard->set_rx_antenna("CAL_LOOPBACK", chan); + _daughterboard->set_tx_antenna("CAL_LOOPBACK", chan); + + // Configure the output DAC mux to output 1/2 full scale + // set_dac_mux_data uses 16-bit values. + _rpcc->set_dac_mux_data(32768 / 2, 0); + + const size_t motherboard_channel_number = _db_number * 2 + chan; + _rpcc->set_dac_mux_enable(motherboard_channel_number, 1); + auto disable_dac_mux = uhd::utils::scope_exit::make( + [&]() { _rpcc->set_dac_mux_enable(motherboard_channel_number, 0); }); + + // Save all of the LO frequencies & sources + const double original_rx_freq = _daughterboard->get_rx_frequency(chan); + std::map<std::string, std::tuple<std::string, double>> rx_lo_state; + for (auto rx_lo : _daughterboard->get_rx_lo_names(chan)) { + const std::string source(_daughterboard->get_rx_lo_source(rx_lo, chan)); + const double freq = _daughterboard->get_rx_lo_freq(rx_lo, chan); + rx_lo_state.emplace(std::piecewise_construct, + std::forward_as_tuple(rx_lo), + std::forward_as_tuple(source, freq)); + } + auto restore_rx_los = uhd::utils::scope_exit::make([&]() { + _daughterboard->set_rx_frequency(original_rx_freq, chan); + for (auto entry : rx_lo_state) { + auto& lo = std::get<0>(entry); + auto& state = std::get<1>(entry); + + auto& source = std::get<0>(state); + const double freq = std::get<1>(state); + _daughterboard->set_rx_lo_source(source, lo, chan); + _daughterboard->set_rx_lo_freq(freq, lo, chan); + } + }); + + const double original_tx_freq = _daughterboard->get_tx_frequency(chan); + std::map<std::string, std::tuple<std::string, double>> tx_lo_state; + for (auto tx_lo : _daughterboard->get_tx_lo_names(chan)) { + const std::string source(_daughterboard->get_tx_lo_source(tx_lo, chan)); + const double freq = _daughterboard->get_tx_lo_freq(tx_lo, chan); + tx_lo_state.emplace(std::piecewise_construct, + std::forward_as_tuple(tx_lo), + std::forward_as_tuple(source, freq)); + } + auto restore_tx_los = uhd::utils::scope_exit::make([&]() { + _daughterboard->set_tx_frequency(original_tx_freq, chan); + for (auto entry : tx_lo_state) { + auto& lo = std::get<0>(entry); + auto& state = std::get<1>(entry); + + auto& source = std::get<0>(state); + const double freq = std::get<1>(state); + _daughterboard->set_tx_lo_source(source, lo, chan); + _daughterboard->set_tx_lo_freq(freq, lo, chan); + } + }); + + _daughterboard->set_tx_frequency(cal_params.tx_freq, chan); + _daughterboard->set_rx_frequency(cal_params.rx_freq, chan); + + // Set & restore the gain + const double tx_gain = _daughterboard->get_tx_gain(chan); + const double rx_gain = _daughterboard->get_rx_gain(chan); + auto restore_gains = uhd::utils::scope_exit::make([&]() { + _daughterboard->get_rx_gain_profile_api()->set_gain_profile("default", chan); + _daughterboard->get_tx_gain_profile_api()->set_gain_profile("default", chan); + + _daughterboard->set_tx_gain(tx_gain, chan); + _daughterboard->set_rx_gain(rx_gain, chan); + }); + + // Set the threshold to detect half-scale + // The setup_threshold call uses 14-bit ADC values + constexpr int hysteresis_reset_time = 100; + constexpr int hysteresis_reset_threshold = 8000; + constexpr int hysteresis_set_threshold = 8192; + _rpcc->setup_threshold(_db_number, + chan, + 0, + "hysteresis", + hysteresis_reset_time, + hysteresis_reset_threshold, + hysteresis_set_threshold); + bool found_gain = false; + for (double i = cal_params.min_gain; i <= cal_params.max_gain; i += 1.0) { + _daughterboard->get_rx_gain_profile_api()->set_gain_profile("default", chan); + _daughterboard->get_tx_gain_profile_api()->set_gain_profile("default", chan); + + _daughterboard->set_tx_gain(i, chan); + _daughterboard->set_rx_gain(i, chan); + + // Set the daughterboard to use the duplex entry in the DSA table which was + // configured in the set_?x_gain call. (note that with a LabVIEW FPGA, we don't + // control the ATR lines, hence why we override them here) + _daughterboard->get_rx_gain_profile_api()->set_gain_profile("table_noatr", chan); + _daughterboard->get_tx_gain_profile_api()->set_gain_profile("table_noatr", chan); + + _daughterboard->set_rx_gain(0b11, chan); + _daughterboard->set_tx_gain(0b11, chan); + + // Wait for it to settle + constexpr auto settle_time = 10ms; + std::this_thread::sleep_for(settle_time); + + try { + const bool threshold_status = + _rpcc->get_threshold_status(_db_number, chan, 0); + if (threshold_status) { + found_gain = true; + break; + } + } catch (uhd::runtime_error&) { + // Catch & eat this error, the user has a 5.0 FPGA and so can't auto-gain + return; + } + } + + if (!found_gain) { + throw uhd::runtime_error( + "Could not find appropriate gain for performing ADC self cal"); + } + + // (if required) unfreeze calibration + const std::vector<int> current_frozen_state = _rpcc->get_cal_frozen(_db_number, chan); + _rpcc->set_cal_frozen(0, _db_number, chan); + auto refreeze_adcs = uhd::utils::scope_exit::make( + [&]() { _rpcc->set_cal_frozen(current_frozen_state[0], _db_number, chan); }); + + // Let the ADC calibrate + // 2000ms was found experimentally to be sufficient + constexpr auto calibration_time = 2000ms; + std::this_thread::sleep_for(calibration_time); +} + +}} // namespace uhd::features diff --git a/host/lib/usrp/x400/adc_self_calibration.hpp b/host/lib/usrp/x400/adc_self_calibration.hpp new file mode 100644 index 000000000..474c14e07 --- /dev/null +++ b/host/lib/usrp/x400/adc_self_calibration.hpp @@ -0,0 +1,46 @@ +// +// Copyright 2020 Ettus Research, a National Instruments Brand +// +// SPDX-License-Identifier: GPL-3.0-or-later +// + +#pragma once + +#include <uhd/features/adc_self_calibration_iface.hpp> +#include <uhdlib/usrp/common/rpc.hpp> +#include <uhdlib/usrp/dboard/x400_dboard_iface.hpp> +#include <string> + +namespace uhd { namespace features { + +using namespace uhd::rfnoc; + +class adc_self_calibration : public adc_self_calibration_iface +{ +public: + adc_self_calibration(uhd::usrp::x400_rpc_iface::sptr rpcc, + const std::string rpc_prefix, + const std::string unique_id, + size_t db_number, + uhd::usrp::x400::x400_dboard_iface::sptr daughterboard); + + void run(const size_t channel) override; + +private: + //! Reference to the RPC client + uhd::usrp::x400_rpc_iface::sptr _rpcc; + + const std::string _rpc_prefix; + + const size_t _db_number; + + uhd::usrp::x400::x400_dboard_iface::sptr _daughterboard; + + const std::string _unique_id; + std::string get_unique_id() const + { + return _unique_id; + } +}; + +}} // namespace uhd::features diff --git a/host/lib/usrp/x400/x400_radio_control.cpp b/host/lib/usrp/x400/x400_radio_control.cpp new file mode 100644 index 000000000..281ae7916 --- /dev/null +++ b/host/lib/usrp/x400/x400_radio_control.cpp @@ -0,0 +1,752 @@ +// +// Copyright 2020 Ettus Research, a National Instruments Brand +// +// SPDX-License-Identifier: GPL-3.0-or-later +// + +#include "x400_radio_control.hpp" +#include <uhd/rfnoc/registry.hpp> +#include <uhd/utils/log.hpp> +#include <uhd/utils/math.hpp> +#include <uhdlib/usrp/common/x400_rfdc_control.hpp> +#include <uhdlib/usrp/dboard/debug_dboard.hpp> +#include <uhdlib/usrp/dboard/null_dboard.hpp> +#include <uhdlib/usrp/dboard/zbx/zbx_dboard.hpp> + +namespace uhd { namespace rfnoc { + +x400_radio_control_impl::fpga_onload::fpga_onload(size_t num_channels, + uhd::features::adc_self_calibration_iface::sptr adc_self_cal, + std::string unique_id) + : _num_channels(num_channels), _adc_self_cal(adc_self_cal), _unique_id(unique_id) +{ +} + +void x400_radio_control_impl::fpga_onload::onload() +{ + for (size_t channel = 0; channel < _num_channels; channel++) { + if (_adc_self_cal) { + try { + _adc_self_cal->run(channel); + } catch (uhd::runtime_error& e) { + RFNOC_LOG_WARNING("Failure while running self cal on channel " + << channel << ": " << e.what()); + } + } + } +} + +x400_radio_control_impl::x400_radio_control_impl(make_args_ptr make_args) + : radio_control_impl(std::move(make_args)) +{ + RFNOC_LOG_TRACE("Initializing x400_radio_control"); + + UHD_ASSERT_THROW(get_block_id().get_block_count() < 2); + constexpr char radio_slot_name[2] = {'A', 'B'}; + _radio_slot = radio_slot_name[get_block_id().get_block_count()]; + _rpc_prefix = get_block_id().get_block_count() == 1 ? "db_1_" : "db_0_"; + + UHD_ASSERT_THROW(get_mb_controller()); + _mb_control = std::dynamic_pointer_cast<mpmd_mb_controller>(get_mb_controller()); + + _x4xx_timekeeper = std::dynamic_pointer_cast<mpmd_mb_controller::mpmd_timekeeper>( + _mb_control->get_timekeeper(0)); + UHD_ASSERT_THROW(_x4xx_timekeeper); + + _rpcc = _mb_control->dynamic_cast_rpc_as<uhd::usrp::x400_rpc_iface>(); + if (!_rpcc) { + _rpcc = std::make_shared<uhd::usrp::x400_rpc>(_mb_control->get_rpc_client()); + } + + _db_rpcc = _mb_control->dynamic_cast_rpc_as<uhd::usrp::dboard_base_rpc_iface>(); + if (!_db_rpcc) { + _db_rpcc = std::make_shared<uhd::usrp::dboard_base_rpc>( + _mb_control->get_rpc_client(), _rpc_prefix); + } + + const auto all_dboard_info = _rpcc->get_dboard_info(); + RFNOC_LOG_TRACE("Hardware detected " << all_dboard_info.size() << " daughterboards."); + + // If we have two radio blocks, but there is only one dboard plugged in, + // we skip initialization. The board needs to be in slot A + if (all_dboard_info.size() <= get_block_id().get_block_count()) { + RFNOC_LOG_WARNING("The number of discovered daughterboards did not match the " + "number of radio blocks. Skipping front end initialization."); + _daughterboard = std::make_shared<null_dboard_impl>(); + return; + } + + const double master_clock_rate = _rpcc->get_master_clock_rate(); + set_tick_rate(master_clock_rate); + _x4xx_timekeeper->update_tick_rate(master_clock_rate); + radio_control_impl::set_rate(master_clock_rate); + + for (auto& samp_rate_prop : _samp_rate_in) { + set_property(samp_rate_prop.get_id(), get_rate(), samp_rate_prop.get_src_info()); + } + for (auto& samp_rate_prop : _samp_rate_out) { + set_property(samp_rate_prop.get_id(), get_rate(), samp_rate_prop.get_src_info()); + } + + _validate_master_clock_rate_args(); + _init_mpm(); + + RFNOC_LOG_TRACE("Initializing RFDC controls..."); + _rfdcc = std::make_shared<x400::rfdc_control>( + // clang-format off + uhd::memmap32_iface_timed{ + [this](const uint32_t addr, const uint32_t data, const uhd::time_spec_t& time_spec) { + regs().poke32(addr + x400_regs::RFDC_CTRL_BASE, data, time_spec); + }, + [this](const uint32_t addr) { + return regs().peek32(addr + x400_regs::RFDC_CTRL_BASE); + } + }, + // clang-format on + get_unique_id() + "::RFDC"); + + const auto& dboard = all_dboard_info[get_block_id().get_block_count()]; + const std::string pid(dboard.at("pid").begin(), dboard.at("pid").end()); + RFNOC_LOG_TRACE("Initializing daughterboard driver for PID " << pid); + + // We may have physical daughterboards in the system, but no GPIO interface to the + // daughterboard in the FPGA. In this case, just instantiate the null daughterboard. + if (!_rpcc->is_db_gpio_ifc_present(get_block_id().get_block_count())) { + RFNOC_LOG_WARNING( + "Skipping daughterboard initialization, no GPIO interface in FPGA"); + _daughterboard = std::make_shared<null_dboard_impl>(); + return; + } + + if (std::stol(pid) == uhd::usrp::zbx::ZBX_PID) { + auto zbx_rpc_sptr = _mb_control->dynamic_cast_rpc_as<uhd::usrp::zbx_rpc_iface>(); + if (!zbx_rpc_sptr) { + zbx_rpc_sptr = std::make_shared<uhd::usrp::zbx_rpc>( + _mb_control->get_rpc_client(), _rpc_prefix); + } + _daughterboard = std::make_shared<uhd::usrp::zbx::zbx_dboard_impl>( + regs(), + regmap::PERIPH_BASE, + [this](const size_t instance) { return get_command_time(instance); }, + get_block_id().get_block_count(), + _radio_slot, + _rpc_prefix, + get_unique_id(), + _rpcc, + zbx_rpc_sptr, + _rfdcc, + get_tree()); + } else if (std::stol(pid) == uhd::rfnoc::DEBUG_DB_PID) { + _daughterboard = std::make_shared<debug_dboard_impl>(); + } else if (std::stol(pid) == uhd::rfnoc::IF_TEST_DBOARD_PID) { + _daughterboard = + std::make_shared<if_test_dboard_impl>(get_block_id().get_block_count(), + _rpc_prefix, + get_unique_id(), + _mb_control, + get_tree()); + } else if (std::stol(pid) == uhd::rfnoc::EMPTY_DB_PID) { + _daughterboard = std::make_shared<empty_slot_dboard_impl>(); + set_num_output_ports(0); + set_num_input_ports(0); + } else { + RFNOC_LOG_WARNING("Skipping Daughterboard initialization for unsupported PID " + << "0x" << std::hex << std::stol(pid)); + _daughterboard = std::make_shared<null_dboard_impl>(); + return; + } + + _init_prop_tree(); + + _rx_pwr_mgr = _daughterboard->get_pwr_mgr(uhd::RX_DIRECTION); + _tx_pwr_mgr = _daughterboard->get_pwr_mgr(uhd::TX_DIRECTION); + + _tx_gain_profile_api = _daughterboard->get_tx_gain_profile_api(); + _rx_gain_profile_api = _daughterboard->get_rx_gain_profile_api(); + + if (_daughterboard->is_adc_self_cal_supported()) { + _adc_self_calibration = + std::make_shared<uhd::features::adc_self_calibration>(_rpcc, + _rpc_prefix, + get_unique_id(), + get_block_id().get_block_count(), + _daughterboard); + register_feature(_adc_self_calibration); + } + + _fpga_onload = std::make_shared<fpga_onload>( + get_num_output_ports(), _adc_self_calibration, get_unique_id()); + register_feature(_fpga_onload); + _mb_control->_fpga_onload->request_cb(_fpga_onload); +} + +void x400_radio_control_impl::_init_prop_tree() +{ + auto subtree = get_tree()->subtree(fs_path("mboard")); + + for (size_t chan_idx = 0; chan_idx < get_num_output_ports(); chan_idx++) { + const fs_path rx_codec_path = + fs_path("rx_codec") / get_dboard_fe_from_chan(chan_idx, uhd::RX_DIRECTION); + const fs_path tx_codec_path = + fs_path("tx_codec") / get_dboard_fe_from_chan(chan_idx, uhd::TX_DIRECTION); + RFNOC_LOG_TRACE("Adding non-RFNoC block properties for channel " + << chan_idx << " to prop tree paths " << rx_codec_path << " and " + << tx_codec_path); + + // ADC calibration state attributes + subtree->create<bool>(rx_codec_path / "calibration_frozen") + .add_coerced_subscriber([this, chan_idx](bool state) { + _rpcc->set_cal_frozen(state, get_block_id().get_block_count(), chan_idx); + }) + .set_publisher([this, chan_idx]() { + const auto freeze_states = + _rpcc->get_cal_frozen(get_block_id().get_block_count(), chan_idx); + return freeze_states.at(0) == 1; + }); + + // RFDC NCO + // RX + subtree->create<double>(rx_codec_path / "rfdc" / "freq/value") + .add_desired_subscriber([this, chan_idx](double freq) { + _rpcc->rfdc_set_nco_freq(_get_trx_string(RX_DIRECTION), + get_block_id().get_block_count(), + chan_idx, + freq); + }) + .set_publisher([this, chan_idx]() { + const auto nco_freq = + _rpcc->rfdc_get_nco_freq(_get_trx_string(RX_DIRECTION), + get_block_id().get_block_count(), + chan_idx); + return nco_freq; + }); + + // TX + subtree->create<double>(tx_codec_path / "rfdc" / "freq/value") + .add_desired_subscriber([this, chan_idx](double freq) { + _rpcc->rfdc_set_nco_freq(_get_trx_string(TX_DIRECTION), + get_block_id().get_block_count(), + chan_idx, + freq); + }) + .set_publisher([this, chan_idx]() { + const auto nco_freq = + _rpcc->rfdc_get_nco_freq(_get_trx_string(TX_DIRECTION), + get_block_id().get_block_count(), + chan_idx); + return nco_freq; + }); + } +} + +void x400_radio_control_impl::_validate_master_clock_rate_args() +{ + auto block_args = get_block_args(); + + // Note: MCR gets set during the init() call (prior to this), which takes + // in arguments from the device args. So if block_args contains a + // master_clock_rate key, then it should better be whatever the device is + // configured to do. + const double master_clock_rate = _rpcc->get_master_clock_rate(); + if (!uhd::math::frequencies_are_equal(get_rate(), master_clock_rate)) { + throw uhd::runtime_error( + str(boost::format("Master clock rate mismatch. Device returns %f MHz, " + "but should have been %f MHz.") + % (master_clock_rate / 1e6) % (get_rate() / 1e6))); + } + RFNOC_LOG_DEBUG("Master Clock Rate is: " << (master_clock_rate / 1e6) << " MHz."); +} + +void x400_radio_control_impl::_init_mpm() +{ + // Init sensors + for (const auto& dir : std::vector<direction_t>{RX_DIRECTION, TX_DIRECTION}) { + // TODO: We should pull the number of channels from _daughterboard + for (size_t chan_idx = 0; chan_idx < uhd::usrp::zbx::ZBX_NUM_CHANS; chan_idx++) { + _init_mpm_sensors(dir, chan_idx); + } + } +} + +// @TODO: This should be a method on direction_t +// (or otherwise not duplicated from the implementation in zbx) +std::string x400_radio_control_impl::_get_trx_string(const direction_t dir) const +{ + if (dir == RX_DIRECTION) { + return "rx"; + } else if (dir == TX_DIRECTION) { + return "tx"; + } else { + UHD_THROW_INVALID_CODE_PATH(); + } +} + + +void x400_radio_control_impl::_init_mpm_sensors( + const direction_t dir, const size_t chan_idx) +{ + // TODO: We should pull the number of channels from _daughterboard + UHD_ASSERT_THROW(chan_idx < uhd::usrp::zbx::ZBX_NUM_CHANS); + const std::string trx = _get_trx_string(dir); + const fs_path fe_path = fs_path("dboard") + / (dir == RX_DIRECTION ? "rx_frontends" : "tx_frontends") + / chan_idx; + auto sensor_list = _db_rpcc->get_sensors(trx); + RFNOC_LOG_TRACE("Chan " << chan_idx << ": Found " << sensor_list.size() << " " << trx + << " sensors."); + for (const auto& sensor_name : sensor_list) { + RFNOC_LOG_TRACE("Adding " << trx << " sensor " << sensor_name); + get_tree() + ->create<sensor_value_t>(fe_path / "sensors" / sensor_name) + .add_coerced_subscriber([](const sensor_value_t&) { + throw uhd::runtime_error("Attempting to write to sensor!"); + }) + .set_publisher([this, trx, sensor_name, chan_idx]() { + return sensor_value_t( + this->_db_rpcc->get_sensor(trx, sensor_name, chan_idx)); + }); + } +} + +fs_path x400_radio_control_impl::_get_db_fe_path( + const size_t chan, const direction_t dir) const +{ + const std::string trx = _get_trx_string(dir); + return DB_PATH / (trx + "_frontends") / get_dboard_fe_from_chan(chan, dir); +} + + +double x400_radio_control_impl::set_rate(const double rate) +{ + // X400 does not support runtime rate changes + if (!uhd::math::frequencies_are_equal(rate, get_rate())) { + RFNOC_LOG_WARNING("Requesting invalid sampling rate from device: " + << (rate / 1e6) << " MHz. Actual rate is: " + << (get_rate() / 1e6) << " MHz."); + } + return get_rate(); +} + +eeprom_map_t x400_radio_control_impl::get_db_eeprom() +{ + std::lock_guard<std::recursive_mutex> l(_lock); + return _daughterboard->get_db_eeprom(); +} + +std::vector<uhd::usrp::pwr_cal_mgr::sptr> x400_radio_control_impl::get_pwr_mgr( + const uhd::direction_t trx) +{ + std::lock_guard<std::recursive_mutex> l(_lock); + return _daughterboard->get_pwr_mgr(trx); +} + +std::string x400_radio_control_impl::get_tx_antenna(const size_t chan) const +{ + std::lock_guard<std::recursive_mutex> l(_lock); + return _daughterboard->get_tx_antenna(chan); +} + +std::vector<std::string> x400_radio_control_impl::get_tx_antennas(const size_t chan) const +{ + std::lock_guard<std::recursive_mutex> l(_lock); + return _daughterboard->get_tx_antennas(chan); +} + +void x400_radio_control_impl::set_tx_antenna(const std::string& ant, const size_t chan) +{ + std::lock_guard<std::recursive_mutex> l(_lock); + _daughterboard->set_tx_antenna(ant, chan); +} + +std::string x400_radio_control_impl::get_rx_antenna(const size_t chan) const +{ + std::lock_guard<std::recursive_mutex> l(_lock); + return _daughterboard->get_rx_antenna(chan); +} + +std::vector<std::string> x400_radio_control_impl::get_rx_antennas(const size_t chan) const +{ + std::lock_guard<std::recursive_mutex> l(_lock); + return _daughterboard->get_rx_antennas(chan); +} + +void x400_radio_control_impl::set_rx_antenna(const std::string& ant, const size_t chan) +{ + std::lock_guard<std::recursive_mutex> l(_lock); + _daughterboard->set_rx_antenna(ant, chan); +} + +double x400_radio_control_impl::get_tx_frequency(const size_t chan) +{ + std::lock_guard<std::recursive_mutex> l(_lock); + return _daughterboard->get_tx_frequency(chan); +} + +double x400_radio_control_impl::set_tx_frequency(const double freq, size_t chan) +{ + std::lock_guard<std::recursive_mutex> l(_lock); + return _daughterboard->set_tx_frequency(freq, chan); +} + +void x400_radio_control_impl::set_tx_tune_args( + const uhd::device_addr_t& args, const size_t chan) +{ + std::lock_guard<std::recursive_mutex> l(_lock); + _daughterboard->set_tx_tune_args(args, chan); +} + +uhd::freq_range_t x400_radio_control_impl::get_tx_frequency_range(const size_t chan) const +{ + std::lock_guard<std::recursive_mutex> l(_lock); + return _daughterboard->get_tx_frequency_range(chan); +} + +double x400_radio_control_impl::get_rx_frequency(const size_t chan) +{ + std::lock_guard<std::recursive_mutex> l(_lock); + return _daughterboard->get_rx_frequency(chan); +} + +double x400_radio_control_impl::set_rx_frequency(const double freq, const size_t chan) +{ + std::lock_guard<std::recursive_mutex> l(_lock); + return _daughterboard->set_rx_frequency(freq, chan); +} + +void x400_radio_control_impl::set_rx_tune_args( + const uhd::device_addr_t& args, const size_t chan) +{ + std::lock_guard<std::recursive_mutex> l(_lock); + _daughterboard->set_rx_tune_args(args, chan); +} + +uhd::freq_range_t x400_radio_control_impl::get_rx_frequency_range(const size_t chan) const +{ + std::lock_guard<std::recursive_mutex> l(_lock); + return _daughterboard->get_rx_frequency_range(chan); +} + +std::vector<std::string> x400_radio_control_impl::get_tx_gain_names( + const size_t chan) const +{ + std::lock_guard<std::recursive_mutex> l(_lock); + return _daughterboard->get_tx_gain_names(chan); +} + +uhd::gain_range_t x400_radio_control_impl::get_tx_gain_range(const size_t chan) const +{ + std::lock_guard<std::recursive_mutex> l(_lock); + return _daughterboard->get_tx_gain_range(chan); +} + +uhd::gain_range_t x400_radio_control_impl::get_tx_gain_range( + const std::string& name, const size_t chan) const +{ + std::lock_guard<std::recursive_mutex> l(_lock); + return _daughterboard->get_tx_gain_range(name, chan); +} + +double x400_radio_control_impl::get_tx_gain(const size_t chan) +{ + std::lock_guard<std::recursive_mutex> l(_lock); + return _daughterboard->get_tx_gain(chan); +} + +double x400_radio_control_impl::get_tx_gain(const std::string& name, const size_t chan) +{ + std::lock_guard<std::recursive_mutex> l(_lock); + return _daughterboard->get_tx_gain(name, chan); +} + +double x400_radio_control_impl::set_tx_gain(const double gain, const size_t chan) +{ + std::lock_guard<std::recursive_mutex> l(_lock); + return _daughterboard->set_tx_gain(gain, chan); +} + +double x400_radio_control_impl::set_tx_gain( + const double gain, const std::string& name, const size_t chan) +{ + std::lock_guard<std::recursive_mutex> l(_lock); + return _daughterboard->set_tx_gain(gain, name, chan); +} + +std::vector<std::string> x400_radio_control_impl::get_rx_gain_names( + const size_t chan) const +{ + std::lock_guard<std::recursive_mutex> l(_lock); + return _daughterboard->get_rx_gain_names(chan); +} + +uhd::gain_range_t x400_radio_control_impl::get_rx_gain_range(const size_t chan) const +{ + std::lock_guard<std::recursive_mutex> l(_lock); + return _daughterboard->get_rx_gain_range(chan); +} + +uhd::gain_range_t x400_radio_control_impl::get_rx_gain_range( + const std::string& name, const size_t chan) const +{ + std::lock_guard<std::recursive_mutex> l(_lock); + return _daughterboard->get_rx_gain_range(name, chan); +} + +double x400_radio_control_impl::get_rx_gain(const size_t chan) +{ + std::lock_guard<std::recursive_mutex> l(_lock); + return _daughterboard->get_rx_gain(chan); +} + +double x400_radio_control_impl::get_rx_gain(const std::string& name, const size_t chan) +{ + std::lock_guard<std::recursive_mutex> l(_lock); + return _daughterboard->get_rx_gain(name, chan); +} + +double x400_radio_control_impl::set_rx_gain(const double gain, const size_t chan) +{ + std::lock_guard<std::recursive_mutex> l(_lock); + return _daughterboard->set_rx_gain(gain, chan); +} + +double x400_radio_control_impl::set_rx_gain( + const double gain, const std::string& name, const size_t chan) +{ + std::lock_guard<std::recursive_mutex> l(_lock); + return _daughterboard->set_rx_gain(gain, name, chan); +} + +void x400_radio_control_impl::set_rx_agc(const bool enable, const size_t chan) +{ + std::lock_guard<std::recursive_mutex> l(_lock); + _daughterboard->set_rx_agc(enable, chan); +} + +meta_range_t x400_radio_control_impl::get_tx_bandwidth_range(size_t chan) const +{ + std::lock_guard<std::recursive_mutex> l(_lock); + return _daughterboard->get_tx_bandwidth_range(chan); +} + +double x400_radio_control_impl::get_tx_bandwidth(const size_t chan) +{ + std::lock_guard<std::recursive_mutex> l(_lock); + return _daughterboard->get_tx_bandwidth(chan); +} + +double x400_radio_control_impl::set_tx_bandwidth( + const double bandwidth, const size_t chan) +{ + std::lock_guard<std::recursive_mutex> l(_lock); + return _daughterboard->set_tx_bandwidth(bandwidth, chan); +} + +meta_range_t x400_radio_control_impl::get_rx_bandwidth_range(size_t chan) const +{ + std::lock_guard<std::recursive_mutex> l(_lock); + return _daughterboard->get_rx_bandwidth_range(chan); +} + +double x400_radio_control_impl::get_rx_bandwidth(const size_t chan) +{ + std::lock_guard<std::recursive_mutex> l(_lock); + return _daughterboard->get_rx_bandwidth(chan); +} + +double x400_radio_control_impl::set_rx_bandwidth( + const double bandwidth, const size_t chan) +{ + std::lock_guard<std::recursive_mutex> l(_lock); + return _daughterboard->set_rx_bandwidth(bandwidth, chan); +} + +std::vector<std::string> x400_radio_control_impl::get_rx_lo_names(const size_t chan) const +{ + std::lock_guard<std::recursive_mutex> l(_lock); + return _daughterboard->get_rx_lo_names(chan); +} + +std::vector<std::string> x400_radio_control_impl::get_rx_lo_sources( + const std::string& name, const size_t chan) const +{ + std::lock_guard<std::recursive_mutex> l(_lock); + return _daughterboard->get_rx_lo_sources(name, chan); +} + +freq_range_t x400_radio_control_impl::get_rx_lo_freq_range( + const std::string& name, const size_t chan) const +{ + std::lock_guard<std::recursive_mutex> l(_lock); + return _daughterboard->get_rx_lo_freq_range(name, chan); +} + +void x400_radio_control_impl::set_rx_lo_source( + const std::string& src, const std::string& name, const size_t chan) +{ + std::lock_guard<std::recursive_mutex> l(_lock); + _daughterboard->set_rx_lo_source(src, name, chan); +} + +const std::string x400_radio_control_impl::get_rx_lo_source( + const std::string& name, const size_t chan) +{ + std::lock_guard<std::recursive_mutex> l(_lock); + return _daughterboard->get_rx_lo_source(name, chan); +} + +void x400_radio_control_impl::set_rx_lo_export_enabled( + bool enabled, const std::string& name, const size_t chan) +{ + std::lock_guard<std::recursive_mutex> l(_lock); + _daughterboard->set_rx_lo_export_enabled(enabled, name, chan); +} + +bool x400_radio_control_impl::get_rx_lo_export_enabled( + const std::string& name, const size_t chan) +{ + std::lock_guard<std::recursive_mutex> l(_lock); + return _daughterboard->get_rx_lo_export_enabled(name, chan); +} + +double x400_radio_control_impl::set_rx_lo_freq( + double freq, const std::string& name, const size_t chan) +{ + std::lock_guard<std::recursive_mutex> l(_lock); + return _daughterboard->set_rx_lo_freq(freq, name, chan); +} + +double x400_radio_control_impl::get_rx_lo_freq(const std::string& name, const size_t chan) +{ + std::lock_guard<std::recursive_mutex> l(_lock); + return _daughterboard->get_rx_lo_freq(name, chan); +} + +std::vector<std::string> x400_radio_control_impl::get_tx_lo_names(const size_t chan) const +{ + std::lock_guard<std::recursive_mutex> l(_lock); + return _daughterboard->get_tx_lo_names(chan); +} + +std::vector<std::string> x400_radio_control_impl::get_tx_lo_sources( + const std::string& name, const size_t chan) const +{ + std::lock_guard<std::recursive_mutex> l(_lock); + return _daughterboard->get_tx_lo_sources(name, chan); +} + +freq_range_t x400_radio_control_impl::get_tx_lo_freq_range( + const std::string& name, const size_t chan) +{ + std::lock_guard<std::recursive_mutex> l(_lock); + return _daughterboard->get_tx_lo_freq_range(name, chan); +} + +void x400_radio_control_impl::set_tx_lo_source( + const std::string& src, const std::string& name, const size_t chan) +{ + std::lock_guard<std::recursive_mutex> l(_lock); + _daughterboard->set_tx_lo_source(src, name, chan); +} + +const std::string x400_radio_control_impl::get_tx_lo_source( + const std::string& name, const size_t chan) +{ + std::lock_guard<std::recursive_mutex> l(_lock); + return _daughterboard->get_tx_lo_source(name, chan); +} + +void x400_radio_control_impl::set_tx_lo_export_enabled( + const bool enabled, const std::string& name, const size_t chan) +{ + std::lock_guard<std::recursive_mutex> l(_lock); + _daughterboard->set_tx_lo_export_enabled(enabled, name, chan); +} + +bool x400_radio_control_impl::get_tx_lo_export_enabled( + const std::string& name, const size_t chan) +{ + std::lock_guard<std::recursive_mutex> l(_lock); + return _daughterboard->get_tx_lo_export_enabled(name, chan); +} + +double x400_radio_control_impl::set_tx_lo_freq( + const double freq, const std::string& name, const size_t chan) +{ + std::lock_guard<std::recursive_mutex> l(_lock); + return _daughterboard->set_tx_lo_freq(freq, name, chan); +} + +double x400_radio_control_impl::get_tx_lo_freq(const std::string& name, const size_t chan) +{ + std::lock_guard<std::recursive_mutex> l(_lock); + return _daughterboard->get_tx_lo_freq(name, chan); +} + +void x400_radio_control_impl::set_command_time(uhd::time_spec_t time, const size_t chan) +{ + node_t::set_command_time(time, chan); + _daughterboard->set_command_time(time, chan); +} + +/************************************************************************** + * Sensor API + *************************************************************************/ +std::vector<std::string> x400_radio_control_impl::get_rx_sensor_names( + const size_t chan) const +{ + const fs_path sensor_path = _get_db_fe_path(chan, RX_DIRECTION) / "sensors"; + if (get_tree()->exists(sensor_path)) { + return get_tree()->list(sensor_path); + } + return {}; +} + +uhd::sensor_value_t x400_radio_control_impl::get_rx_sensor( + const std::string& name, const size_t chan) +{ + return get_tree() + ->access<uhd::sensor_value_t>( + _get_db_fe_path(chan, RX_DIRECTION) / "sensors" / name) + .get(); +} + +std::vector<std::string> x400_radio_control_impl::get_tx_sensor_names( + const size_t chan) const +{ + const fs_path sensor_path = _get_db_fe_path(chan, TX_DIRECTION) / "sensors"; + if (get_tree()->exists(sensor_path)) { + return get_tree()->list(sensor_path); + } + return {}; +} + +uhd::sensor_value_t x400_radio_control_impl::get_tx_sensor( + const std::string& name, const size_t chan) +{ + return get_tree() + ->access<uhd::sensor_value_t>( + _get_db_fe_path(chan, TX_DIRECTION) / "sensors" / name) + .get(); +} + +/************************************************************************** + * Radio Identification API Calls + *************************************************************************/ +size_t x400_radio_control_impl::get_chan_from_dboard_fe( + const std::string& fe, const uhd::direction_t direction) const +{ + std::lock_guard<std::recursive_mutex> l(_lock); + return _daughterboard->get_chan_from_dboard_fe(fe, direction); +} + +std::string x400_radio_control_impl::get_dboard_fe_from_chan( + const size_t chan, const uhd::direction_t direction) const +{ + std::lock_guard<std::recursive_mutex> l(_lock); + return _daughterboard->get_dboard_fe_from_chan(chan, direction); +} + +UHD_RFNOC_BLOCK_REGISTER_FOR_DEVICE_DIRECT( + x400_radio_control, RADIO_BLOCK, X400, "Radio", true, "radio_clk", "ctrl_clk") + +}} // namespace uhd::rfnoc diff --git a/host/lib/usrp/x400/x400_radio_control.hpp b/host/lib/usrp/x400/x400_radio_control.hpp new file mode 100644 index 000000000..65b37cc2b --- /dev/null +++ b/host/lib/usrp/x400/x400_radio_control.hpp @@ -0,0 +1,198 @@ +// +// Copyright 2020 Ettus Research, a National Instruments Brand +// +// SPDX-License-Identifier: GPL-3.0-or-later +// + +#pragma once + +#include "adc_self_calibration.hpp" +#include <uhd/rfnoc/noc_block_base.hpp> +#include <uhd/types/device_addr.hpp> +#include <uhd/types/direction.hpp> +#include <uhd/types/ranges.hpp> +#include <uhdlib/features/fpga_load_notification_iface.hpp> +#include <uhdlib/rfnoc/radio_control_impl.hpp> +#include <uhdlib/rfnoc/rf_control/dboard_iface.hpp> +#include <uhdlib/usrp/common/mpmd_mb_controller.hpp> +#include <uhdlib/usrp/common/rpc.hpp> +#include <uhdlib/usrp/common/x400_rfdc_control.hpp> +#include <uhdlib/utils/rpc.hpp> +#include <stddef.h> +#include <memory> +#include <mutex> +#include <string> +#include <vector> + +namespace uhd { namespace rfnoc { + +namespace x400_regs { + +//! Base address for the rf_timing_control module. This controls the NCOs and +// other things in the RFDC. +constexpr uint32_t RFDC_CTRL_BASE = radio_control_impl::regmap::PERIPH_BASE + 0x8000; + +} // namespace x400_regs + +class x400_radio_control_impl : public radio_control_impl +{ +public: + using sptr = std::shared_ptr<x400_radio_control_impl>; + + /************************************************************************ + * Structors + ***********************************************************************/ + x400_radio_control_impl(make_args_ptr make_args); + virtual ~x400_radio_control_impl() = default; + + std::string get_slot_name() const override + { + return _radio_slot; + } + + size_t get_chan_from_dboard_fe(const std::string&, uhd::direction_t) const override; + std::string get_dboard_fe_from_chan(size_t chan, uhd::direction_t) const override; + + uhd::eeprom_map_t get_db_eeprom() override; + + // Shim calls for every method in rf_control_core + double set_rate(const double rate) override; + std::string get_tx_antenna(const size_t chan) const override; + std::vector<std::string> get_tx_antennas(const size_t chan) const override; + void set_tx_antenna(const std::string& ant, const size_t chan) override; + std::string get_rx_antenna(const size_t chan) const override; + std::vector<std::string> get_rx_antennas(const size_t chan) const override; + void set_rx_antenna(const std::string& ant, const size_t chan) override; + double get_tx_frequency(const size_t chan) override; + double set_tx_frequency(const double freq, size_t chan) override; + void set_tx_tune_args(const uhd::device_addr_t& args, const size_t chan) override; + uhd::freq_range_t get_tx_frequency_range(const size_t chan) const override; + double get_rx_frequency(const size_t chan) override; + double set_rx_frequency(const double freq, const size_t chan) override; + void set_rx_tune_args(const uhd::device_addr_t& args, const size_t chan) override; + uhd::freq_range_t get_rx_frequency_range(const size_t chan) const override; + std::vector<std::string> get_tx_gain_names(const size_t chan) const override; + uhd::gain_range_t get_tx_gain_range(const size_t chan) const override; + uhd::gain_range_t get_tx_gain_range( + const std::string& name, const size_t chan) const override; + double get_tx_gain(const size_t chan) override; + double get_tx_gain(const std::string& name, const size_t chan) override; + double set_tx_gain(const double gain, const size_t chan) override; + double set_tx_gain( + const double gain, const std::string& name, const size_t chan) override; + std::vector<std::string> get_rx_gain_names(const size_t chan) const override; + uhd::gain_range_t get_rx_gain_range(const size_t chan) const override; + uhd::gain_range_t get_rx_gain_range( + const std::string& name, const size_t chan) const override; + double get_rx_gain(const size_t chan) override; + double get_rx_gain(const std::string& name, const size_t chan) override; + double set_rx_gain(const double gain, const size_t chan) override; + double set_rx_gain( + const double gain, const std::string& name, const size_t chan) override; + void set_rx_agc(const bool enable, const size_t chan) override; + meta_range_t get_tx_bandwidth_range(size_t chan) const override; + double get_tx_bandwidth(const size_t chan) override; + double set_tx_bandwidth(const double bandwidth, const size_t chan) override; + meta_range_t get_rx_bandwidth_range(size_t chan) const override; + double get_rx_bandwidth(const size_t chan) override; + double set_rx_bandwidth(const double bandwidth, const size_t chan) override; + + std::vector<std::string> get_rx_lo_names(const size_t chan) const override; + std::vector<std::string> get_rx_lo_sources( + const std::string& name, const size_t chan) const override; + freq_range_t get_rx_lo_freq_range( + const std::string& name, const size_t chan) const override; + void set_rx_lo_source( + const std::string& src, const std::string& name, const size_t chan) override; + const std::string get_rx_lo_source( + const std::string& name, const size_t chan) override; + void set_rx_lo_export_enabled( + bool enabled, const std::string& name, const size_t chan) override; + bool get_rx_lo_export_enabled( + const std::string& name, const size_t chan) override; + double set_rx_lo_freq( + double freq, const std::string& name, const size_t chan) override; + double get_rx_lo_freq(const std::string& name, const size_t chan) override; + std::vector<std::string> get_tx_lo_names(const size_t chan) const override; + std::vector<std::string> get_tx_lo_sources( + const std::string& name, const size_t chan) const override; + freq_range_t get_tx_lo_freq_range( + const std::string& name, const size_t chan) override; + void set_tx_lo_source( + const std::string& src, const std::string& name, const size_t chan) override; + const std::string get_tx_lo_source( + const std::string& name, const size_t chan) override; + void set_tx_lo_export_enabled( + const bool enabled, const std::string& name, const size_t chan) override; + bool get_tx_lo_export_enabled(const std::string& name, const size_t chan) override; + double set_tx_lo_freq( + const double freq, const std::string& name, const size_t chan) override; + double get_tx_lo_freq(const std::string& name, const size_t chan) override; + std::vector<std::string> get_rx_sensor_names(size_t chan) const override; + uhd::sensor_value_t get_rx_sensor(const std::string& name, size_t chan) override; + std::vector<std::string> get_tx_sensor_names(size_t chan) const override; + uhd::sensor_value_t get_tx_sensor(const std::string& name, size_t chan) override; + + void set_command_time(uhd::time_spec_t time, const size_t chan) override; + + // Non-API methods + // This is used for x4xx radio block unit tests + std::vector<uhd::usrp::pwr_cal_mgr::sptr> get_pwr_mgr(const uhd::direction_t trx); + +private: + //! Locks access to the API + mutable std::recursive_mutex _lock; + + std::string _get_trx_string(const direction_t dir) const; + + void _validate_master_clock_rate_args(); + void _init_mpm(); + void _init_mpm_sensors(const direction_t dir, const size_t chan_idx); + void _init_prop_tree(); + fs_path _get_db_fe_path(const size_t chan, const uhd::direction_t dir) const; + + //! Reference to the MB controller + uhd::rfnoc::mpmd_mb_controller::sptr _mb_control; + + //! Reference to the RPC client + uhd::usrp::x400_rpc_iface::sptr _rpcc; + uhd::usrp::dboard_base_rpc_iface::sptr _db_rpcc; + + //! Reference to the MB timekeeper + uhd::rfnoc::mpmd_mb_controller::mpmd_timekeeper::sptr _x4xx_timekeeper; + + std::string _radio_slot; + std::string _rpc_prefix; + + //! Reference to this radio block's RFDC control + x400::rfdc_control::sptr _rfdcc; + + uhd::usrp::x400::x400_dboard_iface::sptr _daughterboard; + + uhd::features::adc_self_calibration_iface::sptr _adc_self_calibration; + + class fpga_onload : public uhd::features::fpga_load_notification_iface + { + public: + using sptr = std::shared_ptr<fpga_onload>; + + fpga_onload(size_t num_channels, + uhd::features::adc_self_calibration_iface::sptr adc_self_cal, + std::string unique_id); + + void onload() override; + + private: + const size_t _num_channels; + uhd::features::adc_self_calibration_iface::sptr _adc_self_cal; + const std::string _unique_id; + std::string get_unique_id() const + { + return _unique_id; + } + }; + + fpga_onload::sptr _fpga_onload; +}; + +}} // namespace uhd::rfnoc diff --git a/host/lib/usrp/x400/x400_rfdc_control.cpp b/host/lib/usrp/x400/x400_rfdc_control.cpp new file mode 100644 index 000000000..b963c0a46 --- /dev/null +++ b/host/lib/usrp/x400/x400_rfdc_control.cpp @@ -0,0 +1,73 @@ +// +// Copyright 2020 Ettus Research, a National Instruments Brand +// +// SPDX-License-Identifier: GPL-3.0-or-later +// + +#include <uhd/utils/log.hpp> +#include <uhdlib/usrp/common/x400_rfdc_control.hpp> +#include <unordered_map> + +using namespace uhd::rfnoc::x400; + +rfdc_control::rfdc_control(uhd::memmap32_iface_timed&& iface, const std::string& log_id) + : _iface(std::move(iface)), _log_id(log_id) +{ + // nop +} + +void rfdc_control::reset_ncos( + const std::vector<rfdc_type>& ncos, const uhd::time_spec_t& time) +{ + if (ncos.empty()) { + UHD_LOG_WARNING(_log_id, + "reset_ncos() called with empty NCO list! " + "Not resetting NCOs."); + return; + } + UHD_LOG_TRACE(_log_id, "Resetting " << ncos.size() << " NCOs..."); + + const uint32_t reset_word = 1; + // TODO: When the FPGA supports it, map the list of ncos into bits onto + // reset_word to set the bit for the specific NCOs that will be reset. + + _iface.poke32(regmap::NCO_RESET, reset_word, time); +} + +void rfdc_control::reset_gearboxes( + const std::vector<rfdc_type>& gearboxes, const uhd::time_spec_t& time) +{ + if (gearboxes.empty()) { + UHD_LOG_WARNING(_log_id, + "reset_gearboxes() called with empty gearbox list! " + "Not resetting gearboxes."); + return; + } + // This is intentionally at INFO: It should typically happen once per session. + UHD_LOG_INFO(_log_id, "Resetting " << gearboxes.size() << " gearbox(es)..."); + // TODO: Either the FPGA supports resetting gearboxes individually, or we + // remove this TODO + static const std::unordered_map<rfdc_type, const uint32_t> gb_map{ + {rfdc_type::TX0, regmap::DAC_RESET_MSB}, + {rfdc_type::TX1, regmap::DAC_RESET_MSB}, + {rfdc_type::RX0, regmap::ADC_RESET_MSB}, + {rfdc_type::RX1, regmap::ADC_RESET_MSB}}; + + uint32_t reset_word = 0; + for (const auto gb : gearboxes) { + reset_word = reset_word | (1 << gb_map.at(gb)); + } + + _iface.poke32(regmap::GEARBOX_RESET, reset_word, time); +} + +bool rfdc_control::get_nco_reset_done() +{ + return bool(_iface.peek32(regmap::NCO_RESET) & (1 << regmap::NCO_RESET_DONE_MSB)); +} + +double rfdc_control::set_nco_freq(const rfdc_type, const double freq) +{ + UHD_LOG_WARNING(_log_id, "set_nco_freq() called but not yet implemented!"); + return freq; +} |