diff options
Diffstat (limited to 'host/lib/rfnoc/ddc_block_ctrl_impl.cpp')
-rw-r--r-- | host/lib/rfnoc/ddc_block_ctrl_impl.cpp | 281 |
1 files changed, 281 insertions, 0 deletions
diff --git a/host/lib/rfnoc/ddc_block_ctrl_impl.cpp b/host/lib/rfnoc/ddc_block_ctrl_impl.cpp new file mode 100644 index 000000000..2aac22ca4 --- /dev/null +++ b/host/lib/rfnoc/ddc_block_ctrl_impl.cpp @@ -0,0 +1,281 @@ +// +// Copyright 2016 Ettus Research +// +// This program is free software: you can redistribute it and/or modify +// it under the terms of the GNU General Public License as published by +// the Free Software Foundation, either version 3 of the License, or +// (at your option) any later version. +// +// This program is distributed in the hope that it will be useful, +// but WITHOUT ANY WARRANTY; without even the implied warranty of +// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +// GNU General Public License for more details. +// +// You should have received a copy of the GNU General Public License +// along with this program. If not, see <http://www.gnu.org/licenses/>. +// + +#include "dsp_core_utils.hpp" +#include <uhd/rfnoc/ddc_block_ctrl.hpp> +#include <uhd/utils/msg.hpp> +#include <uhd/convert.hpp> +#include <uhd/types/ranges.hpp> +#include <boost/math/special_functions/round.hpp> +#include <cmath> + +using namespace uhd::rfnoc; + +// TODO move this to a central location +template <class T> T ceil_log2(T num){ + return std::ceil(std::log(num)/std::log(T(2))); +} + +// TODO remove this once we have actual lambdas +static double lambda_forward_prop(uhd::property_tree::sptr tree, uhd::fs_path prop, double value) +{ + return tree->access<double>(prop).set(value).get(); +} + +static double lambda_forward_prop(uhd::property_tree::sptr tree, uhd::fs_path prop) +{ + return tree->access<double>(prop).get(); +} + +class ddc_block_ctrl_impl : public ddc_block_ctrl +{ +public: + static const size_t NUM_HALFBANDS = 3; + static const size_t CIC_MAX_DECIM = 255; + + UHD_RFNOC_BLOCK_CONSTRUCTOR(ddc_block_ctrl) + { + // Argument/prop tree hooks + for (size_t chan = 0; chan < get_input_ports().size(); chan++) { + double default_freq = get_arg<double>("freq", chan); + _tree->access<double>(get_arg_path("freq/value", chan)) + .set_coercer(boost::bind(&ddc_block_ctrl_impl::set_freq, this, _1, chan)) + .set(default_freq); + ; + double default_output_rate = get_arg<double>("output_rate", chan); + _tree->access<double>(get_arg_path("output_rate/value", chan)) + .set_coercer(boost::bind(&ddc_block_ctrl_impl::set_output_rate, this, _1, chan)) + .set(default_output_rate) + ; + _tree->access<double>(get_arg_path("input_rate/value", chan)) + .add_coerced_subscriber(boost::bind(&ddc_block_ctrl_impl::set_input_rate, this, _1, chan)) + ; + + // Legacy properties (for backward compat w/ multi_usrp) + const uhd::fs_path dsp_base_path = _root_path / "legacy_api" / chan; + // Legacy properties + _tree->create<double>(dsp_base_path / "rate/value") + .set_coercer(boost::bind(&lambda_forward_prop, _tree, get_arg_path("output_rate/value", chan), _1)) + .set_publisher(boost::bind(&lambda_forward_prop, _tree, get_arg_path("output_rate/value", chan))) + ; + _tree->create<uhd::meta_range_t>(dsp_base_path / "rate/range") + .set_publisher(boost::bind(&ddc_block_ctrl_impl::get_output_rates, this)) + ; + _tree->create<double>(dsp_base_path / "freq/value") + .set_coercer(boost::bind(&lambda_forward_prop, _tree, get_arg_path("freq/value", chan), _1)) + .set_publisher(boost::bind(&lambda_forward_prop, _tree, get_arg_path("freq/value", chan))) + ; + _tree->create<uhd::meta_range_t>(dsp_base_path / "freq/range") + .set_publisher(boost::bind(&ddc_block_ctrl_impl::get_freq_range, this)) + ; + _tree->access<uhd::time_spec_t>("time/cmd") + .add_coerced_subscriber(boost::bind(&block_ctrl_base::set_command_time, this, _1, chan)) + ; + if (_tree->exists("tick_rate")) { + const double tick_rate = _tree->access<double>("tick_rate").get(); + set_command_tick_rate(tick_rate, chan); + _tree->access<double>("tick_rate") + .add_coerced_subscriber(boost::bind(&block_ctrl_base::set_command_tick_rate, this, _1, chan)) + ; + } + + // Rate 1:1 by default + sr_write("N", 1, chan); + sr_write("M", 1, chan); + sr_write("CONFIG", 1, chan); // Enable clear EOB + } + } // end ctor + virtual ~ddc_block_ctrl_impl() {}; + + double get_output_scale_factor(size_t port=ANY_PORT) + { + port = port == ANY_PORT ? 0 : port; + if (not (_rx_streamer_active.count(port) and _rx_streamer_active.at(port))) { + return SCALE_UNDEFINED; + } + return get_arg<double>("scalar_correction", port); + } + + double get_input_samp_rate(size_t port=ANY_PORT) + { + port = port == ANY_PORT ? 0 : port; + if (not (_tx_streamer_active.count(port) and _tx_streamer_active.at(port))) { + return RATE_UNDEFINED; + } + return get_arg<double>("input_rate", port); + } + + double get_output_samp_rate(size_t port=ANY_PORT) + { + port = port == ANY_PORT ? 0 : port; + if (not (_rx_streamer_active.count(port) and _rx_streamer_active.at(port))) { + return RATE_UNDEFINED; + } + return get_arg<double>("output_rate", port); + } + + + void issue_stream_cmd( + const uhd::stream_cmd_t &stream_cmd_, + const size_t chan + ) { + UHD_RFNOC_BLOCK_TRACE() << "ddc_block_ctrl_base::issue_stream_cmd()" << std::endl; + + if (list_upstream_nodes().count(chan) == 0) { + UHD_MSG(status) << "No upstream blocks." << std::endl; + return; + } + + uhd::stream_cmd_t stream_cmd = stream_cmd_; + if (stream_cmd.stream_mode == uhd::stream_cmd_t::STREAM_MODE_NUM_SAMPS_AND_DONE or + stream_cmd.stream_mode == uhd::stream_cmd_t::STREAM_MODE_NUM_SAMPS_AND_MORE) { + size_t decimation = get_arg<double>("input_rate", chan) / get_arg<double>("output_rate", chan); + stream_cmd.num_samps *= decimation; + } + + source_node_ctrl::sptr this_upstream_block_ctrl = + boost::dynamic_pointer_cast<source_node_ctrl>(list_upstream_nodes().at(chan).lock()); + if (this_upstream_block_ctrl) { + this_upstream_block_ctrl->issue_stream_cmd( + stream_cmd, + get_upstream_port(chan) + ); + } + } + +private: + + //! Set the CORDIC frequency shift the signal to \p requested_freq + double set_freq(const double requested_freq, const size_t chan) + { + const double input_rate = get_arg<double>("input_rate"); + double actual_freq; + int32_t freq_word; + get_freq_and_freq_word(requested_freq, input_rate, actual_freq, freq_word); + sr_write("CORDIC_FREQ", uint32_t(freq_word), chan); + return actual_freq; + } + + //! Return a range of valid frequencies the CORDIC can tune to + uhd::meta_range_t get_freq_range(void) + { + const double input_rate = get_arg<double>("input_rate"); + return uhd::meta_range_t( + -input_rate/2, + +input_rate/2, + input_rate/std::pow(2.0, 32) + ); + } + + // FIXME this misses a whole bunch of valid rates. Anything with CIC decim <= 255 + // is OK. + uhd::meta_range_t get_output_rates(void) + { + uhd::meta_range_t range; + const double input_rate = get_arg<double>("input_rate"); + for (int decim = 1024; decim > 512; decim -= 8){ + range.push_back(uhd::range_t(input_rate/decim)); + } + for (int decim = 512; decim > 256; decim -= 4){ + range.push_back(uhd::range_t(input_rate/decim)); + } + for (int decim = 256; decim > 128; decim -= 2){ + range.push_back(uhd::range_t(input_rate/decim)); + } + for (int decim = 128; decim >= 1; decim -= 1){ + range.push_back(uhd::range_t(input_rate/decim)); + } + return range; + } + + double set_output_rate(const int requested_rate, const size_t chan) + { + const double input_rate = get_arg<double>("input_rate"); + const size_t decim_rate = boost::math::iround(input_rate/this->get_output_rates().clip(requested_rate, true)); + size_t decim = decim_rate; + + // The FPGA knows which halfbands to enable for any given value of hb_enable. + uint32_t hb_enable = 0; + while ((decim % 2 == 0) and hb_enable < NUM_HALFBANDS) { + hb_enable++; + decim /= 2; + } + UHD_ASSERT_THROW(hb_enable <= NUM_HALFBANDS); + UHD_ASSERT_THROW(decim <= CIC_MAX_DECIM); + // What we can't cover with halfbands, we do with the CIC + sr_write("DECIM_WORD", (hb_enable << 8) | (decim & 0xff), chan); + + // Rate change = M/N + sr_write("N", std::pow(2.0, double(hb_enable)) * (decim & 0xff), chan); + sr_write("M", 1, chan); + + if (decim > 1 and hb_enable == 0) { + UHD_MSG(warning) << boost::format( + "The requested decimation is odd; the user should expect passband CIC rolloff.\n" + "Select an even decimation to ensure that a halfband filter is enabled.\n" + "Decimations factorable by 4 will enable 2 halfbands, those factorable by 8 will enable 3 halfbands.\n" + "decimation = dsp_rate/samp_rate -> %d = (%f MHz)/(%f MHz)\n" + ) % decim_rate % (input_rate/1e6) % (requested_rate/1e6); + } + + // Caclulate algorithmic gain of CIC for a given decimation. + // For Ettus CIC R=decim, M=1, N=4. Gain = (R * M) ^ N + const double rate_pow = std::pow(double(decim & 0xff), 4); + // Calculate compensation gain values for algorithmic gain of CORDIC and CIC taking into account + // gain compensation blocks already hardcoded in place in DDC (that provide simple 1/2^n gain compensation). + // CORDIC algorithmic gain limits asymptotically around 1.647 after many iterations. + static const double CORDIC_GAIN = 1.648; + // + // The polar rotation of [I,Q] = [1,1] by Pi/8 also yields max magnitude of SQRT(2) (~1.4142) however + // input to the CORDIC thats outside the unit circle can only be sourced from a saturated RF frontend. + // To provide additional dynamic range head room accordingly using scale factor applied at egress from DDC would + // cost us small signal performance, thus we do no provide compensation gain for a saturated front end and allow + // the signal to clip in the H/W as needed. If we wished to avoid the signal clipping in these circumstances then adjust code to read: + // _scaling_adjustment = std::pow(2, ceil_log2(rate_pow))/(CORDIC_GAIN*rate_pow*1.415); + const double scaling_adjustment = std::pow(2, ceil_log2(rate_pow))/(CORDIC_GAIN*rate_pow); + update_scalar(scaling_adjustment, chan); + return input_rate/decim_rate; + } + + //! Set frequency and decimation again + void set_input_rate(const double /* rate */, const size_t chan) + { + const double desired_freq = _tree->access<double>(get_arg_path("freq", chan) / "value").get_desired(); + set_arg<double>("freq", desired_freq, chan); + const double desired_output_rate = _tree->access<double>(get_arg_path("output_rate", chan) / "value").get_desired(); + set_arg<double>("output_rate", desired_output_rate, chan); + } + + // Calculate compensation gain values for algorithmic gain of CORDIC and CIC taking into account + // gain compensation blocks already hardcoded in place in DDC (that provide simple 1/2^n gain compensation). + // Further more factor in OTW format which adds further gain factor to weight output samples correctly. + void update_scalar(const double scalar, const size_t chan) + { + const double target_scalar = (1 << 15) * scalar; + const int32_t actual_scalar = boost::math::iround(target_scalar); + // Calculate the error introduced by using integer representation for the scalar, can be corrected in host later. + const double scalar_correction = + target_scalar / actual_scalar / double(1 << 15) // Rounding error, normalized to 1.0 + * get_arg<double>("fullscale"); // Scaling requested by host + set_arg<double>("scalar_correction", scalar_correction, chan); + // Write DDC with scaling correction for CIC and CORDIC that maximizes dynamic range in 32/16/12/8bits. + sr_write("SCALE_IQ", actual_scalar, chan); + } + +}; + +UHD_RFNOC_BLOCK_REGISTER(ddc_block_ctrl, "DDC"); |