diff options
Diffstat (limited to 'host/lib/cal/interpolation.ipp')
-rw-r--r-- | host/lib/cal/interpolation.ipp | 193 |
1 files changed, 0 insertions, 193 deletions
diff --git a/host/lib/cal/interpolation.ipp b/host/lib/cal/interpolation.ipp deleted file mode 100644 index 13993d979..000000000 --- a/host/lib/cal/interpolation.ipp +++ /dev/null @@ -1,193 +0,0 @@ -// -// Copyright 2016 Ettus Research -// Copyright 2018 Ettus Research, a National Instruments Company -// -// SPDX-License-Identifier: GPL-3.0-or-later -// - -#ifndef INCLUDED_UHD_INTERPOLATION_IPP -#define INCLUDED_UHD_INTERPOLATION_IPP - -#include "interpolation.hpp" -#include <uhd/utils/log.hpp> -// This is a bugfix for Boost 1.64, maybe future Boosts won't need this -#if BOOST_VERSION >= 106400 -# include <boost/serialization/array_wrapper.hpp> -#endif // end of bugfix -#include <boost/numeric/ublas/io.hpp> -#include <boost/numeric/ublas/matrix.hpp> -#include <boost/numeric/ublas/lu.hpp> - -using namespace boost::numeric; - -namespace uhd { -namespace cal { - -#define CAL_INTERP_METHOD(return_type, method, args, ...) \ - template<typename in_type, typename out_type> \ - return_type interp<in_type, out_type>::\ - method(args, __VA_ARGS__) - -#define ARGS_T typename interp<in_type, out_type>::args_t -#define CONTAINER_T typename interp<in_type, out_type>::container_t - -CAL_INTERP_METHOD(in_type, calc_dist, const ARGS_T &a, const ARGS_T &b) -{ - in_type dist = 0; - for (size_t i = 0; i < std::min(a.size(), b.size()); i++) - { - dist += std::abs(a[i] - b[i]); - } - return dist; -} - -CAL_INTERP_METHOD(const out_type, nn_interp, CONTAINER_T &data, const ARGS_T &args) -{ - // Check the cache for the output - if (data.find(args) != data.end()) { - return data[args]; - } - - out_type output = 0; - in_type min_dist = 0; - typename container_t::const_iterator citer; - for (citer = data.begin(); citer != data.end(); citer++) - { - in_type dist = calc_dist(citer->first, args); - if (citer == data.begin() || dist < min_dist) { - min_dist = dist; - output = data[citer->first]; - } - } - - return output; -} - -CAL_INTERP_METHOD(const out_type, bl_interp, CONTAINER_T &data, const ARGS_T &args) -{ - if (args.size() != 2) { - throw uhd::assertion_error(str(boost::format( - "Bilinear interpolation expects 2D values. Received %d.") - % args.size() - )); - } - - if (data.size() < 4) { - throw uhd::assertion_error(str(boost::format( - "Bilinear interpolation requires at least 4 input points. Found %d.") - % data.size() - )); - } - - // Locate the nearest 4 points - typedef std::pair<interp<in_type, out_type>::args_t, out_type> cal_pair_t; - typename std::vector<cal_pair_t> nearest; - - // Initialize the resulting pair to something - cal_pair_t pair = *data.begin(); - - for (size_t i = 0; i < 4; i++) { - bool init = true; - in_type min_dist = 0; - typename container_t::const_iterator citer; - for (citer = data.begin(); citer != data.end(); citer++) - { - cal_pair_t temp = *citer; - if (std::find(nearest.begin(), nearest.end(), temp) == nearest.end()) - { - in_type dist = calc_dist(citer->first, args); - if (dist < min_dist || init) - { - min_dist = dist; - pair = temp; - init = false; - } - } - } - // Push back the nearest pair - nearest.push_back(pair); - } - - // - // Since these points are not grid aligned, - // we perform irregular bilinear interpolation. - // This math involves finding our interpolation - // function using lagrange multipliers: - // - // f(x, y) = ax^2 + bxy + cy^2 + dx + ey + f - // - // The solution is to solve the following system: - // - // A x b - // | E X' | | s | - | 0 | - // | X 0 | | l | - | z | - // - // where s is a vector of the above coefficients. - // - typename ublas::matrix<in_type> A(10, 10, 0.0); - - // E - A(0, 0) = 1.0; A(1, 1) = 1.0; A(2, 2) = 1.0; - - in_type x1, x2, x3, x4; - in_type y1, y2, y3, y4; - - x1 = nearest[0].first[0]; y1 = nearest[0].first[1]; - x2 = nearest[1].first[0]; y2 = nearest[1].first[1]; - x3 = nearest[2].first[0]; y3 = nearest[2].first[1]; - x4 = nearest[3].first[0]; y4 = nearest[3].first[1]; - - // X - A(0, 6) = x1*x1; A(1, 6) = x1*y1; A(2, 6) = y1*y1; A(3, 6) = x1; A(4, 6) = y1; A(5, 6) = 1.0; - A(0, 7) = x2*x2; A(1, 7) = x2*y2; A(2, 7) = y2*y2; A(3, 7) = x2; A(4, 7) = y2; A(5, 7) = 1.0; - A(0, 8) = x3*x3; A(1, 8) = x3*y3; A(2, 8) = y3*y3; A(3, 8) = x3; A(4, 8) = y3; A(5, 8) = 1.0; - A(0, 9) = x4*x4; A(1, 9) = x4*y4; A(2, 9) = y4*y4; A(3, 9) = x4; A(4, 9) = y4; A(5, 9) = 1.0; - - // X' - A(6, 0) = x1*x1; A(6, 1) = x1*y1; A(6, 2) = y1*y1; A(6, 3) = x1; A(6, 4) = y1; A(6, 5) = 1.0; - A(7, 0) = x2*x2; A(7, 1) = x2*y2; A(7, 2) = y2*y2; A(7, 3) = x2; A(7, 4) = y2; A(7, 5) = 1.0; - A(8, 0) = x3*x3; A(8, 1) = x3*y3; A(8, 2) = y3*y3; A(8, 3) = x3; A(8, 4) = y3; A(8, 5) = 1.0; - A(9, 0) = x4*x4; A(9, 1) = x4*y4; A(9, 2) = y4*y4; A(9, 3) = x4; A(9, 4) = y4; A(9, 5) = 1.0; - - // z - typename ublas::vector<in_type> b(10, 0.0); - b(6) = nearest[0].second; - b(7) = nearest[1].second; - b(8) = nearest[2].second; - b(9) = nearest[3].second; - - typename ublas::matrix<in_type> A_t = A; - typename ublas::vector<in_type> s = b; - typename ublas::permutation_matrix<in_type> P(A_t.size1()); - - // Use LUP factorization to solve for the coefficients - // We're solving the problem in the form of Ax = b - bool is_singular = ublas::lu_factorize(A_t, P); - - out_type output = 0; - - // Fall back to 1D interpolation if the matrix is singular - if (is_singular) { - // Warn the user that the A matrix is singular - UHD_LOGGER_WARNING("CAL") << "Bilinear interpolation: singular matrix detected. " - << "Performing 1D linear interpolation against the nearest measurements. " - << "Provide calibration data with more measurements"; - - output = (b[7] - b[6]) / 2.0; - output += b[6]; - return output; - } - ublas::lu_substitute(A_t, P, s); - - in_type x = args[0]; - in_type y = args[1]; - - // Utilize the solution to calculate the interpolation function - output = s[0]*x*x + s[1]*x*y + s[2]*y*y + s[3]*x + s[4]*y + s[5]; - return output; -} - -} // namespace cal -} // namespace uhd - -#endif /* INCLUDED_UHD_INTERPOLATION_IPP */ |