aboutsummaryrefslogtreecommitdiffstats
path: root/host/lib/cal/interpolation.ipp
diff options
context:
space:
mode:
Diffstat (limited to 'host/lib/cal/interpolation.ipp')
-rw-r--r--host/lib/cal/interpolation.ipp199
1 files changed, 199 insertions, 0 deletions
diff --git a/host/lib/cal/interpolation.ipp b/host/lib/cal/interpolation.ipp
new file mode 100644
index 000000000..1544b041c
--- /dev/null
+++ b/host/lib/cal/interpolation.ipp
@@ -0,0 +1,199 @@
+//
+// Copyright 2016 Ettus Research
+//
+// This program is free software: you can redistribute it and/or modify
+// it under the terms of the GNU General Public License as published by
+// the Free Software Foundation, either version 3 of the License, or
+// (at your option) any later version.
+//
+// This program is distributed in the hope that it will be useful,
+// but WITHOUT ANY WARRANTY; without even the implied warranty of
+// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+// GNU General Public License for more details.
+//
+// You should have received a copy of the GNU General Public License
+// along with this program. If not, see <http://www.gnu.org/licenses/>.
+//
+
+#ifndef INCLUDED_UHD_INTERPOLATION_IPP
+#define INCLUDED_UHD_INTERPOLATION_IPP
+
+#include "interpolation.hpp"
+#include <uhd/utils/log.hpp>
+#include <boost/numeric/ublas/io.hpp>
+#include <boost/numeric/ublas/matrix.hpp>
+#include <boost/numeric/ublas/lu.hpp>
+
+using namespace boost::numeric;
+
+namespace uhd {
+namespace cal {
+
+#define CAL_INTERP_METHOD(return_type, method, args, ...) \
+ template<typename in_type, typename out_type> \
+ return_type interp<in_type, out_type>::\
+ method(args, __VA_ARGS__)
+
+#define ARGS_T typename interp<in_type, out_type>::args_t
+#define CONTAINER_T typename interp<in_type, out_type>::container_t
+
+CAL_INTERP_METHOD(in_type, calc_dist, const ARGS_T &a, const ARGS_T &b)
+{
+ in_type dist = 0;
+ for (size_t i = 0; i < std::min(a.size(), b.size()); i++)
+ {
+ dist += std::abs(a[i] - b[i]);
+ }
+ return dist;
+}
+
+CAL_INTERP_METHOD(const out_type, nn_interp, CONTAINER_T &data, const ARGS_T &args)
+{
+ // Check the cache for the output
+ if (data.find(args) != data.end()) {
+ return data[args];
+ }
+
+ out_type output = 0;
+ in_type min_dist = 0;
+ typename container_t::const_iterator citer;
+ for (citer = data.begin(); citer != data.end(); citer++)
+ {
+ in_type dist = calc_dist(citer->first, args);
+ if (citer == data.begin() || dist < min_dist) {
+ min_dist = dist;
+ output = data[citer->first];
+ }
+ }
+
+ return output;
+}
+
+CAL_INTERP_METHOD(const out_type, bl_interp, CONTAINER_T &data, const ARGS_T &args)
+{
+ if (args.size() != 2) {
+ throw uhd::assertion_error(str(boost::format(
+ "Bilinear interpolation expects 2D values. Received %d.")
+ % args.size()
+ ));
+ }
+
+ if (data.size() < 4) {
+ throw uhd::assertion_error(str(boost::format(
+ "Bilinear interpolation requires at least 4 input points. Found %d.")
+ % data.size()
+ ));
+ }
+
+ // Locate the nearest 4 points
+ typedef std::pair<interp<in_type, out_type>::args_t, out_type> cal_pair_t;
+ typename std::vector<cal_pair_t> nearest;
+
+ // Initialize the resulting pair to something
+ cal_pair_t pair = *data.begin();
+
+ for (size_t i = 0; i < 4; i++) {
+ bool init = true;
+ in_type min_dist = 0;
+ typename container_t::const_iterator citer;
+ for (citer = data.begin(); citer != data.end(); citer++)
+ {
+ cal_pair_t temp = *citer;
+ if (std::find(nearest.begin(), nearest.end(), temp) == nearest.end())
+ {
+ in_type dist = calc_dist(citer->first, args);
+ if (dist < min_dist || init)
+ {
+ min_dist = dist;
+ pair = temp;
+ init = false;
+ }
+ }
+ }
+ // Push back the nearest pair
+ nearest.push_back(pair);
+ }
+
+ //
+ // Since these points are not grid aligned,
+ // we perform irregular bilinear interpolation.
+ // This math involves finding our interpolation
+ // function using lagrange multipliers:
+ //
+ // f(x, y) = ax^2 + bxy + cy^2 + dx + ey + f
+ //
+ // The solution is to solve the following system:
+ //
+ // A x b
+ // | E X' | | s | - | 0 |
+ // | X 0 | | l | - | z |
+ //
+ // where s is a vector of the above coefficients.
+ //
+ typename ublas::matrix<in_type> A(10, 10, 0.0);
+
+ // E
+ A(0, 0) = 1.0; A(1, 1) = 1.0; A(2, 2) = 1.0;
+
+ in_type x1, x2, x3, x4;
+ in_type y1, y2, y3, y4;
+
+ x1 = nearest[0].first[0]; y1 = nearest[0].first[1];
+ x2 = nearest[1].first[0]; y2 = nearest[1].first[1];
+ x3 = nearest[2].first[0]; y3 = nearest[2].first[1];
+ x4 = nearest[3].first[0]; y4 = nearest[3].first[1];
+
+ // X
+ A(0, 6) = x1*x1; A(1, 6) = x1*y1; A(2, 6) = y1*y1; A(3, 6) = x1; A(4, 6) = y1; A(5, 6) = 1.0;
+ A(0, 7) = x2*x2; A(1, 7) = x2*y2; A(2, 7) = y2*y2; A(3, 7) = x2; A(4, 7) = y2; A(5, 7) = 1.0;
+ A(0, 8) = x3*x3; A(1, 8) = x3*y3; A(2, 8) = y3*y3; A(3, 8) = x3; A(4, 8) = y3; A(5, 8) = 1.0;
+ A(0, 9) = x4*x4; A(1, 9) = x4*y4; A(2, 9) = y4*y4; A(3, 9) = x4; A(4, 9) = y4; A(5, 9) = 1.0;
+
+ // X'
+ A(6, 0) = x1*x1; A(6, 1) = x1*y1; A(6, 2) = y1*y1; A(6, 3) = x1; A(6, 4) = y1; A(6, 5) = 1.0;
+ A(7, 0) = x2*x2; A(7, 1) = x2*y2; A(7, 2) = y2*y2; A(7, 3) = x2; A(7, 4) = y2; A(7, 5) = 1.0;
+ A(8, 0) = x3*x3; A(8, 1) = x3*y3; A(8, 2) = y3*y3; A(8, 3) = x3; A(8, 4) = y3; A(8, 5) = 1.0;
+ A(9, 0) = x4*x4; A(9, 1) = x4*y4; A(9, 2) = y4*y4; A(9, 3) = x4; A(9, 4) = y4; A(9, 5) = 1.0;
+
+ // z
+ typename ublas::vector<in_type> b(10, 0.0);
+ b(6) = nearest[0].second;
+ b(7) = nearest[1].second;
+ b(8) = nearest[2].second;
+ b(9) = nearest[3].second;
+
+ typename ublas::matrix<in_type> A_t = A;
+ typename ublas::vector<in_type> s = b;
+ typename ublas::permutation_matrix<in_type> P(A_t.size1());
+
+ // Use LUP factorization to solve for the coefficients
+ // We're solving the problem in the form of Ax = b
+ bool is_singular = ublas::lu_factorize(A_t, P);
+
+ out_type output = 0;
+
+ // Fall back to 1D interpolation if the matrix is singular
+ if (is_singular) {
+ // Warn the user that the A matrix is singular
+ UHD_LOGGER_WARNING("CAL") << "Bilinear interpolation: singular matrix detected. "
+ << "Performing 1D linear interpolation against the nearest measurements. "
+ << "Provide calibration data with more measurements";
+
+ output = (b[7] - b[6]) / 2.0;
+ output += b[6];
+ return output;
+ }
+ ublas::lu_substitute(A_t, P, s);
+
+ in_type x = args[0];
+ in_type y = args[1];
+
+ // Utilize the solution to calculate the interpolation function
+ output = s[0]*x*x + s[1]*x*y + s[2]*y*y + s[3]*x + s[4]*y + s[5];
+ return output;
+}
+
+} // namespace cal
+} // namespace uhd
+
+#endif /* INCLUDED_UHD_INTERPOLATION_IPP */