aboutsummaryrefslogtreecommitdiffstats
path: root/host/examples/ascii_art_dft.hpp
diff options
context:
space:
mode:
Diffstat (limited to 'host/examples/ascii_art_dft.hpp')
-rw-r--r--host/examples/ascii_art_dft.hpp320
1 files changed, 320 insertions, 0 deletions
diff --git a/host/examples/ascii_art_dft.hpp b/host/examples/ascii_art_dft.hpp
new file mode 100644
index 000000000..ee2267c2d
--- /dev/null
+++ b/host/examples/ascii_art_dft.hpp
@@ -0,0 +1,320 @@
+//
+// ASCII Art DFT Plotter - Josh Blum
+//
+
+#ifndef ASCII_ART_DFT_HPP
+#define ASCII_ART_DFT_HPP
+
+#include <string>
+#include <cstddef>
+#include <vector>
+#include <complex>
+#include <stdexcept>
+
+namespace acsii_art_dft{
+
+ //! Type produced by the log power DFT function
+ typedef std::vector<float> log_pwr_dft_type;
+
+ /*!
+ * Get a logarithmic power DFT of the input samples.
+ * Samples are expected to be in the range [-1.0, 1.0].
+ * \param samps a pointer to an array of complex samples
+ * \param nsamps the number of samples in the array
+ * \return a real range of DFT bins in units of dB
+ */
+ template <typename T> log_pwr_dft_type log_pwr_dft(
+ const std::complex<T> *samps, size_t nsamps
+ );
+
+ /*!
+ * Convert a DFT to a piroundable ascii plot.
+ * \param dft the log power dft bins
+ * \param width the frame width in characters
+ * \param height the frame height in characters
+ * \param samp_rate the sample rate in Sps
+ * \param dc_freq the DC frequency in Hz
+ * \param dyn_rng the dynamic range in dB
+ * \param ref_lvl the reference level in dB
+ * \return the plot as an ascii string
+ */
+ std::string dft_to_plot(
+ const log_pwr_dft_type &dft,
+ size_t width,
+ size_t height,
+ double samp_rate,
+ double dc_freq,
+ float dyn_rng,
+ float ref_lvl
+ );
+
+} //namespace ascii_dft
+
+/***********************************************************************
+ * Implementation includes
+ **********************************************************************/
+#include <cmath>
+#include <sstream>
+#include <algorithm>
+
+/***********************************************************************
+ * Helper functions
+ **********************************************************************/
+namespace {/*anon*/
+
+ static const double pi = double(std::acos(-1.0));
+
+ //! Round a floating-point value to the nearest integer
+ template <typename T> int iround(T val){
+ return (val > 0)? int(val + 0.5) : int(val - 0.5);
+ }
+
+ //! Pick the closest number that is nice to display
+ template <typename T> T to_clean_num(const T num){
+ if (num == 0) return 0;
+ const T pow10 = std::pow(T(10), int(std::floor(std::log10(std::abs(num)))));
+ const T norm = std::abs(num)/pow10;
+ static const int cleans[] = {1, 2, 5, 10};
+ int clean = cleans[0];
+ for (size_t i = 1; i < sizeof(cleans)/sizeof(cleans[0]); i++){
+ if (std::abs(norm - cleans[i]) < std::abs(norm - clean))
+ clean = cleans[i];
+ }
+ return ((num < 0)? -1 : 1)*clean*pow10;
+ }
+
+ //! Compute an FFT with pre-computed factors using Cooley-Tukey
+ template <typename T> std::complex<T> ct_fft_f(
+ const std::complex<T> *samps, size_t nsamps,
+ const std::complex<T> *factors,
+ size_t start = 0, size_t step = 1
+ ){
+ if (nsamps == 1) return samps[start];
+ std::complex<T> E_k = ct_fft_f(samps, nsamps/2, factors+1, start, step*2);
+ std::complex<T> O_k = ct_fft_f(samps, nsamps/2, factors+1, start+step, step*2);
+ return E_k + factors[0]*O_k;
+ }
+
+ //! Compute an FFT for a particular bin k using Cooley-Tukey
+ template <typename T> std::complex<T> ct_fft_k(
+ const std::complex<T> *samps, size_t nsamps, size_t k
+ ){
+ //pre-compute the factors to use in Cooley-Tukey
+ std::vector<std::complex<T> > factors;
+ for (size_t N = nsamps; N != 0; N /= 2){
+ factors.push_back(std::exp(std::complex<T>(0, T(-2*pi*k/N))));
+ }
+ return ct_fft_f(samps, nsamps, &factors.front());
+ }
+
+ //! Helper class to build a DFT plot frame
+ class frame_type{
+ public:
+ frame_type(size_t width, size_t height):
+ _frame(width-1, std::vector<char>(height, ' '))
+ {
+ /* NOP */
+ }
+
+ //accessors to parts of the frame
+ char &get_plot(size_t b, size_t z){return _frame.at(b+albl_w).at(z+flbl_h);}
+ char &get_albl(size_t b, size_t z){return _frame.at(b) .at(z+flbl_h);}
+ char &get_ulbl(size_t b) {return _frame.at(b) .at(flbl_h-1);}
+ char &get_flbl(size_t b) {return _frame.at(b+albl_w).at(flbl_h-1);}
+
+ //dimension accessors
+ size_t get_plot_h(void) const{return _frame.front().size() - flbl_h;}
+ size_t get_plot_w(void) const{return _frame.size() - albl_w;}
+ size_t get_albl_w(void) const{return albl_w;}
+
+ std::string to_string(void){
+ std::stringstream frame_ss;
+ for (size_t z = 0; z < _frame.front().size(); z++){
+ for (size_t b = 0; b < _frame.size(); b++){
+ frame_ss << _frame[b][_frame[b].size()-z-1];
+ }
+ frame_ss << std::endl;
+ }
+ return frame_ss.str();
+ }
+
+ private:
+ static const size_t albl_w = 6, flbl_h = 1;
+ std::vector<std::vector<char> > _frame;
+ };
+
+} //namespace /*anon*/
+
+/***********************************************************************
+ * Implementation code
+ **********************************************************************/
+namespace acsii_art_dft{
+
+ //! skip constants for amplitude and frequency labels
+ static const size_t albl_skip = 5, flbl_skip = 20;
+
+ template <typename T> log_pwr_dft_type log_pwr_dft(
+ const std::complex<T> *samps, size_t nsamps
+ ){
+ if (nsamps & (nsamps - 1))
+ throw std::runtime_error("num samps is not a power of 2");
+
+ //compute the window
+ double win_pwr = 0;
+ std::vector<std::complex<T> > win_samps;
+ for(size_t n = 0; n < nsamps; n++){
+ //double w_n = 1;
+ //double w_n = 0.54 //hamming window
+ // -0.46*std::cos(2*pi*n/(nsamps-1))
+ //;
+ double w_n = 0.35875 //blackman-harris window
+ -0.48829*std::cos(2*pi*n/(nsamps-1))
+ +0.14128*std::cos(4*pi*n/(nsamps-1))
+ -0.01168*std::cos(6*pi*n/(nsamps-1))
+ ;
+ //double w_n = 1 // flat top window
+ // -1.930*std::cos(2*pi*n/(nsamps-1))
+ // +1.290*std::cos(4*pi*n/(nsamps-1))
+ // -0.388*std::cos(6*pi*n/(nsamps-1))
+ // +0.032*std::cos(8*pi*n/(nsamps-1))
+ //;
+ win_samps.push_back(T(w_n)*samps[n]);
+ win_pwr += w_n*w_n;
+ }
+
+ //compute the log-power dft
+ log_pwr_dft_type log_pwr_dft;
+ for(size_t k = 0; k < nsamps; k++){
+ std::complex<T> dft_k = ct_fft_k(&win_samps.front(), nsamps, k);
+ log_pwr_dft.push_back(float(
+ + 20*std::log10(std::abs(dft_k))
+ - 20*std::log10(T(nsamps))
+ - 10*std::log10(win_pwr/nsamps)
+ + 3
+ ));
+ }
+
+ return log_pwr_dft;
+ }
+
+ std::string dft_to_plot(
+ const log_pwr_dft_type &dft_,
+ size_t width,
+ size_t height,
+ double samp_rate,
+ double dc_freq,
+ float dyn_rng,
+ float ref_lvl
+ ){
+ frame_type frame(width, height); //fill this frame
+
+ //re-order the dft so dc in in the center
+ const size_t num_bins = dft_.size() - 1 + dft_.size()%2; //make it odd
+ log_pwr_dft_type dft(num_bins);
+ for (size_t n = 0; n < num_bins; n++){
+ dft[n] = dft_[(n + num_bins/2)%num_bins];
+ }
+
+ //fill the plot with dft bins
+ for (size_t b = 0; b < frame.get_plot_w(); b++){
+ //indexes from the dft to grab for the plot
+ const size_t n_start = std::max(iround(double(b-0.5)*(num_bins-1)/(frame.get_plot_w()-1)), 0);
+ const size_t n_stop = std::min(iround(double(b+0.5)*(num_bins-1)/(frame.get_plot_w()-1)), int(num_bins));
+
+ //calculate val as the max across points
+ float val = dft.at(n_start);
+ for (size_t n = n_start; n < n_stop; n++) val = std::max(val, dft.at(n));
+
+ const float scaled = (val - (ref_lvl - dyn_rng))*(frame.get_plot_h()-1)/dyn_rng;
+ for (size_t z = 0; z < frame.get_plot_h(); z++){
+ static const std::string syms(".:!|");
+ if (scaled-z > 1) frame.get_plot(b, z) = syms.at(syms.size()-1);
+ else if (scaled-z > 0) frame.get_plot(b, z) = syms.at(size_t((scaled-z)*syms.size()));
+ }
+ }
+
+ //create vertical amplitude labels
+ const float db_step = to_clean_num(dyn_rng/(frame.get_plot_h()-1)*albl_skip);
+ for (
+ float db = db_step*(int((ref_lvl - dyn_rng)/db_step));
+ db <= db_step*(int(ref_lvl/db_step));
+ db += db_step
+ ){
+ const int z = iround((db - (ref_lvl - dyn_rng))*(frame.get_plot_h()-1)/dyn_rng);
+ if (z < 0 or size_t(z) >= frame.get_plot_h()) continue;
+ std::stringstream ss; ss << db; std::string lbl = ss.str();
+ for (size_t i = 0; i < lbl.size() and i < frame.get_albl_w(); i++){
+ frame.get_albl(i, z) = lbl[i];
+ }
+ }
+
+ //create vertical units label
+ std::string ulbl = "dBfs";
+ for (size_t i = 0; i < ulbl.size(); i++){
+ frame.get_ulbl(i+1) = ulbl[i];
+ }
+
+ //create horizontal frequency labels
+ const double f_step = to_clean_num(samp_rate/frame.get_plot_w()*flbl_skip);
+ for (
+ double freq = f_step*int((-samp_rate/2/f_step));
+ freq <= f_step*int((+samp_rate/2/f_step));
+ freq += f_step
+ ){
+ const int b = iround((freq + samp_rate/2)*(frame.get_plot_w()-1)/samp_rate);
+ std::stringstream ss; ss << (freq+dc_freq)/1e6 << "MHz"; std::string lbl = ss.str();
+ if (b < int(lbl.size()/2) or b + lbl.size() - lbl.size()/2 >= frame.get_plot_w()) continue;
+ for (size_t i = 0; i < lbl.size(); i++){
+ frame.get_flbl(b + i - lbl.size()/2) = lbl[i];
+ }
+ }
+
+ return frame.to_string();
+ }
+} //namespace ascii_dft
+
+#endif /*ASCII_ART_DFT_HPP*/
+
+/*
+
+//example main function to test the dft
+
+#include <iostream>
+#include <cstdlib>
+#include <curses.h>
+
+int main(void){
+ initscr();
+
+ while (true){
+ clear();
+
+ std::vector<std::complex<float> > samples;
+ for(size_t i = 0; i < 512; i++){
+ samples.push_back(std::complex<float>(
+ float(std::rand() - RAND_MAX/2)/(RAND_MAX)/4,
+ float(std::rand() - RAND_MAX/2)/(RAND_MAX)/4
+ ));
+ samples[i] += 0.5*std::sin(i*3.14/2) + 0.7;
+ }
+
+ acsii_art_dft::log_pwr_dft_type dft;
+ dft = acsii_art_dft::log_pwr_dft(&samples.front(), samples.size());
+
+ printw("%s", acsii_art_dft::dft_to_plot(
+ dft, COLS, LINES,
+ 12.5e4, 2.45e9,
+ 60, 0
+ ).c_str());
+
+ sleep(1);
+ }
+
+
+ endwin();
+ std::cout << "here\n";
+ return 0;
+}
+
+*/
+