diff options
Diffstat (limited to 'host/docs/usrp2.rst')
-rw-r--r-- | host/docs/usrp2.rst | 344 |
1 files changed, 344 insertions, 0 deletions
diff --git a/host/docs/usrp2.rst b/host/docs/usrp2.rst new file mode 100644 index 000000000..70101bd87 --- /dev/null +++ b/host/docs/usrp2.rst @@ -0,0 +1,344 @@ +======================================================================== +UHD - USRP2 and N Series Application Notes +======================================================================== + +.. contents:: Table of Contents + +------------------------------------------------------------------------ +Load the images onto the SD card (USRP2 only) +------------------------------------------------------------------------ +**Warning!** +Use the usrp2_card_burner.py with caution. If you specify the wrong device node, +you could overwrite your hard drive. Make sure that --dev= specifies the SD card. + +**Warning!** +It is possible to use 3rd party SD cards with the USRP2. +However, certain types of SD cards will not interface with the CPLD: + +* Cards can be SDHC, which is not a supported interface. +* Cards can have unexpected timing characteristics. + +For these reasons, we recommend that you use the SD card that was supplied with the USRP2. + +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ +Use the card burner tool (unix) +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ +:: + + sudo <prefix>/share/uhd/utils/usrp2_card_burner_gui.py + + -- OR -- + + cd <prefix>/share/uhd/utils + sudo ./usrp2_card_burner.py --dev=/dev/sd<XXX> --fpga=<path_to_fpga_image> + sudo ./usrp2_card_burner.py --dev=/dev/sd<XXX> --fw=<path_to_firmware_image> + +Use the *--list* option to get a list of possible raw devices. +The list result will filter out disk partitions and devices too large to be the sd card. +The list option has been implemented on Linux, Mac OS X, and Windows. + +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ +Use the card burner tool (windows) +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ +:: + + <path_to_python.exe> <prefix>/share/uhd/utils/usrp2_card_burner_gui.py + + +------------------------------------------------------------------------ +Load the images onto the on-board flash (USRP-N Series only) +------------------------------------------------------------------------ +The USRP-N Series can be reprogrammed over the network +to update or change the firmware and FPGA images. +When updating images, always burn both the FPGA and firmware images before power cycling. +This ensures that when the device reboots, it has a compatible set of images to boot into. + +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ +Use the net burner tool (unix) +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ +:: + + cd <prefix>/share/uhd/utils + ./usrp_n2xx_net_burner.py --ip=<ip address> --fw=<path for firmware image> + ./usrp_n2xx_net_burner.py --ip=<ip address> --fpga=<path to FPGA image> + +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ +Use the net burner tool (Windows) +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ +:: + + <path_to_python.exe> <prefix>/share/uhd/utils/usrp_n2xx_net_burner.py --ip=<ip address> --fw=<path for firmware image> + <path_to_python.exe> <prefix>/share/uhd/utils/usrp_n2xx_net_burner.py --ip=<ip address> --fpga=<path to FPGA image> + +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ +Device recovery and bricking +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ +Its possible to put the device into an unusable state by loading bad images. +Fortunately, the USRP-N Series can be booted into a safe (read-only) image. +Once booted into the safe image, the user can once again load images onto the device. + +The safe-mode button is a pushbutton switch (S2) located inside the enclosure. +To boot into the safe image, hold-down the safe-mode button while power-cycling the device. +Continue to hold-down the button until the front-panel LEDs blink and remain solid. + +When in safe-mode, the USRP-N device will always have the IP address 192.168.10.2 + +------------------------------------------------------------------------ +Setup networking +------------------------------------------------------------------------ +The USRP2 only supports gigabit ethernet, +and will not work with a 10/100 Mbps interface. +However, a 10/100 Mbps interface can be connected indirectly +to a USRP2 through a gigabit ethernet switch. + +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ +Setup the host interface +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ +The USRP2 communicates at the IP/UDP layer over the gigabit ethernet. +The default IP address of the USRP2 is **192.168.10.2** +You will need to configure the host's ethernet interface with a static IP address to enable communication. +An address of **192.168.10.1** and a subnet mask of **255.255.255.0** is recommended. + +**Note:** +When using the UHD, if an IP address for the USRP2 is not specified, +the software will use UDP broadcast packets to locate the USRP2. +On some systems, the firewall will block UDP broadcast packets. +It is recommended that you change or disable your firewall settings. + +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ +Multiple devices per host +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ +For maximum throughput, one ethernet interface per USRP2 is recommended, +although multiple devices may be connected via a gigabit ethernet switch. +In any case, each ethernet interface should have its own subnet, +and the corresponding USRP2 device should be assigned an address in that subnet. +Example: + +**Configuration for USRP2 device 0:** + +* Ethernet interface IPv4 address: 192.168.10.1 +* Ethernet interface subnet mask: 255.255.255.0 +* USRP2 device IPv4 address: 192.168.10.2 + +**Configuration for USRP2 device 1:** + +* Ethernet interface IPv4 address: 192.168.20.1 +* Ethernet interface subnet mask: 255.255.255.0 +* USRP2 device IPv4 address: 192.168.20.2 + +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ +Change the USRP2's IP address +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ +You may need to change the USRP2's IP address for several reasons: + +* to satisfy your particular network configuration +* to use multiple USRP2s on the same host computer +* to set a known IP address into USRP2 (in case you forgot) + +**Method 1:** +To change the USRP2's IP address +you must know the current address of the USRP2, +and the network must be setup properly as described above. +Run the following commands: +:: + + cd <prefix>/share/uhd/utils + ./usrp_burn_mb_eeprom --args=<optional device args> --key=ip-addr --val=192.168.10.3 + +**Method 2 (Linux Only):** +This method assumes that you do not know the IP address of your USRP2. +It uses raw ethernet packets to bypass the IP/UDP layer to communicate with the USRP2. +Run the following commands: +:: + + cd <prefix>/share/uhd/utils + sudo ./usrp2_recovery.py --ifc=eth0 --new-ip=192.168.10.3 + +------------------------------------------------------------------------ +Communication problems +------------------------------------------------------------------------ +When setting up a development machine for the first time, +you may have various difficulties communicating with the USRP device. +The following tips are designed to help narrow-down and diagnose the problem. + +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ +Firewall issues +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ +When the IP address is not specified, +the device discovery sends broadcast UDP packets from each ethernet interface. +Many firewalls will block the replies to these broadcast packets. +If disabling your system's firewall, +or specifying the IP address yeilds a discovered device, +then your firewall may be blocking replies to UDP broadcast packets. +If this is the case, we recommend that you disable the firewall, +or create a rule to allow all incoming packets with UDP source port 49152. + +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ +Ping the device +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ +The USRP will reply to icmp echo requests. +A successful ping response means that the device has booted properly, +and that it is using the expected IP address. + +:: + + ping 192.168.10.2 + +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ +Monitor the serial output +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ +Read the serial port to get debug verbose from the embedded microcontroller. +The microcontroller prints useful information about IP addresses, +MAC addresses, control packets, fast-path settings, and bootloading. +Use a standard USB to 3.3v-level serial converter at 230400 baud. +Connect GND to the converter ground, and connect TXD to the converter receive. +The RXD pin can be left unconnected as this is only a one-way communication. + +* **USRP2:** Serial port located on the rear edge +* **N210:** Serial port located on the left side + +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ +Monitor the host network traffic +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ +Use wireshark to monitor packets sent to and received from the device. + +------------------------------------------------------------------------ +Addressing the device +------------------------------------------------------------------------ + +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ +Single device configuration +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ +In a single-device configuration, +the USRP device must have a unique IPv4 address on the host computer. +The USRP can be identified through its IPv4 address, resolvable hostname, or by other means. +See the application notes on `device identification <./identification.html>`_. +Use this addressing scheme with the *single_usrp* interface. + +Example device address string representation for a USRP2 with IPv4 address 192.168.10.2 + +:: + + addr=192.168.10.2 + +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ +Multiple device configuration +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ +In a multi-device configuration, +each USRP device must have a unique IPv4 address on the host computer. +The device address parameter keys must be suffixed with the device index. +Each parameter key should be of the format <key><index>. +Use this addressing scheme with the *multi_usrp* interface. + +* The order in which devices are indexed corresponds to the indexing of the transmit and receive channels. +* The key indexing provides the same granularity of device identification as in the single device case. + +Example device address string representation for 2 USRP2s with IPv4 addresses 192.168.10.2 and 192.168.20.2 +:: + + addr0=192.168.10.2, addr1=192.168.20.2 + +------------------------------------------------------------------------ +Using the MIMO Cable +------------------------------------------------------------------------ +The MIMO cable allows two USRP devices to share reference clocks, +time synchronization, and the ethernet interface. + +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ +Shared ethernet mode +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ +In shared ethernet mode, +only one device in the configuration can be attached to the ethernet. +This device will be referred to as the master, and the other device, the slave. + +* The master provides reference clock and time synchronization to the slave. +* All data passing between the host and the slave is routed over the MIMO cable. +* Both master and slave must have different IPv4 addresses in the same subnet. +* The master and slave may be used individually or in a multi-device configuration. +* External clocking is optional, and should only be supplied to the master device. +* The role of slave and master may be switched with the "mimo_mode" device address (see dual ethernet mode). + +Example device address string representation for 2 USRP2s with IPv4 addresses 192.168.10.2 (master) and 192.168.10.3 (slave) +:: + + -- Multi-device example -- + + addr0=192.168.10.2, addr1=192.168.10.3 + + -- Two single devices example -- + + addr=192.168.10.2 + + addr=192.168.10.3 + +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ +Dual ethernet mode +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ +In dual ethernet mode, +both devices in the configuration must be attached to the ethernet. +One of the devices in the configuration will be configured to provide synchronization. +This device will be referred to as the master, and the other device, the slave. + +* The master provides reference clock and time synchronization to the slave. +* The devices require the special device address argument "mimo_mode" set. +* Both master and slave must have different IPv4 addresses in different subnets. +* The master and slave may be used individually or in a multi-device configuration. +* External clocking is optional, and should only be supplied to the master device. + +Example device address string representation for 2 USRP2s with IPv4 addresses 192.168.10.2 (master) and 192.168.20.2 (slave) +:: + + -- Multi-device example -- + + addr0=192.168.10.2, mimo_mode0=master, addr1=192.168.20.2, mimo_mode1=slave + + -- Two single devices example -- + + addr=192.168.10.2, mimo_mode=master + + addr=192.168.20.2, mimo_mode=slave + +------------------------------------------------------------------------ +Hardware setup notes +------------------------------------------------------------------------ + +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ +Front panel LEDs +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ +The LEDs on the front panel can be useful in debugging hardware and software issues. +The LEDs reveal the following about the state of the device: + +* **LED A:** transmitting +* **LED B:** mimo cable link +* **LED C:** receiving +* **LED D:** firmware loaded +* **LED E:** reference lock +* **LED F:** CPLD loaded + + +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ +Ref Clock - 10MHz +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ +Using an external 10MHz reference clock, square wave will offer the best phase +noise performance, but sinusoid is acceptable. The reference clock requires the following power level: + +* **USRP2** 5 to 15dBm +* **N2XX** 0 to 15dBm + + +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ +PPS - Pulse Per Second +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ +Using a PPS signal for timestamp synchronization requires a square wave signal with the following amplitude: + +* **USRP2** 5Vpp +* **N2XX** 3.3 to 5Vpp + +Test the PPS input with the following app: + +* <args> are device address arguments (optional if only one USRP is on your machine) + +:: + + cd <prefix>/share/uhd/examples + ./test_pps_input --args=<args> |