diff options
Diffstat (limited to 'host/docs/dboards.rst')
-rw-r--r-- | host/docs/dboards.rst | 147 |
1 files changed, 147 insertions, 0 deletions
diff --git a/host/docs/dboards.rst b/host/docs/dboards.rst new file mode 100644 index 000000000..0f6d1cfeb --- /dev/null +++ b/host/docs/dboards.rst @@ -0,0 +1,147 @@ +======================================================================== +UHD - Daughterboard Application Notes +======================================================================== + +.. contents:: Table of Contents + +------------------------------------------------------------------------ +Daughterboard Properties +------------------------------------------------------------------------ + +The following contains interesting notes about each daughterboard. +Eventually, this page will be expanded to list out the full +properties of each board as well. + +^^^^^^^^^^^^^^^^^^^^^^^^^^^ +Basic RX and and LFRX +^^^^^^^^^^^^^^^^^^^^^^^^^^^ +The Basic RX and LFRX boards have 3 subdevices: + +* **Subdevice A:** real signal on antenna RXA +* **Subdevice B:** real signal on antenna RXB +* **Subdevice AB:** quadrature subdevice using both antennas + +The boards have no tunable elements or programmable gains. +Though the magic of aliasing, you can down-convert signals +greater than the Nyquist rate of the ADC. + +^^^^^^^^^^^^^^^^^^^^^^^^^^^ +Basic TX and and LFTX +^^^^^^^^^^^^^^^^^^^^^^^^^^^ +The Basic TX and LFTX boards have 3 subdevices: + +* **Subdevice A:** real signal on antenna TXA +* **Subdevice B:** real signal on antenna TXB +* **Subdevice AB:** quadrature subdevice using both antennas + +The boards have no tunable elements or programmable gains. +Though the magic of aliasing, you can up-convert signals +greater than the Nyquist rate of the DAC. + +^^^^^^^^^^^^^^^^^^^^^^^^^^^ +DBSRX +^^^^^^^^^^^^^^^^^^^^^^^^^^^ +The DBSRX board has 1 quadrature subdevice. + +Receive Antennas: **J3** + +The board has no user selectable antenna setting + +Recieve Gains: + **GC1**, Range: 0-56dB + **GC2**, Range: 0-24dB + +^^^^^^^^^^^^^^^^^^^^^^^^^^^ +RFX Series +^^^^^^^^^^^^^^^^^^^^^^^^^^^ +Transmit Antennas: **TX/RX** + +Receive Antennas: **TX/RX** or **RX2** + +The user may set the receive antenna to be TX/RX or RX2. +However, when using an RFX board in full-duplex mode, +the receive antenna will always be set to RX2, regardless of the settings. + +Recieve Gains: **PGA0**, Range: 0-70dB (except RFX400 range is 0-45dB) + +^^^^^^^^^^^^^^^^^^^^^^^^^^^ +XCVR 2450 +^^^^^^^^^^^^^^^^^^^^^^^^^^^ +The XCVR2450 has a non-contiguous tuning range consisting of a high band and a low band. +The high band consists of frequencies between...TODO + +Transmit Antennas: **J1** or **J2** + +Receive Antennas: **J1** or **J2** + +When using the XCVR2450 in full-duplex mode, +the user must set the receive antenna and the transmit antenna to be different; +not doing so will yeild undefined results. + +The XCVR2450 uses a common LO for both receive and transmit. +Even though the API allows the RX and TX LOs to be individually set, +a change of one LO setting will be reflected in the other LO setting. + +Transmit Gains: + * **VGA**, Range: 0-30dB + * **BB**, Range: 0-5dB + +Receive Gains: + * **LNA**, Range: 0-30.5dB + * **VGA**, Range: 0-62dB + +^^^^^^^^^^^^^^^^^^^^^^^^^^^ +WBX Series +^^^^^^^^^^^^^^^^^^^^^^^^^^^ +Transmit Antennas: **TX/RX** + +Receive Antennas: **TX/RX** or **RX2** + +The user may set the receive antenna to be TX/RX or RX2. +However, when using an WBX board in full-duplex mode, +the receive antenna will always be set to RX2, regardless of the settings. + +Transmit Gains: **PGA0**, Range: 0-25dB + +Recieve Gains: **PGA0**, Range: 0-31.5dB + +------------------------------------------------------------------------ +Daughterboard Modifications +------------------------------------------------------------------------ + +Sometimes, daughterboards will require modification +to work on certain frequencies or to work with certain hardware. +Modification usually involves moving/removing a SMT component +and burning a new daughterboard id into the eeprom. + +^^^^^^^^^^^^^^^^^^^^^^^^^^^ +DBSRX +^^^^^^^^^^^^^^^^^^^^^^^^^^^ + +Due to different clocking capabilities, +the DBSRX will require modifications to operate on a non-USRP1 motherboard. +On a USRP1 motherboard, a divided clock is provided from an FPGA pin +because the standard daughterboard clock lines cannot provided a divided clock. +However, on other USRP motherboards, the divided clock is provided +over the standard daughterboard clock lines. + +**Step 1: Move the clock configuration resistor** + +Remove R193 (which is 10 ohms, 0603 size) and put it on R194, which is empty. +This is made somewhat more complicated by the fact that the silkscreen is not clear in that area. +R193 is on the back, immediately below the large beige connector, J2. +R194 is just below, and to the left of R193. +The silkscreen for R193 is ok, but for R194, +it is upside down, and partially cut off. +If you lose R193, you can use anything from 0 to 10 ohms there. + +**Step 2: Burn a new daughterboard id into the EEPROM** + +With the daughterboard plugged-in, run the following commands: +:: + + cd <prefix>/share/uhd/utils + ./usrp_burn_db_eeprom --id=0x000d --unit=RX --args=<args> --db=<db> + +* <args> are device address arguments (optional if only one USRP is on your machine) +* <db> is the name of the daughterboard slot (optional if the USRP has only one slot) |