diff options
Diffstat (limited to 'fpga/usrp2/models/math_real.v')
-rw-r--r-- | fpga/usrp2/models/math_real.v | 512 |
1 files changed, 0 insertions, 512 deletions
diff --git a/fpga/usrp2/models/math_real.v b/fpga/usrp2/models/math_real.v deleted file mode 100644 index d88f72669..000000000 --- a/fpga/usrp2/models/math_real.v +++ /dev/null @@ -1,512 +0,0 @@ -// -// Copyright 2011 Ettus Research LLC -// -// This program is free software: you can redistribute it and/or modify -// it under the terms of the GNU General Public License as published by -// the Free Software Foundation, either version 3 of the License, or -// (at your option) any later version. -// -// This program is distributed in the hope that it will be useful, -// but WITHOUT ANY WARRANTY; without even the implied warranty of -// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -// GNU General Public License for more details. -// -// You should have received a copy of the GNU General Public License -// along with this program. If not, see <http://www.gnu.org/licenses/>. -// - -/*
- * This is a general recreation of the VHDL ieee.math_real package.
- */
-
-module math_real ;
- // Constants for use below and for general reference
- // TODO: Bring it out to 12 (or more???) places beyond the decimal?
- localparam MATH_E = 2.7182818284;
- localparam MATH_1_OVER_E = 0.3678794411;
- localparam MATH_PI = 3.1415926536;
- localparam MATH_2_PI = 6.2831853071;
- localparam MATH_1_OVER_PI = 0.3183098861;
- localparam MATH_PI_OVER_2 = 1.5707963267;
- localparam MATH_PI_OVER_3 = 1.0471975511;
- localparam MATH_PI_OVER_4 = 0.7853981633;
- localparam MATH_3_PI_OVER_2 = 4.7123889803;
- localparam MATH_LOG_OF_2 = 0.6931471805;
- localparam MATH_LOG_OF_10 = 2.3025850929;
- localparam MATH_LOG2_OF_E = 1.4426950408;
- localparam MATH_LOG10_OF_E = 0.4342944819;
- localparam MATH_SQRT_2 = 1.4142135623;
- localparam MATH_1_OVER_SQRT_2= 0.7071067811;
- localparam MATH_SQRT_PI = 1.7724538509;
- localparam MATH_DEG_TO_RAD = 0.0174532925;
- localparam MATH_RAD_TO_DEG = 57.2957795130;
-
- // The number of iterations to do for the Taylor series approximations
- localparam EXPLOG_ITERATIONS = 19;
- localparam COS_ITERATIONS = 8;
-
- /* Conversion Routines */
-
- // Return the sign of a particular number.
- function real sign ;
- input real x ;
- begin
- sign = x < 0.0 ? 1.0 : 0.0 ;
- end
- endfunction
-
- // Return the trunc function of a number
- function real trunc ;
- input real x ;
- begin
- trunc = x - mod(x,1.0) ;
- end
- endfunction
-
- // Return the ceiling function of a number.
- function real ceil ;
- input real x ;
- real retval ;
- begin
- retval = mod(x,1.0) ;
- if( retval != 0.0 && x > 0.0 ) retval = x+1.0 ;
- else retval = x ;
- ceil = trunc(retval) ;
- end
- endfunction
-
- // Return the floor function of a number
- function real floor ;
- input real x ;
- real retval ;
- begin
- retval = mod(x,1.0) ;
- if( retval != 0.0 && x < 0.0 ) retval = x - 1.0 ;
- else retval = x ;
- floor = trunc(retval) ;
- end
- endfunction
-
- // Return the round function of a number
- function real round ;
- input real x ;
- real retval ;
- begin
- retval = x > 0.0 ? x + 0.5 : x - 0.5 ;
- round = trunc(retval) ;
- end
- endfunction
-
- // Return the fractional remainder of (x mod m)
- function real mod ;
- input real x ;
- input real m ;
- real retval ;
- begin
- retval = x ;
- if( retval > m ) begin
- while( retval > m ) begin
- retval = retval - m ;
- end
- end
- else begin
- while( retval < -m ) begin
- retval = retval + m ;
- end
- end
- mod = retval ;
- end
- endfunction
-
- // Return the max between two real numbers
- function real realmax ;
- input real x ;
- input real y ;
- begin
- realmax = x > y ? x : y ;
- end
- endfunction
-
- // Return the min between two real numbers
- function real realmin ;
- input real x ;
- input real y ;
- begin
- realmin = x > y ? y : x ;
- end
- endfunction
-
- /* Random Numbers */
-
- // Generate Gaussian distributed variables
- function real gaussian ;
- input real mean ;
- input real var ;
- real u1, u2, v1, v2, s ;
- begin
- s = 1.0 ;
- while( s >= 1.0 ) begin
- // Two random numbers between 0 and 1
- u1 = $random/4294967296.0 + 0.5 ;
- u2 = $random/4294967296.0 + 0.5 ;
- // Adjust to be between -1,1
- v1 = 2*u1-1.0 ;
- v2 = 2*u2-1.0 ;
- // Polar mag squared
- s = (v1*v1 + v2*v2) ;
- end
- gaussian = mean + sqrt((-2.0*log(s))/s) * v1 * sqrt(var) ;
- // gaussian2 = mean + sqrt(-2*log(s)/s)*v2 * sqrt(var) ;
- end
- endfunction
-
- /* Roots and Log Functions */
-
- // Return the square root of a number
- function real sqrt ;
- input real x ;
- real retval ;
- begin
- sqrt = (x == 0.0) ? 0.0 : powr(x,0.5) ;
- end
- endfunction
-
- // Return the cube root of a number
- function real cbrt ;
- input real x ;
- real retval ;
- begin
- cbrt = (x == 0.0) ? 0.0 : powr(x,1.0/3.0) ;
- end
- endfunction
-
- // Return the absolute value of a real value
- function real abs ;
- input real x ;
- begin
- abs = (x > 0.0) ? x : -x ;
- end
- endfunction
-
- // Return a real value raised to an integer power
- function real pow ;
- input real b ;
- input integer x ;
- integer absx ;
- real retval ;
- begin
- retval = 1.0 ;
- absx = abs(x) ;
- repeat(absx) begin
- retval = b*retval ;
- end
- pow = x < 0 ? (1.0/retval) : retval ;
- end
- endfunction
-
- // Return a real value raised to a real power
- function real powr ;
- input real b ;
- input real x ;
- begin
- powr = exp(x*log(b)) ;
- end
- endfunction
-
- // Return the evaluation of e^x where e is the natural logarithm base
- // NOTE: This is the Taylor series expansion of e^x
- function real exp ;
- input real x ;
- real retval ;
- integer i ;
- real nm1_fact ;
- real powm1 ;
- begin
- nm1_fact = 1.0 ;
- powm1 = 1.0 ;
- retval = 1.0 ;
- for( i = 1 ; i < EXPLOG_ITERATIONS ; i = i + 1 ) begin
- powm1 = x*powm1 ;
- nm1_fact = nm1_fact * i ;
- retval = retval + powm1/nm1_fact ;
- end
- exp = retval ;
- end
- endfunction
-
- // Return the evaluation log(x)
- function real log ;
- input real x ;
- integer i ;
- real whole ;
- real xm1oxp1 ;
- real retval ;
- real newx ;
- begin
- retval = 0.0 ;
- whole = 0.0 ;
- newx = x ;
- while( newx > MATH_E ) begin
- whole = whole + 1.0 ;
- newx = newx / MATH_E ;
- end
- xm1oxp1 = (newx-1.0)/(newx+1.0) ;
- for( i = 0 ; i < EXPLOG_ITERATIONS ; i = i + 1 ) begin
- retval = retval + pow(xm1oxp1,2*i+1)/(2.0*i+1.0) ;
- end
- log = whole+2.0*retval ;
- end
- endfunction
-
- // Return the evaluation ln(x) (same as log(x))
- function real ln ;
- input real x ;
- begin
- ln = log(x) ;
- end
- endfunction
-
- // Return the evaluation log_2(x)
- function real log2 ;
- input real x ;
- begin
- log2 = log(x)/MATH_LOG_OF_2 ;
- end
- endfunction
-
- function real log10 ;
- input real x ;
- begin
- log10 = log(x)/MATH_LOG_OF_10 ;
- end
- endfunction
-
- function real log_base ;
- input real x ;
- input real b ;
- begin
- log_base = log(x)/log(b) ;
- end
- endfunction
-
- /* Trigonometric Functions */
-
- // Internal function to reduce a value to be between [-pi:pi]
- function real reduce ;
- input real x ;
- real retval ;
- begin
- retval = x ;
- while( abs(retval) > MATH_PI ) begin
- retval = retval > MATH_PI ?
- (retval - MATH_2_PI) :
- (retval + MATH_2_PI) ;
- end
- reduce = retval ;
- end
- endfunction
-
- // Return the cos of a number in radians
- function real cos ;
- input real x ;
- integer i ;
- integer sign ;
- real newx ;
- real retval ;
- real xsqnm1 ;
- real twonm1fact ;
- begin
- newx = reduce(x) ;
- xsqnm1 = 1.0 ;
- twonm1fact = 1.0 ;
- retval = 1.0 ;
- for( i = 1 ; i < COS_ITERATIONS ; i = i + 1 ) begin
- sign = -2*(i % 2)+1 ;
- xsqnm1 = xsqnm1*newx*newx ;
- twonm1fact = twonm1fact * (2.0*i) * (2.0*i-1.0) ;
- retval = retval + sign*(xsqnm1/twonm1fact) ;
- end
- cos = retval ;
- end
- endfunction
-
- // Return the sin of a number in radians
- function real sin ;
- input real x ;
- begin
- sin = cos(x - MATH_PI_OVER_2) ;
- end
- endfunction
-
- // Return the tan of a number in radians
- function real tan ;
- input real x ;
- begin
- tan = sin(x) / cos(x) ;
- end
- endfunction
-
- // Return the arcsin in radians of a number
- function real arcsin ;
- input real x ;
- begin
- arcsin = 2.0*arctan(x/(1.0+sqrt(1.0-x*x))) ;
- end
- endfunction
-
- // Return the arccos in radians of a number
- function real arccos ;
- input real x ;
- begin
- arccos = MATH_PI_OVER_2-arcsin(x) ;
- end
- endfunction
-
- // Return the arctan in radians of a number
- // TODO: Make sure this REALLY does work as it is supposed to!
- function real arctan ;
- input real x ;
- real retval ;
- real y ;
- real newx ;
- real twoiotwoip1 ;
- integer i ;
- integer mult ;
- begin
- retval = 1.0 ;
- twoiotwoip1 = 1.0 ;
- mult = 1 ;
- newx = abs(x) ;
- while( newx > 1.0 ) begin
- mult = mult*2 ;
- newx = newx/(1.0+sqrt(1.0+newx*newx)) ;
- end
- y = 1.0 ;
- for( i = 1 ; i < 2*COS_ITERATIONS ; i = i + 1 ) begin
- y = y*((newx*newx)/(1+newx*newx)) ;
- twoiotwoip1 = twoiotwoip1 * (2.0*i)/(2.0*i+1.0) ;
- retval = retval + twoiotwoip1*y ;
- end
- retval = retval * (newx/(1+newx*newx)) ;
- retval = retval * mult ;
-
- arctan = (x > 0.0) ? retval : -retval ;
- end
- endfunction
-
- // Return the arctan in radians of a ratio x/y
- // TODO: Test to make sure this works as it is supposed to!
- function real arctan_xy ;
- input real x ;
- input real y ;
- real retval ;
- begin
- retval = 0.0 ;
- if( x < 0.0 ) retval = MATH_PI - arctan(-abs(y)/x) ;
- else if( x > 0.0 ) retval = arctan(abs(y)/x) ;
- else if( x == 0.0 ) retval = MATH_PI_OVER_2 ;
- arctan_xy = (y < 0.0) ? -retval : retval ;
- end
- endfunction
-
- /* Hyperbolic Functions */
-
- // Return the sinh of a number
- function real sinh ;
- input real x ;
- begin
- sinh = (exp(x) - exp(-x))/2.0 ;
- end
- endfunction
-
- // Return the cosh of a number
- function real cosh ;
- input real x ;
- begin
- cosh = (exp(x) + exp(-x))/2.0 ;
- end
- endfunction
-
- // Return the tanh of a number
- function real tanh ;
- input real x ;
- real e2x ;
- begin
- e2x = exp(2.0*x) ;
- tanh = (e2x+1.0)/(e2x-1.0) ;
- end
- endfunction
-
- // Return the arcsinh of a number
- function real arcsinh ;
- input real x ;
- begin
- arcsinh = log(x+sqrt(x*x+1.0)) ;
- end
- endfunction
-
- // Return the arccosh of a number
- function real arccosh ;
- input real x ;
- begin
- arccosh = ln(x+sqrt(x*x-1.0)) ;
- end
- endfunction
-
- // Return the arctanh of a number
- function real arctanh ;
- input real x ;
- begin
- arctanh = 0.5*ln((1.0+x)/(1.0-x)) ;
- end
- endfunction
- /*
- initial begin
- $display( "cos(MATH_PI_OVER_3): %f", cos(MATH_PI_OVER_3) ) ;
- $display( "sin(MATH_PI_OVER_3): %f", sin(MATH_PI_OVER_3) ) ;
- $display( "sign(-10): %f", sign(-10) ) ;
- $display( "realmax(MATH_PI,MATH_E): %f", realmax(MATH_PI,MATH_E) ) ;
- $display( "realmin(MATH_PI,MATH_E): %f", realmin(MATH_PI,MATH_E) ) ;
- $display( "mod(MATH_PI,MATH_E): %f", mod(MATH_PI,MATH_E) ) ;
- $display( "ceil(-MATH_PI): %f", ceil(-MATH_PI) ) ;
- $display( "ceil(4.0): %f", ceil(4.0) ) ;
- $display( "ceil(3.99999999999999): %f", ceil(3.99999999999999) ) ;
- $display( "pow(MATH_PI,2): %f", pow(MATH_PI,2) ) ;
- $display( "gaussian(1.0,1.0): %f", gaussian(1.0,1.0) ) ;
- $display( "round(MATH_PI): %f", round(MATH_PI) ) ;
- $display( "trunc(-MATH_PI): %f", trunc(-MATH_PI) ) ;
- $display( "ceil(-MATH_PI): %f", ceil(-MATH_PI) ) ;
- $display( "floor(MATH_PI): %f", floor(MATH_PI) ) ;
- $display( "round(e): %f", round(MATH_E)) ;
- $display( "ceil(-e): %f", ceil(-MATH_E)) ;
- $display( "exp(MATH_PI): %f", exp(MATH_PI) ) ;
- $display( "log2(MATH_PI): %f", log2(MATH_PI) ) ;
- $display( "log_base(pow(2,32),2): %f", log_base(pow(2,32),2) ) ;
- $display( "ln(0.1): %f", log(0.1) ) ;
- $display( "cbrt(7): %f", cbrt(7) ) ;
- $display( "cos(MATH_2_PI): %f", cos(20*MATH_2_PI) ) ;
- $display( "sin(-MATH_2_PI): %f", sin(-50*MATH_2_PI) ) ;
- $display( "sinh(MATH_E): %f", sinh(MATH_E) ) ;
- $display( "cosh(MATH_2_PI): %f", cosh(MATH_2_PI) ) ;
- $display( "arctan_xy(-4,3): %f", arctan_xy(-4,3) ) ;
- $display( "arctan(MATH_PI): %f", arctan(MATH_PI) ) ;
- $display( "arctan(-MATH_E/2): %f", arctan(-MATH_E/2) ) ;
- $display( "arctan(MATH_PI_OVER_2): %f", arctan(MATH_PI_OVER_2) ) ;
- $display( "arctan(1/7) = %f", arctan(1.0/7.0) ) ;
- $display( "arctan(3/79) = %f", arctan(3.0/79.0) ) ;
- $display( "pi/4 ?= %f", 5*arctan(1.0/7.0)+2*arctan(3.0/79.0) ) ;
- $display( "arcsin(1.0): %f", arcsin(1.0) ) ;
- $display( "cos(pi/2): %f", cos(MATH_PI_OVER_2)) ;
- $display( "arccos(cos(pi/2)): %f", arccos(cos(MATH_PI_OVER_2)) ) ;
- $display( "cos(0): %f", cos(0) ) ;
- $display( "cos(MATH_PI_OVER_4): %f", cos(MATH_PI_OVER_4) ) ;
- $display( "cos(MATH_PI_OVER_2): %f", cos(MATH_PI_OVER_2) ) ;
- $display( "cos(3*MATH_PI_OVER_4): %f", cos(3*MATH_PI_OVER_4) ) ;
- $display( "cos(MATH_PI): %f", cos(MATH_PI) ) ;
- $display( "cos(5*MATH_PI_OVER_4): %f", cos(5*MATH_PI_OVER_4) ) ;
- $display( "cos(6*MATH_PI_OVER_4): %f", cos(6*MATH_PI_OVER_4) ) ;
- $display( "cos(7*MATH_PI_OVER_4): %f", cos(7*MATH_PI_OVER_4) ) ;
- $display( "cos(8*MATH_PI_OVER_4): %f", cos(8*MATH_PI_OVER_4) ) ;
- end*/
-
-endmodule
|