diff options
Diffstat (limited to 'firmware/microblaze/lib/db_init.c')
-rw-r--r-- | firmware/microblaze/lib/db_init.c | 291 |
1 files changed, 0 insertions, 291 deletions
diff --git a/firmware/microblaze/lib/db_init.c b/firmware/microblaze/lib/db_init.c index 4a0b49ada..23805d9cd 100644 --- a/firmware/microblaze/lib/db_init.c +++ b/firmware/microblaze/lib/db_init.c @@ -75,294 +75,3 @@ read_dboard_eeprom(int i2c_addr) return -2; } } - - -static struct db_base * -lookup_dbid(int dbid) -{ - return 0; -} - -static struct db_base * -lookup_dboard(int i2c_addr, struct db_base *default_db, char *msg) -{ - struct db_base *db; - int dbid = read_dboard_eeprom(i2c_addr); - - // FIXME removing this printf has the system hang if there are two d'boards - // installed. (I think the problem is in i2c_read/write or the way - // I kludge the zero-byte write to set the read address in eeprom_read.) - printf("%s dbid: 0x%x\n", msg, dbid); - - if (dbid < 0){ // there was some kind of problem. Treat as Basic Tx - return default_db; - } - else if ((db = lookup_dbid(dbid)) == 0){ - printf("No daugherboard code for dbid = 0x%x\n", dbid); - return default_db; - } - return db; -} - -void -set_atr_regs(int bank, int atr_rxval, int atr_txval) -{ - uint32_t val[4]; - int shift; - int mask; - int i; - - val[ATR_IDLE] = atr_rxval; - val[ATR_RX] = atr_rxval; - val[ATR_TX] = atr_txval; - val[ATR_FULL] = atr_txval; - - if (bank == GPIO_TX_BANK){ - mask = 0xffff0000; - shift = 16; - } - else { - mask = 0x0000ffff; - shift = 0; - } - - for (i = 0; i < 4; i++){ - int t = (atr_regs->v[i] & ~mask) | ((val[i] << shift) & mask); - //printf("atr_regs[%d] = 0x%x\n", i, t); - atr_regs->v[i] = t; - } -} - -static void -set_gpio_mode(int bank, struct db_base *db) -{ - int i; - - hal_gpio_set_ddr(bank, /*db->output_enables*/0, 0xffff); - //set_atr_regs(bank, db); - - for (i = 0; i < 16; i++){ - if (/*db->used_pins*/0 & (1 << i)){ - // set to either GPIO_SEL_SW or GPIO_SEL_ATR - hal_gpio_set_sel(bank, i, (/*db->atr_mask*/0 & (1 << i)) ? 'a' : 's'); - } - } -} - -static int __attribute__((unused)) -determine_tx_mux_value(struct db_base *db) -{ - if (/*db->i_and_q_swapped*/0) - return 0x01; - else - return 0x10; -} - -static int -determine_rx_mux_value(struct db_base *db) -{ -#define ADC0 0x0 -#define ADC1 0x1 -#define ZERO 0x2 - - static int truth_table[8] = { - /* swap_iq, uses */ - /* 0, 0x0 */ (ZERO << 2) | ZERO, // N/A - /* 0, 0x1 */ (ZERO << 2) | ADC0, - /* 0, 0x2 */ (ZERO << 2) | ADC1, - /* 0, 0x3 */ (ADC1 << 2) | ADC0, - /* 1, 0x0 */ (ZERO << 2) | ZERO, // N/A - /* 1, 0x1 */ (ZERO << 2) | ADC0, - /* 1, 0x2 */ (ZERO << 2) | ADC1, - /* 1, 0x3 */ (ADC0 << 2) | ADC1, - }; - - int subdev0_uses; - int subdev1_uses; - int uses; - - if (/*db->is_quadrature*/0) - subdev0_uses = 0x3; // uses A/D 0 and 1 - else - subdev0_uses = 0x1; // uses A/D 0 only - - // FIXME second subdev on Basic Rx, LF RX - // if subdev2 exists - // subdev1_uses = 0x2; - subdev1_uses = 0; - - uses = subdev0_uses; - - int swap_iq = /*db->i_and_q_swapped*/0 & 0x1; - int index = (swap_iq << 2) | uses; - - return truth_table[index]; -} - - -void -db_init(void) -{ - /*int m; - - tx_dboard = lookup_dboard(I2C_ADDR_TX_A, &db_basic_tx, "Tx"); - //printf("db_init: tx dbid = 0x%x\n", tx_dboard->dbid); - set_gpio_mode(GPIO_TX_BANK, tx_dboard); - tx_dboard->init(tx_dboard); - m = determine_tx_mux_value(tx_dboard); - dsp_tx_regs->tx_mux = m; - //printf("tx_mux = 0x%x\n", m); - tx_dboard->current_lo_offset = tx_dboard->default_lo_offset; - - rx_dboard = lookup_dboard(I2C_ADDR_RX_A, &db_basic_rx, "Rx"); - //printf("db_init: rx dbid = 0x%x\n", rx_dboard->dbid); - set_gpio_mode(GPIO_RX_BANK, rx_dboard); - rx_dboard->init(rx_dboard); - m = determine_rx_mux_value(rx_dboard); - dsp_rx_regs->rx_mux = m; - //printf("rx_mux = 0x%x\n", m); - rx_dboard->current_lo_offset = rx_dboard->default_lo_offset;*/ -} - -/*! - * Calculate the frequency to use for setting the digital down converter. - * - * \param[in] target_freq desired RF frequency (Hz) - * \param[in] baseband_freq the RF frequency that corresponds to DC in the IF. - * - * \param[out] dxc_freq is the value for the ddc - * \param[out] inverted is true if we're operating in an inverted Nyquist zone. -*/ -void -calc_dxc_freq(u2_fxpt_freq_t target_freq, u2_fxpt_freq_t baseband_freq, - u2_fxpt_freq_t *dxc_freq, bool *inverted) -{ - u2_fxpt_freq_t fs = U2_DOUBLE_TO_FXPT_FREQ(100e6); // converter sample rate - u2_fxpt_freq_t delta = target_freq - baseband_freq; - -#if 0 - printf("calc_dxc_freq\n"); - printf(" fs = "); print_fxpt_freq(fs); newline(); - printf(" target = "); print_fxpt_freq(target_freq); newline(); - printf(" baseband = "); print_fxpt_freq(baseband_freq); newline(); - printf(" delta = "); print_fxpt_freq(delta); newline(); -#endif - - if (delta >= 0){ - while (delta > fs) - delta -= fs; - if (delta <= fs/2){ // non-inverted region - *dxc_freq = -delta; - *inverted = false; - } - else { // inverted region - *dxc_freq = delta - fs; - *inverted = true; - } - } - else { - while (delta < -fs) - delta += fs; - if (delta >= -fs/2){ // non-inverted region - *dxc_freq = -delta; - *inverted = false; - } - else { // inverted region - *dxc_freq = delta + fs; - *inverted = true; - } - } -} - -bool -db_set_lo_offset(struct db_base *db, u2_fxpt_freq_t offset) -{ - //db->current_lo_offset = offset; - return true; -} - -bool -db_tune(struct db_base *db, u2_fxpt_freq_t target_freq, struct tune_result *result) -{ - /*memset(result, 0, sizeof(*result)); - bool inverted = false; - u2_fxpt_freq_t dxc_freq; - u2_fxpt_freq_t actual_dxc_freq; - - // Ask the d'board to tune as closely as it can to target_freq+lo_offset - bool ok = db->set_freq(db, target_freq+db->current_lo_offset, &result->baseband_freq); - - // Calculate the DDC setting that will downconvert the baseband from the - // daughterboard to our target frequency. - calc_dxc_freq(target_freq, result->baseband_freq, &dxc_freq, &inverted); - - // If the spectrum is inverted, and the daughterboard doesn't do - // quadrature downconversion, we can fix the inversion by flipping the - // sign of the dxc_freq... (This only happens using the basic_rx board) - - if (db->spectrum_inverted) - inverted = !inverted; - - if (inverted && !db->is_quadrature){ - dxc_freq = -dxc_freq; - inverted = !inverted; - } - - if (db->is_tx){ - dxc_freq = -dxc_freq; // down conversion versus up conversion - ok &= db_set_duc_freq(dxc_freq, &actual_dxc_freq); - } - else { - ok &= db_set_ddc_freq(dxc_freq, &actual_dxc_freq); - } - - result->dxc_freq = dxc_freq; - result->residual_freq = dxc_freq - actual_dxc_freq; - result->inverted = inverted; - return ok;*/return false; -} - -static int32_t -compute_freq_control_word(u2_fxpt_freq_t target_freq, u2_fxpt_freq_t *actual_freq) -{ - // If we were using floating point, we'd calculate - // master = 100e6; - // v = (int) rint(target_freq / master_freq) * pow(2.0, 32.0); - - //printf("compute_freq_control_word\n"); - //printf(" target_freq = "); print_fxpt_freq(target_freq); newline(); - - int32_t master_freq = 100000000; // 100M - - int32_t v = ((target_freq << 12)) / master_freq; - //printf(" fcw = %d\n", v); - - *actual_freq = (v * (int64_t) master_freq) >> 12; - - //printf(" actual = "); print_fxpt_freq(*actual_freq); newline(); - - return v; -} - - -bool -db_set_ddc_freq(u2_fxpt_freq_t dxc_freq, u2_fxpt_freq_t *actual_dxc_freq) -{ - int32_t v = compute_freq_control_word(dxc_freq, actual_dxc_freq); - dsp_rx_regs->freq = v; - return true; -} - -bool -db_set_duc_freq(u2_fxpt_freq_t dxc_freq, u2_fxpt_freq_t *actual_dxc_freq) -{ - int32_t v = compute_freq_control_word(dxc_freq, actual_dxc_freq); - dsp_tx_regs->freq = v; - return true; -} - -bool -db_set_gain(struct db_base *db, u2_fxpt_gain_t gain) -{ - return false;//db->set_gain(db, gain); -} |