aboutsummaryrefslogtreecommitdiffstats
path: root/firmware/fx3
diff options
context:
space:
mode:
Diffstat (limited to 'firmware/fx3')
-rw-r--r--firmware/fx3/README.md84
-rw-r--r--firmware/fx3/ad9361/include/ad9361_dispatch.h16
-rw-r--r--firmware/fx3/ad9361/include/ad9361_transaction.h90
-rw-r--r--firmware/fx3/ad9361/lib/ad9361_filter_taps.h47
-rw-r--r--firmware/fx3/ad9361/lib/ad9361_gain_tables.h95
-rw-r--r--firmware/fx3/ad9361/lib/ad9361_impl.c1918
-rw-r--r--firmware/fx3/ad9361/lib/ad9361_synth_lut.h135
-rw-r--r--firmware/fx3/b200/.gitignore4
-rw-r--r--firmware/fx3/b200/b200_ad9361.c57
-rw-r--r--firmware/fx3/b200/b200_gpifconfig.h178
-rw-r--r--firmware/fx3/b200/b200_i2c.c82
-rw-r--r--firmware/fx3/b200/b200_i2c.h40
-rw-r--r--firmware/fx3/b200/b200_main.c3160
-rw-r--r--firmware/fx3/b200/b200_main.h143
-rw-r--r--firmware/fx3/b200/b200_usb_descriptors.c510
-rw-r--r--firmware/fx3/b200/b200_vrq.h21
-rw-r--r--firmware/fx3/b200/fx3_mem_map.patch68
-rw-r--r--firmware/fx3/b200/makefile55
-rw-r--r--firmware/fx3/gpif2_designer/b200_v2.cydsn/b200_v2.cyfx30
-rw-r--r--firmware/fx3/gpif2_designer/b200_v2.cydsn/cyfxgpif2config.h174
-rw-r--r--firmware/fx3/gpif2_designer/b200_v2.cydsn/projectfiles/gpif2model.xml140
-rw-r--r--firmware/fx3/gpif2_designer/b200_v2.cydsn/projectfiles/gpif2timingsimulation.xml49
-rw-r--r--firmware/fx3/gpif2_designer/b200_v2.cydsn/projectfiles/gpif2view.xml183
23 files changed, 7279 insertions, 0 deletions
diff --git a/firmware/fx3/README.md b/firmware/fx3/README.md
new file mode 100644
index 000000000..e2e8a13d4
--- /dev/null
+++ b/firmware/fx3/README.md
@@ -0,0 +1,84 @@
+INSTRUCTIONS
+================================
+
+# Building the B2xx FX3 Firmware
+
+The USRP B200 and B210 each use the Cypress FX3 USB3 PHY for USB3 connectivity.
+This device has an ARM core on it, which is programmed in C. This README will
+show you how to build our firmware source
+
+**A brief "Theory of Operations":**
+The host sends commands to the FX3, our USB3 PHY, which has an on-board ARM
+which runs the FX3 firmware code (hex file). That code translates commands into
+SPI commands to/from the AD9361. The SPI lines run through the FPGA (bin or bit
+file), where they are level-translated, and then head to the AD9361. Note that
+the FPGA takes no action on these SPI lines. They are passive pass-throughs.
+
+## Setting up the Cypress SDK
+
+In order to compile the USRP B200 and B210 firmware, you will need the FX3 SDK
+distributed by the FX3 manufacturer, Cypress Semiconductor. You can download the
+[FX3 SDK from here](http://www.cypress.com/?rID=57990).
+
+Once you have downloaded it, extract the ARM cross-compiler sub-directory from
+the zip file and put it somewhere useful. The highest level directory you need
+is `arm-2011.03/`.
+
+Now that you have extracted the cross compilation toolchain, you need to set up
+some environment variables to tell the B2xx `makefile` where to look for the
+tools. These variables are:
+
+```
+ $ export ARMGCC_INSTALL_PATH=<your path>/arm-2011.03
+ $ export ARMGCC_VERSION=4.5.2
+```
+
+Now, you'll need to set-up the Cypress SDK, as well. In the SDK, navigate to
+the `firmware` directory, and copy the following sub-directories into
+`uhd.git/firmware/fx3`: `common/`, `lpp_source/`, `u3p_firmware/`.
+
+Your directory structure should now look like:
+
+```
+uhd.git/
+ |
+ --firmware/
+ |
+ --fx3/
+ |
+ --ad9361/ # From UHD
+ --b200/ # From UHD
+ --common/ # From Cypress SDK
+ --gpif2_designer/ # From UHD
+ --lpp_source/ # From Cypress SDK
+ --u3p_firmware/ # From Cypress SDK
+ --README.md # From UHD
+```
+
+
+## Applying the Patch to the Toolchain
+
+Now, you'll need to apply a patch to a couple of files in the Cypress SDK. Head
+into the `common/` directory you just copied from the Cypress SDK, and apply the
+patch `b200/fx3_mem_map.patch`.
+
+```
+ # cd uhd.git/firmware/common/
+ $ patch -p2 < ../b200/fx3_mem_map.patch
+```
+
+If you don't see any errors print on the screen, then the patch was successful.
+
+## Building the Firmware
+
+Now, you should be able to head into the `b200/` directory and simply build the
+firmware:
+
+```
+ $ cd uhd.git/firmware/fx3/b200
+ $ make
+```
+
+It will generate a `usrp_b200_fw.hex` file, which you can then give to UHD to
+program your USRP B200 or USRP B210.
+
diff --git a/firmware/fx3/ad9361/include/ad9361_dispatch.h b/firmware/fx3/ad9361/include/ad9361_dispatch.h
new file mode 100644
index 000000000..e89a4e0b0
--- /dev/null
+++ b/firmware/fx3/ad9361/include/ad9361_dispatch.h
@@ -0,0 +1,16 @@
+//
+// Copyright 2013-2014 Ettus Research LLC
+//
+
+#ifndef INCLUDED_AD9361_DISPATCH_H
+#define INCLUDED_AD9361_DISPATCH_H
+
+#include <ad9361_transaction.h>
+
+extern void ad9361_dispatch(const char* request, char* response);
+
+typedef void (*msgfn)(const char*, ...);
+
+extern void ad9361_set_msgfn(msgfn pfn);
+
+#endif /* INCLUDED_AD9361_DISPATCH_H */
diff --git a/firmware/fx3/ad9361/include/ad9361_transaction.h b/firmware/fx3/ad9361/include/ad9361_transaction.h
new file mode 100644
index 000000000..2349a5d3d
--- /dev/null
+++ b/firmware/fx3/ad9361/include/ad9361_transaction.h
@@ -0,0 +1,90 @@
+//
+// Copyright 2013-2014 Ettus Research LLC
+//
+
+#ifndef INCLUDED_AD9361_TRANSACTION_H
+#define INCLUDED_AD9361_TRANSACTION_H
+
+#include <stdint.h>
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+//various constants
+#define AD9361_TRANSACTION_VERSION 0x4
+#define AD9361_DISPATCH_PACKET_SIZE 64
+
+//action types
+#define AD9361_ACTION_ECHO 0
+#define AD9361_ACTION_INIT 1
+#define AD9361_ACTION_SET_RX1_GAIN 2
+#define AD9361_ACTION_SET_TX1_GAIN 3
+#define AD9361_ACTION_SET_RX2_GAIN 4
+#define AD9361_ACTION_SET_TX2_GAIN 5
+#define AD9361_ACTION_SET_RX_FREQ 6
+#define AD9361_ACTION_SET_TX_FREQ 7
+#define AD9361_ACTION_SET_CODEC_LOOP 8
+#define AD9361_ACTION_SET_CLOCK_RATE 9
+#define AD9361_ACTION_SET_ACTIVE_CHAINS 10
+
+static inline void ad9361_double_pack(const double input, uint32_t output[2])
+{
+ const uint32_t *p = (const uint32_t *)&input;
+ output[0] = p[0];
+ output[1] = p[1];
+}
+
+static inline double ad9361_double_unpack(const uint32_t input[2])
+{
+ double output = 0.0;
+ uint32_t *p = (uint32_t *)&output;
+ p[0] = input[0];
+ p[1] = input[1];
+ return output;
+}
+
+typedef struct
+{
+ //version is expected to be AD9361_TRANSACTION_VERSION
+ //check otherwise for compatibility
+ uint32_t version;
+
+ //sequence number - increment every call for sanity
+ uint32_t sequence;
+
+ //action tells us what to do, see AD9361_ACTION_*
+ uint32_t action;
+
+ union
+ {
+ //enable mask for chains
+ uint32_t enable_mask;
+
+ //true to enable codec internal loopback
+ uint32_t codec_loop;
+
+ //freq holds request LO freq and result from tune
+ uint32_t freq[2];
+
+ //gain holds request gain and result from action
+ uint32_t gain[2];
+
+ //rate holds request clock rate and result from action
+ uint32_t rate[2];
+
+ } value;
+
+ //error message comes back as a reply -
+ //set to null string for no error \0
+ char error_msg[];
+
+} ad9361_transaction_t;
+
+#define AD9361_TRANSACTION_MAX_ERROR_MSG (AD9361_DISPATCH_PACKET_SIZE - (sizeof(ad9361_transaction_t)-4)-1) // -4 for 'error_msg' alignment padding, -1 for terminating \0
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* INCLUDED_AD9361_TRANSACTION_H */
diff --git a/firmware/fx3/ad9361/lib/ad9361_filter_taps.h b/firmware/fx3/ad9361/lib/ad9361_filter_taps.h
new file mode 100644
index 000000000..afbe27630
--- /dev/null
+++ b/firmware/fx3/ad9361/lib/ad9361_filter_taps.h
@@ -0,0 +1,47 @@
+//
+// Copyright 2013-2014 Ettus Research LLC
+//
+
+#ifndef INCLUDED_AD9361_FILTER_TAPS_HPP
+#define INCLUDED_AD9361_FILTER_TAPS_HPP
+
+/* A default 128-tap filter that can be used for generic circumstances. */
+static uint16_t default_128tap_coeffs[] = {
+ 0x0001,0xfff1,0xffcf,0xffc0,0xffe8,0x0020,0x001a,0xffe3,
+ 0xffe1,0x001f,0x0028,0xffdf,0xffcc,0x0024,0x0043,0xffdb,
+ 0xffac,0x0026,0x0068,0xffdb,0xff80,0x0022,0x009a,0xffe2,
+ 0xff47,0x0017,0x00db,0xfff3,0xfeff,0xffff,0x012b,0x0013,
+ 0xfea5,0xffd7,0x0190,0x0046,0xfe35,0xff97,0x020e,0x0095,
+ 0xfda7,0xff36,0x02ae,0x010d,0xfcf0,0xfea1,0x0383,0x01c6,
+ 0xfbf3,0xfdb6,0x04b7,0x02f8,0xfa6d,0xfc1a,0x06be,0x0541,
+ 0xf787,0xf898,0x0b60,0x0b6d,0xee88,0xea40,0x2786,0x7209
+};
+
+
+/* The below pair of filters is optimized for a 10MHz LTE application. */
+/*
+static uint16_t lte10mhz_rx_coeffs[] = {
+ 0xffe2,0x0042,0x0024,0x0095,0x0056,0x004d,0xffcf,0xffb7,
+ 0xffb1,0x0019,0x0059,0x006a,0x0004,0xff9d,0xff72,0xffd4,
+ 0x0063,0x00b7,0x0062,0xffac,0xff21,0xff59,0x0032,0x0101,
+ 0x00f8,0x0008,0xfeea,0xfeac,0xffa3,0x0117,0x01b5,0x00d0,
+ 0xff05,0xfdea,0xfe9e,0x00ba,0x026f,0x0215,0xffb5,0xfd4a,
+ 0xfd18,0xffa0,0x02de,0x03dc,0x0155,0xfd2a,0xfb0d,0xfd54,
+ 0x0287,0x062f,0x048a,0xfe37,0xf862,0xf8c1,0x004d,0x0963,
+ 0x0b88,0x02a4,0xf3e7,0xebdd,0xf5f8,0x1366,0x3830,0x518b
+};
+
+static uint16_t lte10mhz_tx_coeffs[] = {
+ 0xfffb,0x0000,0x0004,0x0017,0x0024,0x0028,0x0013,0xfff3,
+ 0xffdc,0xffe5,0x000b,0x0030,0x002e,0xfffe,0xffc4,0xffb8,
+ 0xfff0,0x0045,0x0068,0x002b,0xffb6,0xff72,0xffad,0x0047,
+ 0x00b8,0x0088,0xffc8,0xff1c,0xff33,0x001a,0x0110,0x0124,
+ 0x0019,0xfec8,0xfe74,0xff9a,0x0156,0x0208,0x00d3,0xfe9b,
+ 0xfd68,0xfe96,0x015d,0x033f,0x0236,0xfecd,0xfc00,0xfcb5,
+ 0x00d7,0x04e5,0x04cc,0xffd5,0xf9fe,0xf8fb,0xfef2,0x078c,
+ 0x0aae,0x036d,0xf5c0,0xed89,0xf685,0x12af,0x36a4,0x4faa
+};
+*/
+
+
+#endif // INCLUDED_AD9361_FILTER_TAPS_HPP
diff --git a/firmware/fx3/ad9361/lib/ad9361_gain_tables.h b/firmware/fx3/ad9361/lib/ad9361_gain_tables.h
new file mode 100644
index 000000000..58dcbeb65
--- /dev/null
+++ b/firmware/fx3/ad9361/lib/ad9361_gain_tables.h
@@ -0,0 +1,95 @@
+//
+// Copyright 2013-2014 Ettus Research LLC
+//
+
+#ifndef INCLUDED_AD9361_GAIN_TABLES_HPP
+#define INCLUDED_AD9361_GAIN_TABLES_HPP
+
+uint8_t gain_table_sub_1300mhz[77][5] = { {0,0x00,0x00,0x20,1},
+ {1,0x00,0x00,0x00,0}, {2,0x00,0x00,0x00,0}, {3,0x00,0x01,0x00,0},
+ {4,0x00,0x02,0x00,0}, {5,0x00,0x03,0x00,0}, {6,0x00,0x04,0x00,0},
+ {7,0x00,0x05,0x00,0}, {8,0x01,0x03,0x20,1}, {9,0x01,0x04,0x00,0},
+ {10,0x01,0x05,0x00,0}, {11,0x01,0x06,0x00,0}, {12,0x01,0x07,0x00,0},
+ {13,0x01,0x08,0x00,0}, {14,0x01,0x09,0x00,0}, {15,0x01,0x0A,0x00,0},
+ {16,0x01,0x0B,0x00,0}, {17,0x01,0x0C,0x00,0}, {18,0x01,0x0D,0x00,0},
+ {19,0x01,0x0E,0x00,0}, {20,0x02,0x09,0x20,1}, {21,0x02,0x0A,0x00,0},
+ {22,0x02,0x0B,0x00,0}, {23,0x02,0x0C,0x00,0}, {24,0x02,0x0D,0x00,0},
+ {25,0x02,0x0E,0x00,0}, {26,0x02,0x0F,0x00,0}, {27,0x02,0x10,0x00,0},
+ {28,0x02,0x2B,0x20,1}, {29,0x02,0x2C,0x00,0}, {30,0x04,0x27,0x20,1},
+ {31,0x04,0x28,0x00,0}, {32,0x04,0x29,0x00,0}, {33,0x04,0x2A,0x00,0},
+ {34,0x04,0x2B,0x00,1}, {35,0x24,0x21,0x20,0}, {36,0x24,0x22,0x00,1},
+ {37,0x44,0x20,0x20,0}, {38,0x44,0x21,0x00,0}, {39,0x44,0x22,0x00,0},
+ {40,0x44,0x23,0x00,0}, {41,0x44,0x24,0x00,0}, {42,0x44,0x25,0x00,0},
+ {43,0x44,0x26,0x00,0}, {44,0x44,0x27,0x00,0}, {45,0x44,0x28,0x00,0},
+ {46,0x44,0x29,0x00,0}, {47,0x44,0x2A,0x00,0}, {48,0x44,0x2B,0x00,0},
+ {49,0x44,0x2C,0x00,0}, {50,0x44,0x2D,0x00,0}, {51,0x44,0x2E,0x00,0},
+ {52,0x44,0x2F,0x00,0}, {53,0x44,0x30,0x00,0}, {54,0x44,0x31,0x00,0},
+ {55,0x64,0x2E,0x20,1}, {56,0x64,0x2F,0x00,0}, {57,0x64,0x30,0x00,0},
+ {58,0x64,0x31,0x00,0}, {59,0x64,0x32,0x00,0}, {60,0x64,0x33,0x00,0},
+ {61,0x64,0x34,0x00,0}, {62,0x64,0x35,0x00,0}, {63,0x64,0x36,0x00,0},
+ {64,0x64,0x37,0x00,0}, {65,0x64,0x38,0x00,0}, {66,0x65,0x38,0x20,1},
+ {67,0x66,0x38,0x20,1}, {68,0x67,0x38,0x20,1}, {69,0x68,0x38,0x20,1},
+ {70,0x69,0x38,0x20,1}, {71,0x6A,0x38,0x20,1}, {72,0x6B,0x38,0x20,1},
+ {73,0x6C,0x38,0x20,1}, {74,0x6D,0x38,0x20,1}, {75,0x6E,0x38,0x20,1},
+ {76,0x6F,0x38,0x20,1}};
+
+
+uint8_t gain_table_1300mhz_to_4000mhz[77][5] = { {0,0x00,0x00,0x20,1},
+ {1,0x00,0x00,0x00,0}, {2,0x00,0x00,0x00,0}, {3,0x00,0x01,0x00,0},
+ {4,0x00,0x02,0x00,0}, {5,0x00,0x03,0x00,0}, {6,0x00,0x04,0x00,0},
+ {7,0x00,0x05,0x00,0}, {8,0x01,0x03,0x20,1}, {9,0x01,0x04,0x00,0},
+ {10,0x01,0x05,0x00,0}, {11,0x01,0x06,0x00,0}, {12,0x01,0x07,0x00,0},
+ {13,0x01,0x08,0x00,0}, {14,0x01,0x09,0x00,0}, {15,0x01,0x0A,0x00,0},
+ {16,0x01,0x0B,0x00,0}, {17,0x01,0x0C,0x00,0}, {18,0x01,0x0D,0x00,0},
+ {19,0x01,0x0E,0x00,0}, {20,0x02,0x09,0x20,1}, {21,0x02,0x0A,0x00,0},
+ {22,0x02,0x0B,0x00,0}, {23,0x02,0x0C,0x00,0}, {24,0x02,0x0D,0x00,0},
+ {25,0x02,0x0E,0x00,0}, {26,0x02,0x0F,0x00,0}, {27,0x02,0x10,0x00,0},
+ {28,0x02,0x2B,0x20,1}, {29,0x02,0x2C,0x00,0}, {30,0x04,0x28,0x20,1},
+ {31,0x04,0x29,0x00,0}, {32,0x04,0x2A,0x00,0}, {33,0x04,0x2B,0x00,0},
+ {34,0x24,0x20,0x20,0}, {35,0x24,0x21,0x00,1}, {36,0x44,0x20,0x20,0},
+ {37,0x44,0x21,0x00,1}, {38,0x44,0x22,0x00,0}, {39,0x44,0x23,0x00,0},
+ {40,0x44,0x24,0x00,0}, {41,0x44,0x25,0x00,0}, {42,0x44,0x26,0x00,0},
+ {43,0x44,0x27,0x00,0}, {44,0x44,0x28,0x00,0}, {45,0x44,0x29,0x00,0},
+ {46,0x44,0x2A,0x00,0}, {47,0x44,0x2B,0x00,0}, {48,0x44,0x2C,0x00,0},
+ {49,0x44,0x2D,0x00,0}, {50,0x44,0x2E,0x00,0}, {51,0x44,0x2F,0x00,0},
+ {52,0x44,0x30,0x00,0}, {53,0x44,0x31,0x00,0}, {54,0x44,0x32,0x00,0},
+ {55,0x64,0x2E,0x20,1}, {56,0x64,0x2F,0x00,0}, {57,0x64,0x30,0x00,0},
+ {58,0x64,0x31,0x00,0}, {59,0x64,0x32,0x00,0}, {60,0x64,0x33,0x00,0},
+ {61,0x64,0x34,0x00,0}, {62,0x64,0x35,0x00,0}, {63,0x64,0x36,0x00,0},
+ {64,0x64,0x37,0x00,0}, {65,0x64,0x38,0x00,0}, {66,0x65,0x38,0x20,1},
+ {67,0x66,0x38,0x20,1}, {68,0x67,0x38,0x20,1}, {69,0x68,0x38,0x20,1},
+ {70,0x69,0x38,0x20,1}, {71,0x6A,0x38,0x20,1}, {72,0x6B,0x38,0x20,1},
+ {73,0x6C,0x38,0x20,1}, {74,0x6D,0x38,0x20,1}, {75,0x6E,0x38,0x20,1},
+ {76,0x6F,0x38,0x20,1}};
+
+
+uint8_t gain_table_4000mhz_to_6000mhz[77][5] = { {0,0x00,0x00,0x20,1},
+ {1,0x00,0x00,0x00,0}, {2,0x00,0x00,0x00,0}, {3,0x00,0x00,0x00,0},
+ {4,0x00,0x00,0x00,0}, {5,0x00,0x01,0x00,0}, {6,0x00,0x02,0x00,0},
+ {7,0x00,0x03,0x00,0}, {8,0x01,0x01,0x20,1}, {9,0x01,0x02,0x00,0},
+ {10,0x01,0x03,0x00,0}, {11,0x01,0x04,0x20,1}, {12,0x01,0x05,0x00,0},
+ {13,0x01,0x06,0x00,0}, {14,0x01,0x07,0x00,0}, {15,0x01,0x08,0x00,0},
+ {16,0x01,0x09,0x00,0}, {17,0x01,0x0A,0x00,0}, {18,0x01,0x0B,0x00,0},
+ {19,0x01,0x0C,0x00,0}, {20,0x02,0x08,0x20,1}, {21,0x02,0x09,0x00,0},
+ {22,0x02,0x0A,0x00,0}, {23,0x02,0x0B,0x20,1}, {24,0x02,0x0C,0x00,0},
+ {25,0x02,0x0D,0x00,0}, {26,0x02,0x0E,0x00,0}, {27,0x02,0x0F,0x00,0},
+ {28,0x02,0x2A,0x20,1}, {29,0x02,0x2B,0x00,0}, {30,0x04,0x27,0x20,1},
+ {31,0x04,0x28,0x00,0}, {32,0x04,0x29,0x00,0}, {33,0x04,0x2A,0x00,0},
+ {34,0x04,0x2B,0x00,0}, {35,0x04,0x2C,0x00,0}, {36,0x04,0x2D,0x00,0},
+ {37,0x24,0x20,0x20,1}, {38,0x24,0x21,0x00,0}, {39,0x24,0x22,0x00,0},
+ {40,0x44,0x20,0x20,1}, {41,0x44,0x21,0x00,0}, {42,0x44,0x22,0x00,0},
+ {43,0x44,0x23,0x00,0}, {44,0x44,0x24,0x00,0}, {45,0x44,0x25,0x00,0},
+ {46,0x44,0x26,0x00,0}, {47,0x44,0x27,0x00,0}, {48,0x44,0x28,0x00,0},
+ {49,0x44,0x29,0x00,0}, {50,0x44,0x2A,0x00,0}, {51,0x44,0x2B,0x00,0},
+ {52,0x44,0x2C,0x00,0}, {53,0x44,0x2D,0x00,0}, {54,0x44,0x2E,0x00,0},
+ {55,0x64,0x2E,0x20,1}, {56,0x64,0x2F,0x00,0}, {57,0x64,0x30,0x00,0},
+ {58,0x64,0x31,0x00,0}, {59,0x64,0x32,0x00,0}, {60,0x64,0x33,0x00,0},
+ {61,0x64,0x34,0x00,0}, {62,0x64,0x35,0x00,0}, {63,0x64,0x36,0x00,0},
+ {64,0x64,0x37,0x00,0}, {65,0x64,0x38,0x00,0}, {66,0x65,0x38,0x20,1},
+ {67,0x66,0x38,0x20,1}, {68,0x67,0x38,0x20,1}, {69,0x68,0x38,0x20,1},
+ {70,0x69,0x38,0x20,1}, {71,0x6A,0x38,0x20,1}, {72,0x6B,0x38,0x20,1},
+ {73,0x6C,0x38,0x20,1}, {74,0x6D,0x38,0x20,1}, {75,0x6E,0x38,0x20,1},
+ {76,0x6F,0x38,0x20,1}};
+
+
+#endif /* INCLUDED_AD9361_GAIN_TABLES_HPP */
diff --git a/firmware/fx3/ad9361/lib/ad9361_impl.c b/firmware/fx3/ad9361/lib/ad9361_impl.c
new file mode 100644
index 000000000..61512d2c8
--- /dev/null
+++ b/firmware/fx3/ad9361/lib/ad9361_impl.c
@@ -0,0 +1,1918 @@
+//
+// Copyright 2013-2014 Ettus Research LLC
+//
+
+/* This file implements b200 vendor requests handler
+ * It handles ad9361 setup and configuration
+ */
+
+#include <stdarg.h>
+#include <stdio.h>
+#include <math.h>
+
+#include <ad9361_transaction.h>
+#include "ad9361_filter_taps.h"
+#include "ad9361_gain_tables.h"
+#include "ad9361_synth_lut.h"
+#include "ad9361_dispatch.h"
+
+////////////////////////////////////////////////////////////
+
+static void fake_msg(const char* str, ...)
+{
+}
+
+static msgfn _msgfn = fake_msg;
+
+//extern void msg(const char* str, ...); External object must provide this symbol
+#define msg (_msgfn)
+
+void ad9361_set_msgfn(msgfn pfn)
+{
+ _msgfn = pfn;
+}
+
+////////////////////////////////////////////////////////////
+#define AD9361_MAX_GAIN 89.75
+
+#define DOUBLE_PI 3.14159265359
+#define DOUBLE_LN_2 0.693147181
+
+#define RX_TYPE 0
+#define TX_TYPE 1
+
+#ifndef AD9361_CLOCKING_MODE
+#error define a AD9361_CLOCKING_MODE
+#endif
+
+#ifndef AD9361_RX_BAND_EDGE0
+#error define a AD9361_RX_BAND_EDGE0
+#endif
+
+#ifndef AD9361_RX_BAND_EDGE1
+#error define a AD9361_RX_BAND_EDGE1
+#endif
+
+#ifndef AD9361_TX_BAND_EDGE
+#error define a AD9361_TX_BAND_EDGE
+#endif
+
+////////////////////////////////////////////////////////////
+// the following macros evaluate to a compile time constant
+// macros By Tom Torfs - donated to the public domain
+
+/* turn a numeric literal into a hex constant
+(avoids problems with leading zeroes)
+8-bit constants max value 0x11111111, always fits in unsigned long
+*/
+#define HEX__(n) 0x##n##LU
+
+/* 8-bit conversion function */
+#define B8__(x) ((x&0x0000000FLU)?1:0) \
++((x&0x000000F0LU)?2:0) \
++((x&0x00000F00LU)?4:0) \
++((x&0x0000F000LU)?8:0) \
++((x&0x000F0000LU)?16:0) \
++((x&0x00F00000LU)?32:0) \
++((x&0x0F000000LU)?64:0) \
++((x&0xF0000000LU)?128:0)
+
+/* *** user macros *** */
+
+/* for upto 8-bit binary constants */
+#define B8(d) ((unsigned char)B8__(HEX__(d)))
+
+////////////////////////////////////////////////////////////
+// shadow registers
+static uint8_t reg_vcodivs;
+static uint8_t reg_inputsel;
+static uint8_t reg_rxfilt;
+static uint8_t reg_txfilt;
+static uint8_t reg_bbpll;
+static uint8_t reg_bbftune_config;
+static uint8_t reg_bbftune_mode;
+
+////////////////////////////////////////////////////////////
+// other private data fields for VRQ handler
+static double _rx_freq, _tx_freq, _req_rx_freq, _req_tx_freq;
+static double _baseband_bw, _bbpll_freq, _adcclock_freq;
+static double _req_clock_rate, _req_coreclk;
+static uint16_t _rx_bbf_tunediv;
+static uint8_t _curr_gain_table;
+static uint32_t _rx1_gain, _rx2_gain, _tx1_gain, _tx2_gain;
+static int _tfir_factor;
+
+double set_gain(int which, int n, const double value);
+void set_active_chains(bool tx1, bool tx2, bool rx1, bool rx2);
+/***********************************************************************
+ * Placeholders, unused, or test functions
+ **********************************************************************/
+static char *tmp_req_buffer;
+
+void post_err_msg(const char* error)
+{
+ msg("[AD9361 error] %s", error);
+
+ if (!tmp_req_buffer)
+ return;
+
+ ad9361_transaction_t *request = (ad9361_transaction_t *)tmp_req_buffer;
+ strncpy(request->error_msg, error, (AD9361_TRANSACTION_MAX_ERROR_MSG + 1)); // '+ 1' as length excludes terminating NUL
+ request->error_msg[AD9361_TRANSACTION_MAX_ERROR_MSG] = '\0'; // If string was too long, NUL will not be copied, so force one just in case
+}
+
+void write_ad9361_reg(uint32_t reg, uint8_t val)
+{
+ ad9361_transact_spi((reg << 8) | val | (1 << 23));
+}
+
+uint8_t read_ad9361_reg(uint32_t reg)
+{
+ return ad9361_transact_spi((reg << 8)) & 0xff;
+}
+
+//shortcuts for double packer/unpacker function
+#define double_pack ad9361_double_pack
+#define double_unpack ad9361_double_unpack
+
+/* Make Catalina output its test tone. */
+void output_test_tone(void) {
+ /* Output a 480 kHz tone at 800 MHz */
+ write_ad9361_reg(0x3F4, 0x0B);
+ write_ad9361_reg(0x3FC, 0xFF);
+ write_ad9361_reg(0x3FD, 0xFF);
+ write_ad9361_reg(0x3FE, 0x3F);
+}
+
+/* Turn on/off Catalina's TX port --> RX port loopback. */
+void data_port_loopback(const int on) {
+ msg("[data_port_loopback] Enabled: %d", on);
+ write_ad9361_reg(0x3F5, (on ? 0x01 : 0x00));
+}
+
+/* This is a simple comparison for very large double-precision floating
+ * point numbers. It is used to prevent re-tunes for frequencies that are
+ * the same but not 'exactly' because of data precision issues. */
+// TODO: see if we can avoid the need for this function
+int freq_is_nearly_equal(double a, double b) {
+ return AD9361_MAX(a,b) - AD9361_MIN(a,b) < 1;
+}
+
+/***********************************************************************
+ * Filter functions
+ **********************************************************************/
+
+/* This function takes in the calculated maximum number of FIR taps, and
+ * returns a number of taps that makes Catalina happy. */
+int get_num_taps(int max_num_taps) {
+
+ int num_taps = 0;
+ int num_taps_list[] = {16, 32, 48, 64, 80, 96, 112, 128};
+ int i;
+ for(i = 1; i < 8; i++) {
+ if(max_num_taps >= num_taps_list[i]) {
+ continue;
+ } else {
+ num_taps = num_taps_list[i - 1];
+ break;
+ }
+ } if(num_taps == 0) { num_taps = 128; }
+
+ return num_taps;
+}
+
+/* Program either the RX or TX FIR filter.
+ *
+ * The process is the same for both filters, but the function must be told
+ * how many taps are in the filter, and given a vector of the taps
+ * themselves. Note that the filters are symmetric, so value of 'num_taps'
+ * should actually be twice the length of the tap vector. */
+void program_fir_filter(int which, int num_taps, \
+ uint16_t *coeffs) {
+
+ uint16_t base;
+ if(which == RX_TYPE) {
+ base = 0x0f0;
+ write_ad9361_reg(base+6, 0x02); //filter gain
+ } else {
+ base = 0x060;
+ }
+
+ /* Write the filter configuration. */
+ uint8_t reg_numtaps = (((num_taps / 16) - 1) & 0x07) << 5;
+
+ /* Turn on the filter clock. */
+ write_ad9361_reg(base+5, reg_numtaps | 0x1a);
+ ad9361_msleep(1);
+
+ int num_unique_coeffs = (num_taps / 2);
+
+ /* The filters are symmetric, so iterate over the tap vector,
+ * programming each index, and then iterate backwards, repeating the
+ * process. */
+ int addr;
+ for(addr=0; addr < num_unique_coeffs; addr++) {
+ write_ad9361_reg(base+0, addr);
+ write_ad9361_reg(base+1, (coeffs[addr]) & 0xff);
+ write_ad9361_reg(base+2, (coeffs[addr] >> 8) & 0xff);
+ write_ad9361_reg(base+5, 0xfe);
+ write_ad9361_reg(base+4, 0x00);
+ write_ad9361_reg(base+4, 0x00);
+ }
+
+ for(addr=0; addr < num_unique_coeffs; addr++) {
+ write_ad9361_reg(base+0, addr+num_unique_coeffs);
+ write_ad9361_reg(base+1, (coeffs[num_unique_coeffs-1-addr]) & 0xff);
+ write_ad9361_reg(base+2, (coeffs[num_unique_coeffs-1-addr] >> 8) & 0xff);
+ write_ad9361_reg(base+5, 0xfe);
+ write_ad9361_reg(base+4, 0x00);
+ write_ad9361_reg(base+4, 0x00);
+ }
+
+ /* Disable the filter clock. */
+ write_ad9361_reg(base+5, 0xf8);
+}
+
+/* Program the RX FIR Filter. */
+void setup_rx_fir(int total_num_taps) {
+ int num_taps = total_num_taps / 2;
+ uint16_t coeffs[num_taps];
+ int i;
+ for(i = 0; i < num_taps; i++) {
+ coeffs[num_taps - 1 - i] = default_128tap_coeffs[63 - i];
+ }
+
+ program_fir_filter(RX_TYPE, total_num_taps, coeffs);
+}
+
+/* Program the TX FIR Filter. */
+void setup_tx_fir(int total_num_taps) {
+ int num_taps = total_num_taps / 2;
+ uint16_t coeffs[num_taps];
+ int i;
+ for(i = 0; i < num_taps; i++) {
+ coeffs[num_taps - 1 - i] = default_128tap_coeffs[63 - i];
+ }
+
+ program_fir_filter(TX_TYPE, total_num_taps, coeffs);
+}
+
+/***********************************************************************
+ * Calibration functions
+ ***********************************************************************/
+
+/* Calibrate and lock the BBPLL.
+ *
+ * This function should be called anytime the BBPLL is tuned. */
+void calibrate_lock_bbpll() {
+ write_ad9361_reg(0x03F, 0x05); // Start the BBPLL calibration
+ write_ad9361_reg(0x03F, 0x01); // Clear the 'start' bit
+
+ /* Increase BBPLL KV and phase margin. */
+ write_ad9361_reg(0x04c, 0x86);
+ write_ad9361_reg(0x04d, 0x01);
+ write_ad9361_reg(0x04d, 0x05);
+
+ /* Wait for BBPLL lock. */
+ int count = 0;
+ while(!(read_ad9361_reg(0x05e) & 0x80)) {
+ if(count > 1000) {
+ post_err_msg("BBPLL not locked");
+ break;
+ }
+
+ count++;
+ ad9361_msleep(2);
+ }
+}
+
+/* Calibrate the synthesizer charge pumps.
+ *
+ * Technically, this calibration only needs to be done once, at device
+ * initialization. */
+void calibrate_synth_charge_pumps() {
+ /* If this function ever gets called, and the ENSM isn't already in the
+ * ALERT state, then something has gone horribly wrong. */
+ if((read_ad9361_reg(0x017) & 0x0F) != 5) {
+ post_err_msg("Catalina not in ALERT during cal");
+ }
+
+ /* Calibrate the RX synthesizer charge pump. */
+ int count = 0;
+ write_ad9361_reg(0x23d, 0x04);
+ while(!(read_ad9361_reg(0x244) & 0x80)) {
+ if(count > 5) {
+ post_err_msg("RX charge pump cal failure");
+ break;
+ }
+
+ count++;
+ ad9361_msleep(1);
+ }
+ write_ad9361_reg(0x23d, 0x00);
+
+ /* Calibrate the TX synthesizer charge pump. */
+ count = 0;
+ write_ad9361_reg(0x27d, 0x04);
+ while(!(read_ad9361_reg(0x284) & 0x80)) {
+ if(count > 5) {
+ post_err_msg("TX charge pump cal failure");
+ break;
+ }
+
+ count++;
+ ad9361_msleep(1);
+ }
+ write_ad9361_reg(0x27d, 0x00);
+}
+
+/* Calibrate the analog BB RX filter.
+ *
+ * Note that the filter calibration depends heavily on the baseband
+ * bandwidth, so this must be re-done after any change to the RX sample
+ * rate. */
+double calibrate_baseband_rx_analog_filter() {
+ /* For filter tuning, baseband BW is half the complex BW, and must be
+ * between 28e6 and 0.2e6. */
+ double bbbw = _baseband_bw / 2.0;
+ if(bbbw > 28e6) {
+ bbbw = 28e6;
+ } else if (bbbw < 0.20e6) {
+ bbbw = 0.20e6;
+ }
+
+ double rxtune_clk = ((1.4 * bbbw * 2 *
+ DOUBLE_PI) / DOUBLE_LN_2);
+
+ _rx_bbf_tunediv = AD9361_MIN(511, AD9361_CEIL_INT(_bbpll_freq / rxtune_clk));
+
+ reg_bbftune_config = (reg_bbftune_config & 0xFE) \
+ | ((_rx_bbf_tunediv >> 8) & 0x0001);
+
+ double bbbw_mhz = bbbw / 1e6;
+
+ double temp = ((bbbw_mhz - AD9361_FLOOR_INT(bbbw_mhz)) * 1000) / 7.8125;
+ uint8_t bbbw_khz = (uint8_t) AD9361_MIN(127, (AD9361_FLOOR_INT(temp + 0.5)));
+
+ /* Set corner frequencies and dividers. */
+ write_ad9361_reg(0x1fb, (uint8_t)(bbbw_mhz));
+ write_ad9361_reg(0x1fc, bbbw_khz);
+ write_ad9361_reg(0x1f8, (_rx_bbf_tunediv & 0x00FF));
+ write_ad9361_reg(0x1f9, reg_bbftune_config);
+
+ /* RX Mix Voltage settings - only change with apps engineer help. */
+ write_ad9361_reg(0x1d5, 0x3f);
+ write_ad9361_reg(0x1c0, 0x03);
+
+ /* Enable RX1 & RX2 filter tuners. */
+ write_ad9361_reg(0x1e2, 0x02);
+ write_ad9361_reg(0x1e3, 0x02);
+
+ /* Run the calibration! */
+ int count = 0;
+ write_ad9361_reg(0x016, 0x80);
+ while(read_ad9361_reg(0x016) & 0x80) {
+ if(count > 100) {
+ post_err_msg("RX baseband filter cal FAILURE");
+ break;
+ }
+
+ count++;
+ ad9361_msleep(1);
+ }
+
+ /* Disable RX1 & RX2 filter tuners. */
+ write_ad9361_reg(0x1e2, 0x03);
+ write_ad9361_reg(0x1e3, 0x03);
+
+ return bbbw;
+}
+
+/* Calibrate the analog BB TX filter.
+ *
+ * Note that the filter calibration depends heavily on the baseband
+ * bandwidth, so this must be re-done after any change to the TX sample
+ * rate. */
+double calibrate_baseband_tx_analog_filter() {
+ /* For filter tuning, baseband BW is half the complex BW, and must be
+ * between 28e6 and 0.2e6. */
+ double bbbw = _baseband_bw / 2.0;
+ if(bbbw > 20e6) {
+ bbbw = 20e6;
+ } else if (bbbw < 0.625e6) {
+ bbbw = 0.625e6;
+ }
+
+ double txtune_clk = ((1.6 * bbbw * 2 *
+ DOUBLE_PI) / DOUBLE_LN_2);
+
+ uint16_t txbbfdiv = AD9361_MIN(511, (AD9361_CEIL_INT(_bbpll_freq / txtune_clk)));
+
+ reg_bbftune_mode = (reg_bbftune_mode & 0xFE) \
+ | ((txbbfdiv >> 8) & 0x0001);
+
+ /* Program the divider values. */
+ write_ad9361_reg(0x0d6, (txbbfdiv & 0x00FF));
+ write_ad9361_reg(0x0d7, reg_bbftune_mode);
+
+ /* Enable the filter tuner. */
+ write_ad9361_reg(0x0ca, 0x22);
+
+ /* Calibrate! */
+ int count = 0;
+ write_ad9361_reg(0x016, 0x40);
+ while(read_ad9361_reg(0x016) & 0x40) {
+ if(count > 100) {
+ post_err_msg("TX baseband filter cal FAILURE");
+ break;
+ }
+
+ count++;
+ ad9361_msleep(1);
+ }
+
+ /* Disable the filter tuner. */
+ write_ad9361_reg(0x0ca, 0x26);
+
+ return bbbw;
+}
+
+/* Calibrate the secondary TX filter.
+ *
+ * This filter also depends on the TX sample rate, so if a rate change is
+ * made, the previous calibration will no longer be valid. */
+void calibrate_secondary_tx_filter() {
+ /* For filter tuning, baseband BW is half the complex BW, and must be
+ * between 20e6 and 0.53e6. */
+ double bbbw = _baseband_bw / 2.0;
+ if(bbbw > 20e6) {
+ bbbw = 20e6;
+ } else if (bbbw < 0.53e6) {
+ bbbw = 0.53e6;
+ }
+
+ double bbbw_mhz = bbbw / 1e6;
+
+ /* Start with a resistor value of 100 Ohms. */
+ int res = 100;
+
+ /* Calculate target corner frequency. */
+ double corner_freq = 5 * bbbw_mhz * 2 * DOUBLE_PI;
+
+ /* Iterate through RC values to determine correct combination. */
+ int cap = 0;
+ int i;
+ for(i = 0; i <= 3; i++) {
+ cap = (AD9361_FLOOR_INT(0.5 + (( 1 / ((corner_freq * res) * 1e6)) * 1e12))) - 12;
+
+ if(cap <= 63) {
+ break;
+ }
+
+ res = res * 2;
+ }
+ if(cap > 63) {
+ cap = 63;
+ }
+
+ uint8_t reg0d0, reg0d1, reg0d2;
+
+ /* Translate baseband bandwidths to register settings. */
+ if((bbbw_mhz * 2) <= 9) {
+ reg0d0 = 0x59;
+ } else if(((bbbw_mhz * 2) > 9) && ((bbbw_mhz * 2) <= 24)) {
+ reg0d0 = 0x56;
+ } else if((bbbw_mhz * 2) > 24) {
+ reg0d0 = 0x57;
+ } else {
+ post_err_msg("Cal2ndTxFil: INVALID_CODE_PATH bad bbbw_mhz");
+ reg0d0 = 0x00;
+ }
+
+ /* Translate resistor values to register settings. */
+ if(res == 100) {
+ reg0d1 = 0x0c;
+ } else if(res == 200) {
+ reg0d1 = 0x04;
+ } else if(res == 400) {
+ reg0d1 = 0x03;
+ } else if(res == 800) {
+ reg0d1 = 0x01;
+ } else {
+ reg0d1 = 0x0c;
+ }
+
+ reg0d2 = cap;
+
+ /* Program the above-calculated values. Sweet. */
+ write_ad9361_reg(0x0d2, reg0d2);
+ write_ad9361_reg(0x0d1, reg0d1);
+ write_ad9361_reg(0x0d0, reg0d0);
+}
+
+/* Calibrate the RX TIAs.
+ *
+ * Note that the values in the TIA register, after calibration, vary with
+ * the RX gain settings. */
+void calibrate_rx_TIAs() {
+
+ uint8_t reg1eb = read_ad9361_reg(0x1eb) & 0x3F;
+ uint8_t reg1ec = read_ad9361_reg(0x1ec) & 0x7F;
+ uint8_t reg1e6 = read_ad9361_reg(0x1e6) & 0x07;
+ uint8_t reg1db = 0x00;
+ uint8_t reg1dc = 0x00;
+ uint8_t reg1dd = 0x00;
+ uint8_t reg1de = 0x00;
+ uint8_t reg1df = 0x00;
+
+ /* For calibration, baseband BW is half the complex BW, and must be
+ * between 28e6 and 0.2e6. */
+ double bbbw = _baseband_bw / 2.0;
+ if(bbbw > 20e6) {
+ bbbw = 20e6;
+ } else if (bbbw < 0.20e6) {
+ bbbw = 0.20e6;
+ }
+ double ceil_bbbw_mhz = AD9361_CEIL_INT(bbbw / 1e6);
+
+ /* Do some crazy resistor and capacitor math. */
+ int Cbbf = (reg1eb * 160) + (reg1ec * 10) + 140;
+ int R2346 = 18300 * (reg1e6 & 0x07);
+ double CTIA_fF = (Cbbf * R2346 * 0.56) / 3500;
+
+ /* Translate baseband BW to register settings. */
+ if(ceil_bbbw_mhz <= 3) {
+ reg1db = 0xe0;
+ } else if((ceil_bbbw_mhz > 3) && (ceil_bbbw_mhz <= 10)) {
+ reg1db = 0x60;
+ } else if(ceil_bbbw_mhz > 10) {
+ reg1db = 0x20;
+ } else {
+ post_err_msg("CalRxTias: INVALID_CODE_PATH bad bbbw_mhz");
+ }
+
+ if(CTIA_fF > 2920) {
+ reg1dc = 0x40;
+ reg1de = 0x40;
+
+ uint8_t temp = (uint8_t) AD9361_MIN(127, (AD9361_FLOOR_INT(0.5 + ((CTIA_fF - 400.0) / 320.0))));
+ reg1dd = temp;
+ reg1df = temp;
+ } else {
+ uint8_t temp = (uint8_t) AD9361_FLOOR_INT(0.5 + ((CTIA_fF - 400.0) / 40.0)) + 0x40;
+ reg1dc = temp;
+ reg1de = temp;
+ reg1dd = 0;
+ reg1df = 0;
+ }
+
+ /* w00t. Settings calculated. Program them and roll out. */
+ write_ad9361_reg(0x1db, reg1db);
+ write_ad9361_reg(0x1dd, reg1dd);
+ write_ad9361_reg(0x1df, reg1df);
+ write_ad9361_reg(0x1dc, reg1dc);
+ write_ad9361_reg(0x1de, reg1de);
+}
+
+/* Setup the Catalina ADC.
+ *
+ * There are 40 registers that control the ADC's operation, most of the
+ * values of which must be derived mathematically, dependent on the current
+ * setting of the BBPLL. Note that the order of calculation is critical, as
+ * some of the 40 registers depend on the values in others. */
+void setup_adc() {
+ double bbbw_mhz = (((_bbpll_freq / 1e6) / _rx_bbf_tunediv) * DOUBLE_LN_2) \
+ / (1.4 * 2 * DOUBLE_PI);
+
+ /* For calibration, baseband BW is half the complex BW, and must be
+ * between 28e6 and 0.2e6. */
+ if(bbbw_mhz > 28) {
+ bbbw_mhz = 28;
+ } else if (bbbw_mhz < 0.20) {
+ bbbw_mhz = 0.20;
+ }
+
+ uint8_t rxbbf_c3_msb = read_ad9361_reg(0x1eb) & 0x3F;
+ uint8_t rxbbf_c3_lsb = read_ad9361_reg(0x1ec) & 0x7F;
+ uint8_t rxbbf_r2346 = read_ad9361_reg(0x1e6) & 0x07;
+
+ double fsadc = _adcclock_freq / 1e6;
+
+ /* Sort out the RC time constant for our baseband bandwidth... */
+ double rc_timeconst = 0.0;
+ if(bbbw_mhz < 18) {
+ rc_timeconst = (1 / ((1.4 * 2 * DOUBLE_PI) \
+ * (18300 * rxbbf_r2346)
+ * ((160e-15 * rxbbf_c3_msb)
+ + (10e-15 * rxbbf_c3_lsb) + 140e-15)
+ * (bbbw_mhz * 1e6)));
+ } else {
+ rc_timeconst = (1 / ((1.4 * 2 * DOUBLE_PI) \
+ * (18300 * rxbbf_r2346)
+ * ((160e-15 * rxbbf_c3_msb)
+ + (10e-15 * rxbbf_c3_lsb) + 140e-15)
+ * (bbbw_mhz * 1e6) * (1 + (0.01 * (bbbw_mhz - 18)))));
+ }
+
+ double scale_res = ad9361_sqrt(1 / rc_timeconst);
+ double scale_cap = ad9361_sqrt(1 / rc_timeconst);
+
+ double scale_snr = (_adcclock_freq < 80e6) ? 1.0 : 1.584893192;
+ double maxsnr = 640 / 160;
+
+ /* Calculate the values for all 40 settings registers.
+ *
+ * DO NOT TOUCH THIS UNLESS YOU KNOW EXACTLY WHAT YOU ARE DOING. kthx.*/
+ uint8_t data[40];
+ data[0] = 0; data[1] = 0; data[2] = 0; data[3] = 0x24;
+ data[4] = 0x24; data[5] = 0; data[6] = 0;
+ data[7] = (uint8_t) AD9361_MIN(124, (AD9361_FLOOR_INT(-0.5
+ + (80.0 * scale_snr * scale_res
+ * AD9361_MIN(1.0, ad9361_sqrt(maxsnr * fsadc / 640.0))))));
+ double data007 = data[7];
+ data[8] = (uint8_t) AD9361_MIN(255, (AD9361_FLOOR_INT(0.5
+ + ((20.0 * (640.0 / fsadc) * ((data007 / 80.0))
+ / (scale_res * scale_cap))))));
+ data[10] = (uint8_t) AD9361_MIN(127, (AD9361_FLOOR_INT(-0.5 + (77.0 * scale_res
+ * AD9361_MIN(1.0, ad9361_sqrt(maxsnr * fsadc / 640.0))))));
+ double data010 = data[10];
+ data[9] = (uint8_t) AD9361_MIN(127, (AD9361_FLOOR_INT(0.8 * data010)));
+ data[11] = (uint8_t) AD9361_MIN(255, (AD9361_FLOOR_INT(0.5
+ + (20.0 * (640.0 / fsadc) * ((data010 / 77.0)
+ / (scale_res * scale_cap))))));
+ data[12] = (uint8_t) AD9361_MIN(127, (AD9361_FLOOR_INT(-0.5
+ + (80.0 * scale_res * AD9361_MIN(1.0,
+ ad9361_sqrt(maxsnr * fsadc / 640.0))))));
+ double data012 = data[12];
+ data[13] = (uint8_t) AD9361_MIN(255, (AD9361_FLOOR_INT(-1.5
+ + (20.0 * (640.0 / fsadc) * ((data012 / 80.0)
+ / (scale_res * scale_cap))))));
+ data[14] = 21 * (uint8_t)(AD9361_FLOOR_INT(0.1 * 640.0 / fsadc));
+ data[15] = (uint8_t) AD9361_MIN(127, (1.025 * data007));
+ double data015 = data[15];
+ data[16] = (uint8_t) AD9361_MIN(127, (AD9361_FLOOR_INT((data015
+ * (0.98 + (0.02 * AD9361_MAX(1.0,
+ (640.0 / fsadc) / maxsnr)))))));
+ data[17] = data[15];
+ data[18] = (uint8_t) AD9361_MIN(127, (0.975 * (data010)));
+ double data018 = data[18];
+ data[19] = (uint8_t) AD9361_MIN(127, (AD9361_FLOOR_INT((data018
+ * (0.98 + (0.02 * AD9361_MAX(1.0,
+ (640.0 / fsadc) / maxsnr)))))));
+ data[20] = data[18];
+ data[21] = (uint8_t) AD9361_MIN(127, (0.975 * data012));
+ double data021 = data[21];
+ data[22] = (uint8_t) AD9361_MIN(127, (AD9361_FLOOR_INT((data021
+ * (0.98 + (0.02 * AD9361_MAX(1.0,
+ (640.0 / fsadc) / maxsnr)))))));
+ data[23] = data[21];
+ data[24] = 0x2e;
+ data[25] = (uint8_t)(AD9361_FLOOR_INT(128.0 + AD9361_MIN(63.0,
+ 63.0 * (fsadc / 640.0))));
+ data[26] = (uint8_t)(AD9361_FLOOR_INT(AD9361_MIN(63.0, 63.0 * (fsadc / 640.0)
+ * (0.92 + (0.08 * (640.0 / fsadc))))));
+ data[27] = (uint8_t)(AD9361_FLOOR_INT(AD9361_MIN(63.0,
+ 32.0 * ad9361_sqrt(fsadc / 640.0))));
+ data[28] = (uint8_t)(AD9361_FLOOR_INT(128.0 + AD9361_MIN(63.0,
+ 63.0 * (fsadc / 640.0))));
+ data[29] = (uint8_t)(AD9361_FLOOR_INT(AD9361_MIN(63.0,
+ 63.0 * (fsadc / 640.0)
+ * (0.92 + (0.08 * (640.0 / fsadc))))));
+ data[30] = (uint8_t)(AD9361_FLOOR_INT(AD9361_MIN(63.0,
+ 32.0 * ad9361_sqrt(fsadc / 640.0))));
+ data[31] = (uint8_t)(AD9361_FLOOR_INT(128.0 + AD9361_MIN(63.0,
+ 63.0 * (fsadc / 640.0))));
+ data[32] = (uint8_t)(AD9361_FLOOR_INT(AD9361_MIN(63.0,
+ 63.0 * (fsadc / 640.0) * (0.92
+ + (0.08 * (640.0 / fsadc))))));
+ data[33] = (uint8_t)(AD9361_FLOOR_INT(AD9361_MIN(63.0,
+ 63.0 * ad9361_sqrt(fsadc / 640.0))));
+ data[34] = (uint8_t) AD9361_MIN(127, (AD9361_FLOOR_INT(64.0
+ * ad9361_sqrt(fsadc / 640.0))));
+ data[35] = 0x40;
+ data[36] = 0x40;
+ data[37] = 0x2c;
+ data[38] = 0x00;
+ data[39] = 0x00;
+
+ /* Program the registers! */
+ int i;
+ for(i=0; i<40; i++) {
+ write_ad9361_reg(0x200+i, data[i]);
+ }
+
+}
+
+/* Calibrate the baseband DC offset.
+ *
+ * Note that this function is called from within the TX quadrature
+ * calibration function! */
+void calibrate_baseband_dc_offset() {
+ write_ad9361_reg(0x193, 0x3f); // Calibration settings
+ write_ad9361_reg(0x190, 0x0f); // Set tracking coefficient
+ //write_ad9361_reg(0x190, /*0x0f*//*0xDF*/0x80*1 | 0x40*1 | (16+8/*+4*/)); // Set tracking coefficient: don't *4 counter, do decim /4, increased gain shift
+ write_ad9361_reg(0x194, 0x01); // More calibration settings
+
+ /* Start that calibration, baby. */
+ int count = 0;
+ write_ad9361_reg(0x016, 0x01);
+ while(read_ad9361_reg(0x016) & 0x01) {
+ if(count > 100) {
+ post_err_msg("Baseband DC Offset Calibration Failure");
+ break;
+ }
+
+ count++;
+ ad9361_msleep(5);
+ }
+}
+
+/* Calibrate the RF DC offset.
+ *
+ * Note that this function is called from within the TX quadrature
+ * calibration function. */
+void calibrate_rf_dc_offset() {
+ /* Some settings are frequency-dependent. */
+ if(_rx_freq < 4e9) {
+ write_ad9361_reg(0x186, 0x32); // RF DC Offset count
+ write_ad9361_reg(0x187, 0x24);
+ write_ad9361_reg(0x188, 0x05);
+ } else {
+ write_ad9361_reg(0x186, 0x28); // RF DC Offset count
+ write_ad9361_reg(0x187, 0x34);
+ write_ad9361_reg(0x188, 0x06);
+ }
+
+ write_ad9361_reg(0x185, 0x20); // RF DC Offset wait count
+ write_ad9361_reg(0x18b, 0x83);
+ write_ad9361_reg(0x189, 0x30);
+
+ /* Run the calibration! */
+ int count = 0;
+ write_ad9361_reg(0x016, 0x02);
+ while(read_ad9361_reg(0x016) & 0x02) {
+ if(count > 100) {
+ post_err_msg("RF DC Offset Calibration Failure");
+ break;
+ }
+
+ count++;
+ ad9361_msleep(50);
+ }
+}
+
+/* Start the RX quadrature calibration.
+ *
+ * Note that we are using Catalina's 'tracking' feature for RX quadrature
+ * calibration, so once it starts it continues to free-run during operation.
+ * It should be re-run for large frequency changes. */
+void calibrate_rx_quadrature(void) {
+ /* Configure RX Quadrature calibration settings. */
+ write_ad9361_reg(0x168, 0x03); // Set tone level for cal
+ write_ad9361_reg(0x16e, 0x25); // RX Gain index to use for cal
+ write_ad9361_reg(0x16a, 0x75); // Set Kexp phase
+ write_ad9361_reg(0x16b, 0x15); // Set Kexp amplitude
+ write_ad9361_reg(0x169, 0xcf); // Continuous tracking mode
+ write_ad9361_reg(0x18b, 0xad);
+}
+
+/* TX quadtrature calibration routine.
+ *
+ * The TX quadrature needs to be done twice, once for each TX chain, with
+ * only one register change in between. Thus, this function enacts the
+ * calibrations, and it is called from calibrate_tx_quadrature. */
+void tx_quadrature_cal_routine(void) {
+
+ /* This is a weird process, but here is how it works:
+ * 1) Read the calibrated NCO frequency bits out of 0A3.
+ * 2) Write the two bits to the RX NCO freq part of 0A0.
+ * 3) Re-read 0A3 to get bits [5:0] because maybe they changed?
+ * 4) Update only the TX NCO freq bits in 0A3.
+ * 5) Profit (I hope). */
+ uint8_t reg0a3 = read_ad9361_reg(0x0a3);
+ uint8_t nco_freq = (reg0a3 & 0xC0);
+ write_ad9361_reg(0x0a0, 0x15 | (nco_freq >> 1));
+ reg0a3 = read_ad9361_reg(0x0a3);
+ write_ad9361_reg(0x0a3, (reg0a3 & 0x3F) | nco_freq);
+
+ /* It is possible to reach a configuration that won't operate correctly,
+ * where the two test tones used for quadrature calibration are outside
+ * of the RX BBF, and therefore don't make it to the ADC. We will check
+ * for that scenario here. */
+ double max_cal_freq = (((_baseband_bw * _tfir_factor) * ((nco_freq >> 6) + 1)) / 32) * 2;
+ double bbbw = _baseband_bw / 2.0; // bbbw represents the one-sided BW
+ if(bbbw > 28e6) {
+ bbbw = 28e6;
+ } else if (bbbw < 0.20e6) {
+ bbbw = 0.20e6;
+ }
+ if (max_cal_freq > bbbw )
+ post_err_msg("max_cal_freq > bbbw");
+
+ write_ad9361_reg(0x0a1, 0x7B); // Set tracking coefficient
+ write_ad9361_reg(0x0a9, 0xff); // Cal count
+ write_ad9361_reg(0x0a2, 0x7f); // Cal Kexp
+ write_ad9361_reg(0x0a5, 0x01); // Cal magnitude threshold VVVV
+ write_ad9361_reg(0x0a6, 0x01);
+
+ /* The gain table index used for calibration must be adjusted for the
+ * mid-table to get a TIA index = 1 and LPF index = 0. */
+ if((_rx_freq >= 1300e6) && (_rx_freq < 4000e6)) {
+ write_ad9361_reg(0x0aa, 0x22); // Cal gain table index
+ } else {
+ write_ad9361_reg(0x0aa, 0x25); // Cal gain table index
+ }
+
+ write_ad9361_reg(0x0a4, 0xf0); // Cal setting conut
+ write_ad9361_reg(0x0ae, 0x00); // Cal LPF gain index (split mode)
+
+ /* First, calibrate the baseband DC offset. */
+ calibrate_baseband_dc_offset();
+
+ /* Second, calibrate the RF DC offset. */
+ calibrate_rf_dc_offset();
+
+ /* Now, calibrate the TX quadrature! */
+ int count = 0;
+ write_ad9361_reg(0x016, 0x10);
+ while(read_ad9361_reg(0x016) & 0x10) {
+ if(count > 100) {
+ post_err_msg("TX Quadrature Calibration Failure");
+ break;
+ }
+
+ count++;
+ ad9361_msleep(10);
+ }
+}
+
+/* Run the TX quadrature calibration.
+ *
+ * Note that from within this function we are also triggering the baseband
+ * and RF DC calibrations. */
+void calibrate_tx_quadrature(void) {
+ /* Make sure we are, in fact, in the ALERT state. If not, something is
+ * terribly wrong in the driver execution flow. */
+ if((read_ad9361_reg(0x017) & 0x0F) != 5) {
+ post_err_msg("TX Quad Cal started, but not in ALERT");
+ }
+
+ /* Turn off free-running and continuous calibrations. Note that this
+ * will get turned back on at the end of the RX calibration routine. */
+ write_ad9361_reg(0x169, 0xc0);
+
+ /* This calibration must be done in a certain order, and for both TX_A
+ * and TX_B, separately. Store the original setting so that we can
+ * restore it later. */
+ uint8_t orig_reg_inputsel = reg_inputsel;
+
+ /***********************************************************************
+ * TX1/2-A Calibration
+ **********************************************************************/
+ reg_inputsel = reg_inputsel & 0xBF;
+ write_ad9361_reg(0x004, reg_inputsel);
+
+ tx_quadrature_cal_routine();
+
+ /***********************************************************************
+ * TX1/2-B Calibration
+ **********************************************************************/
+ reg_inputsel = reg_inputsel | 0x40;
+ write_ad9361_reg(0x004, reg_inputsel);
+
+ tx_quadrature_cal_routine();
+
+ /***********************************************************************
+ * fin
+ **********************************************************************/
+ reg_inputsel = orig_reg_inputsel;
+ write_ad9361_reg(0x004, orig_reg_inputsel);
+}
+
+
+/***********************************************************************
+ * Other Misc Setup Functions
+ ***********************************************************************/
+
+/* Program the mixer gain table.
+ *
+ * Note that this table is fixed for all frequency settings. */
+void program_mixer_gm_subtable() {
+ uint8_t gain[] = {0x78, 0x74, 0x70, 0x6C, 0x68, 0x64, 0x60, 0x5C, 0x58,
+ 0x54, 0x50, 0x4C, 0x48, 0x30, 0x18, 0x00};
+ uint8_t gm[] = {0x00, 0x0D, 0x15, 0x1B, 0x21, 0x25, 0x29, 0x2C, 0x2F,
+ 0x31, 0x33, 0x34, 0x35, 0x3A, 0x3D, 0x3E};
+
+ /* Start the clock. */
+ write_ad9361_reg(0x13f, 0x02);
+
+ /* Program the GM Sub-table. */
+ int i;
+ for(i = 15; i >= 0; i--) {
+ write_ad9361_reg(0x138, i);
+ write_ad9361_reg(0x139, gain[(15 - i)]);
+ write_ad9361_reg(0x13A, 0x00);
+ write_ad9361_reg(0x13B, gm[(15 - i)]);
+ write_ad9361_reg(0x13F, 0x06);
+ write_ad9361_reg(0x13C, 0x00);
+ write_ad9361_reg(0x13C, 0x00);
+ }
+
+ /* Clear write bit and stop clock. */
+ write_ad9361_reg(0x13f, 0x02);
+ write_ad9361_reg(0x13C, 0x00);
+ write_ad9361_reg(0x13C, 0x00);
+ write_ad9361_reg(0x13f, 0x00);
+}
+
+/* Program the gain table.
+ *
+ * There are three different gain tables for different frequency ranges! */
+void program_gain_table() {
+
+ /* Figure out which gain table we should be using for our current
+ * frequency band. */
+ uint8_t (*gain_table)[5] = NULL;
+ uint8_t new_gain_table;
+ if(_rx_freq < 1300e6) {
+ gain_table = gain_table_sub_1300mhz;
+ new_gain_table = 1;
+ } else if(_rx_freq < 4e9) {
+ gain_table = gain_table_1300mhz_to_4000mhz;
+ new_gain_table = 2;
+ } else if(_rx_freq <= 6e9) {
+ gain_table = gain_table_4000mhz_to_6000mhz;
+ new_gain_table = 3;
+ } else {
+ post_err_msg("Wrong _rx_freq value");
+ new_gain_table = 1;
+ }
+
+ /* Only re-program the gain table if there has been a band change. */
+ if(_curr_gain_table == new_gain_table) {
+ return;
+ } else {
+ _curr_gain_table = new_gain_table;
+ }
+
+ /* Okay, we have to program a new gain table. Sucks, brah. Start the
+ * gain table clock. */
+ write_ad9361_reg(0x137, 0x1A);
+
+ /* IT'S PROGRAMMING TIME. */
+ uint8_t index = 0;
+ for(; index < 77; index++) {
+ write_ad9361_reg(0x130, index);
+ write_ad9361_reg(0x131, gain_table[index][1]);
+ write_ad9361_reg(0x132, gain_table[index][2]);
+ write_ad9361_reg(0x133, gain_table[index][3]);
+ write_ad9361_reg(0x137, 0x1E);
+ write_ad9361_reg(0x134, 0x00);
+ write_ad9361_reg(0x134, 0x00);
+ }
+
+ /* Everything above the 77th index is zero. */
+ for(; index < 91; index++) {
+ write_ad9361_reg(0x130, index);
+ write_ad9361_reg(0x131, 0x00);
+ write_ad9361_reg(0x132, 0x00);
+ write_ad9361_reg(0x133, 0x00);
+ write_ad9361_reg(0x137, 0x1E);
+ write_ad9361_reg(0x134, 0x00);
+ write_ad9361_reg(0x134, 0x00);
+ }
+
+ /* Clear the write bit and stop the gain clock. */
+ write_ad9361_reg(0x137, 0x1A);
+ write_ad9361_reg(0x134, 0x00);
+ write_ad9361_reg(0x134, 0x00);
+ write_ad9361_reg(0x137, 0x00);
+}
+
+/* Setup gain control registers.
+ *
+ * This really only needs to be done once, at initialization. */
+void setup_gain_control() {
+ write_ad9361_reg(0x0FA, 0xE0); // Gain Control Mode Select
+ write_ad9361_reg(0x0FB, 0x08); // Table, Digital Gain, Man Gain Ctrl
+ write_ad9361_reg(0x0FC, 0x23); // Incr Step Size, ADC Overrange Size
+ write_ad9361_reg(0x0FD, 0x4C); // Max Full/LMT Gain Table Index
+ write_ad9361_reg(0x0FE, 0x44); // Decr Step Size, Peak Overload Time
+ write_ad9361_reg(0x100, 0x6F); // Max Digital Gain
+ write_ad9361_reg(0x104, 0x2F); // ADC Small Overload Threshold
+ write_ad9361_reg(0x105, 0x3A); // ADC Large Overload Threshold
+ write_ad9361_reg(0x107, 0x31); // Large LMT Overload Threshold
+ write_ad9361_reg(0x108, 0x39); // Small LMT Overload Threshold
+ write_ad9361_reg(0x109, 0x23); // Rx1 Full/LMT Gain Index
+ write_ad9361_reg(0x10A, 0x58); // Rx1 LPF Gain Index
+ write_ad9361_reg(0x10B, 0x00); // Rx1 Digital Gain Index
+ write_ad9361_reg(0x10C, 0x23); // Rx2 Full/LMT Gain Index
+ write_ad9361_reg(0x10D, 0x18); // Rx2 LPF Gain Index
+ write_ad9361_reg(0x10E, 0x00); // Rx2 Digital Gain Index
+ write_ad9361_reg(0x114, 0x30); // Low Power Threshold
+ write_ad9361_reg(0x11A, 0x27); // Initial LMT Gain Limit
+ write_ad9361_reg(0x081, 0x00); // Tx Symbol Gain Control
+}
+
+/* Setup the RX or TX synthesizers.
+ *
+ * This setup depends on a fixed look-up table, which is stored in an
+ * included header file. The table is indexed based on the passed VCO rate.
+ */
+void setup_synth(int which, double vcorate) {
+ /* The vcorates in the vco_index array represent lower boundaries for
+ * rates. Once we find a match, we use that index to look-up the rest of
+ * the register values in the LUT. */
+ int vcoindex = 0;
+ int i;
+ for(i = 0; i < 53; i++) {
+ vcoindex = i;
+ if(vcorate > vco_index[i]) {
+ break;
+ }
+ }
+
+ if (vcoindex > 53)
+ post_err_msg("vcoindex > 53");
+
+ /* Parse the values out of the LUT based on our calculated index... */
+ uint8_t vco_output_level = synth_cal_lut[vcoindex][0];
+ uint8_t vco_varactor = synth_cal_lut[vcoindex][1];
+ uint8_t vco_bias_ref = synth_cal_lut[vcoindex][2];
+ uint8_t vco_bias_tcf = synth_cal_lut[vcoindex][3];
+ uint8_t vco_cal_offset = synth_cal_lut[vcoindex][4];
+ uint8_t vco_varactor_ref = synth_cal_lut[vcoindex][5];
+ uint8_t charge_pump_curr = synth_cal_lut[vcoindex][6];
+ uint8_t loop_filter_c2 = synth_cal_lut[vcoindex][7];
+ uint8_t loop_filter_c1 = synth_cal_lut[vcoindex][8];
+ uint8_t loop_filter_r1 = synth_cal_lut[vcoindex][9];
+ uint8_t loop_filter_c3 = synth_cal_lut[vcoindex][10];
+ uint8_t loop_filter_r3 = synth_cal_lut[vcoindex][11];
+
+ /* ... annnd program! */
+ if(which == RX_TYPE) {
+ write_ad9361_reg(0x23a, 0x40 | vco_output_level);
+ write_ad9361_reg(0x239, 0xC0 | vco_varactor);
+ write_ad9361_reg(0x242, vco_bias_ref | (vco_bias_tcf << 3));
+ write_ad9361_reg(0x238, (vco_cal_offset << 3));
+ write_ad9361_reg(0x245, 0x00);
+ write_ad9361_reg(0x251, vco_varactor_ref);
+ write_ad9361_reg(0x250, 0x70);
+ write_ad9361_reg(0x23b, 0x80 | charge_pump_curr);
+ write_ad9361_reg(0x23e, loop_filter_c1 | (loop_filter_c2 << 4));
+ write_ad9361_reg(0x23f, loop_filter_c3 | (loop_filter_r1 << 4));
+ write_ad9361_reg(0x240, loop_filter_r3);
+ } else if(which == TX_TYPE) {
+ write_ad9361_reg(0x27a, 0x40 | vco_output_level);
+ write_ad9361_reg(0x279, 0xC0 | vco_varactor);
+ write_ad9361_reg(0x282, vco_bias_ref | (vco_bias_tcf << 3));
+ write_ad9361_reg(0x278, (vco_cal_offset << 3));
+ write_ad9361_reg(0x285, 0x00);
+ write_ad9361_reg(0x291, vco_varactor_ref);
+ write_ad9361_reg(0x290, 0x70);
+ write_ad9361_reg(0x27b, 0x80 | charge_pump_curr);
+ write_ad9361_reg(0x27e, loop_filter_c1 | (loop_filter_c2 << 4));
+ write_ad9361_reg(0x27f, loop_filter_c3 | (loop_filter_r1 << 4));
+ write_ad9361_reg(0x280, loop_filter_r3);
+ } else {
+ post_err_msg("[setup_synth] INVALID_CODE_PATH");
+ }
+}
+
+
+/* Tune the baseband VCO.
+ *
+ * This clock signal is what gets fed to the ADCs and DACs. This function is
+ * not exported outside of this file, and is invoked based on the rate
+ * fed to the public set_clock_rate function. */
+double tune_bbvco(const double rate) {
+ msg("[tune_bbvco] rate=%.10f", rate);
+
+ /* Let's not re-tune to the same frequency over and over... */
+ if(freq_is_nearly_equal(rate, _req_coreclk)) {
+ return _adcclock_freq;
+ }
+
+ _req_coreclk = rate;
+
+ const double fref = 40e6;
+ const int modulus = 2088960;
+ const double vcomax = 1430e6;
+ const double vcomin = 672e6;
+ double vcorate;
+ int vcodiv;
+
+ /* Iterate over VCO dividers until appropriate divider is found. */
+ int i = 1;
+ for(; i <= 6; i++) {
+ vcodiv = 1 << i;
+ vcorate = rate * vcodiv;
+
+ if(vcorate >= vcomin && vcorate <= vcomax) break;
+ }
+ if(i == 7)
+ post_err_msg("[tune_bbvco] wrong vcorate");
+
+ msg("[tune_bbvco] vcodiv=%d vcorate=%.10f", vcodiv, vcorate);
+
+ /* Fo = Fref * (Nint + Nfrac / mod) */
+ int nint = vcorate / fref;
+ msg("[tune_bbvco] (nint)=%.10f", (vcorate / fref));
+ int nfrac = lround(((vcorate / fref) - (double)nint) * (double)modulus);
+ msg("[tune_bbvco] (nfrac)=%.10f", (((vcorate / fref) - (double)nint) * (double)modulus));
+ msg("[tune_bbvco] nint=%d nfrac=%d", nint, nfrac);
+ double actual_vcorate = fref * ((double)nint + ((double)nfrac / (double)modulus));
+
+ /* Scale CP current according to VCO rate */
+ const double icp_baseline = 150e-6;
+ const double freq_baseline = 1280e6;
+ double icp = icp_baseline * (actual_vcorate / freq_baseline);
+ int icp_reg = (icp / 25e-6) - 1;
+
+ write_ad9361_reg(0x045, 0x00); // REFCLK / 1 to BBPLL
+ write_ad9361_reg(0x046, icp_reg & 0x3F); // CP current
+ write_ad9361_reg(0x048, 0xe8); // BBPLL loop filters
+ write_ad9361_reg(0x049, 0x5b); // BBPLL loop filters
+ write_ad9361_reg(0x04a, 0x35); // BBPLL loop filters
+
+ write_ad9361_reg(0x04b, 0xe0);
+ write_ad9361_reg(0x04e, 0x10); // Max accuracy
+
+ write_ad9361_reg(0x043, nfrac & 0xFF); // Nfrac[7:0]
+ write_ad9361_reg(0x042, (nfrac >> 8) & 0xFF); // Nfrac[15:8]
+ write_ad9361_reg(0x041, (nfrac >> 16) & 0xFF); // Nfrac[23:16]
+ write_ad9361_reg(0x044, nint); // Nint
+
+ calibrate_lock_bbpll();
+
+ reg_bbpll = (reg_bbpll & 0xF8) | i;
+
+ _bbpll_freq = actual_vcorate;
+ _adcclock_freq = (actual_vcorate / vcodiv);
+
+ return _adcclock_freq;
+}
+
+/* This function re-programs all of the gains in the system.
+ *
+ * Because the gain values match to different gain indices based on the
+ * current operating band, this function can be called to update all gain
+ * settings to the appropriate index after a re-tune. */
+void program_gains() {
+ set_gain(RX_TYPE,1, _rx1_gain);
+ set_gain(RX_TYPE,2, _rx2_gain);
+ set_gain(TX_TYPE,1, _tx1_gain);
+ set_gain(TX_TYPE,2, _tx2_gain);
+}
+
+/* This is the internal tune function, not available for a host call.
+ *
+ * Calculate the VCO settings for the requested frquency, and then either
+ * tune the RX or TX VCO. */
+double tune_helper(int which, const double value) {
+
+ /* The RFPLL runs from 6 GHz - 12 GHz */
+ const double fref = 80e6;
+ const int modulus = 8388593;
+ const double vcomax = 12e9;
+ const double vcomin = 6e9;
+ double vcorate;
+ int vcodiv;
+
+ /* Iterate over VCO dividers until appropriate divider is found. */
+ int i;
+ for(i = 0; i <= 6; i++) {
+ vcodiv = 2 << i;
+ vcorate = value * vcodiv;
+ if(vcorate >= vcomin && vcorate <= vcomax) break;
+ }
+ if(i == 7)
+ post_err_msg("RFVCO can't find valid VCO rate!");
+
+ int nint = vcorate / fref;
+ int nfrac = ((vcorate / fref) - nint) * modulus;
+
+ double actual_vcorate = fref * (nint + (double)(nfrac)/modulus);
+ double actual_lo = actual_vcorate / vcodiv;
+
+ // UHD_VAR(actual_lo); // TODO:
+
+ if(which == RX_TYPE) {
+
+ _req_rx_freq = value;
+
+ /* Set band-specific settings. */
+ if(value < AD9361_RX_BAND_EDGE0) {
+ reg_inputsel = (reg_inputsel & 0xC0) | 0x30;
+ } else if((value >= AD9361_RX_BAND_EDGE0) && (value < AD9361_RX_BAND_EDGE1)) {
+ reg_inputsel = (reg_inputsel & 0xC0) | 0x0C;
+ } else if((value >= AD9361_RX_BAND_EDGE1) && (value <= 6e9)) {
+ reg_inputsel = (reg_inputsel & 0xC0) | 0x03;
+ } else {
+ post_err_msg("[tune_helper] INVALID_CODE_PATH");
+ }
+
+ write_ad9361_reg(0x004, reg_inputsel);
+
+ /* Store vcodiv setting. */
+ reg_vcodivs = (reg_vcodivs & 0xF0) | (i & 0x0F);
+
+ /* Setup the synthesizer. */
+ setup_synth(RX_TYPE, actual_vcorate);
+
+ /* Tune!!!! */
+ write_ad9361_reg(0x233, nfrac & 0xFF);
+ write_ad9361_reg(0x234, (nfrac >> 8) & 0xFF);
+ write_ad9361_reg(0x235, (nfrac >> 16) & 0xFF);
+ write_ad9361_reg(0x232, (nint >> 8) & 0xFF);
+ write_ad9361_reg(0x231, nint & 0xFF);
+ write_ad9361_reg(0x005, reg_vcodivs);
+
+ /* Lock the PLL! */
+ ad9361_msleep(2);
+ if((read_ad9361_reg(0x247) & 0x02) == 0) {
+ post_err_msg("RX PLL NOT LOCKED");
+ }
+
+ _rx_freq = actual_lo;
+
+ return actual_lo;
+
+ } else {
+
+ _req_tx_freq = value;
+
+ /* Set band-specific settings. */
+ if(value < AD9361_TX_BAND_EDGE) {
+ reg_inputsel = reg_inputsel | 0x40;
+ } else if((value >= AD9361_TX_BAND_EDGE) && (value <= 6e9)) {
+ reg_inputsel = reg_inputsel & 0xBF;
+ } else {
+ post_err_msg("[tune_helper] INVALID_CODE_PATH");
+ }
+
+ write_ad9361_reg(0x004, reg_inputsel);
+
+ /* Store vcodiv setting. */
+ reg_vcodivs = (reg_vcodivs & 0x0F) | ((i & 0x0F) << 4);
+
+ /* Setup the synthesizer. */
+ setup_synth(TX_TYPE, actual_vcorate);
+
+ /* Tune it, homey. */
+ write_ad9361_reg(0x273, nfrac & 0xFF);
+ write_ad9361_reg(0x274, (nfrac >> 8) & 0xFF);
+ write_ad9361_reg(0x275, (nfrac >> 16) & 0xFF);
+ write_ad9361_reg(0x272, (nint >> 8) & 0xFF);
+ write_ad9361_reg(0x271, nint & 0xFF);
+ write_ad9361_reg(0x005, reg_vcodivs);
+
+ /* Lock the PLL! */
+ ad9361_msleep(2);
+ if((read_ad9361_reg(0x287) & 0x02) == 0) {
+ post_err_msg("TX PLL NOT LOCKED");
+ }
+
+ _tx_freq = actual_lo;
+
+ return actual_lo;
+ }
+}
+
+/* Configure the various clock / sample rates in the RX and TX chains.
+ *
+ * Functionally, this function configures Catalina's RX and TX rates. For
+ * a requested TX & RX rate, it sets the interpolation & decimation filters,
+ * and tunes the VCO that feeds the ADCs and DACs.
+ */
+double setup_rates(const double rate) {
+
+ /* If we make it into this function, then we are tuning to a new rate.
+ * Store the new rate. */
+ _req_clock_rate = rate;
+
+ /* Set the decimation and interpolation values in the RX and TX chains.
+ * This also switches filters in / out. Note that all transmitters and
+ * receivers have to be turned on for the calibration portion of
+ * bring-up, and then they will be switched out to reflect the actual
+ * user-requested antenna selections. */
+ int divfactor = 0;
+ _tfir_factor = 0;
+ if(rate < 0.33e6) {
+ // RX1 + RX2 enabled, 3, 2, 2, 4
+ reg_rxfilt = B8( 11101111 ) ;
+
+ // TX1 + TX2 enabled, 3, 2, 2, 4
+ reg_txfilt = B8( 11101111 ) ;
+
+ divfactor = 48;
+ _tfir_factor = 2;
+ } else if(rate < 0.66e6) {
+ // RX1 + RX2 enabled, 2, 2, 2, 4
+ reg_rxfilt = B8( 11011111 ) ;
+
+ // TX1 + TX2 enabled, 2, 2, 2, 4
+ reg_txfilt = B8( 11011111 ) ;
+
+ divfactor = 32;
+ _tfir_factor = 2;
+ } else if(rate <= 20e6) {
+ // RX1 + RX2 enabled, 2, 2, 2, 2
+ reg_rxfilt = B8( 11011110 ) ;
+
+ // TX1 + TX2 enabled, 2, 2, 2, 2
+ reg_txfilt = B8( 11011110 ) ;
+
+ divfactor = 16;
+ _tfir_factor = 2;
+ } else if((rate > 20e6) && (rate < 23e6)) {
+ // RX1 + RX2 enabled, 3, 2, 2, 2
+ reg_rxfilt = B8( 11101110 ) ;
+
+ // TX1 + TX2 enabled, 3, 1, 2, 2
+ reg_txfilt = B8( 11100110 ) ;
+
+ divfactor = 24;
+ _tfir_factor = 2;
+ } else if((rate >= 23e6) && (rate < 41e6)) {
+ // RX1 + RX2 enabled, 2, 2, 2, 2
+ reg_rxfilt = B8( 11011110 ) ;
+
+ // TX1 + TX2 enabled, 1, 2, 2, 2
+ reg_txfilt = B8( 11001110 ) ;
+
+ divfactor = 16;
+ _tfir_factor = 2;
+ } else if((rate >= 41e6) && (rate <= 56e6)) {
+ // RX1 + RX2 enabled, 3, 1, 2, 2
+ reg_rxfilt = B8( 11100110 ) ;
+
+ // TX1 + TX2 enabled, 3, 1, 1, 2
+ reg_txfilt = B8( 11100010 ) ;
+
+ divfactor = 12;
+ _tfir_factor = 2;
+ } else if((rate > 56e6) && (rate <= 61.44e6)) {
+ // RX1 + RX2 enabled, 3, 1, 1, 2
+ reg_rxfilt = B8( 11100010 ) ;
+
+ // TX1 + TX2 enabled, 3, 1, 1, 1
+ reg_txfilt = B8( 11100001 ) ;
+
+ divfactor = 6;
+ _tfir_factor = 1;
+ } else {
+ // should never get in here
+ post_err_msg("[setup_rates] INVALID_CODE_PATH");
+ }
+
+ msg("[setup_rates] divfactor=%d", divfactor);
+
+ /* Tune the BBPLL to get the ADC and DAC clocks. */
+ const double adcclk = tune_bbvco(rate * divfactor);
+ double dacclk = adcclk;
+
+ /* The DAC clock must be <= 336e6, and is either the ADC clock or 1/2 the
+ * ADC clock.*/
+ if(adcclk > 336e6) {
+ /* Make the DAC clock = ADC/2, and bypass the TXFIR. */
+ reg_bbpll = reg_bbpll | 0x08;
+ dacclk = adcclk / 2.0;
+ } else {
+ reg_bbpll = reg_bbpll & 0xF7;
+ }
+
+ /* Set the dividers / interpolators in Catalina. */
+ write_ad9361_reg(0x002, reg_txfilt);
+ write_ad9361_reg(0x003, reg_rxfilt);
+ write_ad9361_reg(0x004, reg_inputsel);
+ write_ad9361_reg(0x00A, reg_bbpll);
+
+ msg("[setup_rates] adcclk=%f", adcclk);
+ _baseband_bw = (adcclk / divfactor);
+
+ /* Setup the RX and TX FIR filters. Scale the number of taps based on
+ * the clock speed. */
+ const int max_tx_taps = 16 * AD9361_MIN((int)((dacclk / rate) + 0.5), \
+ AD9361_MIN(4 * (1 << _tfir_factor), 8));
+ const int max_rx_taps = AD9361_MIN((16 * (int)(adcclk / rate)), 128);
+
+ const int num_tx_taps = get_num_taps(max_tx_taps);
+ const int num_rx_taps = get_num_taps(max_rx_taps);
+
+ setup_tx_fir(num_tx_taps);
+ setup_rx_fir(num_rx_taps);
+
+ return _baseband_bw;
+}
+
+/***********************************************************************
+ * Publicly exported functions to host calls
+ **********************************************************************/
+void init_ad9361(void) {
+
+ /* Initialize shadow registers. */
+ reg_vcodivs = 0x00;
+ reg_inputsel = 0x30;
+ reg_rxfilt = 0x00;
+ reg_txfilt = 0x00;
+ reg_bbpll = 0x02;
+ reg_bbftune_config = 0x1e;
+ reg_bbftune_mode = 0x1e;
+
+ /* Initialize private VRQ fields. */
+ _rx_freq = 0.0;
+ _tx_freq = 0.0;
+ _req_rx_freq = 0.0;
+ _req_tx_freq = 0.0;
+ _baseband_bw = 0.0;
+ _req_clock_rate = 0.0;
+ _req_coreclk = 0.0;
+ _bbpll_freq = 0.0;
+ _adcclock_freq = 0.0;
+ _rx_bbf_tunediv = 0;
+ _curr_gain_table = 0;
+ _rx1_gain = 0;
+ _rx2_gain = 0;
+ _tx1_gain = 0;
+ _tx2_gain = 0;
+
+ /* Reset the device. */
+ write_ad9361_reg(0x000,0x01);
+ write_ad9361_reg(0x000,0x00);
+ ad9361_msleep(20);
+
+ /* There is not a WAT big enough for this. */
+ write_ad9361_reg(0x3df, 0x01);
+
+ write_ad9361_reg(0x2a6, 0x0e); // Enable master bias
+ write_ad9361_reg(0x2a8, 0x0e); // Set bandgap trim
+
+ /* Set RFPLL ref clock scale to REFCLK * 2 */
+ write_ad9361_reg(0x2ab, 0x07);
+ write_ad9361_reg(0x2ac, 0xff);
+
+ /* Enable clocks. */
+ if (AD9361_CLOCKING_MODE == 0)
+ {
+ write_ad9361_reg(0x009, 0x17);
+ }
+ if (AD9361_CLOCKING_MODE == 1)
+ {
+ write_ad9361_reg(0x009, 0x07);
+ write_ad9361_reg(0x292, 0x08);
+ write_ad9361_reg(0x293, 0x80);
+ write_ad9361_reg(0x294, 0x00);
+ write_ad9361_reg(0x295, 0x14);
+ }
+ ad9361_msleep(20);
+
+ /* Tune the BBPLL, write TX and RX FIRS. */
+ setup_rates(50e6);
+
+ /* Setup data ports (FDD dual port DDR CMOS):
+ * FDD dual port DDR CMOS no swap.
+ * Force TX on one port, RX on the other. */
+ write_ad9361_reg(0x010, 0xc8);
+ write_ad9361_reg(0x011, 0x00);
+ write_ad9361_reg(0x012, 0x02);
+
+ /* Data delay for TX and RX data clocks */
+ write_ad9361_reg(0x006, 0x0F);
+ write_ad9361_reg(0x007, 0x0F);
+
+ /* Setup AuxDAC */
+ write_ad9361_reg(0x018, 0x00); // AuxDAC1 Word[9:2]
+ write_ad9361_reg(0x019, 0x00); // AuxDAC2 Word[9:2]
+ write_ad9361_reg(0x01A, 0x00); // AuxDAC1 Config and Word[1:0]
+ write_ad9361_reg(0x01B, 0x00); // AuxDAC2 Config and Word[1:0]
+ write_ad9361_reg(0x023, 0xFF); // AuxDAC Manaul/Auto Control
+ write_ad9361_reg(0x026, 0x00); // AuxDAC Manual Select Bit/GPO Manual Select
+ write_ad9361_reg(0x030, 0x00); // AuxDAC1 Rx Delay
+ write_ad9361_reg(0x031, 0x00); // AuxDAC1 Tx Delay
+ write_ad9361_reg(0x032, 0x00); // AuxDAC2 Rx Delay
+ write_ad9361_reg(0x033, 0x00); // AuxDAC2 Tx Delay
+
+ /* Setup AuxADC */
+ write_ad9361_reg(0x00B, 0x00); // Temp Sensor Setup (Offset)
+ write_ad9361_reg(0x00C, 0x00); // Temp Sensor Setup (Temp Window)
+ write_ad9361_reg(0x00D, 0x03); // Temp Sensor Setup (Periodic Measure)
+ write_ad9361_reg(0x00F, 0x04); // Temp Sensor Setup (Decimation)
+ write_ad9361_reg(0x01C, 0x10); // AuxADC Setup (Clock Div)
+ write_ad9361_reg(0x01D, 0x01); // AuxADC Setup (Decimation/Enable)
+
+ /* Setup control outputs. */
+ write_ad9361_reg(0x035, 0x07);
+ write_ad9361_reg(0x036, 0xFF);
+
+ /* Setup GPO */
+ write_ad9361_reg(0x03a, 0x27); //set delay register
+ write_ad9361_reg(0x020, 0x00); // GPO Auto Enable Setup in RX and TX
+ write_ad9361_reg(0x027, 0x03); // GPO Manual and GPO auto value in ALERT
+ write_ad9361_reg(0x028, 0x00); // GPO_0 RX Delay
+ write_ad9361_reg(0x029, 0x00); // GPO_1 RX Delay
+ write_ad9361_reg(0x02A, 0x00); // GPO_2 RX Delay
+ write_ad9361_reg(0x02B, 0x00); // GPO_3 RX Delay
+ write_ad9361_reg(0x02C, 0x00); // GPO_0 TX Delay
+ write_ad9361_reg(0x02D, 0x00); // GPO_1 TX Delay
+ write_ad9361_reg(0x02E, 0x00); // GPO_2 TX Delay
+ write_ad9361_reg(0x02F, 0x00); // GPO_3 TX Delay
+
+ write_ad9361_reg(0x261, 0x00); // RX LO power
+ write_ad9361_reg(0x2a1, 0x00); // TX LO power
+ write_ad9361_reg(0x248, 0x0b); // en RX VCO LDO
+ write_ad9361_reg(0x288, 0x0b); // en TX VCO LDO
+ write_ad9361_reg(0x246, 0x02); // pd RX cal Tcf
+ write_ad9361_reg(0x286, 0x02); // pd TX cal Tcf
+ write_ad9361_reg(0x249, 0x8e); // rx vco cal length
+ write_ad9361_reg(0x289, 0x8e); // rx vco cal length
+ write_ad9361_reg(0x23b, 0x80); // set RX MSB?, FIXME 0x89 magic cp
+ write_ad9361_reg(0x27b, 0x80); // "" TX //FIXME 0x88 see above
+ write_ad9361_reg(0x243, 0x0d); // set rx prescaler bias
+ write_ad9361_reg(0x283, 0x0d); // "" TX
+
+ write_ad9361_reg(0x23d, 0x00); // Clear half VCO cal clock setting
+ write_ad9361_reg(0x27d, 0x00); // Clear half VCO cal clock setting
+
+ /* The order of the following process is EXTREMELY important. If the
+ * below functions are modified at all, device initialization and
+ * calibration might be broken in the process! */
+
+ write_ad9361_reg(0x015, 0x04); // dual synth mode, synth en ctrl en
+ write_ad9361_reg(0x014, 0x05); // use SPI for TXNRX ctrl, to ALERT, TX on
+ write_ad9361_reg(0x013, 0x01); // enable ENSM
+ ad9361_msleep(1);
+
+ calibrate_synth_charge_pumps();
+
+ tune_helper(RX_TYPE, 800e6);
+ tune_helper(TX_TYPE, 850e6);
+
+ program_mixer_gm_subtable();
+ program_gain_table();
+ setup_gain_control();
+
+ calibrate_baseband_rx_analog_filter();
+ calibrate_baseband_tx_analog_filter();
+ calibrate_rx_TIAs();
+ calibrate_secondary_tx_filter();
+
+ setup_adc();
+
+ calibrate_tx_quadrature();
+ calibrate_rx_quadrature();
+
+ write_ad9361_reg(0x012, 0x02); // cals done, set PPORT config
+ write_ad9361_reg(0x013, 0x01); // Set ENSM FDD bit
+ write_ad9361_reg(0x015, 0x04); // dual synth mode, synth en ctrl en
+
+ /* Default TX attentuation to 10dB on both TX1 and TX2 */
+ write_ad9361_reg(0x073, 0x00);
+ write_ad9361_reg(0x074, 0x00);
+ write_ad9361_reg(0x075, 0x00);
+ write_ad9361_reg(0x076, 0x00);
+
+ /* Setup RSSI Measurements */
+ write_ad9361_reg(0x150, 0x0E); // RSSI Measurement Duration 0, 1
+ write_ad9361_reg(0x151, 0x00); // RSSI Measurement Duration 2, 3
+ write_ad9361_reg(0x152, 0xFF); // RSSI Weighted Multiplier 0
+ write_ad9361_reg(0x153, 0x00); // RSSI Weighted Multiplier 1
+ write_ad9361_reg(0x154, 0x00); // RSSI Weighted Multiplier 2
+ write_ad9361_reg(0x155, 0x00); // RSSI Weighted Multiplier 3
+ write_ad9361_reg(0x156, 0x00); // RSSI Delay
+ write_ad9361_reg(0x157, 0x00); // RSSI Wait
+ write_ad9361_reg(0x158, 0x0D); // RSSI Mode Select
+ write_ad9361_reg(0x15C, 0x67); // Power Measurement Duration
+
+ /* Turn on the default RX & TX chains. */
+ set_active_chains(true, false, false, false);
+
+ /* Set TXers & RXers on (only works in FDD mode) */
+ write_ad9361_reg(0x014, 0x21);
+}
+
+
+/* This function sets the RX / TX rate between Catalina and the FPGA, and
+ * thus determines the interpolation / decimation required in the FPGA to
+ * achieve the user's requested rate.
+ *
+ * This is the only clock setting function that is exposed to the outside. */
+double set_clock_rate(const double req_rate) {
+ if(req_rate > 61.44e6) {
+ post_err_msg("Requested master clock rate outside range");
+ }
+
+ msg("[set_clock_rate] req_rate=%.10f", req_rate);
+
+ /* UHD has a habit of requesting the same rate like four times when it
+ * starts up. This prevents that, and any bugs in user code that request
+ * the same rate over and over. */
+ if(freq_is_nearly_equal(req_rate, _req_clock_rate)) {
+ return _baseband_bw;
+ }
+
+ /* We must be in the SLEEP / WAIT state to do this. If we aren't already
+ * there, transition the ENSM to State 0. */
+ uint8_t current_state = read_ad9361_reg(0x017) & 0x0F;
+ switch(current_state) {
+ case 0x05:
+ /* We are in the ALERT state. */
+ write_ad9361_reg(0x014, 0x21);
+ ad9361_msleep(5);
+ write_ad9361_reg(0x014, 0x00);
+ break;
+
+ case 0x0A:
+ /* We are in the FDD state. */
+ write_ad9361_reg(0x014, 0x00);
+ break;
+
+ default:
+ post_err_msg("[set_clock_rate:1] AD9361 in unknown state");
+ break;
+ };
+
+ /* Store the current chain / antenna selections so that we can restore
+ * them at the end of this routine; all chains will be enabled from
+ * within setup_rates for calibration purposes. */
+ uint8_t orig_tx_chains = reg_txfilt & 0xC0;
+ uint8_t orig_rx_chains = reg_rxfilt & 0xC0;
+
+ /* Call into the clock configuration / settings function. This is where
+ * all the hard work gets done. */
+ double rate = setup_rates(req_rate);
+
+ msg("[set_clock_rate] rate=%.10f", rate);
+
+ /* Transition to the ALERT state and calibrate everything. */
+ write_ad9361_reg(0x015, 0x04); //dual synth mode, synth en ctrl en
+ write_ad9361_reg(0x014, 0x05); //use SPI for TXNRX ctrl, to ALERT, TX on
+ write_ad9361_reg(0x013, 0x01); //enable ENSM
+ ad9361_msleep(1);
+
+ calibrate_synth_charge_pumps();
+
+ tune_helper(RX_TYPE, _rx_freq);
+ tune_helper(TX_TYPE, _tx_freq);
+
+ program_mixer_gm_subtable();
+ program_gain_table();
+ setup_gain_control();
+ program_gains();
+
+ calibrate_baseband_rx_analog_filter();
+ calibrate_baseband_tx_analog_filter();
+ calibrate_rx_TIAs();
+ calibrate_secondary_tx_filter();
+
+ setup_adc();
+
+ calibrate_tx_quadrature();
+ calibrate_rx_quadrature();
+
+ write_ad9361_reg(0x012, 0x02); // cals done, set PPORT config
+ write_ad9361_reg(0x013, 0x01); // Set ENSM FDD bit
+ write_ad9361_reg(0x015, 0x04); // dual synth mode, synth en ctrl en
+
+ /* End the function in the same state as the entry state. */
+ switch(current_state) {
+ case 0x05:
+ /* We are already in ALERT. */
+ break;
+
+ case 0x0A:
+ /* Transition back to FDD, and restore the original antenna
+ * / chain selections. */
+ reg_txfilt = (reg_txfilt & 0x3F) | orig_tx_chains;
+ reg_rxfilt = (reg_rxfilt & 0x3F) | orig_rx_chains;
+
+ write_ad9361_reg(0x002, reg_txfilt);
+ write_ad9361_reg(0x003, reg_rxfilt);
+ write_ad9361_reg(0x014, 0x21);
+ break;
+
+ default:
+ post_err_msg("[set_clock_rate:2] AD9361 in unknown state");
+ break;
+ };
+
+ return rate;
+}
+
+
+/* Set which of the four TX / RX chains provided by Catalina are active.
+ *
+ * Catalina provides two sets of chains, Side A and Side B. Each side
+ * provides one TX antenna, and one RX antenna. The B200 maintains the USRP
+ * standard of providing one antenna connection that is both TX & RX, and
+ * one that is RX-only - for each chain. Thus, the possible antenna and
+ * chain selections are:
+ *
+ * B200 Antenna Catalina Side Catalina Chain
+ * -------------------------------------------------------------------
+ * TX / RX1 Side A TX1 (when switched to TX)
+ * TX / RX1 Side A RX1 (when switched to RX)
+ * RX1 Side A RX1
+ *
+ * TX / RX2 Side B TX2 (when switched to TX)
+ * TX / RX2 Side B RX2 (when switched to RX)
+ * RX2 Side B RX2
+ */
+void set_active_chains(bool tx1, bool tx2, bool rx1, bool rx2) {
+ /* Clear out the current active chain settings. */
+ reg_txfilt = reg_txfilt & 0x3F;
+ reg_rxfilt = reg_rxfilt & 0x3F;
+
+ /* Turn on the different chains based on the passed parameters. */
+ if(tx1) { reg_txfilt = reg_txfilt | 0x40; }
+ if(tx2) { reg_txfilt = reg_txfilt | 0x80; }
+ if(rx1) { reg_rxfilt = reg_rxfilt | 0x40; }
+ if(rx2) { reg_rxfilt = reg_rxfilt | 0x80; }
+
+ /* Turn on / off the chains. */
+ write_ad9361_reg(0x002, reg_txfilt);
+ write_ad9361_reg(0x003, reg_rxfilt);
+}
+
+/* Tune the RX or TX frequency.
+ *
+ * This is the publicly-accessible tune function. It makes sure the tune
+ * isn't a redundant request, and if not, passes it on to the class's
+ * internal tune function.
+ *
+ * After tuning, it runs any appropriate calibrations. */
+double tune(int which, const double value) {
+
+ if(which == RX_TYPE) {
+ if(freq_is_nearly_equal(value, _req_rx_freq)) {
+ return _rx_freq;
+ }
+
+ } else if(which == TX_TYPE) {
+ if(freq_is_nearly_equal(value, _req_tx_freq)) {
+ return _tx_freq;
+ }
+
+ } else {
+ post_err_msg("[tune] INVALID_CODE_PATH");
+ }
+
+ /* If we aren't already in the ALERT state, we will need to return to
+ * the FDD state after tuning. */
+ int not_in_alert = 0;
+ if((read_ad9361_reg(0x017) & 0x0F) != 5) {
+ /* Force the device into the ALERT state. */
+ not_in_alert = 1;
+ write_ad9361_reg(0x014, 0x01);
+ }
+
+ /* Tune the RF VCO! */
+ double tune_freq = tune_helper(which, value);
+
+ /* Run any necessary calibrations / setups */
+ if(which == RX_TYPE) {
+ program_gain_table();
+ }
+
+ /* Update the gain settings. */
+ program_gains();
+
+ /* Run the calibration algorithms. */
+ calibrate_tx_quadrature();
+ calibrate_rx_quadrature();
+
+ /* If we were in the FDD state, return it now. */
+ if(not_in_alert) {
+ write_ad9361_reg(0x014, 0x21);
+ }
+
+ return tune_freq;
+}
+
+/* Set the gain of RX1, RX2, TX1, or TX2.
+ *
+ * Note that the 'value' passed to this function is the actual gain value,
+ * _not_ the gain index. This is the opposite of the eval software's GUI!
+ * Also note that the RX chains are done in terms of gain, and the TX chains
+ * are done in terms of attenuation. */
+double set_gain(int which, int n, const double value) {
+
+ if(which == RX_TYPE) {
+ /* Indexing the gain tables requires an offset from the requested
+ * amount of total gain in dB:
+ * < 1300MHz: dB + 5
+ * >= 1300MHz and < 4000MHz: dB + 3
+ * >= 4000MHz and <= 6000MHz: dB + 14
+ */
+ int gain_offset = 0;
+ if(_rx_freq < 1300e6) {
+ gain_offset = 5;
+ } else if(_rx_freq < 4000e6) {
+ gain_offset = 3;
+ } else {
+ gain_offset = 14;
+ }
+
+ int gain_index = value + gain_offset;
+
+ /* Clip the gain values to the proper min/max gain values. */
+ if(gain_index > 76) gain_index = 76;
+ if(gain_index < 0) gain_index = 0;
+
+ if(n == 1) {
+ _rx1_gain = value;
+ write_ad9361_reg(0x109, gain_index);
+ } else {
+ _rx2_gain = value;
+ write_ad9361_reg(0x10c, gain_index);
+ }
+
+ return gain_index - gain_offset;
+ } else {
+ /* Setting the below bits causes a change in the TX attenuation word
+ * to immediately take effect. */
+ write_ad9361_reg(0x077, 0x40);
+ write_ad9361_reg(0x07c, 0x40);
+
+ /* Each gain step is -0.25dB. Calculate the attenuation necessary
+ * for the requested gain, convert it into gain steps, then write
+ * the attenuation word. Max gain (so zero attenuation) is 89.75. */
+ double atten = AD9361_MAX_GAIN - value;
+ int attenreg = atten * 4;
+ if(n == 1) {
+ _tx1_gain = value;
+ write_ad9361_reg(0x073, attenreg & 0xFF);
+ write_ad9361_reg(0x074, (attenreg >> 8) & 0x01);
+ } else {
+ _tx2_gain = value;
+ write_ad9361_reg(0x075, attenreg & 0xFF);
+ write_ad9361_reg(0x076, (attenreg >> 8) & 0x01);
+ }
+ return AD9361_MAX_GAIN - ((double)(attenreg)/ 4);
+ }
+}
+
+/* This function is responsible to dispatch the vendor request call
+ * to the proper handler
+ */
+void ad9361_dispatch(const char* vrb, char* vrb_out) {
+ memcpy(vrb_out, vrb, AD9361_DISPATCH_PACKET_SIZE); // Copy request to response memory
+ tmp_req_buffer = vrb_out; // Set this to enable 'post_err_msg'
+
+ //////////////////////////////////////////////
+
+ double ret_val = 0.0;
+ int mask = 0;
+
+ const ad9361_transaction_t *request = (const ad9361_transaction_t *)vrb;
+ ad9361_transaction_t *response = (ad9361_transaction_t *)vrb_out;
+ response->error_msg[0] = '\0'; // Ensure error is cleared
+
+ //msg("[ad9361_dispatch] action=%d", request->action);
+
+ switch (request->action) {
+ case AD9361_ACTION_ECHO:
+ break; // nothing to do
+ case AD9361_ACTION_INIT:
+ init_ad9361();
+ break;
+ case AD9361_ACTION_SET_RX1_GAIN:
+ ret_val = set_gain(RX_TYPE,1,double_unpack(request->value.gain));
+ double_pack(ret_val, response->value.gain);
+ break;
+ case AD9361_ACTION_SET_TX1_GAIN:
+ ret_val = set_gain(TX_TYPE,1,double_unpack(request->value.gain));
+ double_pack(ret_val, response->value.gain);
+ break;
+ case AD9361_ACTION_SET_RX2_GAIN:
+ ret_val = set_gain(RX_TYPE,2,double_unpack(request->value.gain));
+ double_pack(ret_val, response->value.gain);
+ break;
+ case AD9361_ACTION_SET_TX2_GAIN:
+ ret_val = set_gain(TX_TYPE,2,double_unpack(request->value.gain));
+ double_pack(ret_val, response->value.gain);
+ break;
+ case AD9361_ACTION_SET_RX_FREQ:
+ ret_val = tune(RX_TYPE, double_unpack(request->value.freq));
+ double_pack(ret_val, response->value.freq);
+ break;
+ case AD9361_ACTION_SET_TX_FREQ:
+ ret_val = tune(TX_TYPE, double_unpack(request->value.freq));
+ double_pack(ret_val, response->value.freq);
+ break;
+ case AD9361_ACTION_SET_CODEC_LOOP:
+ data_port_loopback(request->value.codec_loop != 0);
+ break;
+ case AD9361_ACTION_SET_CLOCK_RATE:
+ ret_val = set_clock_rate(double_unpack(request->value.rate));
+ double_pack(ret_val, response->value.rate);
+ break;
+ case AD9361_ACTION_SET_ACTIVE_CHAINS:
+ mask = request->value.enable_mask;
+ set_active_chains(mask & 1, mask & 2, mask & 4, mask & 8);
+ break;
+ default:
+ post_err_msg("[ad9361_dispatch] NOT IMPLEMENTED");
+ break;
+ }
+}
diff --git a/firmware/fx3/ad9361/lib/ad9361_synth_lut.h b/firmware/fx3/ad9361/lib/ad9361_synth_lut.h
new file mode 100644
index 000000000..79214526d
--- /dev/null
+++ b/firmware/fx3/ad9361/lib/ad9361_synth_lut.h
@@ -0,0 +1,135 @@
+//
+// Copyright 2013-2014 Ettus Research LLC
+//
+
+#ifndef INCLUDED_AD9361_SYNTH_LUT_HPP
+#define INCLUDED_AD9361_SYNTH_LUT_HPP
+
+
+double vco_index[53] = {12605000000, 12245000000, 11906000000, 11588000000,
+ 11288000000, 11007000000, 10742000000, 10492000000,
+ 10258000000, 10036000000, 9827800000, 9631100000,
+ 9445300000, 9269800000, 9103600000, 8946300000,
+ 8797000000, 8655300000, 8520600000, 8392300000,
+ 8269900000, 8153100000, 8041400000, 7934400000,
+ 7831800000, 7733200000, 7638400000, 7547100000,
+ 7459000000, 7374000000, 7291900000, 7212400000,
+ 7135500000, 7061000000, 6988700000, 6918600000,
+ 6850600000, 6784600000, 6720500000, 6658200000,
+ 6597800000, 6539200000, 6482300000, 6427000000,
+ 6373400000, 6321400000, 6270900000, 6222000000,
+ 6174500000, 6128400000, 6083600000, 6040100000,
+ 5997700000};
+
+int synth_cal_lut[53][12] = { {10, 0, 4, 0, 15, 8, 8, 13, 4, 13, 15, 9},
+ {10, 0, 4, 0, 15, 8, 9, 13, 4, 13, 15, 9},
+ {10, 0, 4, 0, 15, 8, 10, 13, 4, 13, 15, 9},
+ {10, 0, 4, 0, 15, 8, 11, 13, 4, 13, 15, 9},
+ {10, 0, 4, 0, 15, 8, 11, 13, 4, 13, 15, 9},
+ {10, 0, 4, 0, 14, 8, 12, 13, 4, 13, 15, 9},
+ {10, 0, 4, 0, 14, 8, 13, 13, 4, 13, 15, 9},
+ {10, 0, 5, 1, 14, 9, 13, 13, 4, 13, 15, 9},
+ {10, 0, 5, 1, 14, 9, 14, 13, 4, 13, 15, 9},
+ {10, 0, 5, 1, 14, 9, 15, 13, 4, 13, 15, 9},
+ {10, 0, 5, 1, 14, 9, 15, 13, 4, 13, 15, 9},
+ {10, 0, 5, 1, 13, 9, 16, 13, 4, 13, 15, 9},
+ {10, 0, 5, 1, 13, 9, 17, 13, 4, 13, 15, 9},
+ {10, 0, 5, 1, 13, 9, 18, 13, 4, 13, 15, 9},
+ {10, 0, 5, 1, 13, 9, 18, 13, 4, 13, 15, 9},
+ {10, 0, 5, 1, 13, 9, 19, 13, 4, 13, 15, 9},
+ {10, 1, 6, 1, 15, 11, 14, 13, 4, 13, 15, 9},
+ {10, 1, 6, 1, 15, 11, 14, 13, 4, 13, 15, 9},
+ {10, 1, 6, 1, 15, 11, 15, 13, 4, 13, 15, 9},
+ {10, 1, 6, 1, 15, 11, 15, 13, 4, 13, 15, 9},
+ {10, 1, 6, 1, 15, 11, 16, 13, 4, 13, 15, 9},
+ {10, 1, 6, 1, 15, 11, 16, 13, 4, 13, 15, 9},
+ {10, 1, 6, 1, 15, 11, 17, 13, 4, 13, 15, 9},
+ {10, 1, 6, 1, 15, 11, 17, 13, 4, 13, 15, 9},
+ {10, 1, 6, 1, 15, 11, 18, 13, 4, 13, 15, 9},
+ {10, 1, 6, 1, 15, 11, 18, 13, 4, 13, 15, 9},
+ {10, 1, 6, 1, 15, 11, 19, 13, 4, 13, 15, 9},
+ {10, 1, 6, 1, 15, 11, 19, 13, 4, 13, 15, 9},
+ {10, 1, 6, 1, 15, 11, 20, 13, 4, 13, 15, 9},
+ {10, 1, 7, 2, 15, 12, 20, 13, 4, 13, 15, 9},
+ {10, 1, 7, 2, 15, 12, 21, 13, 4, 13, 15, 9},
+ {10, 1, 7, 2, 15, 12, 21, 13, 4, 13, 15, 9},
+ {10, 1, 7, 2, 15, 14, 22, 13, 4, 13, 15, 9},
+ {10, 1, 7, 2, 15, 14, 22, 13, 4, 13, 15, 9},
+ {10, 1, 7, 2, 15, 14, 23, 13, 4, 13, 15, 9},
+ {10, 1, 7, 2, 15, 14, 23, 13, 4, 13, 15, 9},
+ {10, 1, 7, 2, 15, 14, 24, 13, 4, 13, 15, 9},
+ {10, 1, 7, 2, 15, 14, 24, 13, 4, 13, 15, 9},
+ {10, 1, 7, 2, 15, 14, 25, 13, 4, 13, 15, 9},
+ {10, 1, 7, 2, 15, 14, 25, 13, 4, 13, 15, 9},
+ {10, 1, 7, 2, 15, 14, 26, 13, 4, 13, 15, 9},
+ {10, 1, 7, 2, 15, 14, 26, 13, 4, 13, 15, 9},
+ {10, 1, 7, 2, 15, 14, 27, 13, 4, 13, 15, 9},
+ {10, 1, 7, 2, 15, 14, 27, 13, 4, 13, 15, 9},
+ {10, 3, 7, 3, 15, 12, 18, 13, 4, 13, 15, 9},
+ {10, 3, 7, 3, 15, 12, 18, 13, 4, 13, 15, 9},
+ {10, 3, 7, 3, 15, 12, 18, 13, 4, 13, 15, 9},
+ {10, 3, 7, 3, 15, 12, 19, 13, 4, 13, 15, 9},
+ {10, 3, 7, 3, 15, 12, 19, 13, 4, 13, 15, 9},
+ {10, 3, 7, 3, 15, 12, 19, 13, 4, 13, 15, 9},
+ {10, 3, 7, 3, 15, 12, 19, 13, 4, 13, 15, 9},
+ {10, 3, 7, 3, 15, 12, 20, 13, 4, 13, 15, 9},
+ {10, 3, 7, 3, 15, 12, 20, 13, 4, 13, 15, 9}};
+
+
+#if 0 /* This is the table for a 40MHz RFPLL Reference */
+int synth_cal_lut[53][12] = { {10, 0, 4, 0, 15, 8, 8, 12, 3, 14, 15, 11},
+ {10, 0, 4, 0, 15, 8, 9, 12, 3, 14, 15, 11},
+ {10, 0, 4, 0, 15, 8, 9, 12, 3, 14, 15, 11},
+ {10, 0, 4, 0, 15, 8, 10, 12, 3, 14, 15, 11},
+ {10, 0, 4, 0, 15, 8, 11, 12, 3, 14, 15, 11},
+ {10, 0, 4, 0, 15, 8, 11, 12, 3, 14, 15, 11},
+ {10, 0, 4, 0, 14, 8, 12, 12, 3, 14, 15, 11},
+ {10, 0, 5, 1, 14, 9, 13, 12, 3, 14, 15, 11},
+ {10, 0, 5, 1, 14, 9, 13, 12, 3, 14, 15, 11},
+ {10, 0, 5, 1, 14, 9, 14, 12, 3, 14, 15, 11},
+ {10, 0, 5, 1, 14, 9, 15, 12, 3, 14, 15, 11},
+ {10, 0, 5, 1, 14, 9, 15, 12, 3, 14, 15, 11},
+ {10, 0, 5, 1, 14, 9, 16, 12, 3, 14, 15, 11},
+ {10, 0, 5, 1, 14, 9, 17, 12, 3, 14, 15, 11},
+ {10, 0, 5, 1, 14, 9, 17, 12, 3, 14, 15, 11},
+ {10, 0, 5, 1, 14, 9, 18, 12, 3, 14, 15, 11},
+ {10, 1, 6, 1, 15, 11, 13, 12, 3, 14, 15, 11},
+ {10, 1, 6, 1, 15, 11, 14, 12, 3, 14, 15, 11},
+ {10, 1, 6, 1, 15, 11, 14, 12, 3, 14, 15, 11},
+ {10, 1, 6, 1, 15, 11, 15, 12, 3, 14, 15, 11},
+ {10, 1, 6, 1, 15, 11, 15, 12, 3, 14, 15, 11},
+ {10, 1, 6, 1, 15, 11, 16, 12, 3, 14, 15, 11},
+ {10, 1, 6, 1, 15, 11, 16, 12, 3, 14, 15, 11},
+ {10, 1, 6, 1, 15, 11, 17, 12, 3, 14, 15, 11},
+ {10, 1, 6, 1, 15, 11, 17, 12, 3, 14, 15, 11},
+ {10, 1, 6, 1, 15, 11, 17, 12, 3, 14, 15, 11},
+ {10, 1, 6, 1, 15, 11, 18, 12, 3, 14, 15, 11},
+ {10, 1, 6, 1, 15, 11, 18, 12, 3, 14, 15, 11},
+ {10, 1, 6, 1, 15, 11, 19, 12, 3, 14, 15, 11},
+ {10, 1, 7, 2, 15, 12, 19, 12, 3, 14, 15, 11},
+ {10, 1, 7, 2, 15, 12, 20, 12, 3, 14, 15, 11},
+ {10, 1, 7, 2, 15, 12, 20, 12, 3, 14, 15, 11},
+ {10, 1, 7, 2, 15, 14, 21, 12, 3, 14, 15, 11},
+ {10, 1, 7, 2, 15, 14, 21, 12, 3, 14, 15, 11},
+ {10, 1, 7, 2, 15, 14, 22, 12, 3, 14, 15, 11},
+ {10, 1, 7, 2, 15, 14, 22, 12, 3, 14, 15, 11},
+ {10, 1, 7, 2, 15, 14, 23, 12, 3, 14, 15, 11},
+ {10, 1, 7, 2, 15, 14, 23, 12, 3, 14, 15, 11},
+ {10, 1, 7, 2, 15, 14, 24, 12, 3, 14, 15, 11},
+ {10, 1, 7, 2, 15, 14, 24, 12, 3, 14, 15, 11},
+ {10, 1, 7, 2, 15, 14, 25, 12, 3, 14, 15, 11},
+ {10, 1, 7, 2, 15, 14, 25, 12, 3, 14, 15, 11},
+ {10, 1, 7, 2, 15, 14, 26, 12, 3, 14, 15, 11},
+ {10, 1, 7, 2, 15, 14, 26, 12, 3, 14, 15, 11},
+ {10, 3, 7, 3, 15, 12, 17, 12, 3, 14, 15, 11},
+ {10, 3, 7, 3, 15, 12, 17, 12, 3, 14, 15, 11},
+ {10, 3, 7, 3, 15, 12, 17, 12, 3, 14, 15, 11},
+ {10, 3, 7, 3, 15, 12, 18, 12, 3, 14, 15, 11},
+ {10, 3, 7, 3, 15, 12, 18, 12, 3, 14, 15, 11},
+ {10, 3, 7, 3, 15, 12, 18, 12, 3, 14, 15, 11},
+ {10, 3, 7, 3, 15, 12, 18, 12, 3, 14, 15, 11},
+ {10, 3, 7, 3, 15, 12, 19, 12, 3, 14, 15, 11},
+ {10, 3, 7, 3, 15, 12, 19, 12, 3, 14, 15, 11} };
+#endif
+
+#endif /* INCLUDED_AD9361_SYNTH_LUT_HPP */
diff --git a/firmware/fx3/b200/.gitignore b/firmware/fx3/b200/.gitignore
new file mode 100644
index 000000000..13c187886
--- /dev/null
+++ b/firmware/fx3/b200/.gitignore
@@ -0,0 +1,4 @@
+*.o
+*.elf
+*.hex
+*.map
diff --git a/firmware/fx3/b200/b200_ad9361.c b/firmware/fx3/b200/b200_ad9361.c
new file mode 100644
index 000000000..ebb0dda70
--- /dev/null
+++ b/firmware/fx3/b200/b200_ad9361.c
@@ -0,0 +1,57 @@
+//
+// Copyright 2013-2014 Ettus Research LLC
+//
+
+#include "cyu3error.h"
+#include "cyu3i2c.h"
+#include "cyu3spi.h"
+#include "cyu3os.h"
+#include "cyu3pib.h"
+#include "cyu3system.h"
+#include "cyu3usb.h"
+#include "cyu3utils.h"
+#include "pib_regs.h"
+#include "b200_vrq.h"
+#include <stdint.h>
+
+#define true CyTrue
+#define false CyFalse
+
+typedef CyBool_t bool;
+
+/* Fast sqrt() - precision can be improved by increasing
+ * the number of iterations
+ */
+float ad9361_sqrt(const float number)
+{
+ uint32_t i;
+ float x2, y;
+
+ x2 = number * 0.5F;
+ y = number;
+ i = *(uint32_t *) &y;
+ i = 0x5f3759df - ( i >> 1 );
+ y = *(float *) &i;
+ y = y * (1.5F - (x2 * y * y));
+
+ return number * y;
+}
+
+void ad9361_msleep(const unsigned millis)
+{
+ CyU3PThreadSleep(millis);
+}
+
+#define AD9361_MIN(a, b) CY_U3P_MIN(a, b)
+#define AD9361_MAX(a, b) CY_U3P_MAX(a, b)
+
+#define AD9361_CEIL_INT(a) ((int)(a+1))
+#define AD9361_FLOOR_INT(a) ((int)(a))
+
+#define AD9361_CLOCKING_MODE 0
+
+#define AD9361_RX_BAND_EDGE0 2.2e9
+#define AD9361_RX_BAND_EDGE1 4e9
+#define AD9361_TX_BAND_EDGE 2.5e9
+
+#include "../ad9361/lib/ad9361_impl.c"
diff --git a/firmware/fx3/b200/b200_gpifconfig.h b/firmware/fx3/b200/b200_gpifconfig.h
new file mode 100644
index 000000000..58836fac8
--- /dev/null
+++ b/firmware/fx3/b200/b200_gpifconfig.h
@@ -0,0 +1,178 @@
+//
+// Copyright 2013-2014 Ettus Research LLC
+//
+
+/*
+ * Project Name: b200_v2.cyfx
+ * Time : 01/17/2013 12:50:08
+ * Device Type: FX3
+ * Project Type: GPIF2
+ *
+ *
+ *
+ *
+ * This is a generated file and should not be modified
+ * This file need to be included only once in the firmware
+ * This file is generated by Gpif2 designer tool version - 1.0.715.0
+ *
+ */
+
+#ifndef _INCLUDED_CYFXGPIF2CONFIG_
+#define _INCLUDED_CYFXGPIF2CONFIG_
+#include "cyu3types.h"
+#include "cyu3gpif.h"
+
+/* Summary
+ Number of states in the state machine
+ */
+#define CY_NUMBER_OF_STATES 6
+
+/* Summary
+ Mapping of user defined state names to state indices
+ */
+#define RESET 0
+#define IDLE 1
+#define READ 2
+#define WRITE 3
+#define SHORT_PKT 4
+#define ZLP 5
+
+
+/* Summary
+ Initial value of early outputs from the state machine.
+ */
+#define ALPHA_RESET 0x8
+
+
+/* Summary
+ Transition function values used in the state machine.
+ */
+uint16_t CyFxGpifTransition[] = {
+ 0x0000, 0x8080, 0x2222, 0x5555, 0x7F7F, 0x1F1F, 0x8888
+};
+
+/* Summary
+ Table containing the transition information for various states.
+ This table has to be stored in the WAVEFORM Registers.
+ This array consists of non-replicated waveform descriptors and acts as a
+ waveform table.
+ */
+CyU3PGpifWaveData CyFxGpifWavedata[] = {
+ {{0x1E086001,0x000100C4,0x80000000},{0x00000000,0x00000000,0x00000000}},
+ {{0x4E080302,0x00000200,0x80000000},{0x00000000,0x00000000,0x00000000}},
+ {{0x1E086001,0x000100C4,0x80000000},{0x4E040704,0x20000200,0xC0100000}},
+ {{0x00000000,0x00000000,0x00000000},{0x00000000,0x00000000,0x00000000}},
+ {{0x00000000,0x00000000,0x00000000},{0x3E738705,0x00000200,0xC0100000}},
+ {{0x00000000,0x00000000,0x00000000},{0x5E002703,0x2001020C,0x80000000}},
+ {{0x00000000,0x00000000,0x00000000},{0x4E040704,0x20000200,0xC0100000}}
+};
+
+/* Summary
+ Table that maps state indices to the descriptor table indices.
+ */
+uint8_t CyFxGpifWavedataPosition[] = {
+ 0,1,0,2,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,
+ 3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,
+ 0,4,0,2,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,
+ 3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,
+ 0,5,0,2,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,
+ 3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,
+ 0,6,0,2,0,0
+};
+
+/* Summary
+ GPIF II configuration register values.
+ */
+uint32_t CyFxGpifRegValue[] = {
+ 0x80000380, /* CY_U3P_PIB_GPIF_CONFIG */
+ 0x000010AC, /* CY_U3P_PIB_GPIF_BUS_CONFIG */
+ 0x01070002, /* CY_U3P_PIB_GPIF_BUS_CONFIG2 */
+ 0x00000044, /* CY_U3P_PIB_GPIF_AD_CONFIG */
+ 0x00000000, /* CY_U3P_PIB_GPIF_STATUS */
+ 0x00000000, /* CY_U3P_PIB_GPIF_INTR */
+ 0x00000000, /* CY_U3P_PIB_GPIF_INTR_MASK */
+ 0x00000082, /* CY_U3P_PIB_GPIF_SERIAL_IN_CONFIG */
+ 0x00000782, /* CY_U3P_PIB_GPIF_SERIAL_OUT_CONFIG */
+ 0x00000500, /* CY_U3P_PIB_GPIF_CTRL_BUS_DIRECTION */
+ 0x0000FFCF, /* CY_U3P_PIB_GPIF_CTRL_BUS_DEFAULT */
+ 0x000000BF, /* CY_U3P_PIB_GPIF_CTRL_BUS_POLARITY */
+ 0x00000000, /* CY_U3P_PIB_GPIF_CTRL_BUS_TOGGLE */
+ 0x00000000, /* CY_U3P_PIB_GPIF_CTRL_BUS_SELECT */
+ 0x00000000, /* CY_U3P_PIB_GPIF_CTRL_BUS_SELECT */
+ 0x00000000, /* CY_U3P_PIB_GPIF_CTRL_BUS_SELECT */
+ 0x00000000, /* CY_U3P_PIB_GPIF_CTRL_BUS_SELECT */
+ 0x00000018, /* CY_U3P_PIB_GPIF_CTRL_BUS_SELECT */
+ 0x00000019, /* CY_U3P_PIB_GPIF_CTRL_BUS_SELECT */
+ 0x00000000, /* CY_U3P_PIB_GPIF_CTRL_BUS_SELECT */
+ 0x00000000, /* CY_U3P_PIB_GPIF_CTRL_BUS_SELECT */
+ 0x00000000, /* CY_U3P_PIB_GPIF_CTRL_BUS_SELECT */
+ 0x00000000, /* CY_U3P_PIB_GPIF_CTRL_BUS_SELECT */
+ 0x00000000, /* CY_U3P_PIB_GPIF_CTRL_BUS_SELECT */
+ 0x00000000, /* CY_U3P_PIB_GPIF_CTRL_BUS_SELECT */
+ 0x00000000, /* CY_U3P_PIB_GPIF_CTRL_BUS_SELECT */
+ 0x00000000, /* CY_U3P_PIB_GPIF_CTRL_BUS_SELECT */
+ 0x00000000, /* CY_U3P_PIB_GPIF_CTRL_BUS_SELECT */
+ 0x00000000, /* CY_U3P_PIB_GPIF_CTRL_BUS_SELECT */
+ 0x00000006, /* CY_U3P_PIB_GPIF_CTRL_COUNT_CONFIG */
+ 0x00000000, /* CY_U3P_PIB_GPIF_CTRL_COUNT_RESET */
+ 0x0000FFFF, /* CY_U3P_PIB_GPIF_CTRL_COUNT_LIMIT */
+ 0x0000010A, /* CY_U3P_PIB_GPIF_ADDR_COUNT_CONFIG */
+ 0x00000000, /* CY_U3P_PIB_GPIF_ADDR_COUNT_RESET */
+ 0x0000FFFF, /* CY_U3P_PIB_GPIF_ADDR_COUNT_LIMIT */
+ 0x00000000, /* CY_U3P_PIB_GPIF_STATE_COUNT_CONFIG */
+ 0x0000FFFF, /* CY_U3P_PIB_GPIF_STATE_COUNT_LIMIT */
+ 0x0000010A, /* CY_U3P_PIB_GPIF_DATA_COUNT_CONFIG */
+ 0x00000000, /* CY_U3P_PIB_GPIF_DATA_COUNT_RESET */
+ 0x0000FFFF, /* CY_U3P_PIB_GPIF_DATA_COUNT_LIMIT */
+ 0x00000000, /* CY_U3P_PIB_GPIF_CTRL_COMP_VALUE */
+ 0x00000000, /* CY_U3P_PIB_GPIF_CTRL_COMP_MASK */
+ 0x00000000, /* CY_U3P_PIB_GPIF_DATA_COMP_VALUE */
+ 0x00000000, /* CY_U3P_PIB_GPIF_DATA_COMP_MASK */
+ 0x00000000, /* CY_U3P_PIB_GPIF_ADDR_COMP_VALUE */
+ 0x00000000, /* CY_U3P_PIB_GPIF_ADDR_COMP_MASK */
+ 0x00000000, /* CY_U3P_PIB_GPIF_DATA_CTRL */
+ 0x00000000, /* CY_U3P_PIB_GPIF_INGRESS_DATA */
+ 0x00000000, /* CY_U3P_PIB_GPIF_INGRESS_DATA */
+ 0x00000000, /* CY_U3P_PIB_GPIF_INGRESS_DATA */
+ 0x00000000, /* CY_U3P_PIB_GPIF_INGRESS_DATA */
+ 0x00000000, /* CY_U3P_PIB_GPIF_EGRESS_DATA */
+ 0x00000000, /* CY_U3P_PIB_GPIF_EGRESS_DATA */
+ 0x00000000, /* CY_U3P_PIB_GPIF_EGRESS_DATA */
+ 0x00000000, /* CY_U3P_PIB_GPIF_EGRESS_DATA */
+ 0x00000000, /* CY_U3P_PIB_GPIF_INGRESS_ADDRESS */
+ 0x00000000, /* CY_U3P_PIB_GPIF_INGRESS_ADDRESS */
+ 0x00000000, /* CY_U3P_PIB_GPIF_INGRESS_ADDRESS */
+ 0x00000000, /* CY_U3P_PIB_GPIF_INGRESS_ADDRESS */
+ 0x00000000, /* CY_U3P_PIB_GPIF_EGRESS_ADDRESS */
+ 0x00000000, /* CY_U3P_PIB_GPIF_EGRESS_ADDRESS */
+ 0x00000000, /* CY_U3P_PIB_GPIF_EGRESS_ADDRESS */
+ 0x00000000, /* CY_U3P_PIB_GPIF_EGRESS_ADDRESS */
+ 0x80010400, /* CY_U3P_PIB_GPIF_THREAD_CONFIG */
+ 0x80010401, /* CY_U3P_PIB_GPIF_THREAD_CONFIG */
+ 0x80010402, /* CY_U3P_PIB_GPIF_THREAD_CONFIG */
+ 0x80010403, /* CY_U3P_PIB_GPIF_THREAD_CONFIG */
+ 0x00000000, /* CY_U3P_PIB_GPIF_LAMBDA_STAT */
+ 0x00000000, /* CY_U3P_PIB_GPIF_ALPHA_STAT */
+ 0x00000000, /* CY_U3P_PIB_GPIF_BETA_STAT */
+ 0x00080000, /* CY_U3P_PIB_GPIF_WAVEFORM_CTRL_STAT */
+ 0x00000000, /* CY_U3P_PIB_GPIF_WAVEFORM_SWITCH */
+ 0x00000000, /* CY_U3P_PIB_GPIF_WAVEFORM_SWITCH_TIMEOUT */
+ 0x00000000, /* CY_U3P_PIB_GPIF_CRC_CONFIG */
+ 0x00000000, /* CY_U3P_PIB_GPIF_CRC_DATA */
+ 0xFFFFFFF1 /* CY_U3P_PIB_GPIF_BETA_DEASSERT */
+};
+
+/* Summary
+ This structure holds all the configuration inputs for the GPIF II.
+ */
+const CyU3PGpifConfig_t CyFxGpifConfig = {
+ (uint16_t)(sizeof(CyFxGpifWavedataPosition)/sizeof(uint8_t)),
+ CyFxGpifWavedata,
+ CyFxGpifWavedataPosition,
+ (uint16_t)(sizeof(CyFxGpifTransition)/sizeof(uint16_t)),
+ CyFxGpifTransition,
+ (uint16_t)(sizeof(CyFxGpifRegValue)/sizeof(uint32_t)),
+ CyFxGpifRegValue
+};
+
+#endif /* _INCLUDED_CYFXGPIF2CONFIG_ */
diff --git a/firmware/fx3/b200/b200_i2c.c b/firmware/fx3/b200/b200_i2c.c
new file mode 100644
index 000000000..c6fa67c77
--- /dev/null
+++ b/firmware/fx3/b200/b200_i2c.c
@@ -0,0 +1,82 @@
+//
+// Copyright 2013-2014 Ettus Research LLC
+//
+
+#include "b200_i2c.h"
+
+#include "cyu3i2c.h"
+
+/* I2c initialization for EEPROM programming. */
+void CyFxI2cInit (uint16_t pageLen) {
+ CyU3PI2cConfig_t i2cConfig;
+
+ /* Initialize and configure the I2C master module. */
+ CyU3PI2cInit ();
+
+ /* Start the I2C master block. The bit rate is set at 100KHz.
+ * The data transfer is done via DMA. */
+ CyU3PMemSet ((uint8_t *)&i2cConfig, 0, sizeof(i2cConfig));
+ i2cConfig.bitRate = CY_FX_USBI2C_I2C_BITRATE;
+ i2cConfig.busTimeout = 0xFFFFFFFF;
+ i2cConfig.dmaTimeout = 0xFFFF;
+ i2cConfig.isDma = CyFalse;
+
+ CyU3PI2cSetConfig (&i2cConfig, NULL);
+ glI2cPageSize = pageLen;
+}
+
+/* I2C read / write for programmer application. */
+void CyFxUsbI2cTransfer (
+ uint16_t byteAddress,
+ uint8_t devAddr,
+ uint16_t byteCount,
+ uint8_t *buffer,
+ CyBool_t isRead)
+{
+ CyU3PI2cPreamble_t preamble;
+ uint16_t pageCount = (byteCount / glI2cPageSize);
+ uint16_t resCount = glI2cPageSize;
+
+ if (byteCount == 0) {
+ return;
+ }
+
+ if ((byteCount % glI2cPageSize) != 0) {
+ pageCount ++;
+ resCount = byteCount % glI2cPageSize;
+ }
+
+ while (pageCount != 0) {
+ if (isRead) {
+ /* Update the preamble information. */
+ preamble.length = 4;
+ preamble.buffer[0] = devAddr;
+ preamble.buffer[1] = (uint8_t)(byteAddress >> 8);
+ preamble.buffer[2] = (uint8_t)(byteAddress & 0xFF);
+ preamble.buffer[3] = (devAddr | 0x01);
+ preamble.ctrlMask = 0x0004;
+
+ CyU3PI2cReceiveBytes (&preamble, buffer, (pageCount == 1) ? resCount : glI2cPageSize, 0);
+ } else {
+ /* Write. Update the preamble information. */
+ preamble.length = 3;
+ preamble.buffer[0] = devAddr;
+ preamble.buffer[1] = (uint8_t)(byteAddress >> 8);
+ preamble.buffer[2] = (uint8_t)(byteAddress & 0xFF);
+ preamble.ctrlMask = 0x0000;
+
+ CyU3PI2cTransmitBytes (&preamble, buffer, (pageCount == 1) ? resCount : glI2cPageSize, 0);
+ /* Wait for the write to complete. */
+ preamble.length = 1;
+ CyU3PI2cWaitForAck(&preamble, 200);
+ }
+
+ /* An additional delay seems to be required after receiving an ACK. */
+ CyU3PThreadSleep (1);
+
+ /* Update the parameters */
+ byteAddress += glI2cPageSize;
+ buffer += glI2cPageSize;
+ pageCount --;
+ }
+}
diff --git a/firmware/fx3/b200/b200_i2c.h b/firmware/fx3/b200/b200_i2c.h
new file mode 100644
index 000000000..c5c781946
--- /dev/null
+++ b/firmware/fx3/b200/b200_i2c.h
@@ -0,0 +1,40 @@
+//
+// Copyright 2013-2014 Ettus Research LLC
+//
+
+#ifndef _B200_I2C_H
+#define _B200_I2C_H
+
+#include "cyu3externcstart.h"
+
+#include "cyu3usbconst.h"
+#include "cyu3types.h"
+
+/* Following two definitions made in b200_main.h for consistency. */
+/* define B200_VREQ_EEPROM_WRITE (uint8_t)(0xBA) */
+/* define B200_VREQ_EEPROM_READ (uint8_t)(0xBB) */
+
+static uint16_t glI2cPageSize = 0x40; /* I2C Page size to be used for transfers. */
+
+/* This application uses EEPROM as the slave I2C device. The I2C EEPROM
+ * part number used is 24LC256. The capacity of the EEPROM is 256K bits */
+#define CY_FX_USBI2C_I2C_MAX_CAPACITY (32 * 1024) /* Capacity in bytes */
+
+/* The following constant is defined based on the page size that the I2C
+ * device support. 24LC256 support 64 byte page write access. */
+#define CY_FX_USBI2C_I2C_PAGE_SIZE (64)
+
+/* I2C Data rate */
+#define CY_FX_USBI2C_I2C_BITRATE (100000)
+
+/* Give a timeout value of 5s for any programming. */
+#define CY_FX_USB_I2C_TIMEOUT (5000)
+
+/* Function forward-declerations. */
+void CyFxI2cInit (uint16_t pageLen);
+void CyFxUsbI2cTransfer (uint16_t byteAddress, uint8_t devAddr,
+ uint16_t byteCount, uint8_t *buffer, CyBool_t isRead);
+
+#include "cyu3externcend.h"
+
+#endif /* _B200_I2C_H */
diff --git a/firmware/fx3/b200/b200_main.c b/firmware/fx3/b200/b200_main.c
new file mode 100644
index 000000000..38af9ed4e
--- /dev/null
+++ b/firmware/fx3/b200/b200_main.c
@@ -0,0 +1,3160 @@
+//
+// Copyright 2013-2014 Ettus Research LLC
+//
+
+/* This file defines the application that runs on the Cypress FX3 device, and
+ * enables the user to program the FPGA with an FPGA image. Since the FPGA
+ * doesn't yet have a clock, the image must be bit-banged into the FPGA.
+ */
+
+#include <stdarg.h>
+#include <stdio.h>
+
+#include "b200_main.h"
+#include "b200_gpifconfig.h"
+#include "b200_vrq.h"
+#include "b200_i2c.h"
+
+#include "cyu3dma.h"
+#include "cyu3error.h"
+#include "cyu3gpif.h"
+#include "cyu3gpio.h"
+#include "cyu3spi.h"
+#include "cyu3os.h"
+#include "cyu3pib.h"
+#include "cyu3system.h"
+#include "cyu3usb.h"
+#include "cyu3utils.h"
+#include "cyfxversion.h"
+#include "pib_regs.h"
+
+#include <ad9361_transaction.h>
+#include <ad9361_dispatch.h>
+
+#define STATIC_SAVER static // Save stack space for variables in a non-re-entrant function (e.g. USB setup callback)
+
+/*
+ * WARNING: Before you enable any of the features below, please read the comments on the same line for that feature!
+ * Indented features must have the parent feature enabled as well.
+ */
+
+//#define HAS_HEAP // This requires memory to be set aside for the heap (e.g. required for printing floating-point numbers). You can apply the accompanying patch ('fx3_mem_map.patch') to fx3.ld & cyfxtx.c to create one.
+//#define ENABLE_MSG // This will cause the compiled code to exceed the default text memory area (SYS_MEM). You can apply the accompanying patch ('fx3_mem_map.patch') to fx3.ld & cyfxtx.c to resize the memory map so it will fit.
+//#define ENABLE_AD9361_LOGGING // When enabling this, you *must* enable the heap with HAS_HEAP (and apply the accompanying memory map patch 'fx3_mem_map.patch') otherwise the FW will crash when printing a floating-point number (as there is no heap for _sbrk by default)
+//#define ENABLE_MANUAL_DMA_XFER
+//#define ENABLE_MANUAL_DMA_XFER_FROM_HOST
+//#define ENABLE_MANUAL_DMA_XFER_TO_HOST
+//#define ENABLE_DMA_BUFFER_PACKET_DEBUG
+//#define ENABLE_FPGA_SB // Be careful: this will add an ever-so-slight delay to some operations (e.g. AD3961 tune)
+#define ENABLE_RE_ENUM_THREAD
+#define ENABLE_USB_EVENT_LOGGING
+//#define PREVENT_LOW_POWER_MODE
+//#define ENABLE_INIT_B_WORKAROUND // This should only be enabled if you have a board where the FPGA INIT_B line is broken, but the FPGA is known to work
+//#define ENABLE_DONE_WORKAROUND // This should only be enabled if you have a board where the FPGA DONE line is broken, but the FPGA is known to work
+
+#define WATCHDOG_TIMEOUT 1500
+#define CHECK_POWER_STATE_SLEEP_TIME 500 // Should be less than WATCHDOG_TIMEOUT
+
+#define FPGA_PROGRAMMING_POLL_SLEEP 10 // ticks
+#define FPGA_PROGRAMMING_BITSTREAM_START_POLL_COUNT 250 // ~2.5 secs
+#define FPGA_PROGRAMMING_INITB_POLL_COUNT 100 // ~1 sec
+#define FPGA_PROGRAMMING_DONE_POLL_COUNT 250 // ~2.5 secs // This is the interval *after* no FPGA programming activity has been detected
+
+#define FPGA_RESET_SETTLING_TIME (1*10) // ~10ms (for SB to initialise)
+
+#define RE_ENUM_THREAD_SLEEP_TIME 100
+#define KEEP_ALIVE_LOOP_COUNT 200
+
+#pragma message "----------------------"
+
+#ifdef ENABLE_MSG
+#pragma message "msg enabled"
+
+#ifdef ENABLE_AD9361_LOGGING
+#pragma message " AD9361 logging enabled"
+#else
+#pragma message " AD9361 logging disabled"
+#endif // ENABLE_AD9361_LOGGING
+
+#else
+#pragma message "msg disabled"
+#endif // ENABLE_MSG
+
+#ifdef ENABLE_MANUAL_DMA_XFER
+#pragma message "Manual DMA transfers"
+
+#ifdef ENABLE_MANUAL_DMA_XFER_FROM_HOST
+#pragma message " -> From host"
+#endif // ENABLE_MANUAL_DMA_XFER_FROM_HOST
+
+#ifdef ENABLE_MANUAL_DMA_XFER_TO_HOST
+#pragma message " <- To host"
+#endif // ENABLE_MANUAL_DMA_XFER_TO_HOST
+
+#ifdef ENABLE_DMA_BUFFER_PACKET_DEBUG
+#pragma message " Packet debugging enabled"
+#endif // ENABLE_DMA_BUFFER_PACKET_DEBUG
+
+#else
+#pragma message "Auto DMA transfers"
+#endif // ENABLE_MANUAL_DMA_XFER
+
+#ifdef ENABLE_FPGA_SB
+#pragma message "FPGA Settings Bus enabled"
+#else
+#pragma message "FPGA Settings Bus disabled"
+#endif // ENABLE_FPGA_SB
+
+#ifdef ENABLE_RE_ENUM_THREAD
+#pragma message "Re-enumeration & statistics thread enabled"
+#else
+#pragma message "Re-enumeration & statistics thread disabled"
+#endif // ENABLE_RE_ENUM_THREAD
+
+#ifdef ENABLE_USB_EVENT_LOGGING
+#pragma message "USB event logging enabled"
+#else
+#pragma message "USB event logging disabled"
+#endif // ENABLE_USB_EVENT_LOGGING
+
+#ifdef PREVENT_LOW_POWER_MODE
+#pragma message "Preventing Low Power Mode"
+#else
+#pragma message "Allowing Low Power Mode"
+#endif // PREVENT_LOW_POWER_MODE
+
+#ifdef HAS_HEAP
+#pragma message "Heap enabled"
+#else
+#pragma message "Heap disabled"
+#endif // HAS_HEAP
+
+#ifdef ENABLE_INIT_B_WORKAROUND
+#pragma message "INIT_B workaround enabled"
+#else
+#pragma message "INIT_B workaround disabled"
+#endif // ENABLE_INIT_B_WORKAROUND
+
+#ifdef ENABLE_DONE_WORKAROUND
+#pragma message "DONE workaround enabled"
+#else
+#pragma message "DONE workaround disabled"
+#endif // ENABLE_DONE_WORKAROUND
+
+#pragma message "----------------------"
+
+/* Declare global & static fields for our bit-bang application. */
+static CyU3PDmaChannel data_cons_to_prod_chan_handle;
+static CyU3PDmaChannel data_prod_to_cons_chan_handle;
+
+static CyU3PDmaChannel ctrl_cons_to_prod_chan_handle;
+static CyU3PDmaChannel ctrl_prod_to_cons_chan_handle;
+
+static CyU3PEvent g_event_usb_config;
+static CyU3PThread thread_main_app;
+static CyU3PThread thread_fpga_config;
+#ifdef ENABLE_RE_ENUM_THREAD
+static CyU3PThread thread_re_enum;
+#endif // ENABLE_RE_ENUM_THREAD
+static CyU3PThread thread_ad9361;
+
+static CyBool_t g_app_running = CyFalse;
+static uint8_t g_fx3_state = STATE_UNDEFINED;
+
+//#define AD9361_DISPATCH_PACKET_SIZE 64 // Must fit into smallest VREQ
+#define USB2_VREQ_BUF_SIZE 64
+#define USB3_VREQ_BUF_SIZE 512
+#define MIN_VREQ_BUF_SIZE USB2_VREQ_BUF_SIZE
+#define MAX_VREQ_BUF_SIZE USB3_VREQ_BUF_SIZE
+
+#if AD9361_DISPATCH_PACKET_SIZE > MIN_VREQ_BUF_SIZE
+#error "AD9361_DISPATCH_PACKET_SIZE must be less than MIN_VREQ_BUF_SIZE"
+#endif
+
+static uint16_t g_vendor_req_buff_size = MIN_VREQ_BUF_SIZE;
+static uint8_t g_vendor_req_buffer[MAX_VREQ_BUF_SIZE] __attribute__ ((aligned (32)));
+static uint16_t g_vendor_req_read_count = 0;
+
+static uint8_t fpga_hash[4] __attribute__ ((aligned (32)));
+static uint8_t fw_hash[4] __attribute__ ((aligned (32)));
+static uint8_t compat_num[2];
+static uint32_t g_fpga_programming_write_count = 0;
+
+static char g_ad9361_response[AD9361_DISPATCH_PACKET_SIZE];
+
+#define COUNTER_MAGIC 0x10024001
+#define LOG_BUFFER_SIZE /*MAX_VREQ_BUF_SIZE*/1024 // [Max vreq @ USB3 (64 @ USB2)] Can be larger
+static char log_buffer[LOG_BUFFER_SIZE];
+static char log_contiguous_buffer[LOG_BUFFER_SIZE];
+static int log_buffer_idx = 0, log_buffer_len = 0;
+#ifdef ENABLE_MSG
+static int log_count = 0;
+#endif // ENABLE_MSG
+
+#define USB_EVENT_LOG_SIZE 64
+static uint8_t g_usb_event_log[USB_EVENT_LOG_SIZE];
+static uint16_t g_last_usb_event_log_index = 0;
+static uint8_t g_usb_event_log_contiguous_buf[USB_EVENT_LOG_SIZE];
+
+#ifdef ENABLE_FPGA_SB
+static CyBool_t g_fpga_sb_enabled = CyFalse;
+static uint16_t g_fpga_sb_uart_div = 434*2;
+static uint16_t g_fpga_sb_last_usb_event_log_index = 0;
+static CyU3PThread thread_fpga_sb_poll;
+static CyU3PMutex g_suart_lock;
+#endif // ENABLE_FPGA_SB
+
+static CyU3PMutex g_log_lock, g_counters_lock, g_counters_dma_from_host_lock, g_counters_dma_to_host_lock;
+
+#define FPGA_SB_UART_ADDR_BASE 0x00
+
+enum UARTRegs
+{
+ SUART_CLKDIV,
+ SUART_TXLEVEL,
+ SUART_RXLEVEL,
+ SUART_TXCHAR,
+ SUART_RXCHAR
+};
+
+enum UARTPacketType
+{
+ UPT_NONE = '\0',
+ UPT_MSG = ' ',
+ UPT_COUNTERS = 'C',
+ UPT_USB_EVENTS = 'U',
+};
+
+enum ConfigFlags {
+ CF_NONE = 0,
+ CF_TX_SWING = 1 << 0,
+ CF_TX_DEEMPHASIS = 1 << 1,
+ CF_DISABLE_USB2 = 1 << 2,
+ CF_ENABLE_AS_SUPERSPEED = 1 << 3,
+ CF_PPORT_DRIVE_STRENGTH = 1 << 4,
+ CF_DMA_BUFFER_SIZE = 1 << 5,
+ CF_DMA_BUFFER_COUNT = 1 << 6,
+ CF_MANUAL_DMA = 1 << 7,
+
+ CF_RE_ENUM = 1 << 31
+};
+
+typedef struct Config {
+ int tx_swing; // [90] [65] 45
+ int tx_deemphasis; // 0x11
+ int disable_usb2; // 0
+ int enable_as_superspeed; // 1
+ int pport_drive_strength; // CY_U3P_DS_THREE_QUARTER_STRENGTH
+ int dma_buffer_size; // [USB3] (max)
+ int dma_buffer_count; // [USB3] 1
+ int manual_dma; // 0
+ int sb_baud_div; // 434*2
+} CONFIG, *PCONFIG;
+
+typedef struct ConfigMod {
+ int flags;
+ CONFIG config;
+} CONFIG_MOD, *PCONFIG_MOD;
+
+static CONFIG g_config;
+static CONFIG_MOD g_config_mod;
+
+#define REG_LNK_PHY_ERROR_STATUS 0xE0033044
+
+enum PhyErrors {
+ PHYERR_PHY_LOCK_EV = 1 << 8,
+ PHYERR_TRAINING_ERROR_EV = 1 << 7,
+ PHYERR_RX_ERROR_CRC32_EV = 1 << 6,
+ PHYERR_RX_ERROR_CRC16_EV = 1 << 5,
+ PHYERR_RX_ERROR_CRC5_EV = 1 << 4,
+ PHYERR_PHY_ERROR_DISPARITY_EV = 1 << 3,
+ PHYERR_PHY_ERROR_EB_UND_EV = 1 << 2,
+ PHYERR_PHY_ERROR_EB_OVR_EV = 1 << 1,
+ PHYERR_PHY_ERROR_DECODE_EV = 1 << 0,
+
+ PHYERR_MAX = PHYERR_PHY_LOCK_EV,
+ PHYERR_MASK = (PHYERR_MAX << 1) - 1
+};
+
+typedef struct USBErrorCounters {
+ int phy_error_count;
+ int link_error_count;
+
+ int PHY_LOCK_EV;
+ int TRAINING_ERROR_EV;
+ int RX_ERROR_CRC32_EV;
+ int RX_ERROR_CRC16_EV;
+ int RX_ERROR_CRC5_EV;
+ int PHY_ERROR_DISPARITY_EV;
+ int PHY_ERROR_EB_UND_EV;
+ int PHY_ERROR_EB_OVR_EV;
+ int PHY_ERROR_DECODE_EV;
+} USB_ERROR_COUNTERS, *PUSB_ERROR_COUNTERS;
+
+typedef struct DMACounters {
+ int XFER_CPLT;
+ int SEND_CPLT;
+ int RECV_CPLT;
+ int PROD_EVENT;
+ int CONS_EVENT;
+ int ABORTED;
+ int ERROR;
+ int PROD_SUSP;
+ int CONS_SUSP;
+
+ int BUFFER_MARKER;
+ int BUFFER_EOP;
+ int BUFFER_ERROR;
+ int BUFFER_OCCUPIED;
+
+ int last_count;
+ int last_size;
+
+ int last_sid;
+ int bad_sid_count;
+} DMA_COUNTERS, *PDMA_COUNTERS;
+
+typedef struct Counters {
+ int magic;
+
+ DMA_COUNTERS dma_to_host;
+ DMA_COUNTERS dma_from_host;
+
+ int log_overrun_count;
+
+ int usb_error_update_count;
+ USB_ERROR_COUNTERS usb_error_counters;
+
+ int usb_ep_underrun_count;
+
+ int heap_size;
+
+ int resume_count;
+} COUNTERS, *PCOUNTERS;
+
+volatile static COUNTERS g_counters;
+
+#ifndef min
+#define min(a,b) ((a)<(b)?(a):(b))
+#endif // min
+
+#define LOCKP(p) CyU3PMutexGet(p, CYU3P_WAIT_FOREVER)
+#define UNLOCKP(p) CyU3PMutexPut(p)
+#define LOCK(p) LOCKP(&p)
+#define UNLOCK(p) UNLOCKP(&p)
+
+////////////////////////////////////////////////////////////////////////////////
+
+char *heap_end = 0;
+caddr_t _sbrk(int incr)
+{
+#ifdef HAS_HEAP
+ extern char __heap_start;
+ extern char __heap_end;
+ char *prev_heap_end;
+
+ if (heap_end == 0)
+ {
+ heap_end = (char *)&__heap_start;
+ }
+ prev_heap_end = heap_end;
+
+ if (heap_end + incr > &__heap_end)
+ {
+ return (caddr_t) 0;
+ }
+ heap_end += incr;
+ g_counters.heap_size += incr; // Not sync'd
+
+ return (caddr_t) prev_heap_end;
+#else
+ return (caddr_t) -1;
+#endif // HAS_HEAP
+}
+
+////////////////////////////////////////////////////////////////////////////////
+
+void b200_start_fpga_sb_gpio(void);
+void sb_write(uint8_t reg, uint32_t val);
+void _sb_write_string(const char* msg);
+
+void msg(const char* str, ...) {
+#define msg_CHECK_USE_LOCK
+//void _msgv(int use_lock, const char* str, va_list args) {
+//#define msg_CHECK_USE_LOCK if (use_lock)
+#ifdef ENABLE_MSG
+ va_list args;
+ static char buf[LOG_BUFFER_SIZE];
+ int idx = 0;
+
+ msg_CHECK_USE_LOCK
+ LOCK(g_log_lock);
+
+ ++log_count;
+ log_count %= 10000;
+
+ va_start(args, str);
+
+ if (1) { // FIXME: Optional
+ uint32_t time_now = CyU3PGetTime();
+ idx += sprintf(buf, "%08X %04i ", (uint)time_now, log_count);
+ }
+ else
+ idx += sprintf(buf, "%04i ", log_count);
+ idx += vsnprintf(buf + idx, LOG_BUFFER_SIZE - idx, str, args);
+
+ va_end(args);
+
+ if ((LOG_BUFFER_SIZE - log_buffer_len) < (idx + 1 + 1)) {
+ msg_CHECK_USE_LOCK
+ LOCK(g_counters_lock);
+ ++g_counters.log_overrun_count;
+ msg_CHECK_USE_LOCK
+ UNLOCK(g_counters_lock);
+
+ goto msg_exit;
+ }
+
+ // Circular buffer if we need it later, but currently won't wrap due to above condition
+ memcpy(log_buffer + log_buffer_len, buf, min(idx + 1, LOG_BUFFER_SIZE - log_buffer_len));
+ if ((idx + 1) > (LOG_BUFFER_SIZE - log_buffer_len))
+ {
+ memcpy(log_buffer, buf + (LOG_BUFFER_SIZE - log_buffer_len), (idx + 1) - (LOG_BUFFER_SIZE - log_buffer_len));
+ log_buffer[(idx + 1) - (LOG_BUFFER_SIZE - log_buffer_len)] = '\0';
+ }
+ else
+ log_buffer[log_buffer_len + idx + 1] = '\0';
+
+ log_buffer_len += (idx + 1);
+msg_exit:
+ msg_CHECK_USE_LOCK
+ UNLOCK(g_log_lock);
+#ifdef ENABLE_FPGA_SB
+ LOCK(g_suart_lock);
+ sb_write(SUART_TXCHAR, UPT_MSG);
+ _sb_write_string(buf);
+ _sb_write_string("\r\n");
+ UNLOCK(g_suart_lock);
+#endif // ENABLE_FPGA_SB
+#endif // ENABLE_MSG
+}
+/*
+void msg(const char* str, ...)
+{
+ va_list args;
+ va_start(args, str);
+ _msgv(1, str, args);
+ va_end(args);
+}
+
+void msg_nl(const char* str, ...)
+{
+ va_list args;
+ va_start(args, str);
+ _msgv(0, str, args);
+ va_end(args);
+}
+*/
+void log_reset(void) {
+ //LOCK(g_log_lock);
+
+ log_buffer_idx = 0;
+ log_buffer_len = 0;
+ log_buffer[0] = '\0';
+
+ //UNLOCK(g_log_lock);
+}
+
+void counters_auto_reset(void) {
+ //LOCK(g_counters_lock);
+
+ g_counters.log_overrun_count = 0;
+
+ //UNLOCK(g_counters_lock);
+}
+
+void counters_dma_reset(void) {
+ LOCK(g_counters_lock);
+
+ LOCK(g_counters_dma_to_host_lock);
+ memset((void*)&g_counters.dma_to_host, 0x00, sizeof(DMA_COUNTERS));
+ UNLOCK(g_counters_dma_to_host_lock);
+
+ LOCK(g_counters_dma_from_host_lock);
+ memset((void*)&g_counters.dma_from_host, 0x00, sizeof(DMA_COUNTERS));
+ UNLOCK(g_counters_dma_from_host_lock);
+
+ UNLOCK(g_counters_lock);
+}
+
+void counters_reset_usb_errors(void) {
+ LOCK(g_counters_lock);
+
+ g_counters.usb_error_update_count = 0;
+ memset((void*)&g_counters.usb_error_counters, 0x00, sizeof(g_counters.usb_error_counters));
+
+ UNLOCK(g_counters_lock);
+}
+
+#ifdef ENABLE_MANUAL_DMA_XFER
+/* Callback funtion for the DMA event notification. */
+void dma_callback (
+ CyU3PDmaChannel *chHandle, /* Handle to the DMA channel. */
+ CyU3PDmaCbType_t type, /* Callback type. */
+ CyU3PDmaCBInput_t *input, /* Callback status. */
+ int from_host)
+{
+ CyU3PReturnStatus_t status = CY_U3P_SUCCESS;
+
+ PDMA_COUNTERS cnt = (PDMA_COUNTERS)(from_host ? &g_counters.dma_from_host : &g_counters.dma_to_host);
+ CyU3PMutex* lock = (from_host ? &g_counters_dma_from_host_lock : &g_counters_dma_to_host_lock);
+
+ uint16_t buffer_status = (input->buffer_p.status & CY_U3P_DMA_BUFFER_STATUS_MASK);
+ if (buffer_status & CY_U3P_DMA_BUFFER_MARKER)
+ {
+ cnt->BUFFER_MARKER++;
+ }
+ if (buffer_status & CY_U3P_DMA_BUFFER_EOP)
+ {
+ cnt->BUFFER_EOP++;
+ }
+ if (buffer_status & CY_U3P_DMA_BUFFER_ERROR)
+ {
+ cnt->BUFFER_ERROR++;
+ }
+ if (buffer_status & CY_U3P_DMA_BUFFER_OCCUPIED)
+ {
+ cnt->BUFFER_OCCUPIED++;
+ }
+
+ if (type == CY_U3P_DMA_CB_PROD_EVENT)
+ {
+#ifdef ENABLE_DMA_BUFFER_PACKET_DEBUG
+ LOCKP(lock);
+ int prod_cnt = cnt->PROD_EVENT++;
+ UNLOCKP(lock);
+
+ if (cnt->last_count != input->buffer_p.count)
+ msg("[DMA %05d] buffer.count (%d) != last_count (%d)", prod_cnt, input->buffer_p.count, cnt->last_count);
+ cnt->last_count = input->buffer_p.count;
+
+ if (cnt->last_size != input->buffer_p.size)
+ msg("[DMA %05d] buffer.size (%d) != last_size (%d)", prod_cnt, input->buffer_p.size, cnt->last_size);
+ cnt->last_size = input->buffer_p.size;
+
+ uint32_t* p32 = input->buffer_p.buffer;
+ uint32_t sid = p32[1];
+ cnt->last_sid = (int)sid;
+ if ((sid != 0xa0) && (sid != 0xb0))
+ {
+ cnt->bad_sid_count++;
+ msg("[DMA %05d] Bad SID: 0x%08x", prod_cnt, sid);
+ }
+
+ uint16_t* p16 = input->buffer_p.buffer;
+
+ if (p32[0] & (((uint32_t)1) << 31))
+ {
+ msg("[DMA %05d] Error code: 0x%x (packet len: %d)", prod_cnt, p32[4], p16[0]); // Status
+
+ //msg("[DMA] 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x", p32[0], p32[1], p32[2], p32[3], p32[4], p32[5]);
+ }
+ else
+ {
+ if (p16[1] & (((uint16_t)1) << 12))
+ {
+ msg("[DMA %05d] EOB", prod_cnt); // Comes with one sample
+ }
+
+ if ((p16[0] != input->buffer_p.count) &&
+ ((p16[0] + 4) != input->buffer_p.count))
+ {
+ msg("[DMA %05d] Packet len (%d) != buffer count (%d)", prod_cnt, p16[0], input->buffer_p.count);
+ }
+
+ //msg("[DMA] 0x%04x 0x%04x 0x%04x 0x%04x", p16[0], p16[1], p16[2], p16[3]);
+
+ if (p16[1] & (((uint16_t)1) << 12))
+ msg("[DMA %05d] 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x", prod_cnt, p32[0], p32[1], p32[2], p32[3], p32[4], p32[5]);
+ }
+#endif // ENABLE_DMA_BUFFER_PACKET_DEBUG
+ status = CyU3PDmaChannelCommitBuffer (chHandle, input->buffer_p.count, 0);
+#ifndef ENABLE_DMA_BUFFER_PACKET_DEBUG
+ LOCKP(lock);
+ cnt->PROD_EVENT++;
+ UNLOCKP(lock);
+#endif // !ENABLE_DMA_BUFFER_PACKET_DEBUG
+ }
+ else if (type == CY_U3P_DMA_CB_CONS_EVENT)
+ {
+ LOCKP(lock);
+ cnt->CONS_EVENT++;
+ UNLOCKP(lock);
+ }
+ else if (type == CY_U3P_DMA_CB_XFER_CPLT)
+ {
+ LOCKP(lock);
+ cnt->XFER_CPLT++;
+ UNLOCKP(lock);
+ }
+ else if (type == CY_U3P_DMA_CB_SEND_CPLT)
+ {
+ LOCKP(lock);
+ cnt->SEND_CPLT++;
+ UNLOCKP(lock);
+ }
+ else if (type == CY_U3P_DMA_CB_RECV_CPLT)
+ {
+ LOCKP(lock);
+ cnt->RECV_CPLT++;
+ UNLOCKP(lock);
+ }
+ else if (type == CY_U3P_DMA_CB_ABORTED)
+ {
+ LOCKP(lock);
+ cnt->ABORTED++;
+ UNLOCKP(lock);
+
+ msg("! Aborted %i", from_host);
+ }
+ else if (type == CY_U3P_DMA_CB_ERROR)
+ {
+ LOCKP(lock);
+ cnt->ERROR++;
+ UNLOCKP(lock);
+
+ msg("! Error %i", from_host);
+ }
+ else if (type == CY_U3P_DMA_CB_PROD_SUSP)
+ {
+ LOCKP(lock);
+ cnt->PROD_SUSP++;
+ UNLOCKP(lock);
+
+ msg("! Prod suspend %i", from_host);
+ }
+ else if (type == CY_U3P_DMA_CB_CONS_SUSP)
+ {
+ LOCKP(lock);
+ cnt->CONS_SUSP++;
+ UNLOCKP(lock);
+
+ msg("! Cons suspend %i", from_host);
+ }
+}
+
+void from_host_dma_callback (
+ CyU3PDmaChannel *chHandle, /* Handle to the DMA channel. */
+ CyU3PDmaCbType_t type, /* Callback type. */
+ CyU3PDmaCBInput_t *input) /* Callback status. */
+{
+ return dma_callback(chHandle, type, input, 1);
+}
+
+void to_host_dma_callback (
+ CyU3PDmaChannel *chHandle, /* Handle to the DMA channel. */
+ CyU3PDmaCbType_t type, /* Callback type. */
+ CyU3PDmaCBInput_t *input) /* Callback status. */
+{
+ return dma_callback(chHandle, type, input, 0);
+}
+#endif // ENABLE_MANUAL_DMA_XFER
+
+/*! Interrupt callback for GPIOs.
+ *
+ * This function is invoked by the GPIO interrupt handler when pins configured
+ * as inputs with interrupts are triggered. */
+void gpio_interrupt_callback(uint8_t gpio_id) {
+ CyBool_t gpio_value;
+
+ if ((gpio_id == GPIO_DONE) && (g_fx3_state == STATE_CONFIGURING_FPGA)) { // Only proceed if in the correct FX3 state
+ CyU3PGpioGetValue(gpio_id, &gpio_value);
+
+ if(gpio_value == CyTrue) {
+ //msg("DONE HIGH");
+ CyU3PEventSet(&g_event_usb_config, EVENT_GPIO_DONE_HIGH, CYU3P_EVENT_OR);
+ }
+ } else if ((gpio_id == GPIO_INIT_B) && (g_fx3_state == STATE_FPGA_READY)) { // Only proceed if in the correct FX3 state
+ CyU3PGpioGetValue(gpio_id, &gpio_value);
+
+ if(gpio_value == CyTrue) {
+ //msg("INITB_RISE");
+ CyU3PEventSet(&g_event_usb_config, EVENT_GPIO_INITB_RISE, CYU3P_EVENT_OR);
+ }
+ }
+}
+
+
+// The following two functions are intended to replace write_spi_to_ad9361
+// and read_spi_from_ad9361 after the code porting is complete
+/*! Perform a register write to the ad9361 chip.
+ * A pointer to the register address followed by data will be provided as
+ * parameter
+ */
+static void write_ad9361_reg(uint16_t reg, uint8_t val) {
+
+ CyBool_t gpio_value;
+ uint8_t write_buff[3];
+ MAKE_AD9361_WRITE(write_buff, reg, val)
+
+ // Number of bytes we are writing.
+ uint8_t num_bytes = 3; //register address = 2 bytes, data = 1 byte
+
+ CyU3PGpioSetValue(GPIO_FX3_CE, 0);
+
+ // Clock the data out to AD9361 over SPI.
+ int8_t bit_count, byte_count;
+ for(byte_count = 0; byte_count < num_bytes; byte_count++) {
+
+ uint8_t miso = 0x00;
+ uint8_t data = write_buff[byte_count];
+
+ for(bit_count = 7; bit_count >= 0; bit_count--) {
+ CyU3PGpioSetValue(GPIO_FX3_SCLK, 1);
+ CyU3PGpioSetValue(GPIO_FX3_MOSI, ((data >> bit_count) & 0x01));
+ CyU3PGpioSetValue(GPIO_FX3_SCLK, 0);
+
+ CyU3PGpioGetValue(GPIO_FX3_MISO, &gpio_value);
+ if(gpio_value) {
+ miso |= (1 << bit_count);
+ }
+ }
+ // FIXME: Determine what to do with miso value;
+ }
+
+ CyU3PGpioSetValue(GPIO_FX3_MOSI, 0);
+ CyU3PGpioSetValue(GPIO_FX3_CE, 1);
+}
+
+/*! Perform a register read from to the ad9361 chip.
+ * A pointer to register address will be provided as parameter
+ * The function returns the value read from the register
+ */
+static uint8_t read_ad9361_reg(uint16_t reg) {
+
+ CyBool_t gpio_value;
+ uint8_t write_buff[2];
+ MAKE_AD9361_READ(write_buff, reg)
+
+ // Each 9361 register read returns 1 byte
+
+ CyU3PGpioSetValue(GPIO_FX3_CE, 0);
+
+ // Write the two register address bytes.
+ int8_t bit_count, byte_count;
+ for(byte_count = 0; byte_count < 2; byte_count++) {
+
+ uint8_t miso = 0x00;
+ uint8_t data = write_buff[byte_count];
+
+ for(bit_count = 7; bit_count >= 0; bit_count--) {
+ CyU3PGpioSetValue(GPIO_FX3_SCLK, 1);
+ CyU3PGpioSetValue(GPIO_FX3_MOSI, ((data >> bit_count) & 0x01));
+ CyU3PGpioSetValue(GPIO_FX3_SCLK, 0);
+
+ CyU3PGpioGetValue(GPIO_FX3_MISO, &gpio_value);
+ if(gpio_value) {
+ miso |= (1 << bit_count);
+ }
+ }
+ // FIXME: Determine what to do with miso value;
+ }
+
+ CyU3PGpioSetValue(GPIO_FX3_MOSI, 0);
+
+ // Read the response data from the chip.
+ uint8_t data = 0x00;
+
+ for(bit_count = 7; bit_count >= 0; bit_count--) {
+ CyU3PGpioSetValue(GPIO_FX3_SCLK, 1);
+
+ CyU3PGpioGetValue(GPIO_FX3_MISO, &gpio_value);
+ if(gpio_value) {
+ data |= (1 << bit_count);
+ }
+
+ CyU3PGpioSetValue(GPIO_FX3_SCLK, 0);
+ }
+ CyU3PGpioSetValue(GPIO_FX3_CE, 1);
+ return data;
+}
+
+/*! Perform a register write to the ad9361 chip.
+ *
+ * This function will take data received over EP0, as a vendor request, and
+ * perform a SPI write to ad9361. This requires that the FPGA be passing these
+ * SPI lines through to the ad9361 chip. */
+void write_spi_to_ad9361(void) {
+
+ CyBool_t gpio_value;
+
+ /* Pull out the number of bytes we are writing. */
+ uint8_t num_bytes = ((g_vendor_req_buffer[0] & 0x70) >> 4) + 1;
+
+ CyU3PGpioSetValue(GPIO_FX3_CE, 0);
+
+ /* Clock the data out to AD9361 over SPI. */
+ int8_t bit_count, byte_count;
+ for(byte_count = 0; byte_count < (num_bytes + 2); byte_count++) {
+
+ uint8_t miso = 0x00;
+ uint8_t data = g_vendor_req_buffer[byte_count];
+
+ for(bit_count = 7; bit_count >= 0; bit_count--) {
+ CyU3PGpioSetValue(GPIO_FX3_SCLK, 1);
+ CyU3PGpioSetValue(GPIO_FX3_MOSI, ((data >> bit_count) & 0x01));
+ CyU3PGpioSetValue(GPIO_FX3_SCLK, 0);
+
+ CyU3PGpioGetValue(GPIO_FX3_MISO, &gpio_value);
+ if(gpio_value) {
+ miso |= (1 << bit_count);
+ }
+ }
+
+ g_vendor_req_buffer[byte_count] = miso;
+ }
+
+ CyU3PGpioSetValue(GPIO_FX3_MOSI, 0);
+ CyU3PGpioSetValue(GPIO_FX3_CE, 1);
+}
+
+
+/*! Perform a register read from the ad9361 chip.
+ *
+ * This function will write a command to the ad9361 chip, performing a register
+ * read, and store the returned data in the vendor request buffer. This data can
+ * then be retrieved with another vendor request from the host.
+ *
+ * This requires that the FPGA be passing these SPI lines through to the
+ * ad9361 chip. */
+void read_spi_from_ad9361(void) {
+
+ CyBool_t gpio_value;
+
+ /* Pull out the number of bytes we are reading. */
+ uint8_t num_bytes = ((g_vendor_req_buffer[0] & 0x70) >> 4) + 1;
+
+ CyU3PGpioSetValue(GPIO_FX3_CE, 0);
+
+ /* Write the two instruction bytes. */
+ int8_t bit_count, byte_count;
+ for(byte_count = 0; byte_count < 2; byte_count++) {
+
+ uint8_t miso = 0x00;
+ uint8_t data = g_vendor_req_buffer[byte_count];
+
+ for(bit_count = 7; bit_count >= 0; bit_count--) {
+ CyU3PGpioSetValue(GPIO_FX3_SCLK, 1);
+ CyU3PGpioSetValue(GPIO_FX3_MOSI, ((data >> bit_count) & 0x01));
+ CyU3PGpioSetValue(GPIO_FX3_SCLK, 0);
+
+ CyU3PGpioGetValue(GPIO_FX3_MISO, &gpio_value);
+ if(gpio_value) {
+ miso |= (1 << bit_count);
+ }
+ }
+
+ g_vendor_req_buffer[byte_count] = miso;
+ }
+
+ CyU3PGpioSetValue(GPIO_FX3_MOSI, 0);
+
+ /* Read the response data from the chip. */
+ for(byte_count = 0; byte_count < num_bytes; byte_count++) {
+
+ uint8_t data = 0x00;
+
+ for(bit_count = 7; bit_count >= 0; bit_count--) {
+ CyU3PGpioSetValue(GPIO_FX3_SCLK, 1);
+
+ CyU3PGpioGetValue(GPIO_FX3_MISO, &gpio_value);
+ if(gpio_value) {
+ data |= (1 << bit_count);
+ }
+
+ CyU3PGpioSetValue(GPIO_FX3_SCLK, 0);
+ }
+
+ g_vendor_req_buffer[byte_count + 2] = data;
+ }
+
+ CyU3PGpioSetValue(GPIO_FX3_CE, 1);
+}
+
+
+uint32_t ad9361_transact_spi(const uint32_t bits) {
+ // FIXME: Could make this more sane
+ if ((bits >> 23) & 0x1)
+ {
+ write_ad9361_reg(bits >> 8, bits & 0xff);
+ return 0;
+ }
+ return read_ad9361_reg(bits >> 8);
+}
+
+
+/*! Stops the application, and destroys transport data structures.
+ *
+ * This function is essentially a destructor for all transport configurations.
+ * It ensures that if the USB configuration is reset without a power reboot,
+ * everything will come back up properly. */
+void b200_fw_stop(void) {
+ msg("b200_fw_stop");
+
+ CyU3PEpConfig_t usb_endpoint_config;
+
+ /* Update the flag. */
+ g_app_running = CyFalse;
+
+ /* Flush the endpoint memory */
+ CyU3PUsbFlushEp(DATA_ENDPOINT_PRODUCER);
+ CyU3PUsbFlushEp(DATA_ENDPOINT_CONSUMER);
+ CyU3PUsbFlushEp(CTRL_ENDPOINT_PRODUCER);
+ CyU3PUsbFlushEp(CTRL_ENDPOINT_CONSUMER);
+
+ /* Reset the DMA channels */
+ // SDK 1.3 known issue #1 - probably not necessary since Destroy is next, but just in case
+ CyU3PDmaChannelReset(&data_cons_to_prod_chan_handle);
+ CyU3PDmaChannelReset(&data_prod_to_cons_chan_handle);
+ CyU3PDmaChannelReset(&ctrl_cons_to_prod_chan_handle);
+ CyU3PDmaChannelReset(&ctrl_prod_to_cons_chan_handle);
+
+ /* Destroy the DMA channels */
+ CyU3PDmaChannelDestroy(&data_cons_to_prod_chan_handle);
+ CyU3PDmaChannelDestroy(&data_prod_to_cons_chan_handle);
+ CyU3PDmaChannelDestroy(&ctrl_cons_to_prod_chan_handle);
+ CyU3PDmaChannelDestroy(&ctrl_prod_to_cons_chan_handle);
+
+ /* Disable endpoints. */
+ CyU3PMemSet((uint8_t *) &usb_endpoint_config, 0, \
+ sizeof(usb_endpoint_config));
+ usb_endpoint_config.enable = CyFalse;
+
+ CyU3PSetEpConfig(DATA_ENDPOINT_PRODUCER, &usb_endpoint_config);
+ CyU3PSetEpConfig(DATA_ENDPOINT_CONSUMER, &usb_endpoint_config);
+ CyU3PSetEpConfig(CTRL_ENDPOINT_PRODUCER, &usb_endpoint_config);
+ CyU3PSetEpConfig(CTRL_ENDPOINT_CONSUMER, &usb_endpoint_config);
+}
+
+
+void reset_gpif(void) {
+ g_fx3_state = STATE_BUSY;
+
+ // Put the FPGA into RESET
+ CyU3PGpioSetValue(GPIO_FPGA_RESET, CyTrue);
+
+ // Bring down GPIF
+ CyU3PGpifDisable(CyTrue);
+
+ /* Reset the DMA channels */
+ CyU3PDmaChannelReset(&data_cons_to_prod_chan_handle);
+ CyU3PDmaChannelReset(&data_prod_to_cons_chan_handle);
+ CyU3PDmaChannelReset(&ctrl_cons_to_prod_chan_handle);
+ CyU3PDmaChannelReset(&ctrl_prod_to_cons_chan_handle);
+
+ /* Reset the DMA transfers */
+ CyU3PDmaChannelSetXfer(&data_cons_to_prod_chan_handle, \
+ DMA_SIZE_INFINITE);
+
+ CyU3PDmaChannelSetXfer(&data_prod_to_cons_chan_handle, \
+ DMA_SIZE_INFINITE);
+
+ CyU3PDmaChannelSetXfer(&ctrl_cons_to_prod_chan_handle, \
+ DMA_SIZE_INFINITE);
+
+ CyU3PDmaChannelSetXfer(&ctrl_prod_to_cons_chan_handle, \
+ DMA_SIZE_INFINITE);
+
+ /* Flush the USB endpoints */
+ CyU3PUsbFlushEp(DATA_ENDPOINT_PRODUCER);
+ CyU3PUsbFlushEp(DATA_ENDPOINT_CONSUMER);
+ CyU3PUsbFlushEp(CTRL_ENDPOINT_PRODUCER);
+ CyU3PUsbFlushEp(CTRL_ENDPOINT_CONSUMER);
+
+ /* Load the GPIF configuration for Slave FIFO sync mode. */
+ CyU3PGpifLoad(&CyFxGpifConfig);
+
+ /* Start the state machine. */
+ CyU3PGpifSMStart(RESET, ALPHA_RESET);
+
+ /* Configure the watermarks for the slfifo-write buffers. */
+ CyU3PGpifSocketConfigure(0, DATA_TX_PPORT_SOCKET, 5, CyFalse, 1);
+ CyU3PGpifSocketConfigure(1, DATA_RX_PPORT_SOCKET, 6, CyFalse, 1);
+ CyU3PGpifSocketConfigure(2, CTRL_COMM_PPORT_SOCKET, 5, CyFalse, 1);
+ CyU3PGpifSocketConfigure(3, CTRL_RESP_PPORT_SOCKET, 6, CyFalse, 1);
+
+ CyU3PGpioSetValue(GPIO_FPGA_RESET, CyFalse);
+
+ CyU3PThreadSleep(FPGA_RESET_SETTLING_TIME);
+
+ b200_start_fpga_sb_gpio();
+
+ g_fx3_state = STATE_RUNNING;
+}
+
+
+CyU3PReturnStatus_t b200_set_io_matrix(CyBool_t fpga_config_mode) {
+ CyU3PIoMatrixConfig_t io_config_matrix;
+ CyU3PReturnStatus_t res;
+
+ /* Configure the IO peripherals on the FX3. The gpioSimpleEn arrays are
+ * bitmaps, where each bit represents the GPIO of the matching index - the
+ * second array is index + 32. */
+ CyU3PMemSet((uint8_t *) &io_config_matrix, 0, sizeof(io_config_matrix));
+ io_config_matrix.isDQ32Bit = (fpga_config_mode == CyFalse);
+ io_config_matrix.lppMode = CY_U3P_IO_MATRIX_LPP_DEFAULT;
+ io_config_matrix.gpioSimpleEn[0] = 0 | MASK_GPIO_FPGA_SB_SCL | MASK_GPIO_FPGA_SB_SDA;
+ io_config_matrix.gpioSimpleEn[1] = MASK_GPIO_PROGRAM_B \
+ | MASK_GPIO_INIT_B \
+ | (fpga_config_mode ? 0 : \
+ // Used once FPGA config is done to bit-bang SPI, etc.
+ MASK_GPIO_SHDN_SW \
+ | MASK_GPIO_AUX_PWR_ON \
+ | MASK_GPIO_FX3_SCLK \
+ | MASK_GPIO_FX3_CE \
+ | MASK_GPIO_FX3_MISO \
+ | MASK_GPIO_FX3_MOSI);
+ io_config_matrix.gpioComplexEn[0] = 0;
+ io_config_matrix.gpioComplexEn[1] = 0;
+ io_config_matrix.useUart = CyFalse;
+ io_config_matrix.useI2C = CyTrue;
+ io_config_matrix.useI2S = CyFalse;
+ io_config_matrix.useSpi = fpga_config_mode;
+
+ res = CyU3PDeviceConfigureIOMatrix(&io_config_matrix);
+ if (res != CY_U3P_SUCCESS)
+ msg("! ConfigureIOMatrix");
+
+ return res;
+}
+
+
+CyU3PReturnStatus_t b200_gpio_init(CyBool_t set_callback) {
+ CyU3PGpioClock_t gpio_clock_config;
+ CyU3PReturnStatus_t res;
+
+ /* Since we are only using FX3's 'simple GPIO' functionality, these values
+ * must *NOT* change. Cypress says changing them will break stuff. */
+ CyU3PMemSet((uint8_t *) &gpio_clock_config, 0, \
+ sizeof(gpio_clock_config));
+ gpio_clock_config.fastClkDiv = 2;
+ gpio_clock_config.slowClkDiv = 0;
+ gpio_clock_config.simpleDiv = CY_U3P_GPIO_SIMPLE_DIV_BY_2;
+ gpio_clock_config.clkSrc = CY_U3P_SYS_CLK;
+ gpio_clock_config.halfDiv = 0;
+
+ res = CyU3PGpioInit(&gpio_clock_config, (set_callback ? gpio_interrupt_callback : NULL));
+ if (res != CY_U3P_SUCCESS)
+ msg("! CyU3PGpioInit");
+
+ return res;
+}
+
+
+void sb_write(uint8_t reg, uint32_t val) {
+#ifdef ENABLE_FPGA_SB
+ const int len = 32;
+ int i;
+
+ if (g_fpga_sb_enabled == CyFalse)
+ return;
+
+ reg += FPGA_SB_UART_ADDR_BASE;
+
+ //CyU3PBusyWait(1); // Can be used after each SetValue to slow down bit changes
+
+ // START
+ CyU3PGpioSetValue(GPIO_FPGA_SB_SCL, 1); // Should already be 1
+ CyU3PGpioSetValue(GPIO_FPGA_SB_SDA, 0);
+
+ // ADDR[8]
+ for (i = 7; i >= 0; i--) {
+ uint8_t bit = ((reg & (0x1 << i)) ? 0x01 : 0x00);
+ CyU3PGpioSetValue(GPIO_FPGA_SB_SCL, 0);
+ CyU3PGpioSetValue(GPIO_FPGA_SB_SDA, bit);
+
+ CyU3PGpioSetValue(GPIO_FPGA_SB_SCL, 1); // FPGA reads bit
+ }
+
+ // DATA[32]
+ for (i = (len-1); i >= 0; i--) {
+ uint8_t bit = ((val & (0x1 << i)) ? 0x01 : 0x00);
+ CyU3PGpioSetValue(GPIO_FPGA_SB_SCL, 0);
+ CyU3PGpioSetValue(GPIO_FPGA_SB_SDA, bit);
+
+ CyU3PGpioSetValue(GPIO_FPGA_SB_SCL, 1); // FPGA reads bit
+ }
+
+ // STOP
+ CyU3PGpioSetValue(GPIO_FPGA_SB_SDA, 0);
+ CyU3PGpioSetValue(GPIO_FPGA_SB_SCL, 0);
+ CyU3PGpioSetValue(GPIO_FPGA_SB_SCL, 1); // Actual stop
+ CyU3PGpioSetValue(GPIO_FPGA_SB_SDA, 1); // Xact occurs
+#endif // ENABLE_FPGA_SB
+}
+
+
+void _sb_write_string(const char* msg) {
+#ifdef ENABLE_FPGA_SB
+ while (*msg) {
+ sb_write(SUART_TXCHAR, (uint8_t)(*(msg++)));
+ }
+#endif // ENABLE_FPGA_SB
+}
+
+
+void sb_write_string(const char* msg) {
+#ifdef ENABLE_FPGA_SB
+ LOCK(g_suart_lock);
+ _sb_write_string(msg);
+ UNLOCK(g_suart_lock);
+#endif // ENABLE_FPGA_SB
+}
+
+
+void b200_enable_fpga_sb_gpio(CyBool_t enable) {
+#ifdef ENABLE_FPGA_SB
+ CyU3PGpioSimpleConfig_t gpio_config;
+ CyU3PReturnStatus_t res;
+
+ if (enable == CyFalse) {
+ g_fpga_sb_enabled = CyFalse;
+
+ return;
+ }
+
+ gpio_config.outValue = CyFalse;
+ gpio_config.driveLowEn = CyTrue;
+ gpio_config.driveHighEn = CyTrue;
+ gpio_config.inputEn = CyFalse;
+ gpio_config.intrMode = CY_U3P_GPIO_NO_INTR;
+
+ res = CyU3PGpioSetSimpleConfig(GPIO_FPGA_SB_SCL, &gpio_config);
+ if (res != CY_U3P_SUCCESS) {
+ msg("! GpioSetSimpleConfig GPIO_FPGA_SB_SCL");
+ }
+ res = CyU3PGpioSetSimpleConfig(GPIO_FPGA_SB_SDA, &gpio_config);
+ if (res != CY_U3P_SUCCESS) {
+ msg("! GpioSetSimpleConfig GPIO_FPGA_SB_SDA");
+ }
+
+ CyU3PGpioSetValue(GPIO_FPGA_SB_SCL, 1);
+ CyU3PGpioSetValue(GPIO_FPGA_SB_SDA, 1);
+
+ g_fpga_sb_enabled = CyTrue;
+
+ msg("Debug SB OK");
+#endif // ENABLE_FPGA_SB
+}
+
+
+void b200_start_fpga_sb_gpio(void) {
+#ifdef ENABLE_FPGA_SB
+ LOCK(g_suart_lock);
+ sb_write(SUART_CLKDIV, g_fpga_sb_uart_div); // 16-bit reg, master clock = 100 MHz (434*2x = 230400/2)
+ _sb_write_string("\r\n B2x0 FPGA reset\r\n");
+ UNLOCK(g_suart_lock);
+
+ msg("Compat: %d.%d", FX3_COMPAT_MAJOR, FX3_COMPAT_MINOR);
+ msg("FX3 SDK: %d.%d.%d (build %d)", CYFX_VERSION_MAJOR, CYFX_VERSION_MINOR, CYFX_VERSION_PATCH, CYFX_VERSION_BUILD);
+#endif // ENABLE_FPGA_SB
+}
+
+
+/*! Initialize and configure the GPIO module for FPGA programming.
+ *
+ * This function initializes the FX3 GPIO module, creating a configuration that
+ * allows us to program the FPGA. After the FPGA has been programmed, the
+ * application thread will re-configure some of the pins. */
+void b200_gpios_pre_fpga_config(void) {
+ CyU3PGpioSimpleConfig_t gpio_config;
+
+ //b200_enable_fpga_sb_gpio(CyFalse);
+
+ //CyU3PGpioDeInit();
+
+ b200_set_io_matrix(CyTrue);
+
+ //b200_gpio_init(CyTrue); // This now done once during startup
+
+ ////////////////////////////////////
+
+ /* GPIO[0:32] must be set with the DeviceOverride function, instead of the
+ * SimpleEn array configuration. */
+ CyU3PDeviceGpioOverride(GPIO_FPGA_RESET, CyTrue);
+ CyU3PDeviceGpioOverride(GPIO_DONE, CyTrue);
+
+ /* Configure GPIOs:
+ * Outputs:
+ * driveLowEn = True
+ * driveHighEn = True
+ * inputEn = False
+ * Inputs:
+ * driveLowEn = False
+ * driveHighEn = False
+ * outValue = Ignored
+ */
+ gpio_config.outValue = CyFalse;
+ gpio_config.driveLowEn = CyTrue;
+ gpio_config.driveHighEn = CyTrue;
+ gpio_config.inputEn = CyFalse;
+ gpio_config.intrMode = CY_U3P_GPIO_NO_INTR;
+
+ CyU3PGpioSetSimpleConfig(GPIO_FPGA_RESET, &gpio_config);
+ CyU3PGpioSetSimpleConfig(GPIO_PROGRAM_B, &gpio_config);
+
+ /* Reconfigure the GPIO configure struct for inputs that DO require
+ * interrupts attached to them. */
+ gpio_config.outValue = CyTrue;
+ gpio_config.inputEn = CyTrue;
+ gpio_config.driveLowEn = CyFalse;
+ gpio_config.driveHighEn = CyFalse;
+ gpio_config.intrMode = CY_U3P_GPIO_INTR_POS_EDGE;
+
+ CyU3PGpioSetSimpleConfig(GPIO_DONE, &gpio_config);
+ CyU3PGpioSetSimpleConfig(GPIO_INIT_B, &gpio_config);
+
+ /* Initialize GPIO output values. */
+ CyU3PGpioSetValue(GPIO_FPGA_RESET, 0);
+ CyU3PGpioSetValue(GPIO_PROGRAM_B, 1);
+
+ b200_enable_fpga_sb_gpio(CyTrue); // So SCL/SDA are already high when SB state machine activates
+}
+
+
+void b200_slfifo_mode_gpio_config(void) {
+ CyU3PGpioSimpleConfig_t gpio_config;
+
+ //b200_enable_fpga_sb_gpio(CyFalse);
+
+ //CyU3PGpioDeInit();
+
+ b200_set_io_matrix(CyFalse);
+
+ //b200_gpio_init(CyFalse); // This now done once during startup
+
+ ////////////////////////////////////
+
+ /* GPIO[0:32] must be set with the DeviceOverride function, instead of the
+ * SimpleEn array configuration. */
+ CyU3PDeviceGpioOverride(GPIO_FPGA_RESET, CyTrue);
+ CyU3PDeviceGpioOverride(GPIO_DONE, CyTrue);
+ CyU3PDeviceGpioOverride(GPIO_FX3_SCLK, CyTrue);
+ CyU3PDeviceGpioOverride(GPIO_FX3_CE, CyTrue);
+ CyU3PDeviceGpioOverride(GPIO_FX3_MISO, CyTrue);
+ CyU3PDeviceGpioOverride(GPIO_FX3_MOSI, CyTrue);
+
+ /* Configure GPIOs:
+ * Outputs:
+ * driveLowEn = True
+ * driveHighEn = True
+ * inputEn = False
+ * Inputs:
+ * driveLowEn = False
+ * driveHighEn = False
+ * outValue = Ignored
+ */
+ gpio_config.outValue = CyFalse;
+ gpio_config.driveLowEn = CyTrue;
+ gpio_config.driveHighEn = CyTrue;
+ gpio_config.inputEn = CyFalse;
+ gpio_config.intrMode = CY_U3P_GPIO_NO_INTR;
+
+ CyU3PGpioSetSimpleConfig(GPIO_FPGA_RESET, &gpio_config);
+ CyU3PGpioSetSimpleConfig(GPIO_SHDN_SW, &gpio_config);
+ CyU3PGpioSetSimpleConfig(GPIO_FX3_SCLK, &gpio_config);
+ CyU3PGpioSetSimpleConfig(GPIO_FX3_CE, &gpio_config);
+ CyU3PGpioSetSimpleConfig(GPIO_FX3_MOSI, &gpio_config);
+
+ /* Reconfigure the GPIO configure struct for inputs that do NOT require
+ * interrupts attached to them. */
+ gpio_config.outValue = CyFalse;
+ gpio_config.inputEn = CyTrue;
+ gpio_config.driveLowEn = CyFalse;
+ gpio_config.driveHighEn = CyFalse;
+ gpio_config.intrMode = CY_U3P_GPIO_NO_INTR;
+
+ CyU3PGpioSetSimpleConfig(GPIO_FX3_MISO, &gpio_config);
+ CyU3PGpioSetSimpleConfig(GPIO_AUX_PWR_ON, &gpio_config);
+ CyU3PGpioSetSimpleConfig(GPIO_PROGRAM_B, &gpio_config);
+ CyU3PGpioSetSimpleConfig(GPIO_INIT_B, &gpio_config);
+ CyU3PGpioSetSimpleConfig(GPIO_DONE, &gpio_config);
+
+ /* Initialize GPIO output values. */
+ CyU3PGpioSetValue(GPIO_FPGA_RESET, 0);
+ CyU3PGpioSetValue(GPIO_SHDN_SW, 1);
+ CyU3PGpioSetValue(GPIO_FX3_SCLK, 0);
+ CyU3PGpioSetValue(GPIO_FX3_CE, 1);
+ CyU3PGpioSetValue(GPIO_FX3_MOSI, 0);
+
+ // Disabled here as only useful once FPGA has been programmed
+ //b200_enable_fpga_sb_gpio(CyTrue);
+ //b200_start_fpga_sb_gpio(); // Set set up SB USART
+}
+
+
+/*! Initializes and configures USB, and DMA.
+ *
+ * This function creates and connects the USB endpoints, and sets up the DMA
+ * channels. After this is done, everything is 'running' on the FX3 chip, and
+ * ready to receive data from the host. */
+void b200_fw_start(void) {
+ msg("b200_fw_start");
+
+ CyU3PDmaChannelConfig_t dma_channel_config;
+ CyU3PEpConfig_t usb_endpoint_config;
+ CyU3PUSBSpeed_t usb_speed;
+ uint16_t max_packet_size = 0;
+ uint16_t data_buffer_count = 0;
+ uint16_t data_buffer_size = 0;
+ uint16_t data_buffer_size_to_host = 0;
+ uint16_t data_buffer_size_from_host = 0;
+ uint8_t num_packets_per_burst = 0;
+ CyU3PReturnStatus_t apiRetStatus = CY_U3P_SUCCESS;
+
+ /* Based on the USB bus speed, configure the endpoint packet size
+ * and the DMA buffer size */
+ usb_speed = CyU3PUsbGetSpeed();
+ switch(usb_speed) {
+ case CY_U3P_FULL_SPEED:
+ case CY_U3P_HIGH_SPEED:
+ max_packet_size = 512;
+ data_buffer_count = 16;
+ data_buffer_size = 512;
+ g_vendor_req_buff_size = USB2_VREQ_BUF_SIZE; // Max 64
+ num_packets_per_burst = USB2_PACKETS_PER_BURST; // 1
+
+ data_buffer_size_to_host = data_buffer_size_from_host = data_buffer_size;
+
+ break;
+
+ case CY_U3P_SUPER_SPEED:
+//#ifdef PREVENT_LOW_POWER_MODE
+ apiRetStatus = CyU3PUsbLPMDisable(); // This still allows my laptop to sleep
+
+ if (apiRetStatus != CY_U3P_SUCCESS)
+ msg("! LPMDisable failed (%d)", apiRetStatus);
+ else
+ msg("LPMDisable OK");
+//#endif // PREVENT_LOW_POWER_MODE
+ max_packet_size = 1024; // Per USB3 spec
+
+ // SDK ver: total available buffer memory
+ // 1.2.3: 204KB
+ // 1.3.1: 188KB
+
+ // These options should be ignored - data_buffer_count *MUST* be 1
+ // They follow is kept for future testing
+
+ // 1K
+ //data_buffer_count = 64;
+ //data_buffer_size = 1024;
+
+ // 4K
+ //data_buffer_count = 8;
+ //data_buffer_size = 4096;
+
+ // 16K
+ //data_buffer_count = 2*2;
+ //data_buffer_size = 16384; // Default 16K
+
+ // 32K
+ //data_buffer_count = 2;
+ //data_buffer_size = 16384*2;
+
+ data_buffer_count = 1;
+ data_buffer_size = ((1 << 16) - 1);
+ data_buffer_size -= (data_buffer_size % 1024); // Align to 1K boundary
+
+ data_buffer_size_to_host = data_buffer_size;
+ data_buffer_size_from_host = data_buffer_size;
+
+ g_vendor_req_buff_size = USB3_VREQ_BUF_SIZE; // Max 512
+ num_packets_per_burst = USB3_PACKETS_PER_BURST; // 16
+ break;
+
+ case CY_U3P_NOT_CONNECTED:
+ msg("! CY_U3P_NOT_CONNECTED");
+ return;
+
+ default:
+ return;
+ }
+
+ msg("[DMA] to host: %d, from host: %d, depth: %d, burst size: %d", data_buffer_size_to_host, data_buffer_size_from_host, data_buffer_count, num_packets_per_burst);
+
+ /*************************************************************************
+ * Slave FIFO Data DMA Channel Configuration
+ *************************************************************************/
+
+ /* Wipe out any old config. */
+ CyU3PMemSet((uint8_t *) &usb_endpoint_config, 0, \
+ sizeof(usb_endpoint_config));
+
+ /* This is the configuration for the USB Producer and Consumer endpoints.
+ *
+ * The Producer endpoint is actually the endpoint on the FX3 that is
+ * sending data BACK to the host. This endpoint enumerates as the
+ * 'BULK IN' endpoint.
+
+ * The Consumer endpoint is the endpoint on the FX3 that is
+ * receiving data from the host. This endpoint enumerates as the
+ * 'BULK OUT' endpoint.
+ *
+ * Note that this is opposite of what you might expect!. */
+ usb_endpoint_config.enable = CyTrue;
+ usb_endpoint_config.epType = CY_U3P_USB_EP_BULK;
+ usb_endpoint_config.burstLen = num_packets_per_burst;
+ usb_endpoint_config.streams = 0;
+ usb_endpoint_config.pcktSize = max_packet_size;
+
+ /* Configure the endpoints that we are using for slave FIFO transfers. */
+ CyU3PSetEpConfig(DATA_ENDPOINT_PRODUCER, &usb_endpoint_config);
+ CyU3PSetEpConfig(DATA_ENDPOINT_CONSUMER, &usb_endpoint_config);
+
+ /* Create a DMA AUTO channel for U2P transfer.
+ * DMA size is set based on the USB speed. */
+ //dma_channel_config.size = data_buffer_size;
+ dma_channel_config.size = data_buffer_size_from_host;
+ dma_channel_config.count = data_buffer_count;
+ dma_channel_config.prodSckId = PRODUCER_DATA_SOCKET;
+ dma_channel_config.consSckId = DATA_TX_PPORT_SOCKET;
+ dma_channel_config.dmaMode = CY_U3P_DMA_MODE_BYTE;
+ dma_channel_config.notification = 0 |
+#if defined(ENABLE_MANUAL_DMA_XFER) && defined(ENABLE_MANUAL_DMA_XFER_FROM_HOST)
+CY_U3P_DMA_CB_XFER_CPLT |
+CY_U3P_DMA_CB_SEND_CPLT |
+CY_U3P_DMA_CB_RECV_CPLT |
+CY_U3P_DMA_CB_PROD_EVENT |
+CY_U3P_DMA_CB_CONS_EVENT |
+CY_U3P_DMA_CB_ABORTED |
+CY_U3P_DMA_CB_ERROR |
+CY_U3P_DMA_CB_PROD_SUSP |
+CY_U3P_DMA_CB_CONS_SUSP |
+#endif // ENABLE_MANUAL_DMA_XFER
+ 0;
+ dma_channel_config.cb =
+#if defined(ENABLE_MANUAL_DMA_XFER) && defined(ENABLE_MANUAL_DMA_XFER_FROM_HOST)
+ from_host_dma_callback;
+#else
+ NULL;
+#endif // ENABLE_MANUAL_DMA_XFER
+ dma_channel_config.prodHeader = 0;
+ dma_channel_config.prodFooter = 0;
+ dma_channel_config.consHeader = 0;
+ dma_channel_config.prodAvailCount = 0;
+
+ CyU3PDmaChannelCreate (&data_cons_to_prod_chan_handle,
+#if defined(ENABLE_MANUAL_DMA_XFER) && defined(ENABLE_MANUAL_DMA_XFER_FROM_HOST)
+ /*CY_U3P_DMA_TYPE_AUTO_SIGNAL*/CY_U3P_DMA_TYPE_MANUAL,
+#else
+ CY_U3P_DMA_TYPE_AUTO,
+#endif // ENABLE_MANUAL_DMA_XFER
+ &dma_channel_config);
+
+ // By default these will adopt 'usb_endpoint_config.pcktSize'
+ //CyU3PSetEpPacketSize(DATA_ENDPOINT_PRODUCER, 16384);
+ //CyU3PSetEpPacketSize(DATA_ENDPOINT_CONSUMER, 16384);
+
+ /* Create a DMA AUTO channel for P2U transfer. */
+ dma_channel_config.size = data_buffer_size_to_host;
+ dma_channel_config.prodSckId = DATA_RX_PPORT_SOCKET;
+ dma_channel_config.consSckId = CONSUMER_DATA_SOCKET;
+ dma_channel_config.notification = 0 |
+#if defined(ENABLE_MANUAL_DMA_XFER) && defined(ENABLE_MANUAL_DMA_XFER_TO_HOST)
+CY_U3P_DMA_CB_XFER_CPLT |
+CY_U3P_DMA_CB_SEND_CPLT |
+CY_U3P_DMA_CB_RECV_CPLT |
+CY_U3P_DMA_CB_PROD_EVENT |
+CY_U3P_DMA_CB_CONS_EVENT |
+CY_U3P_DMA_CB_ABORTED |
+CY_U3P_DMA_CB_ERROR |
+CY_U3P_DMA_CB_PROD_SUSP |
+CY_U3P_DMA_CB_CONS_SUSP |
+#endif // ENABLE_MANUAL_DMA_XFER
+ 0;
+ dma_channel_config.cb =
+#if defined(ENABLE_MANUAL_DMA_XFER) && defined(ENABLE_MANUAL_DMA_XFER_TO_HOST)
+ to_host_dma_callback;
+#else
+ NULL;
+#endif // ENABLE_MANUAL_DMA_XFER
+ CyU3PDmaChannelCreate (&data_prod_to_cons_chan_handle,
+#if defined(ENABLE_MANUAL_DMA_XFER) && defined(ENABLE_MANUAL_DMA_XFER_TO_HOST)
+ /*CY_U3P_DMA_TYPE_AUTO_SIGNAL*/CY_U3P_DMA_TYPE_MANUAL,
+#else
+ CY_U3P_DMA_TYPE_AUTO,
+#endif // ENABLE_MANUAL_DMA_XFER
+ &dma_channel_config);
+
+ /* Flush the Endpoint memory */
+ CyU3PUsbFlushEp(DATA_ENDPOINT_PRODUCER);
+ CyU3PUsbFlushEp(DATA_ENDPOINT_CONSUMER);
+
+ /* Set DMA channel transfer size. */
+ CyU3PDmaChannelSetXfer(&data_cons_to_prod_chan_handle, DMA_SIZE_INFINITE);
+ CyU3PDmaChannelSetXfer(&data_prod_to_cons_chan_handle, DMA_SIZE_INFINITE);
+
+
+ /*************************************************************************
+ * Slave FIFO Control DMA Channel Configuration
+ *************************************************************************/
+
+ /* Wipe out any old config. */
+ CyU3PMemSet((uint8_t *) &usb_endpoint_config, 0, \
+ sizeof(usb_endpoint_config));
+
+ /* This is the configuration for the USB Producer and Consumer endpoints.
+ *
+ * The Producer endpoint is actually the endpoint on the FX3 that is
+ * sending data BACK to the host. This endpoint enumerates as the
+ * 'BULK IN' endpoint.
+
+ * The Consumer endpoint is the endpoint on the FX3 that is
+ * receiving data from the host. This endpoint enumerates as the
+ * 'BULK OUT' endpoint.
+ *
+ * Note that this is opposite of what you might expect!. */
+ usb_endpoint_config.enable = CyTrue;
+ usb_endpoint_config.epType = CY_U3P_USB_EP_BULK;
+ usb_endpoint_config.burstLen = num_packets_per_burst;
+ usb_endpoint_config.streams = 0;
+ usb_endpoint_config.pcktSize = max_packet_size;
+
+ /* Configure the endpoints that we are using for slave FIFO transfers. */
+ CyU3PSetEpConfig(CTRL_ENDPOINT_PRODUCER, &usb_endpoint_config);
+ CyU3PSetEpConfig(CTRL_ENDPOINT_CONSUMER, &usb_endpoint_config);
+
+ /* Create a DMA AUTO channel for U2P transfer.
+ * DMA size is set based on the USB speed. */
+ dma_channel_config.size = max_packet_size;
+ dma_channel_config.count = 2;
+ dma_channel_config.prodSckId = PRODUCER_CTRL_SOCKET;
+ dma_channel_config.consSckId = CTRL_COMM_PPORT_SOCKET;
+ dma_channel_config.dmaMode = CY_U3P_DMA_MODE_BYTE;
+ dma_channel_config.notification = 0;
+ dma_channel_config.cb = NULL;
+ dma_channel_config.prodHeader = 0;
+ dma_channel_config.prodFooter = 0;
+ dma_channel_config.consHeader = 0;
+ dma_channel_config.prodAvailCount = 0;
+
+ CyU3PDmaChannelCreate (&ctrl_cons_to_prod_chan_handle,
+ CY_U3P_DMA_TYPE_AUTO, &dma_channel_config);
+
+ /* Create a DMA AUTO channel for P2U transfer. */
+ dma_channel_config.prodSckId = CTRL_RESP_PPORT_SOCKET;
+ dma_channel_config.consSckId = CONSUMER_CTRL_SOCKET;
+ dma_channel_config.cb = NULL;
+ CyU3PDmaChannelCreate (&ctrl_prod_to_cons_chan_handle,
+ CY_U3P_DMA_TYPE_AUTO, &dma_channel_config);
+
+ /* Flush the Endpoint memory */
+ CyU3PUsbFlushEp(CTRL_ENDPOINT_PRODUCER);
+ CyU3PUsbFlushEp(CTRL_ENDPOINT_CONSUMER);
+
+ /* Set DMA channel transfer size. */
+ CyU3PDmaChannelSetXfer(&ctrl_cons_to_prod_chan_handle, DMA_SIZE_INFINITE);
+ CyU3PDmaChannelSetXfer(&ctrl_prod_to_cons_chan_handle, DMA_SIZE_INFINITE);
+
+ //CyU3PUsbEnableEPPrefetch(); // To address USB_EVENT_EP_UNDERRUN on EP 0x86 (didn't fix it though)
+
+ /* Update the application status flag. */
+ g_app_running = CyTrue;
+}
+
+
+/*! This callback is invoked when the FX3 detects a USB event.
+ *
+ * We currently handle SETCONF, RESET, and DISCONNECT.
+ *
+ * We are _not_ handling SUSPEND or CONNECT.
+ */
+void event_usb_callback (CyU3PUsbEventType_t event_type, uint16_t event_data) {
+
+ switch(event_type) {
+ case CY_U3P_USB_EVENT_SETCONF:
+ msg("USB_EVENT_SETCONF (#%d)", event_data); //evData provides the configuration number that is selected by the host.
+ if(g_app_running) {
+ b200_fw_stop();
+ }
+
+ b200_fw_start();
+ break;
+
+ case CY_U3P_USB_EVENT_RESET:
+ case CY_U3P_USB_EVENT_DISCONNECT:
+ if (event_type == CY_U3P_USB_EVENT_RESET)
+ msg("USB_EVENT_RESET");
+ else
+ msg("USB_EVENT_DISCONNECT");
+ if(g_app_running) {
+ b200_fw_stop();
+ }
+ break;
+
+ case CY_U3P_USB_EVENT_CONNECT:
+ msg("USB_EVENT_CONNECT");
+ break;
+
+ case CY_U3P_USB_EVENT_SUSPEND:
+ msg("USB_EVENT_SUSPEND");
+ break;
+
+ case CY_U3P_USB_EVENT_RESUME: // Known issue: this is called repeatedly after a resume
+ //msg("USB_EVENT_RESUME");
+ g_counters.resume_count++; // Not locked
+ break;
+
+ case CY_U3P_USB_EVENT_SPEED:
+ msg("USB_EVENT_SPEED");
+ break;
+
+ case CY_U3P_USB_EVENT_SETINTF:
+ msg("USB_EVENT_SETINTF");
+ break;
+
+ case CY_U3P_USB_EVENT_SET_SEL:
+ msg("USB_EVENT_SET_SEL");
+ break;
+
+ case CY_U3P_USB_EVENT_SOF_ITP: // CyU3PUsbEnableITPEvent
+ //msg("USB_EVENT_SOF_ITP");
+ break;
+
+ case CY_U3P_USB_EVENT_EP0_STAT_CPLT:
+ //msg("USB_EVENT_EP0_STAT_CPLT"); // Occurs each time there's a control transfer
+ break;
+
+ case CY_U3P_USB_EVENT_VBUS_VALID:
+ msg("USB_EVENT_VBUS_VALID");
+ break;
+
+ case CY_U3P_USB_EVENT_VBUS_REMOVED:
+ msg("USB_EVENT_VBUS_REMOVED");
+ break;
+
+ case CY_U3P_USB_EVENT_HOST_CONNECT:
+ msg("USB_EVENT_HOST_CONNECT");
+ break;
+
+ case CY_U3P_USB_EVENT_HOST_DISCONNECT:
+ msg("USB_EVENT_HOST_DISCONNECT");
+ break;
+
+ case CY_U3P_USB_EVENT_OTG_CHANGE:
+ msg("USB_EVENT_OTG_CHANGE");
+ break;
+
+ case CY_U3P_USB_EVENT_OTG_VBUS_CHG:
+ msg("USB_EVENT_OTG_VBUS_CHG");
+ break;
+
+ case CY_U3P_USB_EVENT_OTG_SRP:
+ msg("USB_EVENT_OTG_SRP");
+ break;
+
+ case CY_U3P_USB_EVENT_EP_UNDERRUN: // See SDK 1.3 known issues 17 if this happens (can probably ignore first logged occurence)
+ LOCK(g_counters_lock);
+ ++g_counters.usb_ep_underrun_count;
+ UNLOCK(g_counters_lock);
+
+ msg("! USB_EVENT_EP_UNDERRUN on EP 0x%02x", event_data);
+ break;
+
+ case CY_U3P_USB_EVENT_LNK_RECOVERY:
+ msg("USB_EVENT_LNK_RECOVERY");
+ break;
+#if (CYFX_VERSION_MAJOR >= 1) && (CYFX_VERSION_MINOR >= 3)
+ case CY_U3P_USB_EVENT_USB3_LNKFAIL:
+ msg("USB_EVENT_USB3_LNKFAIL");
+ break;
+
+ case CY_U3P_USB_EVENT_SS_COMP_ENTRY:
+ msg("USB_EVENT_SS_COMP_ENTRY");
+ break;
+
+ case CY_U3P_USB_EVENT_SS_COMP_EXIT:
+ msg("USB_EVENT_SS_COMP_EXIT");
+ break;
+#endif // (CYFX_VERSION_MAJOR >= 1) && (CYFX_VERSION_MINOR >= 3)
+
+ default:
+ msg("! Unhandled USB event");
+ break;
+ }
+}
+
+
+/*! Callback function that is invoked when a USB setup event occurs.
+ *
+ * We aren't actually handling the USB setup ourselves, but rather letting the
+ * USB driver take care of it since the default options work fine. The purpose
+ * of this function is to register that the event happened at all, so that the
+ * application thread knows it can proceed.
+ *
+ * This function is also responsible for receiving vendor requests, and trigging
+ * the appropriate RTOS event to wake up the vendor request handler thread.
+ */
+CyBool_t usb_setup_callback(uint32_t data0, uint32_t data1) {
+ STATIC_SAVER uint8_t bRequestType, bRequest, bType, bTarget, i2cAddr;
+ STATIC_SAVER uint16_t wValue, wIndex, wLength;
+
+ CyBool_t handled = CyFalse;
+
+ /* Decode the fields from the setup request. */
+ bRequestType = (uint8_t)(data0 & CY_U3P_USB_REQUEST_TYPE_MASK);
+ bType = (uint8_t)(bRequestType & CY_U3P_USB_TYPE_MASK);
+ bTarget = (uint8_t)(bRequestType & CY_U3P_USB_TARGET_MASK);
+ bRequest = (uint8_t)((data0 & CY_U3P_USB_REQUEST_MASK) >> CY_U3P_USB_REQUEST_POS);
+ wValue = (uint16_t)((data0 & CY_U3P_USB_VALUE_MASK) >> CY_U3P_USB_VALUE_POS);
+ wIndex = (uint16_t)((data1 & CY_U3P_USB_INDEX_MASK) >> CY_U3P_USB_INDEX_POS);
+ wLength = (uint16_t)((data1 & CY_U3P_USB_LENGTH_MASK) >> CY_U3P_USB_LENGTH_POS);
+
+ if(bType == CY_U3P_USB_STANDARD_RQT) {
+ /* Handle SET_FEATURE(FUNCTION_SUSPEND) and CLEAR_FEATURE(FUNCTION_SUSPEND)
+ * requests here. It should be allowed to pass if the device is in configured
+ * state and failed otherwise. */
+ if((bTarget == CY_U3P_USB_TARGET_INTF) \
+ && ((bRequest == CY_U3P_USB_SC_SET_FEATURE) \
+ || (bRequest == CY_U3P_USB_SC_CLEAR_FEATURE)) && (wValue == 0)) {
+
+ if(g_app_running) {
+ CyU3PUsbAckSetup();
+ msg("ACK set/clear");
+ } else {
+ CyU3PUsbStall(0, CyTrue, CyFalse);
+ msg("! STALL set/clear");
+ }
+
+ handled = CyTrue;
+ }
+
+ /* Handle Microsoft OS String Descriptor request. */
+ if((bTarget == CY_U3P_USB_TARGET_DEVICE) \
+ && (bRequest == CY_U3P_USB_SC_GET_DESCRIPTOR) \
+ && (wValue == ((CY_U3P_USB_STRING_DESCR << 8) | 0xEE))) {
+ /* Make sure we do not send more data than requested. */
+ if(wLength > b200_usb_product_desc[0]) {
+ wLength = b200_usb_product_desc[0];
+ }
+
+ //msg("MS string desc");
+
+ CyU3PUsbSendEP0Data(wLength, ((uint8_t *) b200_usb_product_desc));
+ handled = CyTrue;
+ }
+
+ /* CLEAR_FEATURE request for endpoint is always passed to the setup callback
+ * regardless of the enumeration model used. When a clear feature is received,
+ * the previous transfer has to be flushed and cleaned up. This is done at the
+ * protocol level. Since this is just a loopback operation, there is no higher
+ * level protocol. So flush the EP memory and reset the DMA channel associated
+ * with it. If there are more than one EP associated with the channel reset both
+ * the EPs. The endpoint stall and toggle / sequence number is also expected to be
+ * reset. Return CyFalse to make the library clear the stall and reset the endpoint
+ * toggle. Or invoke the CyU3PUsbStall (ep, CyFalse, CyTrue) and return CyTrue.
+ * Here we are clearing the stall. */
+ if((bTarget == CY_U3P_USB_TARGET_ENDPT) \
+ && (bRequest == CY_U3P_USB_SC_CLEAR_FEATURE)
+ && (wValue == CY_U3P_USBX_FS_EP_HALT)) {
+ if(g_app_running) {
+ if(wIndex == DATA_ENDPOINT_PRODUCER) {
+ CyU3PDmaChannelReset(&data_cons_to_prod_chan_handle);
+ CyU3PUsbFlushEp(DATA_ENDPOINT_PRODUCER);
+ CyU3PUsbResetEp(DATA_ENDPOINT_PRODUCER);
+ CyU3PDmaChannelSetXfer(&data_cons_to_prod_chan_handle, \
+ DMA_SIZE_INFINITE);
+ CyU3PUsbStall(wIndex, CyFalse, CyTrue);
+ handled = CyTrue;
+ CyU3PUsbAckSetup();
+
+ msg("Clear DATA_ENDPOINT_PRODUCER");
+ }
+
+ if(wIndex == DATA_ENDPOINT_CONSUMER) {
+ CyU3PDmaChannelReset(&data_prod_to_cons_chan_handle);
+ CyU3PUsbFlushEp(DATA_ENDPOINT_CONSUMER);
+ CyU3PUsbResetEp(DATA_ENDPOINT_CONSUMER);
+ CyU3PDmaChannelSetXfer(&data_prod_to_cons_chan_handle, \
+ DMA_SIZE_INFINITE);
+ CyU3PUsbStall(wIndex, CyFalse, CyTrue);
+ handled = CyTrue;
+ CyU3PUsbAckSetup();
+
+ msg("Clear DATA_ENDPOINT_CONSUMER");
+ }
+
+ if(wIndex == CTRL_ENDPOINT_PRODUCER) {
+ CyU3PDmaChannelReset(&ctrl_cons_to_prod_chan_handle);
+ CyU3PUsbFlushEp(CTRL_ENDPOINT_PRODUCER);
+ CyU3PUsbResetEp(CTRL_ENDPOINT_PRODUCER);
+ CyU3PDmaChannelSetXfer(&ctrl_cons_to_prod_chan_handle, \
+ DMA_SIZE_INFINITE);
+ CyU3PUsbStall(wIndex, CyFalse, CyTrue);
+ handled = CyTrue;
+ CyU3PUsbAckSetup();
+
+ msg("Clear CTRL_ENDPOINT_PRODUCER");
+ }
+
+ if(wIndex == CTRL_ENDPOINT_CONSUMER) {
+ CyU3PDmaChannelReset(&ctrl_prod_to_cons_chan_handle);
+ CyU3PUsbFlushEp(CTRL_ENDPOINT_CONSUMER);
+ CyU3PUsbResetEp(CTRL_ENDPOINT_CONSUMER);
+ CyU3PDmaChannelSetXfer(&ctrl_prod_to_cons_chan_handle, \
+ DMA_SIZE_INFINITE);
+ CyU3PUsbStall(wIndex, CyFalse, CyTrue);
+ handled = CyTrue;
+ CyU3PUsbAckSetup();
+
+ msg("Clear CTRL_ENDPOINT_CONSUMER");
+ }
+ }
+ }
+ }
+ /* This must be & and not == so that we catch VREQs that are both 'IN' and
+ * 'OUT' in direction. */
+ else if(bRequestType & CY_U3P_USB_VENDOR_RQT) {
+
+ handled = CyTrue;
+ uint16_t read_count = 0;
+
+ switch(bRequest) {
+ case B200_VREQ_BITSTREAM_START: {
+ CyU3PUsbGetEP0Data(1, g_vendor_req_buffer, &read_count);
+
+ g_fpga_programming_write_count = 0;
+
+ CyU3PEventSet(&g_event_usb_config, EVENT_BITSTREAM_START, \
+ CYU3P_EVENT_OR);
+ break;
+ }
+
+ case B200_VREQ_BITSTREAM_DATA: {
+ CyU3PUsbGetEP0Data(g_vendor_req_buff_size, g_vendor_req_buffer, \
+ &read_count);
+
+ if (g_fx3_state == STATE_CONFIGURING_FPGA) {
+ ++g_fpga_programming_write_count;
+ CyU3PSpiTransmitWords(g_vendor_req_buffer, read_count);
+ CyU3PThreadSleep(1); // Newer controllers don't have an issue when this short sleep here
+ }
+ break;
+ }
+
+ case B200_VREQ_BITSTREAM_DATA_FILL: {
+ CyU3PUsbGetEP0Data(g_vendor_req_buff_size, g_vendor_req_buffer, &g_vendor_req_read_count);
+ break;
+ }
+
+ case B200_VREQ_BITSTREAM_DATA_COMMIT: {
+ /*CyU3PReturnStatus_t*/int spi_result = -1;
+ if (g_fx3_state == STATE_CONFIGURING_FPGA) {
+ ++g_fpga_programming_write_count;
+ spi_result = CyU3PSpiTransmitWords(g_vendor_req_buffer, g_vendor_req_read_count);
+ CyU3PThreadSleep(1); // 20 MHz, 512 bytes
+ }
+ CyU3PUsbSendEP0Data(sizeof(spi_result), (uint8_t*)&spi_result);
+ break;
+ }
+
+ case B200_VREQ_FPGA_CONFIG: {
+ CyU3PUsbGetEP0Data(1, g_vendor_req_buffer, &read_count);
+
+ CyU3PEventSet(&g_event_usb_config, EVENT_FPGA_CONFIG, CYU3P_EVENT_OR);
+ break;
+ }
+
+ case B200_VREQ_GET_COMPAT: {
+ CyU3PUsbSendEP0Data(/*2*/sizeof(compat_num), compat_num);
+ break;
+ }
+
+ case B200_VREQ_SET_FPGA_HASH: {
+ CyU3PUsbGetEP0Data(4, fpga_hash, &read_count);
+ break;
+ }
+
+ case B200_VREQ_GET_FPGA_HASH: {
+ CyU3PUsbSendEP0Data(/*4*/sizeof(fpga_hash), fpga_hash);
+ break;
+ }
+
+ case B200_VREQ_SET_FW_HASH: {
+ CyU3PUsbGetEP0Data(4, fw_hash, &read_count);
+ break;
+ }
+
+ case B200_VREQ_GET_FW_HASH: {
+ CyU3PUsbSendEP0Data(/*4*/sizeof(fw_hash), fw_hash);
+ break;
+ }
+
+ case B200_VREQ_SPI_WRITE_AD9361: {
+ CyU3PUsbGetEP0Data(g_vendor_req_buff_size, g_vendor_req_buffer, \
+ &read_count);
+
+ write_spi_to_ad9361(); // FIXME: Should have g_vendor_req_buffer & read_count passed in as args
+ break;
+ }
+
+ case B200_VREQ_SPI_READ_AD9361: {
+ CyU3PUsbGetEP0Data(g_vendor_req_buff_size, g_vendor_req_buffer, \
+ &read_count);
+
+ read_spi_from_ad9361(); // FIXME: Should have g_vendor_req_buffer & read_count passed in as args
+ break;
+ }
+
+ case B200_VREQ_LOOP_CODE: {
+ CyU3PUsbSendEP0Data(g_vendor_req_buff_size, g_vendor_req_buffer);
+ break;
+ }
+
+ case B200_VREQ_GET_LOG: {
+ LOCK(g_log_lock);
+
+ if (log_buffer_idx == 0)
+ CyU3PUsbSendEP0Data(log_buffer_len, (uint8_t*)log_buffer);
+ else {
+ int len1 = min(LOG_BUFFER_SIZE - log_buffer_idx, log_buffer_len);
+ memcpy(log_contiguous_buffer, log_buffer + log_buffer_idx, len1);
+ //if ((log_buffer_idx + log_buffer_len) > LOG_BUFFER_SIZE)
+ if (len1 < log_buffer_len)
+ memcpy(log_contiguous_buffer + len1, log_buffer, log_buffer_len - len1);
+ CyU3PUsbSendEP0Data(log_buffer_len, (uint8_t*)log_contiguous_buffer);
+ }
+
+ // FIXME: Necessary? Not used in the other ones
+ //CyU3PUsbSendEP0Data(0, NULL); // Send ZLP since previous send has resulted in an integral # of packets
+
+ log_reset();
+
+ UNLOCK(g_log_lock);
+
+ //log_reset();
+
+ break;
+ }
+
+ case B200_VREQ_GET_COUNTERS: {
+ LOCK(g_counters_lock);
+
+ CyU3PUsbSendEP0Data(sizeof(COUNTERS), (uint8_t*)&g_counters);
+
+ counters_auto_reset();
+
+ UNLOCK(g_counters_lock);
+
+ //counters_auto_reset();
+
+ break;
+ }
+
+ case B200_VREQ_CLEAR_COUNTERS: {
+ CyU3PUsbAckSetup();
+ //CyU3PUsbGetEP0Data(g_vendor_req_buff_size, g_vendor_req_buffer, &read_count); // Dummy
+
+ counters_dma_reset();
+
+ break;
+ }
+
+ case B200_VREQ_GET_USB_EVENT_LOG: {
+ uint16_t idx = CyU3PUsbGetEventLogIndex(); // Current *write* pointer
+ if (idx > (USB_EVENT_LOG_SIZE-1)) {
+ msg("! USB event log idx = %i", (int)idx);
+ break;
+ }
+ // Assuming logging won't wrap around between get calls (i.e. buffer should be long enough)
+ uint16_t len = 0;
+ if (idx < g_last_usb_event_log_index) {
+ uint16_t len1 = (USB_EVENT_LOG_SIZE - g_last_usb_event_log_index);
+ if (len1 > (USB_EVENT_LOG_SIZE-1)) {
+ msg("! USB event log len 2.1 = %i", (int)len1);
+ break;
+ }
+ len = len1 + idx;
+ if (len > (USB_EVENT_LOG_SIZE-1)) {
+ msg("! USB event log len 2.2 = %i", (int)len);
+ break;
+ }
+ memcpy(g_usb_event_log_contiguous_buf, g_usb_event_log + g_last_usb_event_log_index, len1);
+ memcpy(g_usb_event_log_contiguous_buf + len1, g_usb_event_log, idx);
+ //msg("USB event log [2] %i %i", (int)len1, (int)len);
+ } else {
+ len = idx - g_last_usb_event_log_index;
+ if (len > (USB_EVENT_LOG_SIZE-1)) {
+ msg("! USB event log len 1 = %i", (int)len);
+ break;
+ }
+ if (len > 0) { // ZLP should be OK
+ memcpy(g_usb_event_log_contiguous_buf, g_usb_event_log + g_last_usb_event_log_index, len);
+ //msg("USB event log [1] %i", (int)len);
+ }
+ }
+
+ //if (len > 0) // Send a ZLP, otherwise it'll timeout
+ CyU3PUsbSendEP0Data(len, g_usb_event_log_contiguous_buf);
+
+ g_last_usb_event_log_index = idx;
+ break;
+ }
+
+ case B200_VREQ_SET_CONFIG: {
+ CyU3PUsbGetEP0Data(sizeof(CONFIG_MOD), (uint8_t*)g_vendor_req_buffer, &read_count);
+ if (read_count == sizeof(CONFIG_MOD)) {
+ memcpy(&g_config_mod, g_vendor_req_buffer, sizeof(CONFIG_MOD));
+ CyU3PEventSet(&g_event_usb_config, EVENT_RE_ENUM, CYU3P_EVENT_OR);
+ }
+ break;
+ }
+
+ case B200_VREQ_GET_CONFIG: {
+ CyU3PUsbSendEP0Data(sizeof(g_config), (uint8_t*)&g_config);
+ break;
+ }
+
+ case B200_VREQ_WRITE_SB: {
+ CyU3PUsbGetEP0Data(g_vendor_req_buff_size, (uint8_t*)g_vendor_req_buffer, &read_count);
+#ifdef ENABLE_FPGA_SB
+ uint16_t i;
+ LOCK(g_suart_lock);
+ for (i = 0; i < read_count; ++i)
+ sb_write(SUART_TXCHAR, g_vendor_req_buffer[i]);
+ UNLOCK(g_suart_lock);
+
+ msg("Wrote %d SB chars", read_count);
+#else
+ msg("SB is disabled");
+#endif // ENABLE_FPGA_SB
+ break;
+ }
+
+ case B200_VREQ_SET_SB_BAUD_DIV: {
+ uint16_t div;
+ CyU3PUsbGetEP0Data(sizeof(div), (uint8_t*)&div, &read_count);
+
+ if (read_count == sizeof(div)) {
+#ifdef ENABLE_FPGA_SB
+ LOCK(g_suart_lock);
+ sb_write(SUART_CLKDIV, div);
+ UNLOCK(g_suart_lock);
+ msg("SUART_CLKDIV = %d", div);
+ g_fpga_sb_uart_div = div; // Store for GPIF (FPGA) reset
+#else
+ msg("SB is disabled");
+#endif // ENABLE_FPGA_SB
+ }
+ else
+ msg("! SUART_CLKDIV received %d bytes", read_count);
+
+ break;
+ }
+
+ case B200_VREQ_FLUSH_DATA_EPS: {
+ //msg("Flushing data EPs...");
+
+ CyU3PUsbAckSetup();
+
+ // From host
+ //CyU3PDmaChannelReset(&data_cons_to_prod_chan_handle);
+ //CyU3PUsbFlushEp(DATA_ENDPOINT_PRODUCER);
+ //CyU3PUsbResetEp(DATA_ENDPOINT_PRODUCER);
+ //CyU3PDmaChannelSetXfer(&data_cons_to_prod_chan_handle, DMA_SIZE_INFINITE);
+
+ //CyU3PDmaChannelReset(&data_cons_to_prod_chan_handle);
+ CyU3PDmaChannelReset(&data_prod_to_cons_chan_handle);
+ //CyU3PUsbFlushEp(DATA_ENDPOINT_PRODUCER);
+ CyU3PUsbFlushEp(DATA_ENDPOINT_CONSUMER);
+ //CyU3PUsbResetEp(DATA_ENDPOINT_PRODUCER);
+ CyU3PUsbResetEp(DATA_ENDPOINT_CONSUMER);
+ //CyU3PDmaChannelSetXfer(&data_cons_to_prod_chan_handle, DMA_SIZE_INFINITE);
+ CyU3PDmaChannelSetXfer(&data_prod_to_cons_chan_handle, DMA_SIZE_INFINITE);
+
+ // To host
+ //CyU3PDmaChannelReset(&data_prod_to_cons_chan_handle);
+ //CyU3PUsbFlushEp(DATA_ENDPOINT_CONSUMER);
+ //CyU3PUsbResetEp(DATA_ENDPOINT_CONSUMER);
+ //CyU3PDmaChannelSetXfer(&data_prod_to_cons_chan_handle, DMA_SIZE_INFINITE);
+
+ break;
+ }
+
+ case B200_VREQ_EEPROM_WRITE: {
+ i2cAddr = 0xA0 | ((wValue & 0x0007) << 1);
+ CyU3PUsbGetEP0Data(((wLength + 15) & 0xFFF0), g_vendor_req_buffer, NULL);
+
+ CyFxUsbI2cTransfer (wIndex, i2cAddr, wLength,
+ g_vendor_req_buffer, CyFalse);
+ break;
+ }
+
+ case B200_VREQ_EEPROM_READ: {
+ i2cAddr = 0xA0 | ((wValue & 0x0007) << 1);
+ CyU3PMemSet (g_vendor_req_buffer, 0, sizeof (g_vendor_req_buffer));
+ CyFxUsbI2cTransfer (wIndex, i2cAddr, wLength,
+ g_vendor_req_buffer, CyTrue);
+
+ CyU3PUsbSendEP0Data(wLength, g_vendor_req_buffer);
+ break;
+ }
+
+ case B200_VREQ_TOGGLE_FPGA_RESET: {
+ CyU3PUsbGetEP0Data(g_vendor_req_buff_size, g_vendor_req_buffer, \
+ &read_count);
+
+ /* CyBool_t value = (g_vendor_req_buffer[0] & 0x01) ? CyTrue : CyFalse;
+ CyU3PGpioSetValue(GPIO_FPGA_RESET, value); */
+ break;
+ }
+
+ case B200_VREQ_TOGGLE_GPIF_RESET: {
+ CyU3PUsbGetEP0Data(g_vendor_req_buff_size, g_vendor_req_buffer, \
+ &read_count);
+
+ reset_gpif();
+ break;
+ }
+
+ case B200_VREQ_RESET_DEVICE: {
+ CyU3PUsbGetEP0Data(4, g_vendor_req_buffer, &read_count);
+
+ CyU3PDeviceReset(CyFalse); // FIXME: If CyTrue, this will *not* call static initialisers for global variables - must do this manually
+ break;
+ }
+
+ case B200_VREQ_GET_USB_SPEED: {
+ CyU3PUSBSpeed_t usb_speed = CyU3PUsbGetSpeed();
+ switch(usb_speed) {
+ case CY_U3P_SUPER_SPEED:
+ g_vendor_req_buffer[0] = 3;
+ break;
+
+ case CY_U3P_FULL_SPEED:
+ case CY_U3P_HIGH_SPEED:
+ g_vendor_req_buffer[0] = 2;
+ break;
+
+ default:
+ g_vendor_req_buffer[0] = 1;
+ break;
+ }
+
+ CyU3PUsbSendEP0Data(1, g_vendor_req_buffer);
+ break;
+ }
+
+ case B200_VREQ_GET_STATUS: {
+ g_vendor_req_buffer[0] = g_fx3_state;
+ CyU3PUsbSendEP0Data(1, g_vendor_req_buffer);
+ break;
+ }
+
+ case B200_VREQ_AD9361_CTRL_READ: {
+ CyU3PUsbSendEP0Data(g_vendor_req_buff_size, g_vendor_req_buffer);
+ /*
+ * This is where vrb gets sent back to the host
+ */
+ break;
+ }
+
+ case B200_VREQ_AD9361_CTRL_WRITE: {
+ CyU3PUsbGetEP0Data(g_vendor_req_buff_size, g_vendor_req_buffer, &read_count);
+ CyU3PEventSet(&g_event_usb_config, EVENT_AD9361_XACT_INIT, CYU3P_EVENT_OR);
+
+ uint32_t event_flag;
+ CyU3PEventGet(&g_event_usb_config, EVENT_AD9361_XACT_DONE, CYU3P_EVENT_AND_CLEAR, &event_flag, CYU3P_WAIT_FOREVER);
+
+ memcpy(g_vendor_req_buffer, g_ad9361_response, AD9361_DISPATCH_PACKET_SIZE);
+ break;
+ }
+
+ case B200_VREQ_AD9361_LOOPBACK: {
+ CyU3PUsbGetEP0Data(g_vendor_req_buff_size, g_vendor_req_buffer, &read_count);
+
+ if (read_count > 0) {
+ ad9361_transaction_t xact;
+ memset(&xact, 0x00, sizeof(xact));
+
+ xact.version = AD9361_TRANSACTION_VERSION;
+ xact.action = AD9361_ACTION_SET_CODEC_LOOP;
+ xact.sequence = 0;
+ xact.value.codec_loop = g_vendor_req_buffer[0];
+
+ memcpy(g_vendor_req_buffer, &xact, sizeof(xact));
+
+ CyU3PEventSet(&g_event_usb_config, EVENT_AD9361_XACT_INIT, CYU3P_EVENT_OR);
+
+ uint32_t event_flag;
+ CyU3PEventGet(&g_event_usb_config, EVENT_AD9361_XACT_DONE, CYU3P_EVENT_AND_CLEAR, &event_flag, CYU3P_WAIT_FOREVER);
+
+ memcpy(g_vendor_req_buffer, g_ad9361_response, AD9361_DISPATCH_PACKET_SIZE);
+
+ if (xact.value.codec_loop)
+ msg("Codec loopback ON");
+ else
+ msg("Codec loopback OFF");
+ }
+
+ break;
+ }
+
+ default:
+ msg("! Unknown VREQ %02X", (uint32_t)bRequest);
+ handled = CyFalse;
+ }
+
+ /* After processing the vendor request, flush the endpoints. */
+ CyU3PUsbFlushEp(VREQ_ENDPOINT_PRODUCER);
+ CyU3PUsbFlushEp(VREQ_ENDPOINT_CONSUMER);
+ }
+
+ return handled;
+}
+
+
+/* Callback function to handle LPM requests from the USB 3.0 host. This function
+ * is invoked by the API whenever a state change from U0 -> U1 or U0 -> U2
+ * happens.
+ *
+ * If we return CyTrue from this function, the FX3 device is retained
+ * in the low power state. If we return CyFalse, the FX3 device immediately
+ * tries to trigger an exit back to U0.
+ */
+CyBool_t lpm_request_callback(CyU3PUsbLinkPowerMode link_mode) {
+ msg("! lpm_request_callback = %i", link_mode);
+ return
+//#ifdef PREVENT_LOW_POWER_MODE
+ CyFalse; // This still allows my laptop to sleep
+//#else
+// CyTrue;
+//#endif // PREVENT_LOW_POWER_MODE
+}
+
+
+/*! Initialize and start the GPIF state machine.
+ *
+ * This function starts the GPIF Slave FIFO state machine on the FX3. Because on
+ * of the GPIF pins is used for FPGA configuration, this cannot be done until
+ * after FPGA configuration is complete. */
+void b200_gpif_init(void) {
+ msg("b200_gpif_init");
+
+ CyU3PPibClock_t pib_clock_config;
+
+ /* Initialize the p-port block; disable DLL for sync GPIF. */
+ pib_clock_config.clkDiv = 2;
+ pib_clock_config.clkSrc = CY_U3P_SYS_CLK;
+ pib_clock_config.isHalfDiv = CyFalse;
+ pib_clock_config.isDllEnable = CyFalse;
+ CyU3PPibInit(CyTrue, &pib_clock_config);
+
+ /* Load the GPIF configuration for Slave FIFO sync mode. */
+ CyU3PGpifLoad(&CyFxGpifConfig);
+
+ /* Start the state machine. */
+ CyU3PGpifSMStart(RESET, ALPHA_RESET);
+
+ /* Configure the watermarks for the slfifo-write buffers. */
+ CyU3PGpifSocketConfigure(0, DATA_TX_PPORT_SOCKET, 5, CyFalse, 1);
+ CyU3PGpifSocketConfigure(1, DATA_RX_PPORT_SOCKET, 6, CyFalse, 1);
+ CyU3PGpifSocketConfigure(2, CTRL_COMM_PPORT_SOCKET, 5, CyFalse, 1);
+ CyU3PGpifSocketConfigure(3, CTRL_RESP_PPORT_SOCKET, 6, CyFalse, 1);
+}
+
+
+/*! Start and configure the FX3's SPI module.
+ *
+ * This module is used for programming the FPGA. After the FPGA is configured,
+ * the SPI module is disabled, as it cannot be used while we are using GPIF
+ * 32-bit mode. */
+CyU3PReturnStatus_t b200_spi_init(void) {
+ msg("b200_spi_init");
+
+ CyU3PSpiConfig_t spiConfig;
+
+ /* Start the SPI module and configure the master. */
+ CyU3PSpiInit();
+
+ /* Start the SPI master block. Run the SPI clock at 8MHz
+ * and configure the word length to 8 bits. Also configure
+ * the slave select using FW. */
+ CyU3PMemSet ((uint8_t *)&spiConfig, 0, sizeof(spiConfig));
+ spiConfig.isLsbFirst = CyFalse;
+ spiConfig.cpol = CyFalse;
+ spiConfig.cpha = CyFalse;
+ spiConfig.ssnPol = CyTrue;
+ spiConfig.leadTime = CY_U3P_SPI_SSN_LAG_LEAD_HALF_CLK;
+ spiConfig.lagTime = CY_U3P_SPI_SSN_LAG_LEAD_HALF_CLK;
+ spiConfig.ssnCtrl = CY_U3P_SPI_SSN_CTRL_FW;
+ spiConfig.clock = 20000000;
+ spiConfig.wordLen = 8;
+
+ CyU3PReturnStatus_t res = CyU3PSpiSetConfig(&spiConfig, NULL);
+
+ if (res != CY_U3P_SUCCESS)
+ msg("! CyU3PSpiSetConfig");
+
+ return res;
+}
+
+
+/*! Initialize the USB module of the FX3 chip.
+ *
+ * This function handles USB initialization, re-enumeration (and thus coming up
+ * as a USRP B200 device), configures USB endpoints and the DMA module.
+ */
+void b200_usb_init(void) {
+ //msg("b200_usb_init");
+
+ /* Initialize the I2C interface for the EEPROM of page size 64 bytes. */
+ CyFxI2cInit(CY_FX_USBI2C_I2C_PAGE_SIZE);
+
+ /* Start the USB system! */
+ CyU3PUsbStart();
+
+ /* Register our USB Setup callback. The boolean parameter indicates whether
+ * or not we are using FX3's 'Fast Enumeration' mode, which relies on the
+ * USB driver auto-detecting the connection speed and setting the correct
+ * descriptors. */
+ CyU3PUsbRegisterSetupCallback(usb_setup_callback, CyTrue);
+
+ CyU3PUsbRegisterEventCallback(event_usb_callback);
+
+ CyU3PUsbRegisterLPMRequestCallback(lpm_request_callback);
+
+ /* Check to see if a VID/PID is in the EEPROM that we should use. */
+ uint8_t valid[4];
+ CyU3PMemSet(valid, 0, 4);
+ CyFxUsbI2cTransfer(0x0, 0xA0, 4, valid, CyTrue);
+ if(*((uint32_t *) &(valid[0])) == 0xB2145943) {
+
+ /* Pull the programmed device serial out of the i2c EEPROM, and copy the
+ * characters into the device serial string, which is then advertised as
+ * part of the USB descriptors. */
+ uint8_t vidpid[4];
+ CyU3PMemSet(vidpid, 0, 4);
+ CyFxUsbI2cTransfer(0x4, 0xA0, 4, vidpid, CyTrue);
+ b200_usb2_dev_desc[8] = vidpid[2];
+ b200_usb2_dev_desc[9] = vidpid[3];
+ b200_usb2_dev_desc[10] = vidpid[0];
+ b200_usb2_dev_desc[11] = vidpid[1];
+
+ b200_usb3_dev_desc[8] = vidpid[2];
+ b200_usb3_dev_desc[9] = vidpid[3];
+ b200_usb3_dev_desc[10] = vidpid[0];
+ b200_usb3_dev_desc[11] = vidpid[1];
+ }
+
+ uint8_t ascii_serial[9];
+ CyU3PMemSet(ascii_serial, 0, 9);
+ CyFxUsbI2cTransfer(0x4f7, 0xA0, 9, ascii_serial, CyTrue);
+ uint8_t count;
+ dev_serial[0] = 2;
+ for(count = 0; count < 9; count++) {
+ uint8_t byte = ascii_serial[count];
+ if (byte < 32 || byte > 127) break;
+ dev_serial[2 + (count * 2)] = byte;
+ // FIXME: Set count*2 + 1 = 0x00 ?
+ dev_serial[0] += 2;
+ }
+
+ /* Set our USB enumeration descriptors! Note that there are different
+ * function calls for each USB speed: FS, HS, SS. */
+
+ /* Device descriptors */
+ CyU3PUsbSetDesc(CY_U3P_USB_SET_HS_DEVICE_DESCR, 0,
+ (uint8_t *) b200_usb2_dev_desc);
+
+ CyU3PUsbSetDesc(CY_U3P_USB_SET_SS_DEVICE_DESCR, 0,
+ (uint8_t *) b200_usb3_dev_desc);
+
+ /* Device qualifier descriptors */
+ CyU3PUsbSetDesc(CY_U3P_USB_SET_DEVQUAL_DESCR, 0,
+ (uint8_t *) b200_dev_qual_desc);
+
+ /* Configuration descriptors */
+ CyU3PUsbSetDesc(CY_U3P_USB_SET_HS_CONFIG_DESCR, 0,
+ (uint8_t *) b200_usb_hs_config_desc);
+
+ CyU3PUsbSetDesc(CY_U3P_USB_SET_FS_CONFIG_DESCR, 0,
+ (uint8_t *) b200_usb_fs_config_desc);
+
+ CyU3PUsbSetDesc(CY_U3P_USB_SET_SS_CONFIG_DESCR, 0,
+ (uint8_t *) b200_usb_ss_config_desc);
+
+ /* BOS Descriptor */
+ CyU3PUsbSetDesc(CY_U3P_USB_SET_SS_BOS_DESCR, 0,
+ (uint8_t *) b200_usb_bos_desc);
+
+ /* String descriptors */
+ CyU3PUsbSetDesc(CY_U3P_USB_SET_STRING_DESCR, 0,
+ (uint8_t *) b200_string_lang_id_desc);
+
+ CyU3PUsbSetDesc(CY_U3P_USB_SET_STRING_DESCR, 1,
+ (uint8_t *) b200_usb_manufacture_desc);
+
+ CyU3PUsbSetDesc(CY_U3P_USB_SET_STRING_DESCR, 2,
+ (uint8_t *) b200_usb_product_desc);
+
+ CyU3PUsbSetDesc(CY_U3P_USB_SET_STRING_DESCR, 3,
+ (uint8_t *) dev_serial);
+
+ ////////////////////////////////////////////////////////
+
+ // FIXME: CyU3PUsbSetTxDeemphasis(0x11); <0x1F // Shouldn't need to change this
+
+ uint32_t tx_swing = /*65*/45; // 65 & 45 are OK, 120 causes much link recovery. <128. 1.2V is USB3 limit.
+ if (CyU3PUsbSetTxSwing(tx_swing) == CY_U3P_SUCCESS)
+ msg("CyU3PUsbSetTxSwing %d", tx_swing);
+ else
+ msg("! CyU3PUsbSetTxSwing %d", tx_swing);
+
+ ////////////////////////////////////////////////////////
+
+ /* Connect the USB pins, and enable SuperSpeed (USB 3.0). */
+ CyU3PConnectState(CyTrue, CyTrue); // connect, ssEnable
+}
+
+
+void b200_restore_gpio_for_fpga_config(void) {
+ CyU3PDeviceGpioRestore(GPIO_FPGA_RESET);
+ CyU3PDeviceGpioRestore(GPIO_DONE);
+
+ CyU3PDeviceGpioRestore(GPIO_FX3_SCLK);
+ CyU3PDeviceGpioRestore(GPIO_FX3_CE);
+ CyU3PDeviceGpioRestore(GPIO_FX3_MISO);
+ CyU3PDeviceGpioRestore(GPIO_FX3_MOSI);
+
+ //CyU3PGpioDeInit(); // Moved to just before init
+}
+
+void thread_fpga_config_entry(uint32_t input) {
+ uint32_t event_flag;
+
+ //msg("thread_fpga_config_entry");
+
+ for(;;) {
+
+ // Event is set through VREQ
+ if(CyU3PEventGet(&g_event_usb_config, \
+ (EVENT_FPGA_CONFIG), CYU3P_EVENT_AND_CLEAR, \
+ &event_flag, CYU3P_WAIT_FOREVER) == CY_U3P_SUCCESS) {
+
+ //uint8_t old_state = g_fx3_state;
+ uint32_t old_fpga_programming_write_count = 0;
+
+ if(g_fx3_state == STATE_ERROR) {
+ CyU3PThreadRelinquish();
+ continue;
+ }
+
+ if(g_fx3_state == STATE_RUNNING) {
+ /* The FX3 is currently configured for SLFIFO mode. We need to tear down
+ * this configuration and re-configure to program the FPGA. */
+ b200_restore_gpio_for_fpga_config();
+ CyU3PGpifDisable(CyTrue);
+ }
+
+ CyU3PSysWatchDogClear();
+
+ g_fx3_state = STATE_BUSY;
+
+ /* Configure the device GPIOs for FPGA programming. */
+ b200_gpios_pre_fpga_config();
+
+ CyU3PSysWatchDogClear();
+
+ /* Initialize the SPI module that will be used for FPGA programming. */
+ b200_spi_init(); // This must be done *after* 'b200_gpios_pre_fpga_config'
+
+ CyU3PSysWatchDogClear();
+
+ /* Wait for the signal from the host that the bitstream is starting. */
+ uint32_t wait_count = 0;
+
+ /* We can now begin configuring the FPGA. */
+ g_fx3_state = STATE_FPGA_READY;
+
+ msg("Begin FPGA");
+
+ // Event is set through VREQ
+ while(CyU3PEventGet(&g_event_usb_config, \
+ (EVENT_BITSTREAM_START), CYU3P_EVENT_AND_CLEAR, \
+ &event_flag, CYU3P_NO_WAIT) != CY_U3P_SUCCESS) {
+
+ if(wait_count >= FPGA_PROGRAMMING_BITSTREAM_START_POLL_COUNT) {
+ msg("! Bitstream didn't start");
+ g_fx3_state = STATE_UNCONFIGURED; // Since IO configuration has changed, leave it in the unconfigured state (rather than the previous one, which might have been running)
+ CyU3PThreadRelinquish();
+ break;
+ }
+
+ wait_count++;
+ CyU3PThreadSleep(FPGA_PROGRAMMING_POLL_SLEEP);
+ CyU3PSysWatchDogClear();
+ }
+
+ if (wait_count >= FPGA_PROGRAMMING_BITSTREAM_START_POLL_COUNT)
+ continue;
+
+ /* Pull PROGRAM_B low and then release it. */
+ CyU3PGpioSetValue(GPIO_PROGRAM_B, 0);
+ CyU3PThreadSleep(20);
+ CyU3PGpioSetValue(GPIO_PROGRAM_B, 1);
+
+ /* Wait for INIT_B to fall and rise. */
+ wait_count = 0;
+
+ msg("Wait FPGA");
+
+ while(CyU3PEventGet(&g_event_usb_config, \
+ (EVENT_GPIO_INITB_RISE), CYU3P_EVENT_AND_CLEAR, \
+ &event_flag, CYU3P_NO_WAIT) != CY_U3P_SUCCESS) {
+
+ if(wait_count >= FPGA_PROGRAMMING_INITB_POLL_COUNT) {
+ msg("! INITB didn't rise");
+ g_fx3_state = STATE_UNCONFIGURED; // Safer to call it unconfigured than the previous state
+ CyU3PThreadRelinquish();
+ break;
+ }
+
+ wait_count++;
+ CyU3PThreadSleep(FPGA_PROGRAMMING_POLL_SLEEP);
+ CyU3PSysWatchDogClear();
+ }
+#ifdef ENABLE_INIT_B_WORKAROUND
+ if (wait_count >= FPGA_PROGRAMMING_INITB_POLL_COUNT)
+ {
+ CyBool_t gpio_init_b;
+ CyU3PGpioGetValue(GPIO_INIT_B, &gpio_init_b);
+ if (gpio_init_b == CyTrue)
+ {
+ wait_count = 0;
+ }
+ else
+ {
+ msg("! INIT_B still not high");
+ }
+ }
+#endif // ENABLE_INIT_B_WORKAROUND
+ if (wait_count >= FPGA_PROGRAMMING_INITB_POLL_COUNT)
+ continue;
+
+ /* We are ready to accept the FPGA bitstream! */
+ wait_count = 0;
+ g_fx3_state = STATE_CONFIGURING_FPGA;
+
+ msg("Configuring FPGA");
+
+ // g_fpga_programming_write_count is zero'd by VREQ triggering EVENT_BITSTREAM_START
+
+ while(CyU3PEventGet(&g_event_usb_config, \
+ (EVENT_GPIO_DONE_HIGH), CYU3P_EVENT_AND_CLEAR, \
+ &event_flag, CYU3P_NO_WAIT) != CY_U3P_SUCCESS) {
+
+ /* Wait for the configuration to complete, which will be indicated
+ * by the DONE pin going high and triggering the associated
+ * interrupt. */
+
+ if(wait_count >= FPGA_PROGRAMMING_DONE_POLL_COUNT) {
+ msg("! DONE didn't go high");
+ g_fx3_state = STATE_UNCONFIGURED;
+ CyU3PThreadRelinquish();
+ break;
+ }
+
+ if (old_fpga_programming_write_count == g_fpga_programming_write_count) // Only increment wait count if we haven't written anything
+ wait_count++;
+ else {
+ wait_count = 0;
+ old_fpga_programming_write_count = g_fpga_programming_write_count;
+ }
+
+ CyU3PThreadSleep(FPGA_PROGRAMMING_POLL_SLEEP);
+ CyU3PSysWatchDogClear();
+ }
+#ifdef ENABLE_DONE_WORKAROUND
+ if (wait_count >= FPGA_PROGRAMMING_DONE_POLL_COUNT)
+ {
+ CyBool_t gpio_done;
+ CyU3PGpioGetValue(GPIO_DONE, &gpio_done);
+ if (gpio_done == CyTrue)
+ {
+ wait_count = 0;
+ }
+ else
+ {
+ msg("! DONE still not high");
+ }
+ }
+#endif // ENABLE_DONE_WORKAROUND
+ if (wait_count >= FPGA_PROGRAMMING_DONE_POLL_COUNT)
+ continue;
+
+ msg("FPGA done");
+
+ /* Tell the host that we are ignoring it for a while. */
+ g_fx3_state = STATE_BUSY;
+
+ CyU3PSysWatchDogClear();
+
+ /* Now that the FPGA is configured, we need to tear down the current SPI and
+ * GPIO configs, and re-config for GPIF & bit-banged SPI operation. */
+ CyU3PSpiDeInit();
+ b200_restore_gpio_for_fpga_config();
+
+ CyU3PSysWatchDogClear();
+
+ /* Load the GPIO configuration for normal SLFIFO use. */
+ b200_slfifo_mode_gpio_config();
+
+ /* Tone down the drive strength on the P-port. */
+ //CyU3PSetPportDriveStrength(CY_U3P_DS_HALF_STRENGTH);
+
+ CyU3PSysWatchDogClear();
+
+ /* FPGA configuration is complete! Time to get the GPIF state machine
+ * running for Slave FIFO. */
+ b200_gpif_init();
+
+ CyU3PThreadSleep(1);
+ b200_start_fpga_sb_gpio(); // Moved here to give SB time to init
+
+ /* RUN, BABY, RUN! */
+ g_fx3_state = STATE_RUNNING;
+
+ msg("Running");
+ }
+
+ CyU3PThreadRelinquish();
+ }
+}
+
+
+/*! The primary program thread.
+ *
+ * This is the primary application thread running on the FX3 device. It is
+ * responsible for initializing much of the chip, and then bit-banging the FPGA
+ * image, as it is sent from the host, into the FPGA. It then re-configures the
+ * FX3 for slave-fifo, and enters an infinite loop where it simply updates the
+ * watchdog timer and does some minor power management state checking.
+ */
+void thread_main_app_entry(uint32_t input) {
+ //msg("thread_main_app_entry");
+
+ /* In your spectrum, stealing your Hz. */
+ for(;;) {
+ CyU3PSysWatchDogClear();
+ CyU3PThreadSleep(CHECK_POWER_STATE_SLEEP_TIME);
+#ifdef PREVENT_LOW_POWER_MODE
+ /* Once data transfer has started, we keep trying to get the USB
+ * link to stay in U0. If this is done
+ * before data transfers have started, there is a likelihood of
+ * failing the TD 9.24 U1/U2 test. */
+ {
+ CyU3PUsbLinkPowerMode current_state;
+
+ if((CyU3PUsbGetSpeed () == CY_U3P_SUPER_SPEED)) {
+
+ /* If the link is in U1/U2 states, try to get back to U0. */
+ CyU3PUsbGetLinkPowerState(&current_state);
+
+ if (current_state > CyU3PUsbLPM_U3)
+ msg("Power state %i", current_state);
+
+ while((current_state >= CyU3PUsbLPM_U1) \
+ && (current_state <= CyU3PUsbLPM_U3)) {
+
+ msg("! LPS = %i", current_state);
+
+ CyU3PUsbSetLinkPowerState(CyU3PUsbLPM_U0); // This will wake up the host if it's trying to sleep
+ CyU3PThreadSleep(1);
+
+ if (CyU3PUsbGetSpeed () != CY_U3P_SUPER_SPEED)
+ break;
+
+ CyU3PUsbGetLinkPowerState (&current_state);
+ }
+ }
+ }
+#endif // PREVENT_LOW_POWER_MODE
+ }
+}
+
+
+void thread_ad9361_entry(uint32_t input) {
+ uint32_t event_flag;
+
+ //msg("thread_ad9361_entry");
+
+ while (1) {
+ if (CyU3PEventGet(&g_event_usb_config, \
+ EVENT_AD9361_XACT_INIT, CYU3P_EVENT_AND_CLEAR, \
+ &event_flag, CYU3P_WAIT_FOREVER) == CY_U3P_SUCCESS) {
+ ad9361_dispatch((const char*)g_vendor_req_buffer, g_ad9361_response);
+
+ CyU3PEventSet(&g_event_usb_config, EVENT_AD9361_XACT_DONE, CYU3P_EVENT_OR);
+ }
+ }
+}
+
+static uint16_t g_poll_last_phy_error_count = 0, g_poll_last_link_error_count = 0;
+static uint32_t g_poll_last_phy_error_status = 0;
+
+void update_error_counters(void) {
+ if (CyU3PUsbGetSpeed () != CY_U3P_SUPER_SPEED)
+ return;
+
+ uvint32_t reg = REG_LNK_PHY_ERROR_STATUS;
+ uint32_t val = 0;
+ if (CyU3PReadDeviceRegisters((uvint32_t*)reg, 1, &val) == CY_U3P_SUCCESS) {
+ g_poll_last_phy_error_status |= (val & PHYERR_MASK);
+
+ // Reset after read
+ uint32_t zero = PHYERR_MASK;
+ if (CyU3PWriteDeviceRegisters((uvint32_t*)reg, 1, &zero) != CY_U3P_SUCCESS)
+ msg("! CyU3PWriteDeviceRegisters");
+ }
+ else {
+ // FIXME: Log once
+ msg("! Reg read fail");
+ }
+
+ // Equivalent code:
+ //uint32_t* p = (uint32_t*)REG_LNK_PHY_ERROR_STATUS;
+ //val = (*p);
+ //(*p) = PHYERR_MASK;
+
+ uint16_t phy_error_count = 0, link_error_count = 0;
+ if (CyU3PUsbGetErrorCounts(&phy_error_count, &link_error_count) == CY_U3P_SUCCESS) { // Resets internal counters after call
+ g_poll_last_phy_error_count += phy_error_count;
+ g_poll_last_link_error_count += link_error_count;
+ }
+ else {
+ // FIXME: Log once
+ msg("! CyU3PUsbGetErrorCounts");
+ }
+
+ LOCK(g_counters_lock);
+ g_counters.usb_error_update_count++;
+ g_counters.usb_error_counters.phy_error_count += phy_error_count;
+ g_counters.usb_error_counters.link_error_count += link_error_count;
+ if (val & PHYERR_MASK) {
+ if (val & PHYERR_PHY_LOCK_EV) g_counters.usb_error_counters.PHY_LOCK_EV++;
+ if (val & PHYERR_TRAINING_ERROR_EV) g_counters.usb_error_counters.TRAINING_ERROR_EV++;
+ if (val & PHYERR_RX_ERROR_CRC32_EV) g_counters.usb_error_counters.RX_ERROR_CRC32_EV++;
+ if (val & PHYERR_RX_ERROR_CRC16_EV) g_counters.usb_error_counters.RX_ERROR_CRC16_EV++;
+ if (val & PHYERR_RX_ERROR_CRC5_EV) g_counters.usb_error_counters.RX_ERROR_CRC5_EV++;
+ if (val & PHYERR_PHY_ERROR_DISPARITY_EV)g_counters.usb_error_counters.PHY_ERROR_DISPARITY_EV++;
+ if (val & PHYERR_PHY_ERROR_EB_UND_EV) g_counters.usb_error_counters.PHY_ERROR_EB_UND_EV++;
+ if (val & PHYERR_PHY_ERROR_EB_OVR_EV) g_counters.usb_error_counters.PHY_ERROR_EB_OVR_EV++;
+ if (val & PHYERR_PHY_ERROR_DECODE_EV) g_counters.usb_error_counters.PHY_ERROR_DECODE_EV++;
+ }
+ UNLOCK(g_counters_lock); // FIXME: Read/write regs
+}
+
+
+void thread_re_enum_entry(uint32_t input) {
+ uint32_t event_flag;
+
+ //msg("thread_re_enum_entry");
+
+ int keep_alive = 0;
+
+ while (1) {
+ if (CyU3PEventGet(&g_event_usb_config, \
+ (EVENT_RE_ENUM), CYU3P_EVENT_AND_CLEAR, \
+ &event_flag, RE_ENUM_THREAD_SLEEP_TIME) == CY_U3P_SUCCESS) {
+ msg("Re-config");
+
+ // FIXME: This section is not finished
+
+ // Not locking this since we only expect one write in VREQ and read afterward here
+
+ int re_enum = g_config_mod.flags & (CF_RE_ENUM | CF_TX_SWING | CF_TX_DEEMPHASIS);
+
+ CyU3PThreadSleep(100); // Wait for EP0 xaction to complete
+
+ //b200_fw_stop();
+
+ if (re_enum) {
+ msg("Link down");
+ CyU3PConnectState(CyFalse, CyTrue);
+ }
+
+ if (g_config_mod.flags & CF_TX_DEEMPHASIS) {
+ //g_config_mod.config.tx_deemphasis
+ //CyU3PUsbSetTxDeemphasis(0x11); <0x1F
+ }
+ if (g_config_mod.flags & CF_TX_SWING) {
+ //CyU3PUsbSetTxSwing(90); <128
+ }
+
+ //CyU3PUsbControlUsb2Support();
+
+ //b200_fw_start()
+
+ /* Connect the USB pins, and enable SuperSpeed (USB 3.0). */
+ if (re_enum) {
+ msg("Link up");
+ CyU3PConnectState(CyTrue, CyTrue); // CHECK: Assuming all other important state will persist
+ }
+
+ counters_reset_usb_errors();
+ }
+ else {
+ if (++keep_alive == KEEP_ALIVE_LOOP_COUNT) {
+ msg("Keep-alive");
+ keep_alive = 0;
+ }
+#ifndef ENABLE_FPGA_SB
+ update_error_counters();
+#endif // !ENABLE_FPGA_SB
+ }
+
+ CyU3PThreadRelinquish();
+ }
+}
+
+
+void base16_encode(uint8_t v, char out[2], char first) {
+ out[0] = first + (v >> 4);
+ out[1] = first + (v & 0x0F);
+}
+
+
+#ifdef ENABLE_FPGA_SB
+void thread_fpga_sb_poll_entry(uint32_t input) {
+ //msg("thread_fpga_sb_poll_entry");
+
+ while (1) {
+ uint16_t i;
+ uint8_t has_change = 0;
+
+ update_error_counters();
+
+ /*if (g_poll_last_phy_error_count > 0)
+ has_change = 1;
+ if (g_poll_last_link_error_count > 0)
+ has_change = 1;*/
+ if (g_poll_last_phy_error_status != 0)
+ has_change = 1;
+
+ uint16_t idx = CyU3PUsbGetEventLogIndex(); // Current *write* pointer
+ if (idx > (USB_EVENT_LOG_SIZE-1)) {
+ msg("! USB event log idx = %i", (int)idx);
+ break;
+ }
+
+ uint8_t has_usb_events = 0;
+ // Assuming logging won't wrap around between get calls (i.e. buffer should be long enough)
+ if (g_fpga_sb_last_usb_event_log_index != idx) {
+ if (idx < g_fpga_sb_last_usb_event_log_index) {
+ for (i = g_fpga_sb_last_usb_event_log_index; i < USB_EVENT_LOG_SIZE; i++) {
+ if (g_usb_event_log[i] != 0x14 && g_usb_event_log[i] != 0x15 && g_usb_event_log[i] != 0x16) { // CTRL, STATUS, ACKSETUP
+ has_usb_events = 1;
+ break;
+ }
+ }
+
+ if (has_usb_events == 0) {
+ for (i = 0; i < idx; i++) {
+ if (g_usb_event_log[i] != 0x14 && g_usb_event_log[i] != 0x15 && g_usb_event_log[i] != 0x16) { // CTRL, STATUS, ACKSETUP
+ has_usb_events = 1;
+ break;
+ }
+ }
+ }
+ }
+ else {
+ for (i = g_fpga_sb_last_usb_event_log_index; i < idx; i++) {
+ if (g_usb_event_log[i] != 0x14 && g_usb_event_log[i] != 0x15 && g_usb_event_log[i] != 0x16) { // CTRL, STATUS, ACKSETUP
+ has_usb_events = 1;
+ break;
+ }
+ }
+ }
+ }
+
+ if (has_change || has_usb_events) {
+ LOCK(g_suart_lock);
+
+ sb_write(SUART_TXCHAR, UPT_USB_EVENTS);
+
+ char out[3];
+ out[2] = '\0';
+
+ if (has_usb_events) {
+ if (idx < g_fpga_sb_last_usb_event_log_index) {
+ for (i = g_fpga_sb_last_usb_event_log_index; i < USB_EVENT_LOG_SIZE; i++) {
+ if (g_usb_event_log[i] == 0x14 || g_usb_event_log[i] == 0x15 || g_usb_event_log[i] == 0x16) // CTRL, STATUS, ACKSETUP
+ continue;
+ base16_encode(g_usb_event_log[i], out, 'A');
+ _sb_write_string(out);
+ }
+
+ for (i = 0; i < idx; i++) {
+ if (g_usb_event_log[i] == 0x14 || g_usb_event_log[i] == 0x15 || g_usb_event_log[i] == 0x16) // CTRL, STATUS, ACKSETUP
+ continue;
+ base16_encode(g_usb_event_log[i], out, 'A');
+ _sb_write_string(out);
+ }
+ }
+ else {
+ for (i = g_fpga_sb_last_usb_event_log_index; i < idx; i++) {
+ if (g_usb_event_log[i] == 0x14 || g_usb_event_log[i] == 0x15 || g_usb_event_log[i] == 0x16) // CTRL, STATUS, ACKSETUP
+ continue;
+ base16_encode(g_usb_event_log[i], out, 'A');
+ _sb_write_string(out);
+ }
+ }
+ }
+
+ // USB events: A-P,A-P
+ // PHY error status: a,a-i
+
+ if (g_poll_last_phy_error_status != 0) {
+ uint32_t mask;
+ size_t offset;
+ for (mask = PHYERR_MAX, offset = 0; mask != 0; mask >>= 1, ++offset) {
+ if ((g_poll_last_phy_error_status & mask) != 0) {
+ sb_write(SUART_TXCHAR, 'a');
+ sb_write(SUART_TXCHAR, 'a' + offset);
+ }
+ }
+ }
+
+ /*char buf[6];
+
+ if (g_poll_last_phy_error_count > 0) {
+ sb_write(SUART_TXCHAR, 'b');
+ snprintf(buf, sizeof(buf)-1, "%d", g_poll_last_phy_error_count);
+ _sb_write_string(buf);
+ }
+
+ if (g_poll_last_link_error_count > 0) {
+ sb_write(SUART_TXCHAR, 'c');
+ snprintf(buf, sizeof(buf)-1, "%d", g_poll_last_link_error_count);
+ _sb_write_string(buf);
+ }*/
+
+ _sb_write_string("\r\n");
+
+ UNLOCK(g_suart_lock);
+ }
+
+ g_poll_last_phy_error_count = 0;
+ g_poll_last_link_error_count = 0;
+ g_poll_last_phy_error_status = 0;
+
+ g_fpga_sb_last_usb_event_log_index = idx;
+
+ CyU3PThreadRelinquish();
+ }
+}
+#endif // ENABLE_FPGA_SB
+
+/*! Application define function which creates the threads.
+ *
+ * The name of this application cannot be changed, as it is called from the
+ * tx_application _define function, referenced in the rest of the FX3 build
+ * system.
+ *
+ * If thread creation fails, lock the system and force a power reset.
+ */
+void CyFxApplicationDefine(void) {
+ void *app_thread_ptr, *fpga_thread_ptr, *ad9361_thread_ptr;
+#ifdef ENABLE_RE_ENUM_THREAD
+ void *re_enum_thread_ptr;
+#endif // ENABLE_RE_ENUM_THREAD
+#ifdef ENABLE_FPGA_SB
+ void *fpga_sb_poll_thread_ptr;
+#endif // ENABLE_FPGA_SB
+
+ g_counters.magic = COUNTER_MAGIC;
+#ifdef ENABLE_AD9361_LOGGING
+ ad9361_set_msgfn(msg);
+#endif // ENABLE_AD9361_LOGGING
+ memset(&g_config, 0xFF, sizeof(g_config)); // Initialise to -1
+
+ CyU3PMutexCreate(&g_log_lock, CYU3P_NO_INHERIT);
+ CyU3PMutexCreate(&g_counters_lock, CYU3P_NO_INHERIT);
+ CyU3PMutexCreate(&g_counters_dma_from_host_lock, CYU3P_NO_INHERIT);
+ CyU3PMutexCreate(&g_counters_dma_to_host_lock, CYU3P_NO_INHERIT);
+#ifdef ENABLE_FPGA_SB
+ CyU3PMutexCreate(&g_suart_lock, CYU3P_NO_INHERIT);
+#endif // ENABLE_FPGA_SB
+#ifdef ENABLE_USB_EVENT_LOGGING
+ CyU3PUsbInitEventLog(g_usb_event_log, USB_EVENT_LOG_SIZE);
+#endif // ENABLE_USB_EVENT_LOGGING
+
+ ////////////////////////////////////////////////////////
+
+ /* Tell the host that we are ignoring it for a while. */
+ g_fx3_state = STATE_BUSY;
+
+ /* Set the FX3 compatibility number. */
+ compat_num[0] = FX3_COMPAT_MAJOR;
+ compat_num[1] = FX3_COMPAT_MINOR;
+
+ /* Initialize the USB system. */
+ b200_usb_init();
+
+ /* Turn on the Watchdog Timer. */
+ CyU3PSysWatchDogConfigure(CyTrue, WATCHDOG_TIMEOUT);
+
+ /* Go do something. Probably not useful, because you aren't configured. */
+ g_fx3_state = STATE_UNCONFIGURED;
+
+ ////////////////////////////////////////////////////////
+
+ b200_gpio_init(CyTrue);
+
+ b200_enable_fpga_sb_gpio(CyTrue);
+
+ msg("Compat: %d.%d", FX3_COMPAT_MAJOR, FX3_COMPAT_MINOR);
+ msg("FX3 SDK: %d.%d.%d (build %d)", CYFX_VERSION_MAJOR, CYFX_VERSION_MINOR, CYFX_VERSION_PATCH, CYFX_VERSION_BUILD);
+
+ ////////////////////////////////////////////////////////
+
+ /* Create the USB event group that we will use to track USB events from the
+ * application thread. */
+ CyU3PEventCreate(&g_event_usb_config);
+
+ /* Allocate memory for the application thread. */
+ app_thread_ptr = CyU3PMemAlloc(APP_THREAD_STACK_SIZE);
+
+ /* Allocate memory for the FPGA configuration thread. */
+ fpga_thread_ptr = CyU3PMemAlloc(APP_THREAD_STACK_SIZE);
+#ifdef ENABLE_RE_ENUM_THREAD
+ re_enum_thread_ptr = CyU3PMemAlloc(APP_THREAD_STACK_SIZE);
+#endif // ENABLE_RE_ENUM_THREAD
+ ad9361_thread_ptr = CyU3PMemAlloc(APP_THREAD_STACK_SIZE);
+#ifdef ENABLE_FPGA_SB
+ fpga_sb_poll_thread_ptr = CyU3PMemAlloc(APP_THREAD_STACK_SIZE);
+#endif // ENABLE_FPGA_SB
+ ////////////////////////////////////////////////////////
+
+ /* Create the thread for the application */
+ if (app_thread_ptr != NULL)
+ CyU3PThreadCreate(&thread_main_app,
+ "200:B200 Main",
+ thread_main_app_entry,
+ 0,
+ app_thread_ptr,
+ APP_THREAD_STACK_SIZE,
+ THREAD_PRIORITY,
+ THREAD_PRIORITY,
+ CYU3P_NO_TIME_SLICE,
+ CYU3P_AUTO_START);
+
+ /* Create the thread for FPGA configuration. */
+ if (fpga_thread_ptr != NULL)
+ CyU3PThreadCreate(&thread_fpga_config,
+ "300:B200 FPGA",
+ thread_fpga_config_entry,
+ 0,
+ fpga_thread_ptr,
+ APP_THREAD_STACK_SIZE,
+ THREAD_PRIORITY,
+ THREAD_PRIORITY,
+ CYU3P_NO_TIME_SLICE,
+ CYU3P_AUTO_START);
+#ifdef ENABLE_RE_ENUM_THREAD
+ /* Create the thread for stats collection and re-enumeration/configuration */
+ if (re_enum_thread_ptr != NULL)
+ CyU3PThreadCreate(&thread_re_enum,
+ "400:B200 Re-enum",
+ thread_re_enum_entry,
+ 0,
+ re_enum_thread_ptr,
+ APP_THREAD_STACK_SIZE,
+ THREAD_PRIORITY,
+ THREAD_PRIORITY,
+ CYU3P_NO_TIME_SLICE,
+ CYU3P_AUTO_START);
+#endif // ENABLE_RE_ENUM_THREAD
+ /* Create thread to handle AD9361 transactions */
+ if (ad9361_thread_ptr != NULL)
+ CyU3PThreadCreate(&thread_ad9361,
+ "500:B200 AD9361",
+ thread_ad9361_entry,
+ 0,
+ ad9361_thread_ptr,
+ APP_THREAD_STACK_SIZE,
+ THREAD_PRIORITY,
+ THREAD_PRIORITY,
+ CYU3P_NO_TIME_SLICE,
+ CYU3P_AUTO_START);
+#ifdef ENABLE_FPGA_SB
+ /* Create thread to handling Settings Bus logging/transactions */
+ if (fpga_sb_poll_thread_ptr != NULL)
+ CyU3PThreadCreate(&thread_fpga_sb_poll,
+ "600:B200 FPGA SB poll",
+ thread_fpga_sb_poll_entry,
+ 0,
+ fpga_sb_poll_thread_ptr,
+ APP_THREAD_STACK_SIZE,
+ THREAD_PRIORITY,
+ THREAD_PRIORITY,
+ CYU3P_NO_TIME_SLICE,
+ CYU3P_AUTO_START);
+#endif // ENABLE_FPGA_SB
+}
+
+
+int main(void) {
+ CyU3PReturnStatus_t status = CY_U3P_SUCCESS;
+ CyU3PSysClockConfig_t clock_config;
+
+ /* Configure the FX3 Clocking scheme:
+ * CPU Divider: 2 (~200 MHz)
+ * DMA Divider: 2 (~100 MHz)
+ * MMIO Divider: 2 (~100 MHz)
+ * 32 kHz Standby Clock: Disabled
+ * System Clock Divider: 1 */
+ clock_config.cpuClkDiv = 2;
+ clock_config.dmaClkDiv = 2;
+ clock_config.mmioClkDiv = 2;
+ clock_config.useStandbyClk = CyFalse;
+ clock_config.clkSrc = CY_U3P_SYS_CLK;
+ clock_config.setSysClk400 = CyTrue;
+
+ status = CyU3PDeviceInit(&clock_config);
+ if(status != CY_U3P_SUCCESS)
+ goto handle_fatal_error;
+
+ /* Initialize the caches. Enable instruction cache and keep data cache disabled.
+ * The data cache is useful only when there is a large amount of CPU based memory
+ * accesses. When used in simple cases, it can decrease performance due to large
+ * number of cache flushes and cleans and also it adds to the complexity of the
+ * code. */
+ status = CyU3PDeviceCacheControl(CyTrue, CyFalse, CyFalse); // Icache, Dcache, DMAcache
+ if (status != CY_U3P_SUCCESS)
+ goto handle_fatal_error;
+
+ /* Configure the IO peripherals on the FX3. The gpioSimpleEn arrays are
+ * bitmaps, where each bit represents the GPIO of the matching index - the
+ * second array is index + 32. */
+ status = b200_set_io_matrix(CyTrue);
+ if(status != CY_U3P_SUCCESS)
+ goto handle_fatal_error;
+
+ /* This function calls starts the RTOS kernel.
+ *
+ * ABANDON ALL HOPE, YE WHO ENTER HERE */
+ CyU3PKernelEntry();
+
+ /* Although we will never make it here, this has to be here to make the
+ * compiler happy. */
+ return 0;
+
+ /* If an error occurs before the launch of the kernel, it is unrecoverable.
+ * Once you go down this hole, you aren't coming back out without a power
+ * reset. */
+ handle_fatal_error:
+ while(1);
+}
diff --git a/firmware/fx3/b200/b200_main.h b/firmware/fx3/b200/b200_main.h
new file mode 100644
index 000000000..7971c1625
--- /dev/null
+++ b/firmware/fx3/b200/b200_main.h
@@ -0,0 +1,143 @@
+//
+// Copyright 2013-2014 Ettus Research LLC
+//
+
+#ifndef _B200_MAIN_H
+#define _B200_MAIN_H
+
+#include "cyu3externcstart.h"
+
+#include "cyu3types.h"
+#include "cyu3usbconst.h"
+
+#define FX3_COMPAT_MAJOR (uint8_t)(4)
+#define FX3_COMPAT_MINOR (uint8_t)(0)
+
+/* GPIO Pins */
+#define GPIO_FPGA_RESET (uint32_t)(26) // CTL[9]
+#define GPIO_DONE (uint32_t)(27)
+#define GPIO_PROGRAM_B (uint32_t)(45)
+#define GPIO_INIT_B (uint32_t)(50)
+#define GPIO_AUX_PWR_ON (uint32_t)(51)
+#define GPIO_SHDN_SW (uint32_t)(52)
+#define GPIO_FX3_SCLK (uint32_t)(53)
+#define GPIO_FX3_CE (uint32_t)(54)
+#define GPIO_FX3_MISO (uint32_t)(55)
+#define GPIO_FX3_MOSI (uint32_t)(56)
+#define GPIO_FPGA_SB_SCL (uint32_t)(25) // CTL[8]
+#define GPIO_FPGA_SB_SDA (uint32_t)(23) // CTL[6]
+
+/* Create the bit-shifts that define the above GPIOs for bitmaps. The bitshifts
+ * are relative to 32-bit masks, so shifts > 32 are adjusted accordingly. Note
+ * that GPIOs < 32 are configured without the use of masks. */
+#define MASK_GPIO_PROGRAM_B (uint32_t)(1 << (GPIO_PROGRAM_B - 32))
+#define MASK_GPIO_INIT_B (uint32_t)(1 << (GPIO_INIT_B - 32))
+#define MASK_GPIO_AUX_PWR_ON (uint32_t)(1 << (GPIO_FX3_SCLK - 32))
+#define MASK_GPIO_SHDN_SW (uint32_t)(1 << (GPIO_FX3_SCLK - 32))
+#define MASK_GPIO_FX3_SCLK (uint32_t)(1 << (GPIO_FX3_SCLK - 32))
+#define MASK_GPIO_FX3_CE (uint32_t)(1 << (GPIO_FX3_CE - 32))
+#define MASK_GPIO_FX3_MISO (uint32_t)(1 << (GPIO_FX3_MISO - 32))
+#define MASK_GPIO_FX3_MOSI (uint32_t)(1 << (GPIO_FX3_MOSI - 32))
+#define MASK_GPIO_FPGA_SB_SCL (uint32_t)(1 << (GPIO_FPGA_SB_SCL - 0))
+#define MASK_GPIO_FPGA_SB_SDA (uint32_t)(1 << (GPIO_FPGA_SB_SDA - 0))
+
+#define USB3_PACKETS_PER_BURST (16)
+#define USB2_PACKETS_PER_BURST (1)
+#define DMA_SIZE_INFINITE (0)
+
+#define APP_THREAD_STACK_SIZE (0x0800)
+#define THREAD_PRIORITY (8)
+
+#define B200_VREQ_BITSTREAM_START (uint8_t)(0x02)
+#define B200_VREQ_BITSTREAM_DATA (uint8_t)(0x12)
+#define B200_VREQ_BITSTREAM_DATA_FILL (uint8_t)(0x13)
+#define B200_VREQ_BITSTREAM_DATA_COMMIT (uint8_t)(0x14)
+#define B200_VREQ_GET_COMPAT (uint8_t)(0x15)
+#define B200_VREQ_SET_FPGA_HASH (uint8_t)(0x1C)
+#define B200_VREQ_GET_FPGA_HASH (uint8_t)(0x1D)
+#define B200_VREQ_SET_FW_HASH (uint8_t)(0x1E)
+#define B200_VREQ_GET_FW_HASH (uint8_t)(0x1F)
+#define B200_VREQ_LOOP_CODE (uint8_t)(0x22)
+#define B200_VREQ_GET_LOG (uint8_t)(0x23)
+#define B200_VREQ_GET_COUNTERS (uint8_t)(0x24)
+#define B200_VREQ_CLEAR_COUNTERS (uint8_t)(0x25)
+#define B200_VREQ_GET_USB_EVENT_LOG (uint8_t)(0x26)
+#define B200_VREQ_SET_CONFIG (uint8_t)(0x27)
+#define B200_VREQ_GET_CONFIG (uint8_t)(0x28)
+#define B200_VREQ_WRITE_SB (uint8_t)(0x29)
+#define B200_VREQ_SET_SB_BAUD_DIV (uint8_t)(0x30)
+#define B200_VREQ_FLUSH_DATA_EPS (uint8_t)(0x31)
+#define B200_VREQ_SPI_WRITE_AD9361 (uint8_t)(0x32)
+#define B200_VREQ_SPI_READ_AD9361 (uint8_t)(0x42)
+#define B200_VREQ_FPGA_CONFIG (uint8_t)(0x55)
+#define B200_VREQ_TOGGLE_FPGA_RESET (uint8_t)(0x62)
+#define B200_VREQ_TOGGLE_GPIF_RESET (uint8_t)(0x72)
+#define B200_VREQ_GET_USB_SPEED (uint8_t)(0x80)
+#define B200_VREQ_GET_STATUS (uint8_t)(0x83)
+#define B200_VREQ_AD9361_CTRL_WRITE (uint8_t)(0x90)
+#define B200_VREQ_AD9361_CTRL_READ (uint8_t)(0x91)
+#define B200_VREQ_AD9361_LOOPBACK (uint8_t)(0x92)
+#define B200_VREQ_RESET_DEVICE (uint8_t)(0x99)
+#define B200_VREQ_EEPROM_WRITE (uint8_t)(0xBA)
+#define B200_VREQ_EEPROM_READ (uint8_t)(0xBB)
+
+#define EVENT_BITSTREAM_START (1 << 1)
+#define EVENT_GPIO_DONE_HIGH (1 << 2)
+#define EVENT_GPIO_INITB_RISE (1 << 3)
+#define EVENT_FPGA_CONFIG (1 << 4)
+#define EVENT_RE_ENUM (1 << 5)
+#define EVENT_AD9361_XACT_INIT (1 << 6)
+#define EVENT_AD9361_XACT_DONE (1 << 7)
+
+
+/* FX3 States */
+#define STATE_UNDEFINED (0)
+#define STATE_FPGA_READY (1)
+#define STATE_CONFIGURING_FPGA (2)
+#define STATE_BUSY (3)
+#define STATE_RUNNING (4)
+#define STATE_UNCONFIGURED (5)
+#define STATE_ERROR (6)
+
+
+/* Define the USB endpoints, sockets, and directions. The LSB is the socket
+ * number, and the MSB is the direction. For USB 2.0, sockets are mapped
+ * one-to-one since they must be uni-directional. */
+#define VREQ_ENDPOINT_PRODUCER 0x00 // OUT (host -> FX3)
+#define VREQ_ENDPOINT_CONSUMER 0x80 // IN (FX3 -> host)
+
+#define DATA_ENDPOINT_PRODUCER 0x02 // OUT (host -> FX3), produces for FPGA
+#define DATA_ENDPOINT_CONSUMER 0x86 // IN (FX3 -> host), consumes from FPGA
+
+#define CTRL_ENDPOINT_PRODUCER 0x04 // OUT (host -> FX3), produces for FPGA
+#define CTRL_ENDPOINT_CONSUMER 0x88 // IN (FX3 -> host), consumes from FPGA
+
+#define PRODUCER_DATA_SOCKET CY_U3P_UIB_SOCKET_PROD_2
+#define CONSUMER_DATA_SOCKET CY_U3P_UIB_SOCKET_CONS_6
+
+#define PRODUCER_CTRL_SOCKET CY_U3P_UIB_SOCKET_PROD_4
+#define CONSUMER_CTRL_SOCKET CY_U3P_UIB_SOCKET_CONS_8
+
+#define DATA_TX_PPORT_SOCKET CY_U3P_PIB_SOCKET_0
+#define DATA_RX_PPORT_SOCKET CY_U3P_PIB_SOCKET_1
+#define CTRL_COMM_PPORT_SOCKET CY_U3P_PIB_SOCKET_2
+#define CTRL_RESP_PPORT_SOCKET CY_U3P_PIB_SOCKET_3
+
+
+/* Descriptor definitions for USB enumerations. */
+extern uint8_t b200_usb2_dev_desc[];
+extern uint8_t b200_usb3_dev_desc[];
+extern const uint8_t b200_dev_qual_desc[];
+extern const uint8_t b200_usb_fs_config_desc[];
+extern const uint8_t b200_usb_hs_config_desc[];
+extern const uint8_t b200_usb_bos_desc[];
+extern const uint8_t b200_usb_ss_config_desc[];
+extern const uint8_t b200_string_lang_id_desc[];
+extern const uint8_t b200_usb_manufacture_desc[];
+extern const uint8_t b200_usb_product_desc[];
+extern uint8_t dev_serial[];
+
+
+#include "cyu3externcend.h"
+
+#endif /* _B200_MAIN_H */
diff --git a/firmware/fx3/b200/b200_usb_descriptors.c b/firmware/fx3/b200/b200_usb_descriptors.c
new file mode 100644
index 000000000..e8a765b24
--- /dev/null
+++ b/firmware/fx3/b200/b200_usb_descriptors.c
@@ -0,0 +1,510 @@
+//
+// Copyright 2013-2014 Ettus Research LLC
+//
+
+/* Define the USB 2.0 and USB 3.0 enumeration descriptions for the USRP B200
+ * device. */
+
+
+#include "b200_main.h"
+
+
+/* Standard Device Descriptor for USB 2.0 */
+uint8_t b200_usb2_dev_desc[] __attribute__ ((aligned (32))) =
+{
+ 0x12, /* Descriptor size */
+ CY_U3P_USB_DEVICE_DESCR, /* Device descriptor type */
+ 0x10,0x02, /* USB 2.10 */
+ 0xFF, /* Device class */
+ 0x00, /* Device sub-class */
+ 0x00, /* Device protocol */
+ 0x40, /* Maxpacket size for EP0 : 64 bytes */
+ 0xB4,0x04, /* Vendor ID */
+ 0xF0,0x00, /* Product ID */
+ 0x00,0x00, /* Device release number */
+ 0x01, /* Manufacture string index */
+ 0x02, /* Product string index */
+ 0x03, /* Serial number string index */
+ 0x01 /* Number of configurations */
+};
+
+
+/* Standard Device Descriptor for USB 3.0 */
+uint8_t b200_usb3_dev_desc[] __attribute__ ((aligned (32))) =
+{
+ 0x12, /* Descriptor size */
+ CY_U3P_USB_DEVICE_DESCR, /* Device descriptor type */
+ 0x00,0x03, /* USB 3.0 */
+ 0xFF, /* Device class */
+ 0x00, /* Device sub-class */
+ 0x00, /* Device protocol */
+ 0x09, /* Maxpacket size for EP0 : 2^9 */
+ 0xB4,0x04, /* Vendor ID */
+ 0xF0,0x00, /* Product ID */
+ 0x00,0x00, /* Device release number */
+ 0x01, /* Manufacture string index */
+ 0x02, /* Product string index */
+ 0x03, /* Serial number string index */
+ 0x01 /* Number of configurations */
+};
+
+
+/* Binary Device Object Store Descriptor */
+const uint8_t b200_usb_bos_desc[] __attribute__ ((aligned (32))) =
+{
+ 0x05, /* Descriptor size */
+ CY_U3P_BOS_DESCR, /* Device descriptor type */
+ 0x16,0x00, /* Length of this descriptor and all sub descriptors */
+ 0x02, /* Number of device capability descriptors */
+
+ /* USB 2.0 extension */
+ 0x07, /* Descriptor size */
+ CY_U3P_DEVICE_CAPB_DESCR, /* Device capability type descriptor */
+ CY_U3P_USB2_EXTN_CAPB_TYPE, /* USB 2.0 extension capability type */
+ 0x02,0x00,0x00,0x00, /* Supported device level features: LPM support */
+
+ /* SuperSpeed device capability */
+ 0x0A, /* Descriptor size */
+ CY_U3P_DEVICE_CAPB_DESCR, /* Device capability type descriptor */
+ CY_U3P_SS_USB_CAPB_TYPE, /* SuperSpeed device capability type */
+ 0x00, /* Supported device level features */
+ 0x0E,0x00, /* Speeds supported by the device : SS, HS and FS */
+ 0x03, /* Functionality support */
+ 0x00, /* U1 Device Exit latency */
+ 0x00,0x00 /* U2 Device Exit latency */
+};
+
+
+/* Standard Device Qualifier Descriptor */
+const uint8_t b200_dev_qual_desc[] __attribute__ ((aligned (32))) =
+{
+ 0x0A, /* Descriptor size */
+ CY_U3P_USB_DEVQUAL_DESCR, /* Device qualifier descriptor type */
+ 0x00,0x02, /* USB 2.0 */
+ 0xFF, /* Device class */
+ 0x00, /* Device sub-class */
+ 0x00, /* Device protocol */
+ 0x40, /* Maxpacket size for EP0 : 64 bytes */
+ 0x01, /* Number of configurations */
+ 0x00 /* Reserved */
+};
+
+
+/* Standard Full Speed Configuration Descriptor */
+const uint8_t b200_usb_fs_config_desc[] __attribute__ ((aligned (32))) =
+{
+ /* Configuration descriptor */
+ 0x09, /* Descriptor size */
+ CY_U3P_USB_CONFIG_DESCR, /* Configuration descriptor type */
+ 0x52,0x00, /* Length of this descriptor and all sub descriptors */
+ 0x05, /* Number of interfaces */
+ 0x01, /* Configuration number */
+ 0x00, /* Configuration string index */
+ 0x80, /* Config characteristics - bus powered */
+ 0x01, /* Lie about the max power consumption (in 2mA unit) : 2mA */
+
+ /* Interface descriptor */
+ 0x09, /* Descriptor size */
+ CY_U3P_USB_INTRFC_DESCR, /* Interface descriptor type */
+ 0x00, /* Interface number */
+ 0x00, /* Alternate setting number */
+ 0x00, /* Number of endpoints */
+ 0xFF, /* Interface class */
+ 0x00, /* Interface sub class */
+ 0x00, /* Interface protocol code */
+ 0x02, /* Interface descriptor string index */
+
+ /* Interface descriptor */
+ 0x09, /* Descriptor size */
+ CY_U3P_USB_INTRFC_DESCR, /* Interface descriptor type */
+ 0x01, /* Interface number */
+ 0x00, /* Alternate setting number */
+ 0x01, /* Number of endpoints */
+ 0xFF, /* Interface class */
+ 0x00, /* Interface sub class */
+ 0x00, /* Interface protocol code */
+ 0x02, /* Interface descriptor string index */
+
+ /* Endpoint descriptor for producer EP */
+ 0x07, /* Descriptor size */
+ CY_U3P_USB_ENDPNT_DESCR, /* Endpoint descriptor type */
+ DATA_ENDPOINT_PRODUCER, /* Endpoint address and description */
+ CY_U3P_USB_EP_BULK, /* Bulk endpoint type */
+ 0x40,0x00, /* Max packet size = 64 bytes */
+ 0x00, /* Servicing interval for data transfers : 0 for bulk */
+
+ /* Interface descriptor */
+ 0x09, /* Descriptor size */
+ CY_U3P_USB_INTRFC_DESCR, /* Interface descriptor type */
+ 0x02, /* Interface number */
+ 0x00, /* Alternate setting number */
+ 0x01, /* Number of endpoints */
+ 0xFF, /* Interface class */
+ 0x00, /* Interface sub class */
+ 0x00, /* Interface protocol code */
+ 0x02, /* Interface descriptor string index */
+
+ /* Endpoint descriptor for consumer EP */
+ 0x07, /* Descriptor size */
+ CY_U3P_USB_ENDPNT_DESCR, /* Endpoint descriptor type */
+ DATA_ENDPOINT_CONSUMER, /* Endpoint address and description */
+ CY_U3P_USB_EP_BULK, /* Bulk endpoint type */
+ 0x40,0x00, /* Max packet size = 64 bytes */
+ 0x00, /* Servicing interval for data transfers : 0 for bulk */
+
+ /* Interface descriptor */
+ 0x09, /* Descriptor size */
+ CY_U3P_USB_INTRFC_DESCR, /* Interface descriptor type */
+ 0x03, /* Interface number */
+ 0x00, /* Alternate setting number */
+ 0x01, /* Number of endpoints */
+ 0xFF, /* Interface class */
+ 0x00, /* Interface sub class */
+ 0x00, /* Interface protocol code */
+ 0x02, /* Interface descriptor string index */
+
+ /* Endpoint descriptor for producer EP */
+ 0x07, /* Descriptor size */
+ CY_U3P_USB_ENDPNT_DESCR, /* Endpoint descriptor type */
+ CTRL_ENDPOINT_PRODUCER, /* Endpoint address and description */
+ CY_U3P_USB_EP_BULK, /* Bulk endpoint type */
+ 0x40,0x00, /* Max packet size = 64 bytes */
+ 0x00, /* Servicing interval for data transfers : 0 for bulk */
+
+ /* Interface descriptor */
+ 0x09, /* Descriptor size */
+ CY_U3P_USB_INTRFC_DESCR, /* Interface descriptor type */
+ 0x04, /* Interface number */
+ 0x00, /* Alternate setting number */
+ 0x01, /* Number of endpoints */
+ 0xFF, /* Interface class */
+ 0x00, /* Interface sub class */
+ 0x00, /* Interface protocol code */
+ 0x02, /* Interface descriptor string index */
+
+ /* Endpoint descriptor for consumer EP */
+ 0x07, /* Descriptor size */
+ CY_U3P_USB_ENDPNT_DESCR, /* Endpoint descriptor type */
+ CTRL_ENDPOINT_CONSUMER, /* Endpoint address and description */
+ CY_U3P_USB_EP_BULK, /* Bulk endpoint type */
+ 0x40,0x00, /* Max packet size = 64 bytes */
+ 0x00 /* Servicing interval for data transfers : 0 for bulk */
+};
+
+
+/* Standard High Speed Configuration Descriptor */
+const uint8_t b200_usb_hs_config_desc[] __attribute__ ((aligned (32))) =
+{
+ /* Configuration descriptor */
+ 0x09, /* Descriptor size */
+ CY_U3P_USB_CONFIG_DESCR, /* Configuration descriptor type */
+ 0x52,0x00, /* Length of this descriptor and all sub descriptors */
+ 0x05, /* Number of interfaces */
+ 0x01, /* Configuration number */
+ 0x00, /* COnfiguration string index */
+ 0x80, /* Config characteristics - bus powered */
+ 0x01, /* Lie about the max power consumption (in 2mA unit) : 2mA */
+
+ /* Interface descriptor */
+ 0x09, /* Descriptor size */
+ CY_U3P_USB_INTRFC_DESCR, /* Interface Descriptor type */
+ 0x00, /* Interface number */
+ 0x00, /* Alternate setting number */
+ 0x00, /* Number of endpoints */
+ 0xFF, /* Interface class */
+ 0x00, /* Interface sub class */
+ 0x00, /* Interface protocol code */
+ 0x02, /* Interface descriptor string index */
+
+ /* Interface descriptor */
+ 0x09, /* Descriptor size */
+ CY_U3P_USB_INTRFC_DESCR, /* Interface Descriptor type */
+ 0x01, /* Interface number */
+ 0x00, /* Alternate setting number */
+ 0x01, /* Number of endpoints */
+ 0xFF, /* Interface class */
+ 0x00, /* Interface sub class */
+ 0x00, /* Interface protocol code */
+ 0x02, /* Interface descriptor string index */
+
+ /* Endpoint descriptor for producer EP */
+ 0x07, /* Descriptor size */
+ CY_U3P_USB_ENDPNT_DESCR, /* Endpoint descriptor type */
+ DATA_ENDPOINT_PRODUCER, /* Endpoint address and description */
+ CY_U3P_USB_EP_BULK, /* Bulk endpoint type */
+ 0x00,0x02, /* Max packet size = 512 bytes */
+ 0x00, /* Servicing interval for data transfers : 0 for bulk */
+
+ /* Interface descriptor */
+ 0x09, /* Descriptor size */
+ CY_U3P_USB_INTRFC_DESCR, /* Interface Descriptor type */
+ 0x02, /* Interface number */
+ 0x00, /* Alternate setting number */
+ 0x01, /* Number of endpoints */
+ 0xFF, /* Interface class */
+ 0x00, /* Interface sub class */
+ 0x00, /* Interface protocol code */
+ 0x02, /* Interface descriptor string index */
+
+ /* Endpoint descriptor for consumer EP */
+ 0x07, /* Descriptor size */
+ CY_U3P_USB_ENDPNT_DESCR, /* Endpoint descriptor type */
+ DATA_ENDPOINT_CONSUMER, /* Endpoint address and description */
+ CY_U3P_USB_EP_BULK, /* Bulk endpoint type */
+ 0x00,0x02, /* Max packet size = 512 bytes */
+ 0x00, /* Servicing interval for data transfers : 0 for bulk */
+
+ /* Interface descriptor */
+ 0x09, /* Descriptor size */
+ CY_U3P_USB_INTRFC_DESCR, /* Interface Descriptor type */
+ 0x03, /* Interface number */
+ 0x00, /* Alternate setting number */
+ 0x01, /* Number of endpoints */
+ 0xFF, /* Interface class */
+ 0x00, /* Interface sub class */
+ 0x00, /* Interface protocol code */
+ 0x02, /* Interface descriptor string index */
+
+ /* Endpoint descriptor for producer EP */
+ 0x07, /* Descriptor size */
+ CY_U3P_USB_ENDPNT_DESCR, /* Endpoint descriptor type */
+ CTRL_ENDPOINT_PRODUCER, /* Endpoint address and description */
+ CY_U3P_USB_EP_BULK, /* Bulk endpoint type */
+ 0x00,0x02, /* Max packet size = 512 bytes */
+ 0x00, /* Servicing interval for data transfers : 0 for bulk */
+
+ /* Interface descriptor */
+ 0x09, /* Descriptor size */
+ CY_U3P_USB_INTRFC_DESCR, /* Interface Descriptor type */
+ 0x04, /* Interface number */
+ 0x00, /* Alternate setting number */
+ 0x01, /* Number of endpoints */
+ 0xFF, /* Interface class */
+ 0x00, /* Interface sub class */
+ 0x00, /* Interface protocol code */
+ 0x02, /* Interface descriptor string index */
+
+ /* Endpoint descriptor for consumer EP */
+ 0x07, /* Descriptor size */
+ CY_U3P_USB_ENDPNT_DESCR, /* Endpoint descriptor type */
+ CTRL_ENDPOINT_CONSUMER, /* Endpoint address and description */
+ CY_U3P_USB_EP_BULK, /* Bulk endpoint type */
+ 0x00,0x02, /* Max packet size = 512 bytes */
+ 0x00 /* Servicing interval for data transfers : 0 for bulk */
+};
+
+
+/* Standard Super Speed Configuration Descriptor */
+const uint8_t b200_usb_ss_config_desc[] __attribute__ ((aligned (32))) =
+{
+ /* Configuration descriptor */
+ 0x09, /* Descriptor size */
+ CY_U3P_USB_CONFIG_DESCR, /* Configuration descriptor type */
+ 0x6A,0x00, /* Length of this descriptor and all sub descriptors */
+ 0x05, /* Number of interfaces */
+ 0x01, /* Configuration number */
+ 0x00, /* COnfiguration string index */
+ 0x80, /* Config characteristics - D6: Self power; D5: Remote wakeup */
+ 0x01, /* Lie about the max power consumption (in 8mA unit) : 8mA */
+
+ /* Interface descriptor */
+ 0x09, /* Descriptor size */
+ CY_U3P_USB_INTRFC_DESCR, /* Interface Descriptor type */
+ 0x00, /* Interface number */
+ 0x00, /* Alternate setting number */
+ 0x00, /* Number of end points */
+ 0xFF, /* Interface class */
+ 0x00, /* Interface sub class */
+ 0x00, /* Interface protocol code */
+ 0x02, /* Interface descriptor string index */
+
+ /* Interface descriptor */
+ 0x09, /* Descriptor size */
+ CY_U3P_USB_INTRFC_DESCR, /* Interface Descriptor type */
+ 0x01, /* Interface number */
+ 0x00, /* Alternate setting number */
+ 0x01, /* Number of end points */
+ 0xFF, /* Interface class */
+ 0x00, /* Interface sub class */
+ 0x00, /* Interface protocol code */
+ 0x02, /* Interface descriptor string index */
+
+ /* Endpoint descriptor for producer EP */
+ 0x07, /* Descriptor size */
+ CY_U3P_USB_ENDPNT_DESCR, /* Endpoint descriptor type */
+ DATA_ENDPOINT_PRODUCER, /* Endpoint address and description */
+ CY_U3P_USB_EP_BULK, /* Bulk endpoint type */
+ 0x00,0x04, /* Max packet size = 1024 bytes */
+ 0x00, /* Servicing interval for data transfers : 0 for bulk */
+
+ /* Super speed endpoint companion descriptor for producer EP */
+ 0x06, /* Descriptor size */
+ CY_U3P_SS_EP_COMPN_DESCR, /* SS endpoint companion descriptor type */
+ (USB3_PACKETS_PER_BURST - 1), /* Max no. of packets in a burst : 0: burst 1 packet at a time */
+ 0x00, /* Max streams for bulk EP = 0 (No streams) */
+ 0x00,0x00, /* Service interval for the EP : 0 for bulk */
+
+ /* Interface descriptor */
+ 0x09, /* Descriptor size */
+ CY_U3P_USB_INTRFC_DESCR, /* Interface Descriptor type */
+ 0x02, /* Interface number */
+ 0x00, /* Alternate setting number */
+ 0x01, /* Number of end points */
+ 0xFF, /* Interface class */
+ 0x00, /* Interface sub class */
+ 0x00, /* Interface protocol code */
+ 0x02, /* Interface descriptor string index */
+
+ /* Endpoint descriptor for consumer EP */
+ 0x07, /* Descriptor size */
+ CY_U3P_USB_ENDPNT_DESCR, /* Endpoint descriptor type */
+ DATA_ENDPOINT_CONSUMER, /* Endpoint address and description */
+ CY_U3P_USB_EP_BULK, /* Bulk endpoint type */
+ 0x00,0x04, /* Max packet size = 1024 bytes */
+ 0x00, /* Servicing interval for data transfers : 0 for Bulk */
+
+ /* Super speed endpoint companion descriptor for consumer EP */
+ 0x06, /* Descriptor size */
+ CY_U3P_SS_EP_COMPN_DESCR, /* SS endpoint companion descriptor type */
+ (USB3_PACKETS_PER_BURST - 1), /* Max no. of packets in a burst : 0: burst 1 packet at a time */
+ 0x00, /* Max streams for bulk EP = 0 (No streams) */
+ 0x00,0x00, /* Service interval for the EP : 0 for bulk */
+
+ /* Interface descriptor */
+ 0x09, /* Descriptor size */
+ CY_U3P_USB_INTRFC_DESCR, /* Interface Descriptor type */
+ 0x03, /* Interface number */
+ 0x00, /* Alternate setting number */
+ 0x01, /* Number of end points */
+ 0xFF, /* Interface class */
+ 0x00, /* Interface sub class */
+ 0x00, /* Interface protocol code */
+ 0x02, /* Interface descriptor string index */
+
+ /* Endpoint descriptor for producer EP */
+ 0x07, /* Descriptor size */
+ CY_U3P_USB_ENDPNT_DESCR, /* Endpoint descriptor type */
+ CTRL_ENDPOINT_PRODUCER, /* Endpoint address and description */
+ CY_U3P_USB_EP_BULK, /* Bulk endpoint type */
+ 0x00,0x04, /* Max packet size = 1024 bytes */
+ 0x00, /* Servicing interval for data transfers : 0 for bulk */
+
+ /* Super speed endpoint companion descriptor for producer EP */
+ 0x06, /* Descriptor size */
+ CY_U3P_SS_EP_COMPN_DESCR, /* SS endpoint companion descriptor type */
+ (USB3_PACKETS_PER_BURST - 1), /* Max no. of packets in a burst : 0: burst 1 packet at a time */
+ 0x00, /* Max streams for bulk EP = 0 (No streams) */
+ 0x00,0x00, /* Service interval for the EP : 0 for bulk */
+
+ /* Interface descriptor */
+ 0x09, /* Descriptor size */
+ CY_U3P_USB_INTRFC_DESCR, /* Interface Descriptor type */
+ 0x04, /* Interface number */
+ 0x00, /* Alternate setting number */
+ 0x01, /* Number of end points */
+ 0xFF, /* Interface class */
+ 0x00, /* Interface sub class */
+ 0x00, /* Interface protocol code */
+ 0x02, /* Interface descriptor string index */
+
+ /* Endpoint descriptor for consumer EP */
+ 0x07, /* Descriptor size */
+ CY_U3P_USB_ENDPNT_DESCR, /* Endpoint descriptor type */
+ CTRL_ENDPOINT_CONSUMER, /* Endpoint address and description */
+ CY_U3P_USB_EP_BULK, /* Bulk endpoint type */
+ 0x00,0x04, /* Max packet size = 1024 bytes */
+ 0x00, /* Servicing interval for data transfers : 0 for Bulk */
+
+ /* Super speed endpoint companion descriptor for consumer EP */
+ 0x06, /* Descriptor size */
+ CY_U3P_SS_EP_COMPN_DESCR, /* SS endpoint companion descriptor type */
+ (USB3_PACKETS_PER_BURST - 1), /* Max no. of packets in a burst : 0: burst 1 packet at a time */
+ 0x00, /* Max streams for bulk EP = 0 (No streams) */
+ 0x00,0x00 /* Service interval for the EP : 0 for bulk */
+};
+
+
+/* Standard Language ID String Descriptor */
+const uint8_t b200_string_lang_id_desc[] __attribute__ ((aligned (32))) =
+ {
+ 0x04, /* Descriptor Size */
+ CY_U3P_USB_STRING_DESCR, /* Device Descriptor Type */
+ 0x09,0x04 /* Language ID supported */
+ };
+
+
+/* Standard Manufacturer String Descriptor */
+const uint8_t b200_usb_manufacture_desc[] __attribute__ ((aligned (32))) =
+ {
+ 0x26, /* Descriptor Size */
+ CY_U3P_USB_STRING_DESCR, /* Device Descriptor Type */
+ 'E',0x00,
+ 't',0x00,
+ 't',0x00,
+ 'u',0x00,
+ 's',0x00,
+ ' ',0x00,
+ 'R',0x00,
+ 'e',0x00,
+ 's',0x00,
+ 'e',0x00,
+ 'a',0x00,
+ 'r',0x00,
+ 'c',0x00,
+ 'h',0x00,
+ ' ',0x00,
+ 'L',0x00,
+ 'L',0x00,
+ 'C',0x00
+ };
+
+
+/* Standard Product String Descriptor */
+const uint8_t b200_usb_product_desc[] __attribute__ ((aligned (32))) =
+ {
+ 0x14, /* Descriptor Size */
+ CY_U3P_USB_STRING_DESCR, /* Device Descriptor Type */
+ 'U',0x00,
+ 'S',0x00,
+ 'R',0x00,
+ 'P',0x00,
+ ' ',0x00,
+ 'B',0x00,
+ '2',0x00,
+ '0',0x00,
+ '0',0x00
+ };
+
+/* Microsoft OS Descriptor. */
+const uint8_t CyFxUsbOSDscr[] __attribute__ ((aligned (32))) =
+{
+ 0x10,
+ CY_U3P_USB_STRING_DESCR,
+ 'O', 0x00,
+ 'S', 0x00,
+ ' ', 0x00,
+ 'D', 0x00,
+ 'e', 0x00,
+ 's', 0x00,
+ 'c', 0x00
+};
+
+uint8_t dev_serial[20] __attribute__ ((aligned (32))) =
+{
+ 0x14,
+ CY_U3P_USB_STRING_DESCR,
+ '0', 0x00,
+ '0', 0x00,
+ '0', 0x00,
+ '0', 0x00,
+ '0', 0x00,
+ '0', 0x00,
+ '0', 0x00,
+ '0', 0x00,
+ '0', 0x00
+};
+
+/* Place this buffer as the last buffer so that no other variable / code shares
+ * the same cache line. Do not add any other variables / arrays in this file.
+ * This will lead to variables sharing the same cache line. */
+const uint8_t CyFxUsbDscrAlignBuffer[32] __attribute__ ((aligned (32)));
diff --git a/firmware/fx3/b200/b200_vrq.h b/firmware/fx3/b200/b200_vrq.h
new file mode 100644
index 000000000..d1f79f0ad
--- /dev/null
+++ b/firmware/fx3/b200/b200_vrq.h
@@ -0,0 +1,21 @@
+//
+// Copyright 2013-2014 Ettus Research LLC
+//
+
+/* This file defines b200 vendor requests handlers, version 1
+ */
+#ifndef B200_VRQ_H
+#define B200_VRQ_H
+
+uint32_t ad9361_transact_spi(const uint32_t bits);
+
+// note: for a write instruction bit 7 from byte 0 is set to 1
+#define MAKE_AD9361_WRITE(dest, reg, val) {dest[0] = 0x80 | ((reg >> 8) & 0x3F); \
+ dest[1] = reg & 0xFF; \
+ dest[2] = val;}
+#define MAKE_AD9361_READ(dest, reg) {dest[0] = (reg >> 8) & 0x3F; \
+ dest[1] = reg & 0xFF;}
+
+#endif //B200_VRQ_H
+
+
diff --git a/firmware/fx3/b200/fx3_mem_map.patch b/firmware/fx3/b200/fx3_mem_map.patch
new file mode 100644
index 000000000..37d704ace
--- /dev/null
+++ b/firmware/fx3/b200/fx3_mem_map.patch
@@ -0,0 +1,68 @@
+diff -ur 1.2.3-orig/common/cyfxtx.c 1.2.3/common/cyfxtx.c
+--- 1.2.3-orig/common/cyfxtx.c 2013-02-07 17:16:54.000000000 -0800
++++ 1.2.3/common/cyfxtx.c 2014-03-25 16:56:12.484602382 -0700
+@@ -33,7 +33,7 @@
+ such as thread stacks and memory for message queues. The Cypress FX3
+ libraries require a Mem heap size of at least 32 KB.
+ */
+-#define CY_U3P_MEM_HEAP_BASE ((uint8_t *)0x40038000)
++#define CY_U3P_MEM_HEAP_BASE ((uint8_t *)0x40044000)
+ #define CY_U3P_MEM_HEAP_SIZE (0x8000)
+
+ /* The last 32 KB of RAM is reserved for 2-stage boot operation. This value can be changed to
+diff -ur 1.2.3-orig/common/fx3.ld 1.2.3/common/fx3.ld
+--- 1.2.3-orig/common/fx3.ld 2013-02-07 17:16:54.000000000 -0800
++++ 1.2.3/common/fx3.ld 2014-03-25 16:59:40.872240377 -0700
+@@ -26,10 +26,11 @@
+ The default memory map used for FX3 applications is as follows:
+
+ Descriptor area Base: 0x40000000 Size: 12KB
+- Code area Base: 0x40003000 Size: 180KB
+- Data area Base: 0x40030000 Size: 32KB
+- Driver heap Base: 0x40038000 Size: 32KB (Update cyfxtx.c to change this.)
+- Buffer area Base: 0x40040000 Size: 256KB (Update cyfxtx.c to change this.)
++ Code area Base: 0x40003000 Size: 212KB
++ Data area Base: 0x40038000 Size: 32KB
++ Heap Base: 0x40040000 Size: 16KB
++ Driver heap Base: 0x40044000 Size: 32KB (Update cyfxtx.c to change this.)
++ Buffer area Base: 0x4004C000 Size: 208KB (Update cyfxtx.c to change this.)
+
+ Interrupt handlers to be placed in I-TCM (16KB).
+ The first 256 bytes of ITCM are reserved for Exception Vectors.
+@@ -52,8 +53,8 @@
+ MEMORY
+ {
+ I-TCM : ORIGIN = 0x100, LENGTH = 0x3F00
+- SYS_MEM : ORIGIN = 0x40003000 LENGTH = 0x2D000
+- DATA : ORIGIN = 0x40030000 LENGTH = 0x8000
++ SYS_MEM : ORIGIN = 0x40003000 LENGTH = 0x35000
++ DATA : ORIGIN = 0x40038000 LENGTH = 0x8000
+ }
+
+ SECTIONS
+@@ -75,7 +76,7 @@
+ _etext = .;
+ } > SYS_MEM
+
+- . = 0x40030000;
++ . = 0x40038000;
+ .data :
+ {
+ _data = .;
+@@ -104,5 +105,16 @@
+ } > DATA
+ __exidx_end = .;
+
++ PROVIDE(__exidx_end = __exidx_end);
++
++ . = ALIGN(4);
++ __heap_start = 0x40040000;
++ PROVIDE(__heap_start = __heap_start);
++
++ . = ALIGN(4);
++ __heap_end = 0x40044000;
++ PROVIDE(__heap_end = __heap_end);
++
++ PROVIDE(__heap_size = __heap_end - __heap_start);
+ }
+
diff --git a/firmware/fx3/b200/makefile b/firmware/fx3/b200/makefile
new file mode 100644
index 000000000..d693db076
--- /dev/null
+++ b/firmware/fx3/b200/makefile
@@ -0,0 +1,55 @@
+#
+# Copyright 2013-2014 Ettus Research LLC
+#
+
+HEX_OUT = usrp_b200_fw.hex
+
+all:$(HEX_OUT)
+
+# Pull in the Cypress SDK files to build the firmware
+FX3FWROOT=..
+FX3PFWROOT=../u3p_firmware
+include $(FX3FWROOT)/common/fx3_build_config.mak
+
+ifndef OC
+ OC = arm-none-eabi-objcopy
+endif
+
+MODULE = b200_main
+
+SOURCE += $(MODULE).c
+SOURCE += b200_usb_descriptors.c
+SOURCE += b200_ad9361.c
+SOURCE += b200_i2c.c
+
+INCLUDES = b200_main.h b200_vrq.h b200_gpifconfig.h b200_i2c.h
+INCLUDES += ../ad9361/include/ad9361_transaction.h
+
+INCFLAGS = -I ../ad9361/include
+
+LDLIBS += \
+ "$$ARMGCC_INSTALL_PATH"/arm-none-eabi/lib/libm.a
+
+C_OBJECT=$(SOURCE:%.c=./%.o)
+A_OBJECT=$(SOURCE_ASM:%.S=./%.o)
+
+EXES = $(MODULE).$(EXEEXT)
+
+$(MODULE).$(EXEEXT): $(A_OBJECT) $(C_OBJECT)
+ $(LINK) $(LINKFLAGS)
+
+$(C_OBJECT) : %.o : %.c $(INCLUDES)
+ $(COMPILE) $(INCFLAGS)
+
+$(A_OBJECT) : %.o : %.S
+ $(ASSEMBLE)
+
+clean:
+ rm -f ./$(MODULE).$(EXEEXT)
+ rm -f ./$(MODULE).map
+ rm -f ./*.o
+
+$(HEX_OUT): $(C_OBJECT) $(A_OBJECT) $(EXES)
+ $(OC) -O ihex $(EXES) $@
+
+#[]#
diff --git a/firmware/fx3/gpif2_designer/b200_v2.cydsn/b200_v2.cyfx b/firmware/fx3/gpif2_designer/b200_v2.cydsn/b200_v2.cyfx
new file mode 100644
index 000000000..3e6eb0719
--- /dev/null
+++ b/firmware/fx3/gpif2_designer/b200_v2.cydsn/b200_v2.cyfx
@@ -0,0 +1,30 @@
+<?xml version="1.0" encoding="us-ascii"?>
+<CyXmlSerializer>
+<!--This file is machine generated and read. It is not intended to be edited by hand.-->
+<!--Due to this, there is no schema for this file.-->
+<CyGuid_7d237aff-d944-11da-aaba-00164119d63b type_name="CyGpif2Designer.Common.PrjMgmt.Model.CyPrjMgmtGpif2exe" version="2">
+<CyGuid_7d237b00-d944-11da-aaba-00164119d63b type_name="CyGpif2Designer.Common.PrjMgmt.Model.CyPrjMgmtProject" version="1">
+<ProjectDocs>
+<CyGuid_7d237b03-d944-11da-aaba-00164119d63b type_name="CyGpif2Designer.Common.PrjMgmt.Model.CyPrjMgmtItem" name="gpif2model.xml" persistent="./projectfiles/gpif2model.xml" target="7d237b02-d944-11da-aaba-00164119d63b">
+<Hidden v="False" />
+</CyGuid_7d237b03-d944-11da-aaba-00164119d63b>
+<CyGuid_7d237b03-d944-11da-aaba-00164119d63b type_name="CyGpif2Designer.Common.PrjMgmt.Model.CyPrjMgmtItem" name="gpif2view.xml" persistent="./projectfiles/gpif2view.xml" target="7d237b01-d944-11da-aaba-00164119d63b">
+<Hidden v="False" />
+</CyGuid_7d237b03-d944-11da-aaba-00164119d63b>
+<CyGuid_7d237b03-d944-11da-aaba-00164119d63b type_name="CyGpif2Designer.Common.PrjMgmt.Model.CyPrjMgmtItem" name="gpif2timingsimulation.xml" persistent="./projectfiles/gpif2timingsimulation.xml" target="3ad448c6-d155-4f76-a7fb-e760cd8e6feb">
+<Hidden v="False" />
+</CyGuid_7d237b03-d944-11da-aaba-00164119d63b>
+</ProjectDocs>
+<OutputDocs>
+<CyGuid_7d237b03-d944-11da-aaba-00164119d63b type_name="CyGpif2Designer.Common.PrjMgmt.Model.CyPrjMgmtItem" name="cyfxgpif2config.h" persistent="C:\Users\bhilburn\Documents\GPIF II Designer\b200_v2.cydsn\cyfxgpif2config.h" target="7d237afd-d944-11da-aaba-00164119d63b">
+<Hidden v="False" />
+</CyGuid_7d237b03-d944-11da-aaba-00164119d63b>
+</OutputDocs>
+</CyGuid_7d237b00-d944-11da-aaba-00164119d63b>
+<Settings>
+<Setting name="GPIF2_OutputName" value="cyfxgpif2config" />
+<Setting name="GPIF2_OutputLocation" value="C:\Users\bhilburn\Documents\GPIF II Designer\b200_v2.cydsn" />
+<Setting name="GPIF2_Template" value="C:\Program Files\Cypress\GPIFII Designer\inputs\outputtemplates\cygpif2cheadertemplate.tpl" />
+</Settings>
+</CyGuid_7d237aff-d944-11da-aaba-00164119d63b>
+</CyXmlSerializer> \ No newline at end of file
diff --git a/firmware/fx3/gpif2_designer/b200_v2.cydsn/cyfxgpif2config.h b/firmware/fx3/gpif2_designer/b200_v2.cydsn/cyfxgpif2config.h
new file mode 100644
index 000000000..d16cdf038
--- /dev/null
+++ b/firmware/fx3/gpif2_designer/b200_v2.cydsn/cyfxgpif2config.h
@@ -0,0 +1,174 @@
+/*
+ * Project Name: b200_v2.cyfx
+ * Time : 10/23/2013 12:03:48
+ * Device Type: FX3
+ * Project Type: GPIF2
+ *
+ *
+ *
+ *
+ * This is a generated file and should not be modified
+ * This file need to be included only once in the firmware
+ * This file is generated by Gpif2 designer tool version - 1.0.715.0
+ *
+ */
+
+#ifndef _INCLUDED_CYFXGPIF2CONFIG_
+#define _INCLUDED_CYFXGPIF2CONFIG_
+#include "cyu3types.h"
+#include "cyu3gpif.h"
+
+/* Summary
+ Number of states in the state machine
+ */
+#define CY_NUMBER_OF_STATES 6
+
+/* Summary
+ Mapping of user defined state names to state indices
+ */
+#define RESET 0
+#define IDLE 1
+#define READ 2
+#define WRITE 3
+#define SHORT_PKT 4
+#define ZLP 5
+
+
+/* Summary
+ Initial value of early outputs from the state machine.
+ */
+#define ALPHA_RESET 0x8
+
+
+/* Summary
+ Transition function values used in the state machine.
+ */
+uint16_t CyFxGpifTransition[] = {
+ 0x0000, 0x8080, 0x2222, 0x5555, 0x7F7F, 0x1F1F, 0x8888
+};
+
+/* Summary
+ Table containing the transition information for various states.
+ This table has to be stored in the WAVEFORM Registers.
+ This array consists of non-replicated waveform descriptors and acts as a
+ waveform table.
+ */
+CyU3PGpifWaveData CyFxGpifWavedata[] = {
+ {{0x1E086001,0x000100C4,0x80000000},{0x00000000,0x00000000,0x00000000}},
+ {{0x4E080302,0x00000200,0x80000000},{0x00000000,0x00000000,0x00000000}},
+ {{0x1E086001,0x000100C4,0x80000000},{0x4E040704,0x20000200,0xC0100000}},
+ {{0x00000000,0x00000000,0x00000000},{0x00000000,0x00000000,0x00000000}},
+ {{0x00000000,0x00000000,0x00000000},{0x3E738705,0x00000200,0xC0100000}},
+ {{0x00000000,0x00000000,0x00000000},{0x5E002703,0x2001020C,0x80000000}},
+ {{0x00000000,0x00000000,0x00000000},{0x4E040704,0x20000200,0xC0100000}}
+};
+
+/* Summary
+ Table that maps state indices to the descriptor table indices.
+ */
+uint8_t CyFxGpifWavedataPosition[] = {
+ 0,1,0,2,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,
+ 3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,
+ 0,4,0,2,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,
+ 3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,
+ 0,5,0,2,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,
+ 3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,
+ 0,6,0,2,0,0
+};
+
+/* Summary
+ GPIF II configuration register values.
+ */
+uint32_t CyFxGpifRegValue[] = {
+ 0x80000380, /* CY_U3P_PIB_GPIF_CONFIG */
+ 0x000010AC, /* CY_U3P_PIB_GPIF_BUS_CONFIG */
+ 0x01070002, /* CY_U3P_PIB_GPIF_BUS_CONFIG2 */
+ 0x00000044, /* CY_U3P_PIB_GPIF_AD_CONFIG */
+ 0x00000000, /* CY_U3P_PIB_GPIF_STATUS */
+ 0x00000000, /* CY_U3P_PIB_GPIF_INTR */
+ 0x00000000, /* CY_U3P_PIB_GPIF_INTR_MASK */
+ 0x00000082, /* CY_U3P_PIB_GPIF_SERIAL_IN_CONFIG */
+ 0x00000782, /* CY_U3P_PIB_GPIF_SERIAL_OUT_CONFIG */
+ 0x00000500, /* CY_U3P_PIB_GPIF_CTRL_BUS_DIRECTION */
+ 0x0000FFCF, /* CY_U3P_PIB_GPIF_CTRL_BUS_DEFAULT */
+ 0x000000BF, /* CY_U3P_PIB_GPIF_CTRL_BUS_POLARITY */
+ 0x00000000, /* CY_U3P_PIB_GPIF_CTRL_BUS_TOGGLE */
+ 0x00000000, /* CY_U3P_PIB_GPIF_CTRL_BUS_SELECT */
+ 0x00000000, /* CY_U3P_PIB_GPIF_CTRL_BUS_SELECT */
+ 0x00000000, /* CY_U3P_PIB_GPIF_CTRL_BUS_SELECT */
+ 0x00000000, /* CY_U3P_PIB_GPIF_CTRL_BUS_SELECT */
+ 0x00000018, /* CY_U3P_PIB_GPIF_CTRL_BUS_SELECT */
+ 0x00000019, /* CY_U3P_PIB_GPIF_CTRL_BUS_SELECT */
+ 0x00000000, /* CY_U3P_PIB_GPIF_CTRL_BUS_SELECT */
+ 0x00000000, /* CY_U3P_PIB_GPIF_CTRL_BUS_SELECT */
+ 0x00000000, /* CY_U3P_PIB_GPIF_CTRL_BUS_SELECT */
+ 0x00000000, /* CY_U3P_PIB_GPIF_CTRL_BUS_SELECT */
+ 0x00000000, /* CY_U3P_PIB_GPIF_CTRL_BUS_SELECT */
+ 0x00000000, /* CY_U3P_PIB_GPIF_CTRL_BUS_SELECT */
+ 0x00000000, /* CY_U3P_PIB_GPIF_CTRL_BUS_SELECT */
+ 0x00000000, /* CY_U3P_PIB_GPIF_CTRL_BUS_SELECT */
+ 0x00000000, /* CY_U3P_PIB_GPIF_CTRL_BUS_SELECT */
+ 0x00000000, /* CY_U3P_PIB_GPIF_CTRL_BUS_SELECT */
+ 0x00000006, /* CY_U3P_PIB_GPIF_CTRL_COUNT_CONFIG */
+ 0x00000000, /* CY_U3P_PIB_GPIF_CTRL_COUNT_RESET */
+ 0x0000FFFF, /* CY_U3P_PIB_GPIF_CTRL_COUNT_LIMIT */
+ 0x0000010A, /* CY_U3P_PIB_GPIF_ADDR_COUNT_CONFIG */
+ 0x00000000, /* CY_U3P_PIB_GPIF_ADDR_COUNT_RESET */
+ 0x0000FFFF, /* CY_U3P_PIB_GPIF_ADDR_COUNT_LIMIT */
+ 0x00000000, /* CY_U3P_PIB_GPIF_STATE_COUNT_CONFIG */
+ 0x0000FFFF, /* CY_U3P_PIB_GPIF_STATE_COUNT_LIMIT */
+ 0x0000010A, /* CY_U3P_PIB_GPIF_DATA_COUNT_CONFIG */
+ 0x00000000, /* CY_U3P_PIB_GPIF_DATA_COUNT_RESET */
+ 0x0000FFFF, /* CY_U3P_PIB_GPIF_DATA_COUNT_LIMIT */
+ 0x00000000, /* CY_U3P_PIB_GPIF_CTRL_COMP_VALUE */
+ 0x00000000, /* CY_U3P_PIB_GPIF_CTRL_COMP_MASK */
+ 0x00000000, /* CY_U3P_PIB_GPIF_DATA_COMP_VALUE */
+ 0x00000000, /* CY_U3P_PIB_GPIF_DATA_COMP_MASK */
+ 0x00000000, /* CY_U3P_PIB_GPIF_ADDR_COMP_VALUE */
+ 0x00000000, /* CY_U3P_PIB_GPIF_ADDR_COMP_MASK */
+ 0x00000000, /* CY_U3P_PIB_GPIF_DATA_CTRL */
+ 0x00000000, /* CY_U3P_PIB_GPIF_INGRESS_DATA */
+ 0x00000000, /* CY_U3P_PIB_GPIF_INGRESS_DATA */
+ 0x00000000, /* CY_U3P_PIB_GPIF_INGRESS_DATA */
+ 0x00000000, /* CY_U3P_PIB_GPIF_INGRESS_DATA */
+ 0x00000000, /* CY_U3P_PIB_GPIF_EGRESS_DATA */
+ 0x00000000, /* CY_U3P_PIB_GPIF_EGRESS_DATA */
+ 0x00000000, /* CY_U3P_PIB_GPIF_EGRESS_DATA */
+ 0x00000000, /* CY_U3P_PIB_GPIF_EGRESS_DATA */
+ 0x00000000, /* CY_U3P_PIB_GPIF_INGRESS_ADDRESS */
+ 0x00000000, /* CY_U3P_PIB_GPIF_INGRESS_ADDRESS */
+ 0x00000000, /* CY_U3P_PIB_GPIF_INGRESS_ADDRESS */
+ 0x00000000, /* CY_U3P_PIB_GPIF_INGRESS_ADDRESS */
+ 0x00000000, /* CY_U3P_PIB_GPIF_EGRESS_ADDRESS */
+ 0x00000000, /* CY_U3P_PIB_GPIF_EGRESS_ADDRESS */
+ 0x00000000, /* CY_U3P_PIB_GPIF_EGRESS_ADDRESS */
+ 0x00000000, /* CY_U3P_PIB_GPIF_EGRESS_ADDRESS */
+ 0x80010400, /* CY_U3P_PIB_GPIF_THREAD_CONFIG */
+ 0x80010401, /* CY_U3P_PIB_GPIF_THREAD_CONFIG */
+ 0x80010402, /* CY_U3P_PIB_GPIF_THREAD_CONFIG */
+ 0x80010403, /* CY_U3P_PIB_GPIF_THREAD_CONFIG */
+ 0x00000000, /* CY_U3P_PIB_GPIF_LAMBDA_STAT */
+ 0x00000000, /* CY_U3P_PIB_GPIF_ALPHA_STAT */
+ 0x00000000, /* CY_U3P_PIB_GPIF_BETA_STAT */
+ 0x00080000, /* CY_U3P_PIB_GPIF_WAVEFORM_CTRL_STAT */
+ 0x00000000, /* CY_U3P_PIB_GPIF_WAVEFORM_SWITCH */
+ 0x00000000, /* CY_U3P_PIB_GPIF_WAVEFORM_SWITCH_TIMEOUT */
+ 0x00000000, /* CY_U3P_PIB_GPIF_CRC_CONFIG */
+ 0x00000000, /* CY_U3P_PIB_GPIF_CRC_DATA */
+ 0xFFFFFFF1 /* CY_U3P_PIB_GPIF_BETA_DEASSERT */
+};
+
+/* Summary
+ This structure holds all the configuration inputs for the GPIF II.
+ */
+const CyU3PGpifConfig_t CyFxGpifConfig = {
+ (uint16_t)(sizeof(CyFxGpifWavedataPosition)/sizeof(uint8_t)),
+ CyFxGpifWavedata,
+ CyFxGpifWavedataPosition,
+ (uint16_t)(sizeof(CyFxGpifTransition)/sizeof(uint16_t)),
+ CyFxGpifTransition,
+ (uint16_t)(sizeof(CyFxGpifRegValue)/sizeof(uint32_t)),
+ CyFxGpifRegValue
+};
+
+#endif /* _INCLUDED_CYFXGPIF2CONFIG_ */
diff --git a/firmware/fx3/gpif2_designer/b200_v2.cydsn/projectfiles/gpif2model.xml b/firmware/fx3/gpif2_designer/b200_v2.cydsn/projectfiles/gpif2model.xml
new file mode 100644
index 000000000..477bad9e7
--- /dev/null
+++ b/firmware/fx3/gpif2_designer/b200_v2.cydsn/projectfiles/gpif2model.xml
@@ -0,0 +1,140 @@
+<?xml version="1.0" encoding="UTF-8"?>
+<GPIFIIModel version="3">
+ <InterfaceDefination>
+ <InterfaceSetting>
+ <I2SEnabled>False</I2SEnabled>
+ <I2CEnabled>False</I2CEnabled>
+ <SPIEnabled>False</SPIEnabled>
+ <I2SEnabled>False</I2SEnabled>
+ <ADMuxedEnabled>False</ADMuxedEnabled>
+ <InterfaceType>Slave</InterfaceType>
+ <CommunicationType>Synchronous</CommunicationType>
+ <ClockSource>External</ClockSource>
+ <ClockEdge>Positive</ClockEdge>
+ <Endianness>LittleEndian</Endianness>
+ <DataBusWidth>Bit32</DataBusWidth>
+ <AddressBuswidth>2</AddressBuswidth>
+ </InterfaceSetting>
+ </InterfaceDefination>
+ <Signals>
+ <Signal ElementId="INPUT0" SignalType="Input" SpecialFunction="OE">
+ <DisplayName>SLOE</DisplayName>
+ <GPIOPinNumber>GPIO_19</GPIOPinNumber>
+ <Polarity>ActiveLow</Polarity>
+ </Signal>
+ <Signal ElementId="INPUT1" SignalType="Input" SpecialFunction="None">
+ <DisplayName>SLCS</DisplayName>
+ <GPIOPinNumber>GPIO_17</GPIOPinNumber>
+ <Polarity>ActiveLow</Polarity>
+ </Signal>
+ <Signal ElementId="INPUT2" SignalType="Input" SpecialFunction="None">
+ <DisplayName>SLWR</DisplayName>
+ <GPIOPinNumber>GPIO_18</GPIOPinNumber>
+ <Polarity>ActiveLow</Polarity>
+ </Signal>
+ <Signal ElementId="INPUT3" SignalType="Input" SpecialFunction="None">
+ <DisplayName>SLRD</DisplayName>
+ <GPIOPinNumber>GPIO_20</GPIOPinNumber>
+ <Polarity>ActiveLow</Polarity>
+ </Signal>
+ <Signal ElementId="INPUT4" SignalType="Input" SpecialFunction="None">
+ <DisplayName>PKEND</DisplayName>
+ <GPIOPinNumber>GPIO_24</GPIOPinNumber>
+ <Polarity>ActiveLow</Polarity>
+ </Signal>
+ <Signal ElementId="FLAG0" SignalType="Flags" SpecialFunction="None">
+ <DisplayName>FLAG0</DisplayName>
+ <GPIOPinNumber>GPIO_21</GPIOPinNumber>
+ <IntialValue>Low</IntialValue>
+ <Polarity>ActiveLow</Polarity>
+ <Flags>Current_Thread_DMA_Ready</Flags>
+ </Signal>
+ <Signal ElementId="FLAG1" SignalType="Flags" SpecialFunction="None">
+ <DisplayName>FLAG1</DisplayName>
+ <GPIOPinNumber>GPIO_22</GPIOPinNumber>
+ <IntialValue>Low</IntialValue>
+ <Polarity>ActiveLow</Polarity>
+ <Flags>Current_Thread_DMA_WaterMark</Flags>
+ </Signal>
+ </Signals>
+ <StateMachine>
+ <AddressCounter />
+ <DataCounter />
+ <ControlCounter />
+ <AddressComparator />
+ <DataComparator />
+ <ControlComparator />
+ <DRQ />
+ <AddrData />
+ <State ElementId="STARTSTATE1" StateType="StartState">
+ <DisplayName>RESET</DisplayName>
+ <RepeatUntillNextTransition>True</RepeatUntillNextTransition>
+ <RepeatCount>0</RepeatCount>
+ </State>
+ <State ElementId="STATE1" StateType="NormalState">
+ <DisplayName>IDLE</DisplayName>
+ <RepeatUntillNextTransition>True</RepeatUntillNextTransition>
+ <RepeatCount>0</RepeatCount>
+ <Action ElementId="IN_ADDR0" ActionType="IN_ADDR">
+ <SampleAddressType>ThreadSelection</SampleAddressType>
+ <A7Override>DMAAccessAndRegisterAccess</A7Override>
+ </Action>
+ </State>
+ <State ElementId="STATE2" StateType="NormalState">
+ <DisplayName>READ</DisplayName>
+ <RepeatUntillNextTransition>True</RepeatUntillNextTransition>
+ <RepeatCount>0</RepeatCount>
+ <Action ElementId="DR_DATA0" ActionType="DR_DATA">
+ <IsDataCounterConnected>False</IsDataCounterConnected>
+ <DataSourceSink>Socket</DataSourceSink>
+ <ThreadNumber>Thread0</ThreadNumber>
+ <SyncBurstMode>Enable</SyncBurstMode>
+ <DriveNewData>DriveNewData</DriveNewData>
+ <UpdateSource>True</UpdateSource>
+ </Action>
+ </State>
+ <State ElementId="STATE3" StateType="NormalState">
+ <DisplayName>WRITE</DisplayName>
+ <RepeatUntillNextTransition>True</RepeatUntillNextTransition>
+ <RepeatCount>0</RepeatCount>
+ <Action ElementId="IN_DATA0" ActionType="IN_DATA">
+ <DataSourceSink>Socket</DataSourceSink>
+ <ThreadNumber>Thread0</ThreadNumber>
+ <SampleData>True</SampleData>
+ <WriteDataIntoDataSink>True</WriteDataIntoDataSink>
+ </Action>
+ </State>
+ <State ElementId="STATE4" StateType="NormalState">
+ <DisplayName>SHORT_PKT</DisplayName>
+ <RepeatUntillNextTransition>False</RepeatUntillNextTransition>
+ <RepeatCount>0</RepeatCount>
+ <Action ElementId="COMMIT0" ActionType="COMMIT">
+ <ThreadNumber>Thread0</ThreadNumber>
+ </Action>
+ <Action ElementId="IN_DATA0" ActionType="IN_DATA">
+ <DataSourceSink>Socket</DataSourceSink>
+ <ThreadNumber>Thread0</ThreadNumber>
+ <SampleData>True</SampleData>
+ <WriteDataIntoDataSink>True</WriteDataIntoDataSink>
+ </Action>
+ </State>
+ <State ElementId="STATE5" StateType="NormalState">
+ <DisplayName>ZLP</DisplayName>
+ <RepeatUntillNextTransition>False</RepeatUntillNextTransition>
+ <RepeatCount>0</RepeatCount>
+ <Action ElementId="COMMIT0" ActionType="COMMIT">
+ <ThreadNumber>Thread0</ThreadNumber>
+ </Action>
+ </State>
+ <Transition ElementId="TRANSITION1" SourceState="STARTSTATE1" DestinationState="STATE1" Equation="LOGIC_ONE" />
+ <Transition ElementId="TRANSITION2" SourceState="STATE1" DestinationState="STATE2" Equation="SLWR&amp;!SLCS&amp;PKEND&amp;!SLRD&amp;!SLOE" />
+ <Transition ElementId="TRANSITION3" SourceState="STATE1" DestinationState="STATE3" Equation="!SLWR&amp;!SLCS&amp;PKEND&amp;SLRD" />
+ <Transition ElementId="TRANSITION4" SourceState="STATE1" DestinationState="STATE4" Equation="!SLWR&amp;!SLCS&amp;!PKEND&amp;SLRD" />
+ <Transition ElementId="TRANSITION5" SourceState="STATE1" DestinationState="STATE5" Equation="SLWR&amp;!SLCS&amp;!PKEND&amp;SLRD" />
+ <Transition ElementId="TRANSITION6" SourceState="STATE5" DestinationState="STATE1" Equation="PKEND" />
+ <Transition ElementId="TRANSITION7" SourceState="STATE2" DestinationState="STATE1" Equation="SLRD|SLCS|SLOE" />
+ <Transition ElementId="TRANSITION8" SourceState="STATE3" DestinationState="STATE1" Equation="(PKEND&amp;SLWR)|SLCS" />
+ <Transition ElementId="TRANSITION9" SourceState="STATE3" DestinationState="STATE4" Equation="!SLWR&amp;!PKEND" />
+ <Transition ElementId="TRANSITION10" SourceState="STATE4" DestinationState="STATE1" Equation="PKEND|SLCS|SLWR" />
+ </StateMachine>
+</GPIFIIModel> \ No newline at end of file
diff --git a/firmware/fx3/gpif2_designer/b200_v2.cydsn/projectfiles/gpif2timingsimulation.xml b/firmware/fx3/gpif2_designer/b200_v2.cydsn/projectfiles/gpif2timingsimulation.xml
new file mode 100644
index 000000000..e6b10027b
--- /dev/null
+++ b/firmware/fx3/gpif2_designer/b200_v2.cydsn/projectfiles/gpif2timingsimulation.xml
@@ -0,0 +1,49 @@
+<?xml version="1.0" encoding="UTF-8"?>
+<GPIFIITimingSimulation version="1">
+ <Clock>100</Clock>
+ <BufferSize>512</BufferSize>
+ <WaterMark>0</WaterMark>
+ <Scenario Name="Read" CurrentThread="Thread0">
+ <State StateId="STARTSTATE1" WaitNumber="0" />
+ <State StateId="STATE1" WaitNumber="0" />
+ <State StateId="STATE2" WaitNumber="0" />
+ <State StateId="STATE1" WaitNumber="0" />
+ </Scenario>
+ <Scenario Name="Write" CurrentThread="Thread0">
+ <State StateId="STARTSTATE1" WaitNumber="0" />
+ <State StateId="STATE1" WaitNumber="0" />
+ <State StateId="STATE3" WaitNumber="0" />
+ <State StateId="STATE1" WaitNumber="0" />
+ </Scenario>
+ <Scenario Name="BurstRead" CurrentThread="Thread0">
+ <State StateId="STARTSTATE1" WaitNumber="0" />
+ <State StateId="STATE1" WaitNumber="0" />
+ <State StateId="STATE2" WaitNumber="0" />
+ <State StateId="STATE2" WaitNumber="0" />
+ <State StateId="STATE2" WaitNumber="0" />
+ <State StateId="STATE2" WaitNumber="0" />
+ <State StateId="STATE1" WaitNumber="0" />
+ </Scenario>
+ <Scenario Name="BurstWrite" CurrentThread="Thread0">
+ <State StateId="STARTSTATE1" WaitNumber="0" />
+ <State StateId="STATE1" WaitNumber="0" />
+ <State StateId="STATE3" WaitNumber="0" />
+ <State StateId="STATE3" WaitNumber="0" />
+ <State StateId="STATE3" WaitNumber="0" />
+ <State StateId="STATE3" WaitNumber="0" />
+ <State StateId="STATE3" WaitNumber="0" />
+ <State StateId="STATE1" WaitNumber="0" />
+ </Scenario>
+ <Scenario Name="ShortPkt" CurrentThread="Thread0">
+ <State StateId="STARTSTATE1" WaitNumber="0" />
+ <State StateId="STATE1" WaitNumber="0" />
+ <State StateId="STATE4" WaitNumber="0" />
+ <State StateId="STATE1" WaitNumber="0" />
+ </Scenario>
+ <Scenario Name="ZLP" CurrentThread="Thread0">
+ <State StateId="STARTSTATE1" WaitNumber="0" />
+ <State StateId="STATE1" WaitNumber="0" />
+ <State StateId="STATE5" WaitNumber="0" />
+ <State StateId="STATE1" WaitNumber="0" />
+ </Scenario>
+</GPIFIITimingSimulation> \ No newline at end of file
diff --git a/firmware/fx3/gpif2_designer/b200_v2.cydsn/projectfiles/gpif2view.xml b/firmware/fx3/gpif2_designer/b200_v2.cydsn/projectfiles/gpif2view.xml
new file mode 100644
index 000000000..730be04ab
--- /dev/null
+++ b/firmware/fx3/gpif2_designer/b200_v2.cydsn/projectfiles/gpif2view.xml
@@ -0,0 +1,183 @@
+<?xml version="1.0" encoding="UTF-8"?>
+<Root version="4">
+ <CyStates>
+ <CyNormalState>
+ <Left>363</Left>
+ <Top>96.4466666666667</Top>
+ <Width>83</Width>
+ <Height>70</Height>
+ <Name>STATE1</Name>
+ <DisplayName>IDLE</DisplayName>
+ <zIndex>1</zIndex>
+ <IsGroup>False</IsGroup>
+ <ParentID>00000000-0000-0000-0000-000000000000</ParentID>
+ </CyNormalState>
+ <CyNormalState>
+ <Left>237</Left>
+ <Top>390.446666666667</Top>
+ <Width>83</Width>
+ <Height>70</Height>
+ <Name>STATE2</Name>
+ <DisplayName>READ</DisplayName>
+ <zIndex>1</zIndex>
+ <IsGroup>False</IsGroup>
+ <ParentID>00000000-0000-0000-0000-000000000000</ParentID>
+ </CyNormalState>
+ <CyNormalState>
+ <Left>551</Left>
+ <Top>379.446666666667</Top>
+ <Width>83</Width>
+ <Height>70</Height>
+ <Name>STATE3</Name>
+ <DisplayName>WRITE</DisplayName>
+ <zIndex>1</zIndex>
+ <IsGroup>False</IsGroup>
+ <ParentID>00000000-0000-0000-0000-000000000000</ParentID>
+ </CyNormalState>
+ <CyNormalState>
+ <Left>773</Left>
+ <Top>233.446666666667</Top>
+ <Width>83</Width>
+ <Height>70</Height>
+ <Name>STATE4</Name>
+ <DisplayName>SHORT_PKT</DisplayName>
+ <zIndex>1</zIndex>
+ <IsGroup>False</IsGroup>
+ <ParentID>00000000-0000-0000-0000-000000000000</ParentID>
+ </CyNormalState>
+ <CyNormalState>
+ <Left>11</Left>
+ <Top>196.446666666667</Top>
+ <Width>83</Width>
+ <Height>70</Height>
+ <Name>STATE5</Name>
+ <DisplayName>ZLP</DisplayName>
+ <zIndex>1</zIndex>
+ <IsGroup>False</IsGroup>
+ <ParentID>00000000-0000-0000-0000-000000000000</ParentID>
+ </CyNormalState>
+ <CyStartState>
+ <Left>29</Left>
+ <Top>18.4466666666667</Top>
+ <Width>83</Width>
+ <Height>70</Height>
+ <Name>STARTSTATE1</Name>
+ <DisplayName>RESET</DisplayName>
+ <zIndex>1</zIndex>
+ <IsGroup>False</IsGroup>
+ <ParentID>00000000-0000-0000-0000-000000000000</ParentID>
+ </CyStartState>
+ </CyStates>
+ <CyTransitions>
+ <CyTransition>
+ <Name>TRANSITION1</Name>
+ <TransitionEquation>LOGIC_ONE</TransitionEquation>
+ <SourceName>STARTSTATE1</SourceName>
+ <SinkName>STATE1</SinkName>
+ <SourceConnectorName>Connector</SourceConnectorName>
+ <SinkConnectorName>Connector</SinkConnectorName>
+ <SourceArrowSymbol>None</SourceArrowSymbol>
+ <SinkArrowSymbol>Arrow</SinkArrowSymbol>
+ <zIndex>0</zIndex>
+ </CyTransition>
+ <CyTransition>
+ <Name>TRANSITION2</Name>
+ <TransitionEquation>SLWR&amp;!SLCS&amp;PKEND&amp;!SLRD&amp;!SLOE</TransitionEquation>
+ <SourceName>STATE1</SourceName>
+ <SinkName>STATE2</SinkName>
+ <SourceConnectorName>Connector</SourceConnectorName>
+ <SinkConnectorName>Connector</SinkConnectorName>
+ <SourceArrowSymbol>None</SourceArrowSymbol>
+ <SinkArrowSymbol>Arrow</SinkArrowSymbol>
+ <zIndex>0</zIndex>
+ </CyTransition>
+ <CyTransition>
+ <Name>TRANSITION3</Name>
+ <TransitionEquation>!SLWR&amp;!SLCS&amp;PKEND&amp;SLRD</TransitionEquation>
+ <SourceName>STATE1</SourceName>
+ <SinkName>STATE3</SinkName>
+ <SourceConnectorName>Connector</SourceConnectorName>
+ <SinkConnectorName>Connector</SinkConnectorName>
+ <SourceArrowSymbol>None</SourceArrowSymbol>
+ <SinkArrowSymbol>Arrow</SinkArrowSymbol>
+ <zIndex>0</zIndex>
+ </CyTransition>
+ <CyTransition>
+ <Name>TRANSITION4</Name>
+ <TransitionEquation>!SLWR&amp;!SLCS&amp;!PKEND&amp;SLRD</TransitionEquation>
+ <SourceName>STATE1</SourceName>
+ <SinkName>STATE4</SinkName>
+ <SourceConnectorName>Connector</SourceConnectorName>
+ <SinkConnectorName>Connector</SinkConnectorName>
+ <SourceArrowSymbol>None</SourceArrowSymbol>
+ <SinkArrowSymbol>Arrow</SinkArrowSymbol>
+ <zIndex>0</zIndex>
+ </CyTransition>
+ <CyTransition>
+ <Name>TRANSITION5</Name>
+ <TransitionEquation>SLWR&amp;!SLCS&amp;!PKEND&amp;SLRD</TransitionEquation>
+ <SourceName>STATE1</SourceName>
+ <SinkName>STATE5</SinkName>
+ <SourceConnectorName>Connector</SourceConnectorName>
+ <SinkConnectorName>Connector</SinkConnectorName>
+ <SourceArrowSymbol>None</SourceArrowSymbol>
+ <SinkArrowSymbol>Arrow</SinkArrowSymbol>
+ <zIndex>0</zIndex>
+ </CyTransition>
+ <CyTransition>
+ <Name>TRANSITION6</Name>
+ <TransitionEquation>PKEND</TransitionEquation>
+ <SourceName>STATE5</SourceName>
+ <SinkName>STATE1</SinkName>
+ <SourceConnectorName>Connector</SourceConnectorName>
+ <SinkConnectorName>Connector</SinkConnectorName>
+ <SourceArrowSymbol>None</SourceArrowSymbol>
+ <SinkArrowSymbol>Arrow</SinkArrowSymbol>
+ <zIndex>0</zIndex>
+ </CyTransition>
+ <CyTransition>
+ <Name>TRANSITION7</Name>
+ <TransitionEquation>SLRD|SLCS|SLOE</TransitionEquation>
+ <SourceName>STATE2</SourceName>
+ <SinkName>STATE1</SinkName>
+ <SourceConnectorName>Connector</SourceConnectorName>
+ <SinkConnectorName>Connector</SinkConnectorName>
+ <SourceArrowSymbol>None</SourceArrowSymbol>
+ <SinkArrowSymbol>Arrow</SinkArrowSymbol>
+ <zIndex>0</zIndex>
+ </CyTransition>
+ <CyTransition>
+ <Name>TRANSITION8</Name>
+ <TransitionEquation>(PKEND&amp;SLWR)|SLCS</TransitionEquation>
+ <SourceName>STATE3</SourceName>
+ <SinkName>STATE1</SinkName>
+ <SourceConnectorName>Connector</SourceConnectorName>
+ <SinkConnectorName>Connector</SinkConnectorName>
+ <SourceArrowSymbol>None</SourceArrowSymbol>
+ <SinkArrowSymbol>Arrow</SinkArrowSymbol>
+ <zIndex>0</zIndex>
+ </CyTransition>
+ <CyTransition>
+ <Name>TRANSITION9</Name>
+ <TransitionEquation>!SLWR&amp;!PKEND</TransitionEquation>
+ <SourceName>STATE3</SourceName>
+ <SinkName>STATE4</SinkName>
+ <SourceConnectorName>Connector</SourceConnectorName>
+ <SinkConnectorName>Connector</SinkConnectorName>
+ <SourceArrowSymbol>None</SourceArrowSymbol>
+ <SinkArrowSymbol>Arrow</SinkArrowSymbol>
+ <zIndex>0</zIndex>
+ </CyTransition>
+ <CyTransition>
+ <Name>TRANSITION10</Name>
+ <TransitionEquation>PKEND|SLCS|SLWR</TransitionEquation>
+ <SourceName>STATE4</SourceName>
+ <SinkName>STATE1</SinkName>
+ <SourceConnectorName>Connector</SourceConnectorName>
+ <SinkConnectorName>Connector</SinkConnectorName>
+ <SourceArrowSymbol>None</SourceArrowSymbol>
+ <SinkArrowSymbol>Arrow</SinkArrowSymbol>
+ <zIndex>0</zIndex>
+ </CyTransition>
+ </CyTransitions>
+</Root> \ No newline at end of file