diff options
Diffstat (limited to 'firmware/fx3/ad9361')
-rw-r--r-- | firmware/fx3/ad9361/include/ad9361_dispatch.h | 16 | ||||
-rw-r--r-- | firmware/fx3/ad9361/include/ad9361_transaction.h | 90 | ||||
-rw-r--r-- | firmware/fx3/ad9361/lib/ad9361_filter_taps.h | 47 | ||||
-rw-r--r-- | firmware/fx3/ad9361/lib/ad9361_gain_tables.h | 95 | ||||
-rw-r--r-- | firmware/fx3/ad9361/lib/ad9361_impl.c | 1918 | ||||
-rw-r--r-- | firmware/fx3/ad9361/lib/ad9361_synth_lut.h | 135 |
6 files changed, 2301 insertions, 0 deletions
diff --git a/firmware/fx3/ad9361/include/ad9361_dispatch.h b/firmware/fx3/ad9361/include/ad9361_dispatch.h new file mode 100644 index 000000000..e89a4e0b0 --- /dev/null +++ b/firmware/fx3/ad9361/include/ad9361_dispatch.h @@ -0,0 +1,16 @@ +// +// Copyright 2013-2014 Ettus Research LLC +// + +#ifndef INCLUDED_AD9361_DISPATCH_H +#define INCLUDED_AD9361_DISPATCH_H + +#include <ad9361_transaction.h> + +extern void ad9361_dispatch(const char* request, char* response); + +typedef void (*msgfn)(const char*, ...); + +extern void ad9361_set_msgfn(msgfn pfn); + +#endif /* INCLUDED_AD9361_DISPATCH_H */ diff --git a/firmware/fx3/ad9361/include/ad9361_transaction.h b/firmware/fx3/ad9361/include/ad9361_transaction.h new file mode 100644 index 000000000..2349a5d3d --- /dev/null +++ b/firmware/fx3/ad9361/include/ad9361_transaction.h @@ -0,0 +1,90 @@ +// +// Copyright 2013-2014 Ettus Research LLC +// + +#ifndef INCLUDED_AD9361_TRANSACTION_H +#define INCLUDED_AD9361_TRANSACTION_H + +#include <stdint.h> + +#ifdef __cplusplus +extern "C" { +#endif + +//various constants +#define AD9361_TRANSACTION_VERSION 0x4 +#define AD9361_DISPATCH_PACKET_SIZE 64 + +//action types +#define AD9361_ACTION_ECHO 0 +#define AD9361_ACTION_INIT 1 +#define AD9361_ACTION_SET_RX1_GAIN 2 +#define AD9361_ACTION_SET_TX1_GAIN 3 +#define AD9361_ACTION_SET_RX2_GAIN 4 +#define AD9361_ACTION_SET_TX2_GAIN 5 +#define AD9361_ACTION_SET_RX_FREQ 6 +#define AD9361_ACTION_SET_TX_FREQ 7 +#define AD9361_ACTION_SET_CODEC_LOOP 8 +#define AD9361_ACTION_SET_CLOCK_RATE 9 +#define AD9361_ACTION_SET_ACTIVE_CHAINS 10 + +static inline void ad9361_double_pack(const double input, uint32_t output[2]) +{ + const uint32_t *p = (const uint32_t *)&input; + output[0] = p[0]; + output[1] = p[1]; +} + +static inline double ad9361_double_unpack(const uint32_t input[2]) +{ + double output = 0.0; + uint32_t *p = (uint32_t *)&output; + p[0] = input[0]; + p[1] = input[1]; + return output; +} + +typedef struct +{ + //version is expected to be AD9361_TRANSACTION_VERSION + //check otherwise for compatibility + uint32_t version; + + //sequence number - increment every call for sanity + uint32_t sequence; + + //action tells us what to do, see AD9361_ACTION_* + uint32_t action; + + union + { + //enable mask for chains + uint32_t enable_mask; + + //true to enable codec internal loopback + uint32_t codec_loop; + + //freq holds request LO freq and result from tune + uint32_t freq[2]; + + //gain holds request gain and result from action + uint32_t gain[2]; + + //rate holds request clock rate and result from action + uint32_t rate[2]; + + } value; + + //error message comes back as a reply - + //set to null string for no error \0 + char error_msg[]; + +} ad9361_transaction_t; + +#define AD9361_TRANSACTION_MAX_ERROR_MSG (AD9361_DISPATCH_PACKET_SIZE - (sizeof(ad9361_transaction_t)-4)-1) // -4 for 'error_msg' alignment padding, -1 for terminating \0 + +#ifdef __cplusplus +} +#endif + +#endif /* INCLUDED_AD9361_TRANSACTION_H */ diff --git a/firmware/fx3/ad9361/lib/ad9361_filter_taps.h b/firmware/fx3/ad9361/lib/ad9361_filter_taps.h new file mode 100644 index 000000000..afbe27630 --- /dev/null +++ b/firmware/fx3/ad9361/lib/ad9361_filter_taps.h @@ -0,0 +1,47 @@ +// +// Copyright 2013-2014 Ettus Research LLC +// + +#ifndef INCLUDED_AD9361_FILTER_TAPS_HPP +#define INCLUDED_AD9361_FILTER_TAPS_HPP + +/* A default 128-tap filter that can be used for generic circumstances. */ +static uint16_t default_128tap_coeffs[] = { + 0x0001,0xfff1,0xffcf,0xffc0,0xffe8,0x0020,0x001a,0xffe3, + 0xffe1,0x001f,0x0028,0xffdf,0xffcc,0x0024,0x0043,0xffdb, + 0xffac,0x0026,0x0068,0xffdb,0xff80,0x0022,0x009a,0xffe2, + 0xff47,0x0017,0x00db,0xfff3,0xfeff,0xffff,0x012b,0x0013, + 0xfea5,0xffd7,0x0190,0x0046,0xfe35,0xff97,0x020e,0x0095, + 0xfda7,0xff36,0x02ae,0x010d,0xfcf0,0xfea1,0x0383,0x01c6, + 0xfbf3,0xfdb6,0x04b7,0x02f8,0xfa6d,0xfc1a,0x06be,0x0541, + 0xf787,0xf898,0x0b60,0x0b6d,0xee88,0xea40,0x2786,0x7209 +}; + + +/* The below pair of filters is optimized for a 10MHz LTE application. */ +/* +static uint16_t lte10mhz_rx_coeffs[] = { + 0xffe2,0x0042,0x0024,0x0095,0x0056,0x004d,0xffcf,0xffb7, + 0xffb1,0x0019,0x0059,0x006a,0x0004,0xff9d,0xff72,0xffd4, + 0x0063,0x00b7,0x0062,0xffac,0xff21,0xff59,0x0032,0x0101, + 0x00f8,0x0008,0xfeea,0xfeac,0xffa3,0x0117,0x01b5,0x00d0, + 0xff05,0xfdea,0xfe9e,0x00ba,0x026f,0x0215,0xffb5,0xfd4a, + 0xfd18,0xffa0,0x02de,0x03dc,0x0155,0xfd2a,0xfb0d,0xfd54, + 0x0287,0x062f,0x048a,0xfe37,0xf862,0xf8c1,0x004d,0x0963, + 0x0b88,0x02a4,0xf3e7,0xebdd,0xf5f8,0x1366,0x3830,0x518b +}; + +static uint16_t lte10mhz_tx_coeffs[] = { + 0xfffb,0x0000,0x0004,0x0017,0x0024,0x0028,0x0013,0xfff3, + 0xffdc,0xffe5,0x000b,0x0030,0x002e,0xfffe,0xffc4,0xffb8, + 0xfff0,0x0045,0x0068,0x002b,0xffb6,0xff72,0xffad,0x0047, + 0x00b8,0x0088,0xffc8,0xff1c,0xff33,0x001a,0x0110,0x0124, + 0x0019,0xfec8,0xfe74,0xff9a,0x0156,0x0208,0x00d3,0xfe9b, + 0xfd68,0xfe96,0x015d,0x033f,0x0236,0xfecd,0xfc00,0xfcb5, + 0x00d7,0x04e5,0x04cc,0xffd5,0xf9fe,0xf8fb,0xfef2,0x078c, + 0x0aae,0x036d,0xf5c0,0xed89,0xf685,0x12af,0x36a4,0x4faa +}; +*/ + + +#endif // INCLUDED_AD9361_FILTER_TAPS_HPP diff --git a/firmware/fx3/ad9361/lib/ad9361_gain_tables.h b/firmware/fx3/ad9361/lib/ad9361_gain_tables.h new file mode 100644 index 000000000..58dcbeb65 --- /dev/null +++ b/firmware/fx3/ad9361/lib/ad9361_gain_tables.h @@ -0,0 +1,95 @@ +// +// Copyright 2013-2014 Ettus Research LLC +// + +#ifndef INCLUDED_AD9361_GAIN_TABLES_HPP +#define INCLUDED_AD9361_GAIN_TABLES_HPP + +uint8_t gain_table_sub_1300mhz[77][5] = { {0,0x00,0x00,0x20,1}, + {1,0x00,0x00,0x00,0}, {2,0x00,0x00,0x00,0}, {3,0x00,0x01,0x00,0}, + {4,0x00,0x02,0x00,0}, {5,0x00,0x03,0x00,0}, {6,0x00,0x04,0x00,0}, + {7,0x00,0x05,0x00,0}, {8,0x01,0x03,0x20,1}, {9,0x01,0x04,0x00,0}, + {10,0x01,0x05,0x00,0}, {11,0x01,0x06,0x00,0}, {12,0x01,0x07,0x00,0}, + {13,0x01,0x08,0x00,0}, {14,0x01,0x09,0x00,0}, {15,0x01,0x0A,0x00,0}, + {16,0x01,0x0B,0x00,0}, {17,0x01,0x0C,0x00,0}, {18,0x01,0x0D,0x00,0}, + {19,0x01,0x0E,0x00,0}, {20,0x02,0x09,0x20,1}, {21,0x02,0x0A,0x00,0}, + {22,0x02,0x0B,0x00,0}, {23,0x02,0x0C,0x00,0}, {24,0x02,0x0D,0x00,0}, + {25,0x02,0x0E,0x00,0}, {26,0x02,0x0F,0x00,0}, {27,0x02,0x10,0x00,0}, + {28,0x02,0x2B,0x20,1}, {29,0x02,0x2C,0x00,0}, {30,0x04,0x27,0x20,1}, + {31,0x04,0x28,0x00,0}, {32,0x04,0x29,0x00,0}, {33,0x04,0x2A,0x00,0}, + {34,0x04,0x2B,0x00,1}, {35,0x24,0x21,0x20,0}, {36,0x24,0x22,0x00,1}, + {37,0x44,0x20,0x20,0}, {38,0x44,0x21,0x00,0}, {39,0x44,0x22,0x00,0}, + {40,0x44,0x23,0x00,0}, {41,0x44,0x24,0x00,0}, {42,0x44,0x25,0x00,0}, + {43,0x44,0x26,0x00,0}, {44,0x44,0x27,0x00,0}, {45,0x44,0x28,0x00,0}, + {46,0x44,0x29,0x00,0}, {47,0x44,0x2A,0x00,0}, {48,0x44,0x2B,0x00,0}, + {49,0x44,0x2C,0x00,0}, {50,0x44,0x2D,0x00,0}, {51,0x44,0x2E,0x00,0}, + {52,0x44,0x2F,0x00,0}, {53,0x44,0x30,0x00,0}, {54,0x44,0x31,0x00,0}, + {55,0x64,0x2E,0x20,1}, {56,0x64,0x2F,0x00,0}, {57,0x64,0x30,0x00,0}, + {58,0x64,0x31,0x00,0}, {59,0x64,0x32,0x00,0}, {60,0x64,0x33,0x00,0}, + {61,0x64,0x34,0x00,0}, {62,0x64,0x35,0x00,0}, {63,0x64,0x36,0x00,0}, + {64,0x64,0x37,0x00,0}, {65,0x64,0x38,0x00,0}, {66,0x65,0x38,0x20,1}, + {67,0x66,0x38,0x20,1}, {68,0x67,0x38,0x20,1}, {69,0x68,0x38,0x20,1}, + {70,0x69,0x38,0x20,1}, {71,0x6A,0x38,0x20,1}, {72,0x6B,0x38,0x20,1}, + {73,0x6C,0x38,0x20,1}, {74,0x6D,0x38,0x20,1}, {75,0x6E,0x38,0x20,1}, + {76,0x6F,0x38,0x20,1}}; + + +uint8_t gain_table_1300mhz_to_4000mhz[77][5] = { {0,0x00,0x00,0x20,1}, + {1,0x00,0x00,0x00,0}, {2,0x00,0x00,0x00,0}, {3,0x00,0x01,0x00,0}, + {4,0x00,0x02,0x00,0}, {5,0x00,0x03,0x00,0}, {6,0x00,0x04,0x00,0}, + {7,0x00,0x05,0x00,0}, {8,0x01,0x03,0x20,1}, {9,0x01,0x04,0x00,0}, + {10,0x01,0x05,0x00,0}, {11,0x01,0x06,0x00,0}, {12,0x01,0x07,0x00,0}, + {13,0x01,0x08,0x00,0}, {14,0x01,0x09,0x00,0}, {15,0x01,0x0A,0x00,0}, + {16,0x01,0x0B,0x00,0}, {17,0x01,0x0C,0x00,0}, {18,0x01,0x0D,0x00,0}, + {19,0x01,0x0E,0x00,0}, {20,0x02,0x09,0x20,1}, {21,0x02,0x0A,0x00,0}, + {22,0x02,0x0B,0x00,0}, {23,0x02,0x0C,0x00,0}, {24,0x02,0x0D,0x00,0}, + {25,0x02,0x0E,0x00,0}, {26,0x02,0x0F,0x00,0}, {27,0x02,0x10,0x00,0}, + {28,0x02,0x2B,0x20,1}, {29,0x02,0x2C,0x00,0}, {30,0x04,0x28,0x20,1}, + {31,0x04,0x29,0x00,0}, {32,0x04,0x2A,0x00,0}, {33,0x04,0x2B,0x00,0}, + {34,0x24,0x20,0x20,0}, {35,0x24,0x21,0x00,1}, {36,0x44,0x20,0x20,0}, + {37,0x44,0x21,0x00,1}, {38,0x44,0x22,0x00,0}, {39,0x44,0x23,0x00,0}, + {40,0x44,0x24,0x00,0}, {41,0x44,0x25,0x00,0}, {42,0x44,0x26,0x00,0}, + {43,0x44,0x27,0x00,0}, {44,0x44,0x28,0x00,0}, {45,0x44,0x29,0x00,0}, + {46,0x44,0x2A,0x00,0}, {47,0x44,0x2B,0x00,0}, {48,0x44,0x2C,0x00,0}, + {49,0x44,0x2D,0x00,0}, {50,0x44,0x2E,0x00,0}, {51,0x44,0x2F,0x00,0}, + {52,0x44,0x30,0x00,0}, {53,0x44,0x31,0x00,0}, {54,0x44,0x32,0x00,0}, + {55,0x64,0x2E,0x20,1}, {56,0x64,0x2F,0x00,0}, {57,0x64,0x30,0x00,0}, + {58,0x64,0x31,0x00,0}, {59,0x64,0x32,0x00,0}, {60,0x64,0x33,0x00,0}, + {61,0x64,0x34,0x00,0}, {62,0x64,0x35,0x00,0}, {63,0x64,0x36,0x00,0}, + {64,0x64,0x37,0x00,0}, {65,0x64,0x38,0x00,0}, {66,0x65,0x38,0x20,1}, + {67,0x66,0x38,0x20,1}, {68,0x67,0x38,0x20,1}, {69,0x68,0x38,0x20,1}, + {70,0x69,0x38,0x20,1}, {71,0x6A,0x38,0x20,1}, {72,0x6B,0x38,0x20,1}, + {73,0x6C,0x38,0x20,1}, {74,0x6D,0x38,0x20,1}, {75,0x6E,0x38,0x20,1}, + {76,0x6F,0x38,0x20,1}}; + + +uint8_t gain_table_4000mhz_to_6000mhz[77][5] = { {0,0x00,0x00,0x20,1}, + {1,0x00,0x00,0x00,0}, {2,0x00,0x00,0x00,0}, {3,0x00,0x00,0x00,0}, + {4,0x00,0x00,0x00,0}, {5,0x00,0x01,0x00,0}, {6,0x00,0x02,0x00,0}, + {7,0x00,0x03,0x00,0}, {8,0x01,0x01,0x20,1}, {9,0x01,0x02,0x00,0}, + {10,0x01,0x03,0x00,0}, {11,0x01,0x04,0x20,1}, {12,0x01,0x05,0x00,0}, + {13,0x01,0x06,0x00,0}, {14,0x01,0x07,0x00,0}, {15,0x01,0x08,0x00,0}, + {16,0x01,0x09,0x00,0}, {17,0x01,0x0A,0x00,0}, {18,0x01,0x0B,0x00,0}, + {19,0x01,0x0C,0x00,0}, {20,0x02,0x08,0x20,1}, {21,0x02,0x09,0x00,0}, + {22,0x02,0x0A,0x00,0}, {23,0x02,0x0B,0x20,1}, {24,0x02,0x0C,0x00,0}, + {25,0x02,0x0D,0x00,0}, {26,0x02,0x0E,0x00,0}, {27,0x02,0x0F,0x00,0}, + {28,0x02,0x2A,0x20,1}, {29,0x02,0x2B,0x00,0}, {30,0x04,0x27,0x20,1}, + {31,0x04,0x28,0x00,0}, {32,0x04,0x29,0x00,0}, {33,0x04,0x2A,0x00,0}, + {34,0x04,0x2B,0x00,0}, {35,0x04,0x2C,0x00,0}, {36,0x04,0x2D,0x00,0}, + {37,0x24,0x20,0x20,1}, {38,0x24,0x21,0x00,0}, {39,0x24,0x22,0x00,0}, + {40,0x44,0x20,0x20,1}, {41,0x44,0x21,0x00,0}, {42,0x44,0x22,0x00,0}, + {43,0x44,0x23,0x00,0}, {44,0x44,0x24,0x00,0}, {45,0x44,0x25,0x00,0}, + {46,0x44,0x26,0x00,0}, {47,0x44,0x27,0x00,0}, {48,0x44,0x28,0x00,0}, + {49,0x44,0x29,0x00,0}, {50,0x44,0x2A,0x00,0}, {51,0x44,0x2B,0x00,0}, + {52,0x44,0x2C,0x00,0}, {53,0x44,0x2D,0x00,0}, {54,0x44,0x2E,0x00,0}, + {55,0x64,0x2E,0x20,1}, {56,0x64,0x2F,0x00,0}, {57,0x64,0x30,0x00,0}, + {58,0x64,0x31,0x00,0}, {59,0x64,0x32,0x00,0}, {60,0x64,0x33,0x00,0}, + {61,0x64,0x34,0x00,0}, {62,0x64,0x35,0x00,0}, {63,0x64,0x36,0x00,0}, + {64,0x64,0x37,0x00,0}, {65,0x64,0x38,0x00,0}, {66,0x65,0x38,0x20,1}, + {67,0x66,0x38,0x20,1}, {68,0x67,0x38,0x20,1}, {69,0x68,0x38,0x20,1}, + {70,0x69,0x38,0x20,1}, {71,0x6A,0x38,0x20,1}, {72,0x6B,0x38,0x20,1}, + {73,0x6C,0x38,0x20,1}, {74,0x6D,0x38,0x20,1}, {75,0x6E,0x38,0x20,1}, + {76,0x6F,0x38,0x20,1}}; + + +#endif /* INCLUDED_AD9361_GAIN_TABLES_HPP */ diff --git a/firmware/fx3/ad9361/lib/ad9361_impl.c b/firmware/fx3/ad9361/lib/ad9361_impl.c new file mode 100644 index 000000000..61512d2c8 --- /dev/null +++ b/firmware/fx3/ad9361/lib/ad9361_impl.c @@ -0,0 +1,1918 @@ +// +// Copyright 2013-2014 Ettus Research LLC +// + +/* This file implements b200 vendor requests handler + * It handles ad9361 setup and configuration + */ + +#include <stdarg.h> +#include <stdio.h> +#include <math.h> + +#include <ad9361_transaction.h> +#include "ad9361_filter_taps.h" +#include "ad9361_gain_tables.h" +#include "ad9361_synth_lut.h" +#include "ad9361_dispatch.h" + +//////////////////////////////////////////////////////////// + +static void fake_msg(const char* str, ...) +{ +} + +static msgfn _msgfn = fake_msg; + +//extern void msg(const char* str, ...); External object must provide this symbol +#define msg (_msgfn) + +void ad9361_set_msgfn(msgfn pfn) +{ + _msgfn = pfn; +} + +//////////////////////////////////////////////////////////// +#define AD9361_MAX_GAIN 89.75 + +#define DOUBLE_PI 3.14159265359 +#define DOUBLE_LN_2 0.693147181 + +#define RX_TYPE 0 +#define TX_TYPE 1 + +#ifndef AD9361_CLOCKING_MODE +#error define a AD9361_CLOCKING_MODE +#endif + +#ifndef AD9361_RX_BAND_EDGE0 +#error define a AD9361_RX_BAND_EDGE0 +#endif + +#ifndef AD9361_RX_BAND_EDGE1 +#error define a AD9361_RX_BAND_EDGE1 +#endif + +#ifndef AD9361_TX_BAND_EDGE +#error define a AD9361_TX_BAND_EDGE +#endif + +//////////////////////////////////////////////////////////// +// the following macros evaluate to a compile time constant +// macros By Tom Torfs - donated to the public domain + +/* turn a numeric literal into a hex constant +(avoids problems with leading zeroes) +8-bit constants max value 0x11111111, always fits in unsigned long +*/ +#define HEX__(n) 0x##n##LU + +/* 8-bit conversion function */ +#define B8__(x) ((x&0x0000000FLU)?1:0) \ ++((x&0x000000F0LU)?2:0) \ ++((x&0x00000F00LU)?4:0) \ ++((x&0x0000F000LU)?8:0) \ ++((x&0x000F0000LU)?16:0) \ ++((x&0x00F00000LU)?32:0) \ ++((x&0x0F000000LU)?64:0) \ ++((x&0xF0000000LU)?128:0) + +/* *** user macros *** */ + +/* for upto 8-bit binary constants */ +#define B8(d) ((unsigned char)B8__(HEX__(d))) + +//////////////////////////////////////////////////////////// +// shadow registers +static uint8_t reg_vcodivs; +static uint8_t reg_inputsel; +static uint8_t reg_rxfilt; +static uint8_t reg_txfilt; +static uint8_t reg_bbpll; +static uint8_t reg_bbftune_config; +static uint8_t reg_bbftune_mode; + +//////////////////////////////////////////////////////////// +// other private data fields for VRQ handler +static double _rx_freq, _tx_freq, _req_rx_freq, _req_tx_freq; +static double _baseband_bw, _bbpll_freq, _adcclock_freq; +static double _req_clock_rate, _req_coreclk; +static uint16_t _rx_bbf_tunediv; +static uint8_t _curr_gain_table; +static uint32_t _rx1_gain, _rx2_gain, _tx1_gain, _tx2_gain; +static int _tfir_factor; + +double set_gain(int which, int n, const double value); +void set_active_chains(bool tx1, bool tx2, bool rx1, bool rx2); +/*********************************************************************** + * Placeholders, unused, or test functions + **********************************************************************/ +static char *tmp_req_buffer; + +void post_err_msg(const char* error) +{ + msg("[AD9361 error] %s", error); + + if (!tmp_req_buffer) + return; + + ad9361_transaction_t *request = (ad9361_transaction_t *)tmp_req_buffer; + strncpy(request->error_msg, error, (AD9361_TRANSACTION_MAX_ERROR_MSG + 1)); // '+ 1' as length excludes terminating NUL + request->error_msg[AD9361_TRANSACTION_MAX_ERROR_MSG] = '\0'; // If string was too long, NUL will not be copied, so force one just in case +} + +void write_ad9361_reg(uint32_t reg, uint8_t val) +{ + ad9361_transact_spi((reg << 8) | val | (1 << 23)); +} + +uint8_t read_ad9361_reg(uint32_t reg) +{ + return ad9361_transact_spi((reg << 8)) & 0xff; +} + +//shortcuts for double packer/unpacker function +#define double_pack ad9361_double_pack +#define double_unpack ad9361_double_unpack + +/* Make Catalina output its test tone. */ +void output_test_tone(void) { + /* Output a 480 kHz tone at 800 MHz */ + write_ad9361_reg(0x3F4, 0x0B); + write_ad9361_reg(0x3FC, 0xFF); + write_ad9361_reg(0x3FD, 0xFF); + write_ad9361_reg(0x3FE, 0x3F); +} + +/* Turn on/off Catalina's TX port --> RX port loopback. */ +void data_port_loopback(const int on) { + msg("[data_port_loopback] Enabled: %d", on); + write_ad9361_reg(0x3F5, (on ? 0x01 : 0x00)); +} + +/* This is a simple comparison for very large double-precision floating + * point numbers. It is used to prevent re-tunes for frequencies that are + * the same but not 'exactly' because of data precision issues. */ +// TODO: see if we can avoid the need for this function +int freq_is_nearly_equal(double a, double b) { + return AD9361_MAX(a,b) - AD9361_MIN(a,b) < 1; +} + +/*********************************************************************** + * Filter functions + **********************************************************************/ + +/* This function takes in the calculated maximum number of FIR taps, and + * returns a number of taps that makes Catalina happy. */ +int get_num_taps(int max_num_taps) { + + int num_taps = 0; + int num_taps_list[] = {16, 32, 48, 64, 80, 96, 112, 128}; + int i; + for(i = 1; i < 8; i++) { + if(max_num_taps >= num_taps_list[i]) { + continue; + } else { + num_taps = num_taps_list[i - 1]; + break; + } + } if(num_taps == 0) { num_taps = 128; } + + return num_taps; +} + +/* Program either the RX or TX FIR filter. + * + * The process is the same for both filters, but the function must be told + * how many taps are in the filter, and given a vector of the taps + * themselves. Note that the filters are symmetric, so value of 'num_taps' + * should actually be twice the length of the tap vector. */ +void program_fir_filter(int which, int num_taps, \ + uint16_t *coeffs) { + + uint16_t base; + if(which == RX_TYPE) { + base = 0x0f0; + write_ad9361_reg(base+6, 0x02); //filter gain + } else { + base = 0x060; + } + + /* Write the filter configuration. */ + uint8_t reg_numtaps = (((num_taps / 16) - 1) & 0x07) << 5; + + /* Turn on the filter clock. */ + write_ad9361_reg(base+5, reg_numtaps | 0x1a); + ad9361_msleep(1); + + int num_unique_coeffs = (num_taps / 2); + + /* The filters are symmetric, so iterate over the tap vector, + * programming each index, and then iterate backwards, repeating the + * process. */ + int addr; + for(addr=0; addr < num_unique_coeffs; addr++) { + write_ad9361_reg(base+0, addr); + write_ad9361_reg(base+1, (coeffs[addr]) & 0xff); + write_ad9361_reg(base+2, (coeffs[addr] >> 8) & 0xff); + write_ad9361_reg(base+5, 0xfe); + write_ad9361_reg(base+4, 0x00); + write_ad9361_reg(base+4, 0x00); + } + + for(addr=0; addr < num_unique_coeffs; addr++) { + write_ad9361_reg(base+0, addr+num_unique_coeffs); + write_ad9361_reg(base+1, (coeffs[num_unique_coeffs-1-addr]) & 0xff); + write_ad9361_reg(base+2, (coeffs[num_unique_coeffs-1-addr] >> 8) & 0xff); + write_ad9361_reg(base+5, 0xfe); + write_ad9361_reg(base+4, 0x00); + write_ad9361_reg(base+4, 0x00); + } + + /* Disable the filter clock. */ + write_ad9361_reg(base+5, 0xf8); +} + +/* Program the RX FIR Filter. */ +void setup_rx_fir(int total_num_taps) { + int num_taps = total_num_taps / 2; + uint16_t coeffs[num_taps]; + int i; + for(i = 0; i < num_taps; i++) { + coeffs[num_taps - 1 - i] = default_128tap_coeffs[63 - i]; + } + + program_fir_filter(RX_TYPE, total_num_taps, coeffs); +} + +/* Program the TX FIR Filter. */ +void setup_tx_fir(int total_num_taps) { + int num_taps = total_num_taps / 2; + uint16_t coeffs[num_taps]; + int i; + for(i = 0; i < num_taps; i++) { + coeffs[num_taps - 1 - i] = default_128tap_coeffs[63 - i]; + } + + program_fir_filter(TX_TYPE, total_num_taps, coeffs); +} + +/*********************************************************************** + * Calibration functions + ***********************************************************************/ + +/* Calibrate and lock the BBPLL. + * + * This function should be called anytime the BBPLL is tuned. */ +void calibrate_lock_bbpll() { + write_ad9361_reg(0x03F, 0x05); // Start the BBPLL calibration + write_ad9361_reg(0x03F, 0x01); // Clear the 'start' bit + + /* Increase BBPLL KV and phase margin. */ + write_ad9361_reg(0x04c, 0x86); + write_ad9361_reg(0x04d, 0x01); + write_ad9361_reg(0x04d, 0x05); + + /* Wait for BBPLL lock. */ + int count = 0; + while(!(read_ad9361_reg(0x05e) & 0x80)) { + if(count > 1000) { + post_err_msg("BBPLL not locked"); + break; + } + + count++; + ad9361_msleep(2); + } +} + +/* Calibrate the synthesizer charge pumps. + * + * Technically, this calibration only needs to be done once, at device + * initialization. */ +void calibrate_synth_charge_pumps() { + /* If this function ever gets called, and the ENSM isn't already in the + * ALERT state, then something has gone horribly wrong. */ + if((read_ad9361_reg(0x017) & 0x0F) != 5) { + post_err_msg("Catalina not in ALERT during cal"); + } + + /* Calibrate the RX synthesizer charge pump. */ + int count = 0; + write_ad9361_reg(0x23d, 0x04); + while(!(read_ad9361_reg(0x244) & 0x80)) { + if(count > 5) { + post_err_msg("RX charge pump cal failure"); + break; + } + + count++; + ad9361_msleep(1); + } + write_ad9361_reg(0x23d, 0x00); + + /* Calibrate the TX synthesizer charge pump. */ + count = 0; + write_ad9361_reg(0x27d, 0x04); + while(!(read_ad9361_reg(0x284) & 0x80)) { + if(count > 5) { + post_err_msg("TX charge pump cal failure"); + break; + } + + count++; + ad9361_msleep(1); + } + write_ad9361_reg(0x27d, 0x00); +} + +/* Calibrate the analog BB RX filter. + * + * Note that the filter calibration depends heavily on the baseband + * bandwidth, so this must be re-done after any change to the RX sample + * rate. */ +double calibrate_baseband_rx_analog_filter() { + /* For filter tuning, baseband BW is half the complex BW, and must be + * between 28e6 and 0.2e6. */ + double bbbw = _baseband_bw / 2.0; + if(bbbw > 28e6) { + bbbw = 28e6; + } else if (bbbw < 0.20e6) { + bbbw = 0.20e6; + } + + double rxtune_clk = ((1.4 * bbbw * 2 * + DOUBLE_PI) / DOUBLE_LN_2); + + _rx_bbf_tunediv = AD9361_MIN(511, AD9361_CEIL_INT(_bbpll_freq / rxtune_clk)); + + reg_bbftune_config = (reg_bbftune_config & 0xFE) \ + | ((_rx_bbf_tunediv >> 8) & 0x0001); + + double bbbw_mhz = bbbw / 1e6; + + double temp = ((bbbw_mhz - AD9361_FLOOR_INT(bbbw_mhz)) * 1000) / 7.8125; + uint8_t bbbw_khz = (uint8_t) AD9361_MIN(127, (AD9361_FLOOR_INT(temp + 0.5))); + + /* Set corner frequencies and dividers. */ + write_ad9361_reg(0x1fb, (uint8_t)(bbbw_mhz)); + write_ad9361_reg(0x1fc, bbbw_khz); + write_ad9361_reg(0x1f8, (_rx_bbf_tunediv & 0x00FF)); + write_ad9361_reg(0x1f9, reg_bbftune_config); + + /* RX Mix Voltage settings - only change with apps engineer help. */ + write_ad9361_reg(0x1d5, 0x3f); + write_ad9361_reg(0x1c0, 0x03); + + /* Enable RX1 & RX2 filter tuners. */ + write_ad9361_reg(0x1e2, 0x02); + write_ad9361_reg(0x1e3, 0x02); + + /* Run the calibration! */ + int count = 0; + write_ad9361_reg(0x016, 0x80); + while(read_ad9361_reg(0x016) & 0x80) { + if(count > 100) { + post_err_msg("RX baseband filter cal FAILURE"); + break; + } + + count++; + ad9361_msleep(1); + } + + /* Disable RX1 & RX2 filter tuners. */ + write_ad9361_reg(0x1e2, 0x03); + write_ad9361_reg(0x1e3, 0x03); + + return bbbw; +} + +/* Calibrate the analog BB TX filter. + * + * Note that the filter calibration depends heavily on the baseband + * bandwidth, so this must be re-done after any change to the TX sample + * rate. */ +double calibrate_baseband_tx_analog_filter() { + /* For filter tuning, baseband BW is half the complex BW, and must be + * between 28e6 and 0.2e6. */ + double bbbw = _baseband_bw / 2.0; + if(bbbw > 20e6) { + bbbw = 20e6; + } else if (bbbw < 0.625e6) { + bbbw = 0.625e6; + } + + double txtune_clk = ((1.6 * bbbw * 2 * + DOUBLE_PI) / DOUBLE_LN_2); + + uint16_t txbbfdiv = AD9361_MIN(511, (AD9361_CEIL_INT(_bbpll_freq / txtune_clk))); + + reg_bbftune_mode = (reg_bbftune_mode & 0xFE) \ + | ((txbbfdiv >> 8) & 0x0001); + + /* Program the divider values. */ + write_ad9361_reg(0x0d6, (txbbfdiv & 0x00FF)); + write_ad9361_reg(0x0d7, reg_bbftune_mode); + + /* Enable the filter tuner. */ + write_ad9361_reg(0x0ca, 0x22); + + /* Calibrate! */ + int count = 0; + write_ad9361_reg(0x016, 0x40); + while(read_ad9361_reg(0x016) & 0x40) { + if(count > 100) { + post_err_msg("TX baseband filter cal FAILURE"); + break; + } + + count++; + ad9361_msleep(1); + } + + /* Disable the filter tuner. */ + write_ad9361_reg(0x0ca, 0x26); + + return bbbw; +} + +/* Calibrate the secondary TX filter. + * + * This filter also depends on the TX sample rate, so if a rate change is + * made, the previous calibration will no longer be valid. */ +void calibrate_secondary_tx_filter() { + /* For filter tuning, baseband BW is half the complex BW, and must be + * between 20e6 and 0.53e6. */ + double bbbw = _baseband_bw / 2.0; + if(bbbw > 20e6) { + bbbw = 20e6; + } else if (bbbw < 0.53e6) { + bbbw = 0.53e6; + } + + double bbbw_mhz = bbbw / 1e6; + + /* Start with a resistor value of 100 Ohms. */ + int res = 100; + + /* Calculate target corner frequency. */ + double corner_freq = 5 * bbbw_mhz * 2 * DOUBLE_PI; + + /* Iterate through RC values to determine correct combination. */ + int cap = 0; + int i; + for(i = 0; i <= 3; i++) { + cap = (AD9361_FLOOR_INT(0.5 + (( 1 / ((corner_freq * res) * 1e6)) * 1e12))) - 12; + + if(cap <= 63) { + break; + } + + res = res * 2; + } + if(cap > 63) { + cap = 63; + } + + uint8_t reg0d0, reg0d1, reg0d2; + + /* Translate baseband bandwidths to register settings. */ + if((bbbw_mhz * 2) <= 9) { + reg0d0 = 0x59; + } else if(((bbbw_mhz * 2) > 9) && ((bbbw_mhz * 2) <= 24)) { + reg0d0 = 0x56; + } else if((bbbw_mhz * 2) > 24) { + reg0d0 = 0x57; + } else { + post_err_msg("Cal2ndTxFil: INVALID_CODE_PATH bad bbbw_mhz"); + reg0d0 = 0x00; + } + + /* Translate resistor values to register settings. */ + if(res == 100) { + reg0d1 = 0x0c; + } else if(res == 200) { + reg0d1 = 0x04; + } else if(res == 400) { + reg0d1 = 0x03; + } else if(res == 800) { + reg0d1 = 0x01; + } else { + reg0d1 = 0x0c; + } + + reg0d2 = cap; + + /* Program the above-calculated values. Sweet. */ + write_ad9361_reg(0x0d2, reg0d2); + write_ad9361_reg(0x0d1, reg0d1); + write_ad9361_reg(0x0d0, reg0d0); +} + +/* Calibrate the RX TIAs. + * + * Note that the values in the TIA register, after calibration, vary with + * the RX gain settings. */ +void calibrate_rx_TIAs() { + + uint8_t reg1eb = read_ad9361_reg(0x1eb) & 0x3F; + uint8_t reg1ec = read_ad9361_reg(0x1ec) & 0x7F; + uint8_t reg1e6 = read_ad9361_reg(0x1e6) & 0x07; + uint8_t reg1db = 0x00; + uint8_t reg1dc = 0x00; + uint8_t reg1dd = 0x00; + uint8_t reg1de = 0x00; + uint8_t reg1df = 0x00; + + /* For calibration, baseband BW is half the complex BW, and must be + * between 28e6 and 0.2e6. */ + double bbbw = _baseband_bw / 2.0; + if(bbbw > 20e6) { + bbbw = 20e6; + } else if (bbbw < 0.20e6) { + bbbw = 0.20e6; + } + double ceil_bbbw_mhz = AD9361_CEIL_INT(bbbw / 1e6); + + /* Do some crazy resistor and capacitor math. */ + int Cbbf = (reg1eb * 160) + (reg1ec * 10) + 140; + int R2346 = 18300 * (reg1e6 & 0x07); + double CTIA_fF = (Cbbf * R2346 * 0.56) / 3500; + + /* Translate baseband BW to register settings. */ + if(ceil_bbbw_mhz <= 3) { + reg1db = 0xe0; + } else if((ceil_bbbw_mhz > 3) && (ceil_bbbw_mhz <= 10)) { + reg1db = 0x60; + } else if(ceil_bbbw_mhz > 10) { + reg1db = 0x20; + } else { + post_err_msg("CalRxTias: INVALID_CODE_PATH bad bbbw_mhz"); + } + + if(CTIA_fF > 2920) { + reg1dc = 0x40; + reg1de = 0x40; + + uint8_t temp = (uint8_t) AD9361_MIN(127, (AD9361_FLOOR_INT(0.5 + ((CTIA_fF - 400.0) / 320.0)))); + reg1dd = temp; + reg1df = temp; + } else { + uint8_t temp = (uint8_t) AD9361_FLOOR_INT(0.5 + ((CTIA_fF - 400.0) / 40.0)) + 0x40; + reg1dc = temp; + reg1de = temp; + reg1dd = 0; + reg1df = 0; + } + + /* w00t. Settings calculated. Program them and roll out. */ + write_ad9361_reg(0x1db, reg1db); + write_ad9361_reg(0x1dd, reg1dd); + write_ad9361_reg(0x1df, reg1df); + write_ad9361_reg(0x1dc, reg1dc); + write_ad9361_reg(0x1de, reg1de); +} + +/* Setup the Catalina ADC. + * + * There are 40 registers that control the ADC's operation, most of the + * values of which must be derived mathematically, dependent on the current + * setting of the BBPLL. Note that the order of calculation is critical, as + * some of the 40 registers depend on the values in others. */ +void setup_adc() { + double bbbw_mhz = (((_bbpll_freq / 1e6) / _rx_bbf_tunediv) * DOUBLE_LN_2) \ + / (1.4 * 2 * DOUBLE_PI); + + /* For calibration, baseband BW is half the complex BW, and must be + * between 28e6 and 0.2e6. */ + if(bbbw_mhz > 28) { + bbbw_mhz = 28; + } else if (bbbw_mhz < 0.20) { + bbbw_mhz = 0.20; + } + + uint8_t rxbbf_c3_msb = read_ad9361_reg(0x1eb) & 0x3F; + uint8_t rxbbf_c3_lsb = read_ad9361_reg(0x1ec) & 0x7F; + uint8_t rxbbf_r2346 = read_ad9361_reg(0x1e6) & 0x07; + + double fsadc = _adcclock_freq / 1e6; + + /* Sort out the RC time constant for our baseband bandwidth... */ + double rc_timeconst = 0.0; + if(bbbw_mhz < 18) { + rc_timeconst = (1 / ((1.4 * 2 * DOUBLE_PI) \ + * (18300 * rxbbf_r2346) + * ((160e-15 * rxbbf_c3_msb) + + (10e-15 * rxbbf_c3_lsb) + 140e-15) + * (bbbw_mhz * 1e6))); + } else { + rc_timeconst = (1 / ((1.4 * 2 * DOUBLE_PI) \ + * (18300 * rxbbf_r2346) + * ((160e-15 * rxbbf_c3_msb) + + (10e-15 * rxbbf_c3_lsb) + 140e-15) + * (bbbw_mhz * 1e6) * (1 + (0.01 * (bbbw_mhz - 18))))); + } + + double scale_res = ad9361_sqrt(1 / rc_timeconst); + double scale_cap = ad9361_sqrt(1 / rc_timeconst); + + double scale_snr = (_adcclock_freq < 80e6) ? 1.0 : 1.584893192; + double maxsnr = 640 / 160; + + /* Calculate the values for all 40 settings registers. + * + * DO NOT TOUCH THIS UNLESS YOU KNOW EXACTLY WHAT YOU ARE DOING. kthx.*/ + uint8_t data[40]; + data[0] = 0; data[1] = 0; data[2] = 0; data[3] = 0x24; + data[4] = 0x24; data[5] = 0; data[6] = 0; + data[7] = (uint8_t) AD9361_MIN(124, (AD9361_FLOOR_INT(-0.5 + + (80.0 * scale_snr * scale_res + * AD9361_MIN(1.0, ad9361_sqrt(maxsnr * fsadc / 640.0)))))); + double data007 = data[7]; + data[8] = (uint8_t) AD9361_MIN(255, (AD9361_FLOOR_INT(0.5 + + ((20.0 * (640.0 / fsadc) * ((data007 / 80.0)) + / (scale_res * scale_cap)))))); + data[10] = (uint8_t) AD9361_MIN(127, (AD9361_FLOOR_INT(-0.5 + (77.0 * scale_res + * AD9361_MIN(1.0, ad9361_sqrt(maxsnr * fsadc / 640.0)))))); + double data010 = data[10]; + data[9] = (uint8_t) AD9361_MIN(127, (AD9361_FLOOR_INT(0.8 * data010))); + data[11] = (uint8_t) AD9361_MIN(255, (AD9361_FLOOR_INT(0.5 + + (20.0 * (640.0 / fsadc) * ((data010 / 77.0) + / (scale_res * scale_cap)))))); + data[12] = (uint8_t) AD9361_MIN(127, (AD9361_FLOOR_INT(-0.5 + + (80.0 * scale_res * AD9361_MIN(1.0, + ad9361_sqrt(maxsnr * fsadc / 640.0)))))); + double data012 = data[12]; + data[13] = (uint8_t) AD9361_MIN(255, (AD9361_FLOOR_INT(-1.5 + + (20.0 * (640.0 / fsadc) * ((data012 / 80.0) + / (scale_res * scale_cap)))))); + data[14] = 21 * (uint8_t)(AD9361_FLOOR_INT(0.1 * 640.0 / fsadc)); + data[15] = (uint8_t) AD9361_MIN(127, (1.025 * data007)); + double data015 = data[15]; + data[16] = (uint8_t) AD9361_MIN(127, (AD9361_FLOOR_INT((data015 + * (0.98 + (0.02 * AD9361_MAX(1.0, + (640.0 / fsadc) / maxsnr))))))); + data[17] = data[15]; + data[18] = (uint8_t) AD9361_MIN(127, (0.975 * (data010))); + double data018 = data[18]; + data[19] = (uint8_t) AD9361_MIN(127, (AD9361_FLOOR_INT((data018 + * (0.98 + (0.02 * AD9361_MAX(1.0, + (640.0 / fsadc) / maxsnr))))))); + data[20] = data[18]; + data[21] = (uint8_t) AD9361_MIN(127, (0.975 * data012)); + double data021 = data[21]; + data[22] = (uint8_t) AD9361_MIN(127, (AD9361_FLOOR_INT((data021 + * (0.98 + (0.02 * AD9361_MAX(1.0, + (640.0 / fsadc) / maxsnr))))))); + data[23] = data[21]; + data[24] = 0x2e; + data[25] = (uint8_t)(AD9361_FLOOR_INT(128.0 + AD9361_MIN(63.0, + 63.0 * (fsadc / 640.0)))); + data[26] = (uint8_t)(AD9361_FLOOR_INT(AD9361_MIN(63.0, 63.0 * (fsadc / 640.0) + * (0.92 + (0.08 * (640.0 / fsadc)))))); + data[27] = (uint8_t)(AD9361_FLOOR_INT(AD9361_MIN(63.0, + 32.0 * ad9361_sqrt(fsadc / 640.0)))); + data[28] = (uint8_t)(AD9361_FLOOR_INT(128.0 + AD9361_MIN(63.0, + 63.0 * (fsadc / 640.0)))); + data[29] = (uint8_t)(AD9361_FLOOR_INT(AD9361_MIN(63.0, + 63.0 * (fsadc / 640.0) + * (0.92 + (0.08 * (640.0 / fsadc)))))); + data[30] = (uint8_t)(AD9361_FLOOR_INT(AD9361_MIN(63.0, + 32.0 * ad9361_sqrt(fsadc / 640.0)))); + data[31] = (uint8_t)(AD9361_FLOOR_INT(128.0 + AD9361_MIN(63.0, + 63.0 * (fsadc / 640.0)))); + data[32] = (uint8_t)(AD9361_FLOOR_INT(AD9361_MIN(63.0, + 63.0 * (fsadc / 640.0) * (0.92 + + (0.08 * (640.0 / fsadc)))))); + data[33] = (uint8_t)(AD9361_FLOOR_INT(AD9361_MIN(63.0, + 63.0 * ad9361_sqrt(fsadc / 640.0)))); + data[34] = (uint8_t) AD9361_MIN(127, (AD9361_FLOOR_INT(64.0 + * ad9361_sqrt(fsadc / 640.0)))); + data[35] = 0x40; + data[36] = 0x40; + data[37] = 0x2c; + data[38] = 0x00; + data[39] = 0x00; + + /* Program the registers! */ + int i; + for(i=0; i<40; i++) { + write_ad9361_reg(0x200+i, data[i]); + } + +} + +/* Calibrate the baseband DC offset. + * + * Note that this function is called from within the TX quadrature + * calibration function! */ +void calibrate_baseband_dc_offset() { + write_ad9361_reg(0x193, 0x3f); // Calibration settings + write_ad9361_reg(0x190, 0x0f); // Set tracking coefficient + //write_ad9361_reg(0x190, /*0x0f*//*0xDF*/0x80*1 | 0x40*1 | (16+8/*+4*/)); // Set tracking coefficient: don't *4 counter, do decim /4, increased gain shift + write_ad9361_reg(0x194, 0x01); // More calibration settings + + /* Start that calibration, baby. */ + int count = 0; + write_ad9361_reg(0x016, 0x01); + while(read_ad9361_reg(0x016) & 0x01) { + if(count > 100) { + post_err_msg("Baseband DC Offset Calibration Failure"); + break; + } + + count++; + ad9361_msleep(5); + } +} + +/* Calibrate the RF DC offset. + * + * Note that this function is called from within the TX quadrature + * calibration function. */ +void calibrate_rf_dc_offset() { + /* Some settings are frequency-dependent. */ + if(_rx_freq < 4e9) { + write_ad9361_reg(0x186, 0x32); // RF DC Offset count + write_ad9361_reg(0x187, 0x24); + write_ad9361_reg(0x188, 0x05); + } else { + write_ad9361_reg(0x186, 0x28); // RF DC Offset count + write_ad9361_reg(0x187, 0x34); + write_ad9361_reg(0x188, 0x06); + } + + write_ad9361_reg(0x185, 0x20); // RF DC Offset wait count + write_ad9361_reg(0x18b, 0x83); + write_ad9361_reg(0x189, 0x30); + + /* Run the calibration! */ + int count = 0; + write_ad9361_reg(0x016, 0x02); + while(read_ad9361_reg(0x016) & 0x02) { + if(count > 100) { + post_err_msg("RF DC Offset Calibration Failure"); + break; + } + + count++; + ad9361_msleep(50); + } +} + +/* Start the RX quadrature calibration. + * + * Note that we are using Catalina's 'tracking' feature for RX quadrature + * calibration, so once it starts it continues to free-run during operation. + * It should be re-run for large frequency changes. */ +void calibrate_rx_quadrature(void) { + /* Configure RX Quadrature calibration settings. */ + write_ad9361_reg(0x168, 0x03); // Set tone level for cal + write_ad9361_reg(0x16e, 0x25); // RX Gain index to use for cal + write_ad9361_reg(0x16a, 0x75); // Set Kexp phase + write_ad9361_reg(0x16b, 0x15); // Set Kexp amplitude + write_ad9361_reg(0x169, 0xcf); // Continuous tracking mode + write_ad9361_reg(0x18b, 0xad); +} + +/* TX quadtrature calibration routine. + * + * The TX quadrature needs to be done twice, once for each TX chain, with + * only one register change in between. Thus, this function enacts the + * calibrations, and it is called from calibrate_tx_quadrature. */ +void tx_quadrature_cal_routine(void) { + + /* This is a weird process, but here is how it works: + * 1) Read the calibrated NCO frequency bits out of 0A3. + * 2) Write the two bits to the RX NCO freq part of 0A0. + * 3) Re-read 0A3 to get bits [5:0] because maybe they changed? + * 4) Update only the TX NCO freq bits in 0A3. + * 5) Profit (I hope). */ + uint8_t reg0a3 = read_ad9361_reg(0x0a3); + uint8_t nco_freq = (reg0a3 & 0xC0); + write_ad9361_reg(0x0a0, 0x15 | (nco_freq >> 1)); + reg0a3 = read_ad9361_reg(0x0a3); + write_ad9361_reg(0x0a3, (reg0a3 & 0x3F) | nco_freq); + + /* It is possible to reach a configuration that won't operate correctly, + * where the two test tones used for quadrature calibration are outside + * of the RX BBF, and therefore don't make it to the ADC. We will check + * for that scenario here. */ + double max_cal_freq = (((_baseband_bw * _tfir_factor) * ((nco_freq >> 6) + 1)) / 32) * 2; + double bbbw = _baseband_bw / 2.0; // bbbw represents the one-sided BW + if(bbbw > 28e6) { + bbbw = 28e6; + } else if (bbbw < 0.20e6) { + bbbw = 0.20e6; + } + if (max_cal_freq > bbbw ) + post_err_msg("max_cal_freq > bbbw"); + + write_ad9361_reg(0x0a1, 0x7B); // Set tracking coefficient + write_ad9361_reg(0x0a9, 0xff); // Cal count + write_ad9361_reg(0x0a2, 0x7f); // Cal Kexp + write_ad9361_reg(0x0a5, 0x01); // Cal magnitude threshold VVVV + write_ad9361_reg(0x0a6, 0x01); + + /* The gain table index used for calibration must be adjusted for the + * mid-table to get a TIA index = 1 and LPF index = 0. */ + if((_rx_freq >= 1300e6) && (_rx_freq < 4000e6)) { + write_ad9361_reg(0x0aa, 0x22); // Cal gain table index + } else { + write_ad9361_reg(0x0aa, 0x25); // Cal gain table index + } + + write_ad9361_reg(0x0a4, 0xf0); // Cal setting conut + write_ad9361_reg(0x0ae, 0x00); // Cal LPF gain index (split mode) + + /* First, calibrate the baseband DC offset. */ + calibrate_baseband_dc_offset(); + + /* Second, calibrate the RF DC offset. */ + calibrate_rf_dc_offset(); + + /* Now, calibrate the TX quadrature! */ + int count = 0; + write_ad9361_reg(0x016, 0x10); + while(read_ad9361_reg(0x016) & 0x10) { + if(count > 100) { + post_err_msg("TX Quadrature Calibration Failure"); + break; + } + + count++; + ad9361_msleep(10); + } +} + +/* Run the TX quadrature calibration. + * + * Note that from within this function we are also triggering the baseband + * and RF DC calibrations. */ +void calibrate_tx_quadrature(void) { + /* Make sure we are, in fact, in the ALERT state. If not, something is + * terribly wrong in the driver execution flow. */ + if((read_ad9361_reg(0x017) & 0x0F) != 5) { + post_err_msg("TX Quad Cal started, but not in ALERT"); + } + + /* Turn off free-running and continuous calibrations. Note that this + * will get turned back on at the end of the RX calibration routine. */ + write_ad9361_reg(0x169, 0xc0); + + /* This calibration must be done in a certain order, and for both TX_A + * and TX_B, separately. Store the original setting so that we can + * restore it later. */ + uint8_t orig_reg_inputsel = reg_inputsel; + + /*********************************************************************** + * TX1/2-A Calibration + **********************************************************************/ + reg_inputsel = reg_inputsel & 0xBF; + write_ad9361_reg(0x004, reg_inputsel); + + tx_quadrature_cal_routine(); + + /*********************************************************************** + * TX1/2-B Calibration + **********************************************************************/ + reg_inputsel = reg_inputsel | 0x40; + write_ad9361_reg(0x004, reg_inputsel); + + tx_quadrature_cal_routine(); + + /*********************************************************************** + * fin + **********************************************************************/ + reg_inputsel = orig_reg_inputsel; + write_ad9361_reg(0x004, orig_reg_inputsel); +} + + +/*********************************************************************** + * Other Misc Setup Functions + ***********************************************************************/ + +/* Program the mixer gain table. + * + * Note that this table is fixed for all frequency settings. */ +void program_mixer_gm_subtable() { + uint8_t gain[] = {0x78, 0x74, 0x70, 0x6C, 0x68, 0x64, 0x60, 0x5C, 0x58, + 0x54, 0x50, 0x4C, 0x48, 0x30, 0x18, 0x00}; + uint8_t gm[] = {0x00, 0x0D, 0x15, 0x1B, 0x21, 0x25, 0x29, 0x2C, 0x2F, + 0x31, 0x33, 0x34, 0x35, 0x3A, 0x3D, 0x3E}; + + /* Start the clock. */ + write_ad9361_reg(0x13f, 0x02); + + /* Program the GM Sub-table. */ + int i; + for(i = 15; i >= 0; i--) { + write_ad9361_reg(0x138, i); + write_ad9361_reg(0x139, gain[(15 - i)]); + write_ad9361_reg(0x13A, 0x00); + write_ad9361_reg(0x13B, gm[(15 - i)]); + write_ad9361_reg(0x13F, 0x06); + write_ad9361_reg(0x13C, 0x00); + write_ad9361_reg(0x13C, 0x00); + } + + /* Clear write bit and stop clock. */ + write_ad9361_reg(0x13f, 0x02); + write_ad9361_reg(0x13C, 0x00); + write_ad9361_reg(0x13C, 0x00); + write_ad9361_reg(0x13f, 0x00); +} + +/* Program the gain table. + * + * There are three different gain tables for different frequency ranges! */ +void program_gain_table() { + + /* Figure out which gain table we should be using for our current + * frequency band. */ + uint8_t (*gain_table)[5] = NULL; + uint8_t new_gain_table; + if(_rx_freq < 1300e6) { + gain_table = gain_table_sub_1300mhz; + new_gain_table = 1; + } else if(_rx_freq < 4e9) { + gain_table = gain_table_1300mhz_to_4000mhz; + new_gain_table = 2; + } else if(_rx_freq <= 6e9) { + gain_table = gain_table_4000mhz_to_6000mhz; + new_gain_table = 3; + } else { + post_err_msg("Wrong _rx_freq value"); + new_gain_table = 1; + } + + /* Only re-program the gain table if there has been a band change. */ + if(_curr_gain_table == new_gain_table) { + return; + } else { + _curr_gain_table = new_gain_table; + } + + /* Okay, we have to program a new gain table. Sucks, brah. Start the + * gain table clock. */ + write_ad9361_reg(0x137, 0x1A); + + /* IT'S PROGRAMMING TIME. */ + uint8_t index = 0; + for(; index < 77; index++) { + write_ad9361_reg(0x130, index); + write_ad9361_reg(0x131, gain_table[index][1]); + write_ad9361_reg(0x132, gain_table[index][2]); + write_ad9361_reg(0x133, gain_table[index][3]); + write_ad9361_reg(0x137, 0x1E); + write_ad9361_reg(0x134, 0x00); + write_ad9361_reg(0x134, 0x00); + } + + /* Everything above the 77th index is zero. */ + for(; index < 91; index++) { + write_ad9361_reg(0x130, index); + write_ad9361_reg(0x131, 0x00); + write_ad9361_reg(0x132, 0x00); + write_ad9361_reg(0x133, 0x00); + write_ad9361_reg(0x137, 0x1E); + write_ad9361_reg(0x134, 0x00); + write_ad9361_reg(0x134, 0x00); + } + + /* Clear the write bit and stop the gain clock. */ + write_ad9361_reg(0x137, 0x1A); + write_ad9361_reg(0x134, 0x00); + write_ad9361_reg(0x134, 0x00); + write_ad9361_reg(0x137, 0x00); +} + +/* Setup gain control registers. + * + * This really only needs to be done once, at initialization. */ +void setup_gain_control() { + write_ad9361_reg(0x0FA, 0xE0); // Gain Control Mode Select + write_ad9361_reg(0x0FB, 0x08); // Table, Digital Gain, Man Gain Ctrl + write_ad9361_reg(0x0FC, 0x23); // Incr Step Size, ADC Overrange Size + write_ad9361_reg(0x0FD, 0x4C); // Max Full/LMT Gain Table Index + write_ad9361_reg(0x0FE, 0x44); // Decr Step Size, Peak Overload Time + write_ad9361_reg(0x100, 0x6F); // Max Digital Gain + write_ad9361_reg(0x104, 0x2F); // ADC Small Overload Threshold + write_ad9361_reg(0x105, 0x3A); // ADC Large Overload Threshold + write_ad9361_reg(0x107, 0x31); // Large LMT Overload Threshold + write_ad9361_reg(0x108, 0x39); // Small LMT Overload Threshold + write_ad9361_reg(0x109, 0x23); // Rx1 Full/LMT Gain Index + write_ad9361_reg(0x10A, 0x58); // Rx1 LPF Gain Index + write_ad9361_reg(0x10B, 0x00); // Rx1 Digital Gain Index + write_ad9361_reg(0x10C, 0x23); // Rx2 Full/LMT Gain Index + write_ad9361_reg(0x10D, 0x18); // Rx2 LPF Gain Index + write_ad9361_reg(0x10E, 0x00); // Rx2 Digital Gain Index + write_ad9361_reg(0x114, 0x30); // Low Power Threshold + write_ad9361_reg(0x11A, 0x27); // Initial LMT Gain Limit + write_ad9361_reg(0x081, 0x00); // Tx Symbol Gain Control +} + +/* Setup the RX or TX synthesizers. + * + * This setup depends on a fixed look-up table, which is stored in an + * included header file. The table is indexed based on the passed VCO rate. + */ +void setup_synth(int which, double vcorate) { + /* The vcorates in the vco_index array represent lower boundaries for + * rates. Once we find a match, we use that index to look-up the rest of + * the register values in the LUT. */ + int vcoindex = 0; + int i; + for(i = 0; i < 53; i++) { + vcoindex = i; + if(vcorate > vco_index[i]) { + break; + } + } + + if (vcoindex > 53) + post_err_msg("vcoindex > 53"); + + /* Parse the values out of the LUT based on our calculated index... */ + uint8_t vco_output_level = synth_cal_lut[vcoindex][0]; + uint8_t vco_varactor = synth_cal_lut[vcoindex][1]; + uint8_t vco_bias_ref = synth_cal_lut[vcoindex][2]; + uint8_t vco_bias_tcf = synth_cal_lut[vcoindex][3]; + uint8_t vco_cal_offset = synth_cal_lut[vcoindex][4]; + uint8_t vco_varactor_ref = synth_cal_lut[vcoindex][5]; + uint8_t charge_pump_curr = synth_cal_lut[vcoindex][6]; + uint8_t loop_filter_c2 = synth_cal_lut[vcoindex][7]; + uint8_t loop_filter_c1 = synth_cal_lut[vcoindex][8]; + uint8_t loop_filter_r1 = synth_cal_lut[vcoindex][9]; + uint8_t loop_filter_c3 = synth_cal_lut[vcoindex][10]; + uint8_t loop_filter_r3 = synth_cal_lut[vcoindex][11]; + + /* ... annnd program! */ + if(which == RX_TYPE) { + write_ad9361_reg(0x23a, 0x40 | vco_output_level); + write_ad9361_reg(0x239, 0xC0 | vco_varactor); + write_ad9361_reg(0x242, vco_bias_ref | (vco_bias_tcf << 3)); + write_ad9361_reg(0x238, (vco_cal_offset << 3)); + write_ad9361_reg(0x245, 0x00); + write_ad9361_reg(0x251, vco_varactor_ref); + write_ad9361_reg(0x250, 0x70); + write_ad9361_reg(0x23b, 0x80 | charge_pump_curr); + write_ad9361_reg(0x23e, loop_filter_c1 | (loop_filter_c2 << 4)); + write_ad9361_reg(0x23f, loop_filter_c3 | (loop_filter_r1 << 4)); + write_ad9361_reg(0x240, loop_filter_r3); + } else if(which == TX_TYPE) { + write_ad9361_reg(0x27a, 0x40 | vco_output_level); + write_ad9361_reg(0x279, 0xC0 | vco_varactor); + write_ad9361_reg(0x282, vco_bias_ref | (vco_bias_tcf << 3)); + write_ad9361_reg(0x278, (vco_cal_offset << 3)); + write_ad9361_reg(0x285, 0x00); + write_ad9361_reg(0x291, vco_varactor_ref); + write_ad9361_reg(0x290, 0x70); + write_ad9361_reg(0x27b, 0x80 | charge_pump_curr); + write_ad9361_reg(0x27e, loop_filter_c1 | (loop_filter_c2 << 4)); + write_ad9361_reg(0x27f, loop_filter_c3 | (loop_filter_r1 << 4)); + write_ad9361_reg(0x280, loop_filter_r3); + } else { + post_err_msg("[setup_synth] INVALID_CODE_PATH"); + } +} + + +/* Tune the baseband VCO. + * + * This clock signal is what gets fed to the ADCs and DACs. This function is + * not exported outside of this file, and is invoked based on the rate + * fed to the public set_clock_rate function. */ +double tune_bbvco(const double rate) { + msg("[tune_bbvco] rate=%.10f", rate); + + /* Let's not re-tune to the same frequency over and over... */ + if(freq_is_nearly_equal(rate, _req_coreclk)) { + return _adcclock_freq; + } + + _req_coreclk = rate; + + const double fref = 40e6; + const int modulus = 2088960; + const double vcomax = 1430e6; + const double vcomin = 672e6; + double vcorate; + int vcodiv; + + /* Iterate over VCO dividers until appropriate divider is found. */ + int i = 1; + for(; i <= 6; i++) { + vcodiv = 1 << i; + vcorate = rate * vcodiv; + + if(vcorate >= vcomin && vcorate <= vcomax) break; + } + if(i == 7) + post_err_msg("[tune_bbvco] wrong vcorate"); + + msg("[tune_bbvco] vcodiv=%d vcorate=%.10f", vcodiv, vcorate); + + /* Fo = Fref * (Nint + Nfrac / mod) */ + int nint = vcorate / fref; + msg("[tune_bbvco] (nint)=%.10f", (vcorate / fref)); + int nfrac = lround(((vcorate / fref) - (double)nint) * (double)modulus); + msg("[tune_bbvco] (nfrac)=%.10f", (((vcorate / fref) - (double)nint) * (double)modulus)); + msg("[tune_bbvco] nint=%d nfrac=%d", nint, nfrac); + double actual_vcorate = fref * ((double)nint + ((double)nfrac / (double)modulus)); + + /* Scale CP current according to VCO rate */ + const double icp_baseline = 150e-6; + const double freq_baseline = 1280e6; + double icp = icp_baseline * (actual_vcorate / freq_baseline); + int icp_reg = (icp / 25e-6) - 1; + + write_ad9361_reg(0x045, 0x00); // REFCLK / 1 to BBPLL + write_ad9361_reg(0x046, icp_reg & 0x3F); // CP current + write_ad9361_reg(0x048, 0xe8); // BBPLL loop filters + write_ad9361_reg(0x049, 0x5b); // BBPLL loop filters + write_ad9361_reg(0x04a, 0x35); // BBPLL loop filters + + write_ad9361_reg(0x04b, 0xe0); + write_ad9361_reg(0x04e, 0x10); // Max accuracy + + write_ad9361_reg(0x043, nfrac & 0xFF); // Nfrac[7:0] + write_ad9361_reg(0x042, (nfrac >> 8) & 0xFF); // Nfrac[15:8] + write_ad9361_reg(0x041, (nfrac >> 16) & 0xFF); // Nfrac[23:16] + write_ad9361_reg(0x044, nint); // Nint + + calibrate_lock_bbpll(); + + reg_bbpll = (reg_bbpll & 0xF8) | i; + + _bbpll_freq = actual_vcorate; + _adcclock_freq = (actual_vcorate / vcodiv); + + return _adcclock_freq; +} + +/* This function re-programs all of the gains in the system. + * + * Because the gain values match to different gain indices based on the + * current operating band, this function can be called to update all gain + * settings to the appropriate index after a re-tune. */ +void program_gains() { + set_gain(RX_TYPE,1, _rx1_gain); + set_gain(RX_TYPE,2, _rx2_gain); + set_gain(TX_TYPE,1, _tx1_gain); + set_gain(TX_TYPE,2, _tx2_gain); +} + +/* This is the internal tune function, not available for a host call. + * + * Calculate the VCO settings for the requested frquency, and then either + * tune the RX or TX VCO. */ +double tune_helper(int which, const double value) { + + /* The RFPLL runs from 6 GHz - 12 GHz */ + const double fref = 80e6; + const int modulus = 8388593; + const double vcomax = 12e9; + const double vcomin = 6e9; + double vcorate; + int vcodiv; + + /* Iterate over VCO dividers until appropriate divider is found. */ + int i; + for(i = 0; i <= 6; i++) { + vcodiv = 2 << i; + vcorate = value * vcodiv; + if(vcorate >= vcomin && vcorate <= vcomax) break; + } + if(i == 7) + post_err_msg("RFVCO can't find valid VCO rate!"); + + int nint = vcorate / fref; + int nfrac = ((vcorate / fref) - nint) * modulus; + + double actual_vcorate = fref * (nint + (double)(nfrac)/modulus); + double actual_lo = actual_vcorate / vcodiv; + + // UHD_VAR(actual_lo); // TODO: + + if(which == RX_TYPE) { + + _req_rx_freq = value; + + /* Set band-specific settings. */ + if(value < AD9361_RX_BAND_EDGE0) { + reg_inputsel = (reg_inputsel & 0xC0) | 0x30; + } else if((value >= AD9361_RX_BAND_EDGE0) && (value < AD9361_RX_BAND_EDGE1)) { + reg_inputsel = (reg_inputsel & 0xC0) | 0x0C; + } else if((value >= AD9361_RX_BAND_EDGE1) && (value <= 6e9)) { + reg_inputsel = (reg_inputsel & 0xC0) | 0x03; + } else { + post_err_msg("[tune_helper] INVALID_CODE_PATH"); + } + + write_ad9361_reg(0x004, reg_inputsel); + + /* Store vcodiv setting. */ + reg_vcodivs = (reg_vcodivs & 0xF0) | (i & 0x0F); + + /* Setup the synthesizer. */ + setup_synth(RX_TYPE, actual_vcorate); + + /* Tune!!!! */ + write_ad9361_reg(0x233, nfrac & 0xFF); + write_ad9361_reg(0x234, (nfrac >> 8) & 0xFF); + write_ad9361_reg(0x235, (nfrac >> 16) & 0xFF); + write_ad9361_reg(0x232, (nint >> 8) & 0xFF); + write_ad9361_reg(0x231, nint & 0xFF); + write_ad9361_reg(0x005, reg_vcodivs); + + /* Lock the PLL! */ + ad9361_msleep(2); + if((read_ad9361_reg(0x247) & 0x02) == 0) { + post_err_msg("RX PLL NOT LOCKED"); + } + + _rx_freq = actual_lo; + + return actual_lo; + + } else { + + _req_tx_freq = value; + + /* Set band-specific settings. */ + if(value < AD9361_TX_BAND_EDGE) { + reg_inputsel = reg_inputsel | 0x40; + } else if((value >= AD9361_TX_BAND_EDGE) && (value <= 6e9)) { + reg_inputsel = reg_inputsel & 0xBF; + } else { + post_err_msg("[tune_helper] INVALID_CODE_PATH"); + } + + write_ad9361_reg(0x004, reg_inputsel); + + /* Store vcodiv setting. */ + reg_vcodivs = (reg_vcodivs & 0x0F) | ((i & 0x0F) << 4); + + /* Setup the synthesizer. */ + setup_synth(TX_TYPE, actual_vcorate); + + /* Tune it, homey. */ + write_ad9361_reg(0x273, nfrac & 0xFF); + write_ad9361_reg(0x274, (nfrac >> 8) & 0xFF); + write_ad9361_reg(0x275, (nfrac >> 16) & 0xFF); + write_ad9361_reg(0x272, (nint >> 8) & 0xFF); + write_ad9361_reg(0x271, nint & 0xFF); + write_ad9361_reg(0x005, reg_vcodivs); + + /* Lock the PLL! */ + ad9361_msleep(2); + if((read_ad9361_reg(0x287) & 0x02) == 0) { + post_err_msg("TX PLL NOT LOCKED"); + } + + _tx_freq = actual_lo; + + return actual_lo; + } +} + +/* Configure the various clock / sample rates in the RX and TX chains. + * + * Functionally, this function configures Catalina's RX and TX rates. For + * a requested TX & RX rate, it sets the interpolation & decimation filters, + * and tunes the VCO that feeds the ADCs and DACs. + */ +double setup_rates(const double rate) { + + /* If we make it into this function, then we are tuning to a new rate. + * Store the new rate. */ + _req_clock_rate = rate; + + /* Set the decimation and interpolation values in the RX and TX chains. + * This also switches filters in / out. Note that all transmitters and + * receivers have to be turned on for the calibration portion of + * bring-up, and then they will be switched out to reflect the actual + * user-requested antenna selections. */ + int divfactor = 0; + _tfir_factor = 0; + if(rate < 0.33e6) { + // RX1 + RX2 enabled, 3, 2, 2, 4 + reg_rxfilt = B8( 11101111 ) ; + + // TX1 + TX2 enabled, 3, 2, 2, 4 + reg_txfilt = B8( 11101111 ) ; + + divfactor = 48; + _tfir_factor = 2; + } else if(rate < 0.66e6) { + // RX1 + RX2 enabled, 2, 2, 2, 4 + reg_rxfilt = B8( 11011111 ) ; + + // TX1 + TX2 enabled, 2, 2, 2, 4 + reg_txfilt = B8( 11011111 ) ; + + divfactor = 32; + _tfir_factor = 2; + } else if(rate <= 20e6) { + // RX1 + RX2 enabled, 2, 2, 2, 2 + reg_rxfilt = B8( 11011110 ) ; + + // TX1 + TX2 enabled, 2, 2, 2, 2 + reg_txfilt = B8( 11011110 ) ; + + divfactor = 16; + _tfir_factor = 2; + } else if((rate > 20e6) && (rate < 23e6)) { + // RX1 + RX2 enabled, 3, 2, 2, 2 + reg_rxfilt = B8( 11101110 ) ; + + // TX1 + TX2 enabled, 3, 1, 2, 2 + reg_txfilt = B8( 11100110 ) ; + + divfactor = 24; + _tfir_factor = 2; + } else if((rate >= 23e6) && (rate < 41e6)) { + // RX1 + RX2 enabled, 2, 2, 2, 2 + reg_rxfilt = B8( 11011110 ) ; + + // TX1 + TX2 enabled, 1, 2, 2, 2 + reg_txfilt = B8( 11001110 ) ; + + divfactor = 16; + _tfir_factor = 2; + } else if((rate >= 41e6) && (rate <= 56e6)) { + // RX1 + RX2 enabled, 3, 1, 2, 2 + reg_rxfilt = B8( 11100110 ) ; + + // TX1 + TX2 enabled, 3, 1, 1, 2 + reg_txfilt = B8( 11100010 ) ; + + divfactor = 12; + _tfir_factor = 2; + } else if((rate > 56e6) && (rate <= 61.44e6)) { + // RX1 + RX2 enabled, 3, 1, 1, 2 + reg_rxfilt = B8( 11100010 ) ; + + // TX1 + TX2 enabled, 3, 1, 1, 1 + reg_txfilt = B8( 11100001 ) ; + + divfactor = 6; + _tfir_factor = 1; + } else { + // should never get in here + post_err_msg("[setup_rates] INVALID_CODE_PATH"); + } + + msg("[setup_rates] divfactor=%d", divfactor); + + /* Tune the BBPLL to get the ADC and DAC clocks. */ + const double adcclk = tune_bbvco(rate * divfactor); + double dacclk = adcclk; + + /* The DAC clock must be <= 336e6, and is either the ADC clock or 1/2 the + * ADC clock.*/ + if(adcclk > 336e6) { + /* Make the DAC clock = ADC/2, and bypass the TXFIR. */ + reg_bbpll = reg_bbpll | 0x08; + dacclk = adcclk / 2.0; + } else { + reg_bbpll = reg_bbpll & 0xF7; + } + + /* Set the dividers / interpolators in Catalina. */ + write_ad9361_reg(0x002, reg_txfilt); + write_ad9361_reg(0x003, reg_rxfilt); + write_ad9361_reg(0x004, reg_inputsel); + write_ad9361_reg(0x00A, reg_bbpll); + + msg("[setup_rates] adcclk=%f", adcclk); + _baseband_bw = (adcclk / divfactor); + + /* Setup the RX and TX FIR filters. Scale the number of taps based on + * the clock speed. */ + const int max_tx_taps = 16 * AD9361_MIN((int)((dacclk / rate) + 0.5), \ + AD9361_MIN(4 * (1 << _tfir_factor), 8)); + const int max_rx_taps = AD9361_MIN((16 * (int)(adcclk / rate)), 128); + + const int num_tx_taps = get_num_taps(max_tx_taps); + const int num_rx_taps = get_num_taps(max_rx_taps); + + setup_tx_fir(num_tx_taps); + setup_rx_fir(num_rx_taps); + + return _baseband_bw; +} + +/*********************************************************************** + * Publicly exported functions to host calls + **********************************************************************/ +void init_ad9361(void) { + + /* Initialize shadow registers. */ + reg_vcodivs = 0x00; + reg_inputsel = 0x30; + reg_rxfilt = 0x00; + reg_txfilt = 0x00; + reg_bbpll = 0x02; + reg_bbftune_config = 0x1e; + reg_bbftune_mode = 0x1e; + + /* Initialize private VRQ fields. */ + _rx_freq = 0.0; + _tx_freq = 0.0; + _req_rx_freq = 0.0; + _req_tx_freq = 0.0; + _baseband_bw = 0.0; + _req_clock_rate = 0.0; + _req_coreclk = 0.0; + _bbpll_freq = 0.0; + _adcclock_freq = 0.0; + _rx_bbf_tunediv = 0; + _curr_gain_table = 0; + _rx1_gain = 0; + _rx2_gain = 0; + _tx1_gain = 0; + _tx2_gain = 0; + + /* Reset the device. */ + write_ad9361_reg(0x000,0x01); + write_ad9361_reg(0x000,0x00); + ad9361_msleep(20); + + /* There is not a WAT big enough for this. */ + write_ad9361_reg(0x3df, 0x01); + + write_ad9361_reg(0x2a6, 0x0e); // Enable master bias + write_ad9361_reg(0x2a8, 0x0e); // Set bandgap trim + + /* Set RFPLL ref clock scale to REFCLK * 2 */ + write_ad9361_reg(0x2ab, 0x07); + write_ad9361_reg(0x2ac, 0xff); + + /* Enable clocks. */ + if (AD9361_CLOCKING_MODE == 0) + { + write_ad9361_reg(0x009, 0x17); + } + if (AD9361_CLOCKING_MODE == 1) + { + write_ad9361_reg(0x009, 0x07); + write_ad9361_reg(0x292, 0x08); + write_ad9361_reg(0x293, 0x80); + write_ad9361_reg(0x294, 0x00); + write_ad9361_reg(0x295, 0x14); + } + ad9361_msleep(20); + + /* Tune the BBPLL, write TX and RX FIRS. */ + setup_rates(50e6); + + /* Setup data ports (FDD dual port DDR CMOS): + * FDD dual port DDR CMOS no swap. + * Force TX on one port, RX on the other. */ + write_ad9361_reg(0x010, 0xc8); + write_ad9361_reg(0x011, 0x00); + write_ad9361_reg(0x012, 0x02); + + /* Data delay for TX and RX data clocks */ + write_ad9361_reg(0x006, 0x0F); + write_ad9361_reg(0x007, 0x0F); + + /* Setup AuxDAC */ + write_ad9361_reg(0x018, 0x00); // AuxDAC1 Word[9:2] + write_ad9361_reg(0x019, 0x00); // AuxDAC2 Word[9:2] + write_ad9361_reg(0x01A, 0x00); // AuxDAC1 Config and Word[1:0] + write_ad9361_reg(0x01B, 0x00); // AuxDAC2 Config and Word[1:0] + write_ad9361_reg(0x023, 0xFF); // AuxDAC Manaul/Auto Control + write_ad9361_reg(0x026, 0x00); // AuxDAC Manual Select Bit/GPO Manual Select + write_ad9361_reg(0x030, 0x00); // AuxDAC1 Rx Delay + write_ad9361_reg(0x031, 0x00); // AuxDAC1 Tx Delay + write_ad9361_reg(0x032, 0x00); // AuxDAC2 Rx Delay + write_ad9361_reg(0x033, 0x00); // AuxDAC2 Tx Delay + + /* Setup AuxADC */ + write_ad9361_reg(0x00B, 0x00); // Temp Sensor Setup (Offset) + write_ad9361_reg(0x00C, 0x00); // Temp Sensor Setup (Temp Window) + write_ad9361_reg(0x00D, 0x03); // Temp Sensor Setup (Periodic Measure) + write_ad9361_reg(0x00F, 0x04); // Temp Sensor Setup (Decimation) + write_ad9361_reg(0x01C, 0x10); // AuxADC Setup (Clock Div) + write_ad9361_reg(0x01D, 0x01); // AuxADC Setup (Decimation/Enable) + + /* Setup control outputs. */ + write_ad9361_reg(0x035, 0x07); + write_ad9361_reg(0x036, 0xFF); + + /* Setup GPO */ + write_ad9361_reg(0x03a, 0x27); //set delay register + write_ad9361_reg(0x020, 0x00); // GPO Auto Enable Setup in RX and TX + write_ad9361_reg(0x027, 0x03); // GPO Manual and GPO auto value in ALERT + write_ad9361_reg(0x028, 0x00); // GPO_0 RX Delay + write_ad9361_reg(0x029, 0x00); // GPO_1 RX Delay + write_ad9361_reg(0x02A, 0x00); // GPO_2 RX Delay + write_ad9361_reg(0x02B, 0x00); // GPO_3 RX Delay + write_ad9361_reg(0x02C, 0x00); // GPO_0 TX Delay + write_ad9361_reg(0x02D, 0x00); // GPO_1 TX Delay + write_ad9361_reg(0x02E, 0x00); // GPO_2 TX Delay + write_ad9361_reg(0x02F, 0x00); // GPO_3 TX Delay + + write_ad9361_reg(0x261, 0x00); // RX LO power + write_ad9361_reg(0x2a1, 0x00); // TX LO power + write_ad9361_reg(0x248, 0x0b); // en RX VCO LDO + write_ad9361_reg(0x288, 0x0b); // en TX VCO LDO + write_ad9361_reg(0x246, 0x02); // pd RX cal Tcf + write_ad9361_reg(0x286, 0x02); // pd TX cal Tcf + write_ad9361_reg(0x249, 0x8e); // rx vco cal length + write_ad9361_reg(0x289, 0x8e); // rx vco cal length + write_ad9361_reg(0x23b, 0x80); // set RX MSB?, FIXME 0x89 magic cp + write_ad9361_reg(0x27b, 0x80); // "" TX //FIXME 0x88 see above + write_ad9361_reg(0x243, 0x0d); // set rx prescaler bias + write_ad9361_reg(0x283, 0x0d); // "" TX + + write_ad9361_reg(0x23d, 0x00); // Clear half VCO cal clock setting + write_ad9361_reg(0x27d, 0x00); // Clear half VCO cal clock setting + + /* The order of the following process is EXTREMELY important. If the + * below functions are modified at all, device initialization and + * calibration might be broken in the process! */ + + write_ad9361_reg(0x015, 0x04); // dual synth mode, synth en ctrl en + write_ad9361_reg(0x014, 0x05); // use SPI for TXNRX ctrl, to ALERT, TX on + write_ad9361_reg(0x013, 0x01); // enable ENSM + ad9361_msleep(1); + + calibrate_synth_charge_pumps(); + + tune_helper(RX_TYPE, 800e6); + tune_helper(TX_TYPE, 850e6); + + program_mixer_gm_subtable(); + program_gain_table(); + setup_gain_control(); + + calibrate_baseband_rx_analog_filter(); + calibrate_baseband_tx_analog_filter(); + calibrate_rx_TIAs(); + calibrate_secondary_tx_filter(); + + setup_adc(); + + calibrate_tx_quadrature(); + calibrate_rx_quadrature(); + + write_ad9361_reg(0x012, 0x02); // cals done, set PPORT config + write_ad9361_reg(0x013, 0x01); // Set ENSM FDD bit + write_ad9361_reg(0x015, 0x04); // dual synth mode, synth en ctrl en + + /* Default TX attentuation to 10dB on both TX1 and TX2 */ + write_ad9361_reg(0x073, 0x00); + write_ad9361_reg(0x074, 0x00); + write_ad9361_reg(0x075, 0x00); + write_ad9361_reg(0x076, 0x00); + + /* Setup RSSI Measurements */ + write_ad9361_reg(0x150, 0x0E); // RSSI Measurement Duration 0, 1 + write_ad9361_reg(0x151, 0x00); // RSSI Measurement Duration 2, 3 + write_ad9361_reg(0x152, 0xFF); // RSSI Weighted Multiplier 0 + write_ad9361_reg(0x153, 0x00); // RSSI Weighted Multiplier 1 + write_ad9361_reg(0x154, 0x00); // RSSI Weighted Multiplier 2 + write_ad9361_reg(0x155, 0x00); // RSSI Weighted Multiplier 3 + write_ad9361_reg(0x156, 0x00); // RSSI Delay + write_ad9361_reg(0x157, 0x00); // RSSI Wait + write_ad9361_reg(0x158, 0x0D); // RSSI Mode Select + write_ad9361_reg(0x15C, 0x67); // Power Measurement Duration + + /* Turn on the default RX & TX chains. */ + set_active_chains(true, false, false, false); + + /* Set TXers & RXers on (only works in FDD mode) */ + write_ad9361_reg(0x014, 0x21); +} + + +/* This function sets the RX / TX rate between Catalina and the FPGA, and + * thus determines the interpolation / decimation required in the FPGA to + * achieve the user's requested rate. + * + * This is the only clock setting function that is exposed to the outside. */ +double set_clock_rate(const double req_rate) { + if(req_rate > 61.44e6) { + post_err_msg("Requested master clock rate outside range"); + } + + msg("[set_clock_rate] req_rate=%.10f", req_rate); + + /* UHD has a habit of requesting the same rate like four times when it + * starts up. This prevents that, and any bugs in user code that request + * the same rate over and over. */ + if(freq_is_nearly_equal(req_rate, _req_clock_rate)) { + return _baseband_bw; + } + + /* We must be in the SLEEP / WAIT state to do this. If we aren't already + * there, transition the ENSM to State 0. */ + uint8_t current_state = read_ad9361_reg(0x017) & 0x0F; + switch(current_state) { + case 0x05: + /* We are in the ALERT state. */ + write_ad9361_reg(0x014, 0x21); + ad9361_msleep(5); + write_ad9361_reg(0x014, 0x00); + break; + + case 0x0A: + /* We are in the FDD state. */ + write_ad9361_reg(0x014, 0x00); + break; + + default: + post_err_msg("[set_clock_rate:1] AD9361 in unknown state"); + break; + }; + + /* Store the current chain / antenna selections so that we can restore + * them at the end of this routine; all chains will be enabled from + * within setup_rates for calibration purposes. */ + uint8_t orig_tx_chains = reg_txfilt & 0xC0; + uint8_t orig_rx_chains = reg_rxfilt & 0xC0; + + /* Call into the clock configuration / settings function. This is where + * all the hard work gets done. */ + double rate = setup_rates(req_rate); + + msg("[set_clock_rate] rate=%.10f", rate); + + /* Transition to the ALERT state and calibrate everything. */ + write_ad9361_reg(0x015, 0x04); //dual synth mode, synth en ctrl en + write_ad9361_reg(0x014, 0x05); //use SPI for TXNRX ctrl, to ALERT, TX on + write_ad9361_reg(0x013, 0x01); //enable ENSM + ad9361_msleep(1); + + calibrate_synth_charge_pumps(); + + tune_helper(RX_TYPE, _rx_freq); + tune_helper(TX_TYPE, _tx_freq); + + program_mixer_gm_subtable(); + program_gain_table(); + setup_gain_control(); + program_gains(); + + calibrate_baseband_rx_analog_filter(); + calibrate_baseband_tx_analog_filter(); + calibrate_rx_TIAs(); + calibrate_secondary_tx_filter(); + + setup_adc(); + + calibrate_tx_quadrature(); + calibrate_rx_quadrature(); + + write_ad9361_reg(0x012, 0x02); // cals done, set PPORT config + write_ad9361_reg(0x013, 0x01); // Set ENSM FDD bit + write_ad9361_reg(0x015, 0x04); // dual synth mode, synth en ctrl en + + /* End the function in the same state as the entry state. */ + switch(current_state) { + case 0x05: + /* We are already in ALERT. */ + break; + + case 0x0A: + /* Transition back to FDD, and restore the original antenna + * / chain selections. */ + reg_txfilt = (reg_txfilt & 0x3F) | orig_tx_chains; + reg_rxfilt = (reg_rxfilt & 0x3F) | orig_rx_chains; + + write_ad9361_reg(0x002, reg_txfilt); + write_ad9361_reg(0x003, reg_rxfilt); + write_ad9361_reg(0x014, 0x21); + break; + + default: + post_err_msg("[set_clock_rate:2] AD9361 in unknown state"); + break; + }; + + return rate; +} + + +/* Set which of the four TX / RX chains provided by Catalina are active. + * + * Catalina provides two sets of chains, Side A and Side B. Each side + * provides one TX antenna, and one RX antenna. The B200 maintains the USRP + * standard of providing one antenna connection that is both TX & RX, and + * one that is RX-only - for each chain. Thus, the possible antenna and + * chain selections are: + * + * B200 Antenna Catalina Side Catalina Chain + * ------------------------------------------------------------------- + * TX / RX1 Side A TX1 (when switched to TX) + * TX / RX1 Side A RX1 (when switched to RX) + * RX1 Side A RX1 + * + * TX / RX2 Side B TX2 (when switched to TX) + * TX / RX2 Side B RX2 (when switched to RX) + * RX2 Side B RX2 + */ +void set_active_chains(bool tx1, bool tx2, bool rx1, bool rx2) { + /* Clear out the current active chain settings. */ + reg_txfilt = reg_txfilt & 0x3F; + reg_rxfilt = reg_rxfilt & 0x3F; + + /* Turn on the different chains based on the passed parameters. */ + if(tx1) { reg_txfilt = reg_txfilt | 0x40; } + if(tx2) { reg_txfilt = reg_txfilt | 0x80; } + if(rx1) { reg_rxfilt = reg_rxfilt | 0x40; } + if(rx2) { reg_rxfilt = reg_rxfilt | 0x80; } + + /* Turn on / off the chains. */ + write_ad9361_reg(0x002, reg_txfilt); + write_ad9361_reg(0x003, reg_rxfilt); +} + +/* Tune the RX or TX frequency. + * + * This is the publicly-accessible tune function. It makes sure the tune + * isn't a redundant request, and if not, passes it on to the class's + * internal tune function. + * + * After tuning, it runs any appropriate calibrations. */ +double tune(int which, const double value) { + + if(which == RX_TYPE) { + if(freq_is_nearly_equal(value, _req_rx_freq)) { + return _rx_freq; + } + + } else if(which == TX_TYPE) { + if(freq_is_nearly_equal(value, _req_tx_freq)) { + return _tx_freq; + } + + } else { + post_err_msg("[tune] INVALID_CODE_PATH"); + } + + /* If we aren't already in the ALERT state, we will need to return to + * the FDD state after tuning. */ + int not_in_alert = 0; + if((read_ad9361_reg(0x017) & 0x0F) != 5) { + /* Force the device into the ALERT state. */ + not_in_alert = 1; + write_ad9361_reg(0x014, 0x01); + } + + /* Tune the RF VCO! */ + double tune_freq = tune_helper(which, value); + + /* Run any necessary calibrations / setups */ + if(which == RX_TYPE) { + program_gain_table(); + } + + /* Update the gain settings. */ + program_gains(); + + /* Run the calibration algorithms. */ + calibrate_tx_quadrature(); + calibrate_rx_quadrature(); + + /* If we were in the FDD state, return it now. */ + if(not_in_alert) { + write_ad9361_reg(0x014, 0x21); + } + + return tune_freq; +} + +/* Set the gain of RX1, RX2, TX1, or TX2. + * + * Note that the 'value' passed to this function is the actual gain value, + * _not_ the gain index. This is the opposite of the eval software's GUI! + * Also note that the RX chains are done in terms of gain, and the TX chains + * are done in terms of attenuation. */ +double set_gain(int which, int n, const double value) { + + if(which == RX_TYPE) { + /* Indexing the gain tables requires an offset from the requested + * amount of total gain in dB: + * < 1300MHz: dB + 5 + * >= 1300MHz and < 4000MHz: dB + 3 + * >= 4000MHz and <= 6000MHz: dB + 14 + */ + int gain_offset = 0; + if(_rx_freq < 1300e6) { + gain_offset = 5; + } else if(_rx_freq < 4000e6) { + gain_offset = 3; + } else { + gain_offset = 14; + } + + int gain_index = value + gain_offset; + + /* Clip the gain values to the proper min/max gain values. */ + if(gain_index > 76) gain_index = 76; + if(gain_index < 0) gain_index = 0; + + if(n == 1) { + _rx1_gain = value; + write_ad9361_reg(0x109, gain_index); + } else { + _rx2_gain = value; + write_ad9361_reg(0x10c, gain_index); + } + + return gain_index - gain_offset; + } else { + /* Setting the below bits causes a change in the TX attenuation word + * to immediately take effect. */ + write_ad9361_reg(0x077, 0x40); + write_ad9361_reg(0x07c, 0x40); + + /* Each gain step is -0.25dB. Calculate the attenuation necessary + * for the requested gain, convert it into gain steps, then write + * the attenuation word. Max gain (so zero attenuation) is 89.75. */ + double atten = AD9361_MAX_GAIN - value; + int attenreg = atten * 4; + if(n == 1) { + _tx1_gain = value; + write_ad9361_reg(0x073, attenreg & 0xFF); + write_ad9361_reg(0x074, (attenreg >> 8) & 0x01); + } else { + _tx2_gain = value; + write_ad9361_reg(0x075, attenreg & 0xFF); + write_ad9361_reg(0x076, (attenreg >> 8) & 0x01); + } + return AD9361_MAX_GAIN - ((double)(attenreg)/ 4); + } +} + +/* This function is responsible to dispatch the vendor request call + * to the proper handler + */ +void ad9361_dispatch(const char* vrb, char* vrb_out) { + memcpy(vrb_out, vrb, AD9361_DISPATCH_PACKET_SIZE); // Copy request to response memory + tmp_req_buffer = vrb_out; // Set this to enable 'post_err_msg' + + ////////////////////////////////////////////// + + double ret_val = 0.0; + int mask = 0; + + const ad9361_transaction_t *request = (const ad9361_transaction_t *)vrb; + ad9361_transaction_t *response = (ad9361_transaction_t *)vrb_out; + response->error_msg[0] = '\0'; // Ensure error is cleared + + //msg("[ad9361_dispatch] action=%d", request->action); + + switch (request->action) { + case AD9361_ACTION_ECHO: + break; // nothing to do + case AD9361_ACTION_INIT: + init_ad9361(); + break; + case AD9361_ACTION_SET_RX1_GAIN: + ret_val = set_gain(RX_TYPE,1,double_unpack(request->value.gain)); + double_pack(ret_val, response->value.gain); + break; + case AD9361_ACTION_SET_TX1_GAIN: + ret_val = set_gain(TX_TYPE,1,double_unpack(request->value.gain)); + double_pack(ret_val, response->value.gain); + break; + case AD9361_ACTION_SET_RX2_GAIN: + ret_val = set_gain(RX_TYPE,2,double_unpack(request->value.gain)); + double_pack(ret_val, response->value.gain); + break; + case AD9361_ACTION_SET_TX2_GAIN: + ret_val = set_gain(TX_TYPE,2,double_unpack(request->value.gain)); + double_pack(ret_val, response->value.gain); + break; + case AD9361_ACTION_SET_RX_FREQ: + ret_val = tune(RX_TYPE, double_unpack(request->value.freq)); + double_pack(ret_val, response->value.freq); + break; + case AD9361_ACTION_SET_TX_FREQ: + ret_val = tune(TX_TYPE, double_unpack(request->value.freq)); + double_pack(ret_val, response->value.freq); + break; + case AD9361_ACTION_SET_CODEC_LOOP: + data_port_loopback(request->value.codec_loop != 0); + break; + case AD9361_ACTION_SET_CLOCK_RATE: + ret_val = set_clock_rate(double_unpack(request->value.rate)); + double_pack(ret_val, response->value.rate); + break; + case AD9361_ACTION_SET_ACTIVE_CHAINS: + mask = request->value.enable_mask; + set_active_chains(mask & 1, mask & 2, mask & 4, mask & 8); + break; + default: + post_err_msg("[ad9361_dispatch] NOT IMPLEMENTED"); + break; + } +} diff --git a/firmware/fx3/ad9361/lib/ad9361_synth_lut.h b/firmware/fx3/ad9361/lib/ad9361_synth_lut.h new file mode 100644 index 000000000..79214526d --- /dev/null +++ b/firmware/fx3/ad9361/lib/ad9361_synth_lut.h @@ -0,0 +1,135 @@ +// +// Copyright 2013-2014 Ettus Research LLC +// + +#ifndef INCLUDED_AD9361_SYNTH_LUT_HPP +#define INCLUDED_AD9361_SYNTH_LUT_HPP + + +double vco_index[53] = {12605000000, 12245000000, 11906000000, 11588000000, + 11288000000, 11007000000, 10742000000, 10492000000, + 10258000000, 10036000000, 9827800000, 9631100000, + 9445300000, 9269800000, 9103600000, 8946300000, + 8797000000, 8655300000, 8520600000, 8392300000, + 8269900000, 8153100000, 8041400000, 7934400000, + 7831800000, 7733200000, 7638400000, 7547100000, + 7459000000, 7374000000, 7291900000, 7212400000, + 7135500000, 7061000000, 6988700000, 6918600000, + 6850600000, 6784600000, 6720500000, 6658200000, + 6597800000, 6539200000, 6482300000, 6427000000, + 6373400000, 6321400000, 6270900000, 6222000000, + 6174500000, 6128400000, 6083600000, 6040100000, + 5997700000}; + +int synth_cal_lut[53][12] = { {10, 0, 4, 0, 15, 8, 8, 13, 4, 13, 15, 9}, + {10, 0, 4, 0, 15, 8, 9, 13, 4, 13, 15, 9}, + {10, 0, 4, 0, 15, 8, 10, 13, 4, 13, 15, 9}, + {10, 0, 4, 0, 15, 8, 11, 13, 4, 13, 15, 9}, + {10, 0, 4, 0, 15, 8, 11, 13, 4, 13, 15, 9}, + {10, 0, 4, 0, 14, 8, 12, 13, 4, 13, 15, 9}, + {10, 0, 4, 0, 14, 8, 13, 13, 4, 13, 15, 9}, + {10, 0, 5, 1, 14, 9, 13, 13, 4, 13, 15, 9}, + {10, 0, 5, 1, 14, 9, 14, 13, 4, 13, 15, 9}, + {10, 0, 5, 1, 14, 9, 15, 13, 4, 13, 15, 9}, + {10, 0, 5, 1, 14, 9, 15, 13, 4, 13, 15, 9}, + {10, 0, 5, 1, 13, 9, 16, 13, 4, 13, 15, 9}, + {10, 0, 5, 1, 13, 9, 17, 13, 4, 13, 15, 9}, + {10, 0, 5, 1, 13, 9, 18, 13, 4, 13, 15, 9}, + {10, 0, 5, 1, 13, 9, 18, 13, 4, 13, 15, 9}, + {10, 0, 5, 1, 13, 9, 19, 13, 4, 13, 15, 9}, + {10, 1, 6, 1, 15, 11, 14, 13, 4, 13, 15, 9}, + {10, 1, 6, 1, 15, 11, 14, 13, 4, 13, 15, 9}, + {10, 1, 6, 1, 15, 11, 15, 13, 4, 13, 15, 9}, + {10, 1, 6, 1, 15, 11, 15, 13, 4, 13, 15, 9}, + {10, 1, 6, 1, 15, 11, 16, 13, 4, 13, 15, 9}, + {10, 1, 6, 1, 15, 11, 16, 13, 4, 13, 15, 9}, + {10, 1, 6, 1, 15, 11, 17, 13, 4, 13, 15, 9}, + {10, 1, 6, 1, 15, 11, 17, 13, 4, 13, 15, 9}, + {10, 1, 6, 1, 15, 11, 18, 13, 4, 13, 15, 9}, + {10, 1, 6, 1, 15, 11, 18, 13, 4, 13, 15, 9}, + {10, 1, 6, 1, 15, 11, 19, 13, 4, 13, 15, 9}, + {10, 1, 6, 1, 15, 11, 19, 13, 4, 13, 15, 9}, + {10, 1, 6, 1, 15, 11, 20, 13, 4, 13, 15, 9}, + {10, 1, 7, 2, 15, 12, 20, 13, 4, 13, 15, 9}, + {10, 1, 7, 2, 15, 12, 21, 13, 4, 13, 15, 9}, + {10, 1, 7, 2, 15, 12, 21, 13, 4, 13, 15, 9}, + {10, 1, 7, 2, 15, 14, 22, 13, 4, 13, 15, 9}, + {10, 1, 7, 2, 15, 14, 22, 13, 4, 13, 15, 9}, + {10, 1, 7, 2, 15, 14, 23, 13, 4, 13, 15, 9}, + {10, 1, 7, 2, 15, 14, 23, 13, 4, 13, 15, 9}, + {10, 1, 7, 2, 15, 14, 24, 13, 4, 13, 15, 9}, + {10, 1, 7, 2, 15, 14, 24, 13, 4, 13, 15, 9}, + {10, 1, 7, 2, 15, 14, 25, 13, 4, 13, 15, 9}, + {10, 1, 7, 2, 15, 14, 25, 13, 4, 13, 15, 9}, + {10, 1, 7, 2, 15, 14, 26, 13, 4, 13, 15, 9}, + {10, 1, 7, 2, 15, 14, 26, 13, 4, 13, 15, 9}, + {10, 1, 7, 2, 15, 14, 27, 13, 4, 13, 15, 9}, + {10, 1, 7, 2, 15, 14, 27, 13, 4, 13, 15, 9}, + {10, 3, 7, 3, 15, 12, 18, 13, 4, 13, 15, 9}, + {10, 3, 7, 3, 15, 12, 18, 13, 4, 13, 15, 9}, + {10, 3, 7, 3, 15, 12, 18, 13, 4, 13, 15, 9}, + {10, 3, 7, 3, 15, 12, 19, 13, 4, 13, 15, 9}, + {10, 3, 7, 3, 15, 12, 19, 13, 4, 13, 15, 9}, + {10, 3, 7, 3, 15, 12, 19, 13, 4, 13, 15, 9}, + {10, 3, 7, 3, 15, 12, 19, 13, 4, 13, 15, 9}, + {10, 3, 7, 3, 15, 12, 20, 13, 4, 13, 15, 9}, + {10, 3, 7, 3, 15, 12, 20, 13, 4, 13, 15, 9}}; + + +#if 0 /* This is the table for a 40MHz RFPLL Reference */ +int synth_cal_lut[53][12] = { {10, 0, 4, 0, 15, 8, 8, 12, 3, 14, 15, 11}, + {10, 0, 4, 0, 15, 8, 9, 12, 3, 14, 15, 11}, + {10, 0, 4, 0, 15, 8, 9, 12, 3, 14, 15, 11}, + {10, 0, 4, 0, 15, 8, 10, 12, 3, 14, 15, 11}, + {10, 0, 4, 0, 15, 8, 11, 12, 3, 14, 15, 11}, + {10, 0, 4, 0, 15, 8, 11, 12, 3, 14, 15, 11}, + {10, 0, 4, 0, 14, 8, 12, 12, 3, 14, 15, 11}, + {10, 0, 5, 1, 14, 9, 13, 12, 3, 14, 15, 11}, + {10, 0, 5, 1, 14, 9, 13, 12, 3, 14, 15, 11}, + {10, 0, 5, 1, 14, 9, 14, 12, 3, 14, 15, 11}, + {10, 0, 5, 1, 14, 9, 15, 12, 3, 14, 15, 11}, + {10, 0, 5, 1, 14, 9, 15, 12, 3, 14, 15, 11}, + {10, 0, 5, 1, 14, 9, 16, 12, 3, 14, 15, 11}, + {10, 0, 5, 1, 14, 9, 17, 12, 3, 14, 15, 11}, + {10, 0, 5, 1, 14, 9, 17, 12, 3, 14, 15, 11}, + {10, 0, 5, 1, 14, 9, 18, 12, 3, 14, 15, 11}, + {10, 1, 6, 1, 15, 11, 13, 12, 3, 14, 15, 11}, + {10, 1, 6, 1, 15, 11, 14, 12, 3, 14, 15, 11}, + {10, 1, 6, 1, 15, 11, 14, 12, 3, 14, 15, 11}, + {10, 1, 6, 1, 15, 11, 15, 12, 3, 14, 15, 11}, + {10, 1, 6, 1, 15, 11, 15, 12, 3, 14, 15, 11}, + {10, 1, 6, 1, 15, 11, 16, 12, 3, 14, 15, 11}, + {10, 1, 6, 1, 15, 11, 16, 12, 3, 14, 15, 11}, + {10, 1, 6, 1, 15, 11, 17, 12, 3, 14, 15, 11}, + {10, 1, 6, 1, 15, 11, 17, 12, 3, 14, 15, 11}, + {10, 1, 6, 1, 15, 11, 17, 12, 3, 14, 15, 11}, + {10, 1, 6, 1, 15, 11, 18, 12, 3, 14, 15, 11}, + {10, 1, 6, 1, 15, 11, 18, 12, 3, 14, 15, 11}, + {10, 1, 6, 1, 15, 11, 19, 12, 3, 14, 15, 11}, + {10, 1, 7, 2, 15, 12, 19, 12, 3, 14, 15, 11}, + {10, 1, 7, 2, 15, 12, 20, 12, 3, 14, 15, 11}, + {10, 1, 7, 2, 15, 12, 20, 12, 3, 14, 15, 11}, + {10, 1, 7, 2, 15, 14, 21, 12, 3, 14, 15, 11}, + {10, 1, 7, 2, 15, 14, 21, 12, 3, 14, 15, 11}, + {10, 1, 7, 2, 15, 14, 22, 12, 3, 14, 15, 11}, + {10, 1, 7, 2, 15, 14, 22, 12, 3, 14, 15, 11}, + {10, 1, 7, 2, 15, 14, 23, 12, 3, 14, 15, 11}, + {10, 1, 7, 2, 15, 14, 23, 12, 3, 14, 15, 11}, + {10, 1, 7, 2, 15, 14, 24, 12, 3, 14, 15, 11}, + {10, 1, 7, 2, 15, 14, 24, 12, 3, 14, 15, 11}, + {10, 1, 7, 2, 15, 14, 25, 12, 3, 14, 15, 11}, + {10, 1, 7, 2, 15, 14, 25, 12, 3, 14, 15, 11}, + {10, 1, 7, 2, 15, 14, 26, 12, 3, 14, 15, 11}, + {10, 1, 7, 2, 15, 14, 26, 12, 3, 14, 15, 11}, + {10, 3, 7, 3, 15, 12, 17, 12, 3, 14, 15, 11}, + {10, 3, 7, 3, 15, 12, 17, 12, 3, 14, 15, 11}, + {10, 3, 7, 3, 15, 12, 17, 12, 3, 14, 15, 11}, + {10, 3, 7, 3, 15, 12, 18, 12, 3, 14, 15, 11}, + {10, 3, 7, 3, 15, 12, 18, 12, 3, 14, 15, 11}, + {10, 3, 7, 3, 15, 12, 18, 12, 3, 14, 15, 11}, + {10, 3, 7, 3, 15, 12, 18, 12, 3, 14, 15, 11}, + {10, 3, 7, 3, 15, 12, 19, 12, 3, 14, 15, 11}, + {10, 3, 7, 3, 15, 12, 19, 12, 3, 14, 15, 11} }; +#endif + +#endif /* INCLUDED_AD9361_SYNTH_LUT_HPP */ |