aboutsummaryrefslogtreecommitdiffstats
path: root/firmware/fx3/ad9361/lib
diff options
context:
space:
mode:
Diffstat (limited to 'firmware/fx3/ad9361/lib')
-rw-r--r--firmware/fx3/ad9361/lib/ad9361_filter_taps.h47
-rw-r--r--firmware/fx3/ad9361/lib/ad9361_gain_tables.h95
-rw-r--r--firmware/fx3/ad9361/lib/ad9361_impl.c1918
-rw-r--r--firmware/fx3/ad9361/lib/ad9361_synth_lut.h135
4 files changed, 2195 insertions, 0 deletions
diff --git a/firmware/fx3/ad9361/lib/ad9361_filter_taps.h b/firmware/fx3/ad9361/lib/ad9361_filter_taps.h
new file mode 100644
index 000000000..afbe27630
--- /dev/null
+++ b/firmware/fx3/ad9361/lib/ad9361_filter_taps.h
@@ -0,0 +1,47 @@
+//
+// Copyright 2013-2014 Ettus Research LLC
+//
+
+#ifndef INCLUDED_AD9361_FILTER_TAPS_HPP
+#define INCLUDED_AD9361_FILTER_TAPS_HPP
+
+/* A default 128-tap filter that can be used for generic circumstances. */
+static uint16_t default_128tap_coeffs[] = {
+ 0x0001,0xfff1,0xffcf,0xffc0,0xffe8,0x0020,0x001a,0xffe3,
+ 0xffe1,0x001f,0x0028,0xffdf,0xffcc,0x0024,0x0043,0xffdb,
+ 0xffac,0x0026,0x0068,0xffdb,0xff80,0x0022,0x009a,0xffe2,
+ 0xff47,0x0017,0x00db,0xfff3,0xfeff,0xffff,0x012b,0x0013,
+ 0xfea5,0xffd7,0x0190,0x0046,0xfe35,0xff97,0x020e,0x0095,
+ 0xfda7,0xff36,0x02ae,0x010d,0xfcf0,0xfea1,0x0383,0x01c6,
+ 0xfbf3,0xfdb6,0x04b7,0x02f8,0xfa6d,0xfc1a,0x06be,0x0541,
+ 0xf787,0xf898,0x0b60,0x0b6d,0xee88,0xea40,0x2786,0x7209
+};
+
+
+/* The below pair of filters is optimized for a 10MHz LTE application. */
+/*
+static uint16_t lte10mhz_rx_coeffs[] = {
+ 0xffe2,0x0042,0x0024,0x0095,0x0056,0x004d,0xffcf,0xffb7,
+ 0xffb1,0x0019,0x0059,0x006a,0x0004,0xff9d,0xff72,0xffd4,
+ 0x0063,0x00b7,0x0062,0xffac,0xff21,0xff59,0x0032,0x0101,
+ 0x00f8,0x0008,0xfeea,0xfeac,0xffa3,0x0117,0x01b5,0x00d0,
+ 0xff05,0xfdea,0xfe9e,0x00ba,0x026f,0x0215,0xffb5,0xfd4a,
+ 0xfd18,0xffa0,0x02de,0x03dc,0x0155,0xfd2a,0xfb0d,0xfd54,
+ 0x0287,0x062f,0x048a,0xfe37,0xf862,0xf8c1,0x004d,0x0963,
+ 0x0b88,0x02a4,0xf3e7,0xebdd,0xf5f8,0x1366,0x3830,0x518b
+};
+
+static uint16_t lte10mhz_tx_coeffs[] = {
+ 0xfffb,0x0000,0x0004,0x0017,0x0024,0x0028,0x0013,0xfff3,
+ 0xffdc,0xffe5,0x000b,0x0030,0x002e,0xfffe,0xffc4,0xffb8,
+ 0xfff0,0x0045,0x0068,0x002b,0xffb6,0xff72,0xffad,0x0047,
+ 0x00b8,0x0088,0xffc8,0xff1c,0xff33,0x001a,0x0110,0x0124,
+ 0x0019,0xfec8,0xfe74,0xff9a,0x0156,0x0208,0x00d3,0xfe9b,
+ 0xfd68,0xfe96,0x015d,0x033f,0x0236,0xfecd,0xfc00,0xfcb5,
+ 0x00d7,0x04e5,0x04cc,0xffd5,0xf9fe,0xf8fb,0xfef2,0x078c,
+ 0x0aae,0x036d,0xf5c0,0xed89,0xf685,0x12af,0x36a4,0x4faa
+};
+*/
+
+
+#endif // INCLUDED_AD9361_FILTER_TAPS_HPP
diff --git a/firmware/fx3/ad9361/lib/ad9361_gain_tables.h b/firmware/fx3/ad9361/lib/ad9361_gain_tables.h
new file mode 100644
index 000000000..58dcbeb65
--- /dev/null
+++ b/firmware/fx3/ad9361/lib/ad9361_gain_tables.h
@@ -0,0 +1,95 @@
+//
+// Copyright 2013-2014 Ettus Research LLC
+//
+
+#ifndef INCLUDED_AD9361_GAIN_TABLES_HPP
+#define INCLUDED_AD9361_GAIN_TABLES_HPP
+
+uint8_t gain_table_sub_1300mhz[77][5] = { {0,0x00,0x00,0x20,1},
+ {1,0x00,0x00,0x00,0}, {2,0x00,0x00,0x00,0}, {3,0x00,0x01,0x00,0},
+ {4,0x00,0x02,0x00,0}, {5,0x00,0x03,0x00,0}, {6,0x00,0x04,0x00,0},
+ {7,0x00,0x05,0x00,0}, {8,0x01,0x03,0x20,1}, {9,0x01,0x04,0x00,0},
+ {10,0x01,0x05,0x00,0}, {11,0x01,0x06,0x00,0}, {12,0x01,0x07,0x00,0},
+ {13,0x01,0x08,0x00,0}, {14,0x01,0x09,0x00,0}, {15,0x01,0x0A,0x00,0},
+ {16,0x01,0x0B,0x00,0}, {17,0x01,0x0C,0x00,0}, {18,0x01,0x0D,0x00,0},
+ {19,0x01,0x0E,0x00,0}, {20,0x02,0x09,0x20,1}, {21,0x02,0x0A,0x00,0},
+ {22,0x02,0x0B,0x00,0}, {23,0x02,0x0C,0x00,0}, {24,0x02,0x0D,0x00,0},
+ {25,0x02,0x0E,0x00,0}, {26,0x02,0x0F,0x00,0}, {27,0x02,0x10,0x00,0},
+ {28,0x02,0x2B,0x20,1}, {29,0x02,0x2C,0x00,0}, {30,0x04,0x27,0x20,1},
+ {31,0x04,0x28,0x00,0}, {32,0x04,0x29,0x00,0}, {33,0x04,0x2A,0x00,0},
+ {34,0x04,0x2B,0x00,1}, {35,0x24,0x21,0x20,0}, {36,0x24,0x22,0x00,1},
+ {37,0x44,0x20,0x20,0}, {38,0x44,0x21,0x00,0}, {39,0x44,0x22,0x00,0},
+ {40,0x44,0x23,0x00,0}, {41,0x44,0x24,0x00,0}, {42,0x44,0x25,0x00,0},
+ {43,0x44,0x26,0x00,0}, {44,0x44,0x27,0x00,0}, {45,0x44,0x28,0x00,0},
+ {46,0x44,0x29,0x00,0}, {47,0x44,0x2A,0x00,0}, {48,0x44,0x2B,0x00,0},
+ {49,0x44,0x2C,0x00,0}, {50,0x44,0x2D,0x00,0}, {51,0x44,0x2E,0x00,0},
+ {52,0x44,0x2F,0x00,0}, {53,0x44,0x30,0x00,0}, {54,0x44,0x31,0x00,0},
+ {55,0x64,0x2E,0x20,1}, {56,0x64,0x2F,0x00,0}, {57,0x64,0x30,0x00,0},
+ {58,0x64,0x31,0x00,0}, {59,0x64,0x32,0x00,0}, {60,0x64,0x33,0x00,0},
+ {61,0x64,0x34,0x00,0}, {62,0x64,0x35,0x00,0}, {63,0x64,0x36,0x00,0},
+ {64,0x64,0x37,0x00,0}, {65,0x64,0x38,0x00,0}, {66,0x65,0x38,0x20,1},
+ {67,0x66,0x38,0x20,1}, {68,0x67,0x38,0x20,1}, {69,0x68,0x38,0x20,1},
+ {70,0x69,0x38,0x20,1}, {71,0x6A,0x38,0x20,1}, {72,0x6B,0x38,0x20,1},
+ {73,0x6C,0x38,0x20,1}, {74,0x6D,0x38,0x20,1}, {75,0x6E,0x38,0x20,1},
+ {76,0x6F,0x38,0x20,1}};
+
+
+uint8_t gain_table_1300mhz_to_4000mhz[77][5] = { {0,0x00,0x00,0x20,1},
+ {1,0x00,0x00,0x00,0}, {2,0x00,0x00,0x00,0}, {3,0x00,0x01,0x00,0},
+ {4,0x00,0x02,0x00,0}, {5,0x00,0x03,0x00,0}, {6,0x00,0x04,0x00,0},
+ {7,0x00,0x05,0x00,0}, {8,0x01,0x03,0x20,1}, {9,0x01,0x04,0x00,0},
+ {10,0x01,0x05,0x00,0}, {11,0x01,0x06,0x00,0}, {12,0x01,0x07,0x00,0},
+ {13,0x01,0x08,0x00,0}, {14,0x01,0x09,0x00,0}, {15,0x01,0x0A,0x00,0},
+ {16,0x01,0x0B,0x00,0}, {17,0x01,0x0C,0x00,0}, {18,0x01,0x0D,0x00,0},
+ {19,0x01,0x0E,0x00,0}, {20,0x02,0x09,0x20,1}, {21,0x02,0x0A,0x00,0},
+ {22,0x02,0x0B,0x00,0}, {23,0x02,0x0C,0x00,0}, {24,0x02,0x0D,0x00,0},
+ {25,0x02,0x0E,0x00,0}, {26,0x02,0x0F,0x00,0}, {27,0x02,0x10,0x00,0},
+ {28,0x02,0x2B,0x20,1}, {29,0x02,0x2C,0x00,0}, {30,0x04,0x28,0x20,1},
+ {31,0x04,0x29,0x00,0}, {32,0x04,0x2A,0x00,0}, {33,0x04,0x2B,0x00,0},
+ {34,0x24,0x20,0x20,0}, {35,0x24,0x21,0x00,1}, {36,0x44,0x20,0x20,0},
+ {37,0x44,0x21,0x00,1}, {38,0x44,0x22,0x00,0}, {39,0x44,0x23,0x00,0},
+ {40,0x44,0x24,0x00,0}, {41,0x44,0x25,0x00,0}, {42,0x44,0x26,0x00,0},
+ {43,0x44,0x27,0x00,0}, {44,0x44,0x28,0x00,0}, {45,0x44,0x29,0x00,0},
+ {46,0x44,0x2A,0x00,0}, {47,0x44,0x2B,0x00,0}, {48,0x44,0x2C,0x00,0},
+ {49,0x44,0x2D,0x00,0}, {50,0x44,0x2E,0x00,0}, {51,0x44,0x2F,0x00,0},
+ {52,0x44,0x30,0x00,0}, {53,0x44,0x31,0x00,0}, {54,0x44,0x32,0x00,0},
+ {55,0x64,0x2E,0x20,1}, {56,0x64,0x2F,0x00,0}, {57,0x64,0x30,0x00,0},
+ {58,0x64,0x31,0x00,0}, {59,0x64,0x32,0x00,0}, {60,0x64,0x33,0x00,0},
+ {61,0x64,0x34,0x00,0}, {62,0x64,0x35,0x00,0}, {63,0x64,0x36,0x00,0},
+ {64,0x64,0x37,0x00,0}, {65,0x64,0x38,0x00,0}, {66,0x65,0x38,0x20,1},
+ {67,0x66,0x38,0x20,1}, {68,0x67,0x38,0x20,1}, {69,0x68,0x38,0x20,1},
+ {70,0x69,0x38,0x20,1}, {71,0x6A,0x38,0x20,1}, {72,0x6B,0x38,0x20,1},
+ {73,0x6C,0x38,0x20,1}, {74,0x6D,0x38,0x20,1}, {75,0x6E,0x38,0x20,1},
+ {76,0x6F,0x38,0x20,1}};
+
+
+uint8_t gain_table_4000mhz_to_6000mhz[77][5] = { {0,0x00,0x00,0x20,1},
+ {1,0x00,0x00,0x00,0}, {2,0x00,0x00,0x00,0}, {3,0x00,0x00,0x00,0},
+ {4,0x00,0x00,0x00,0}, {5,0x00,0x01,0x00,0}, {6,0x00,0x02,0x00,0},
+ {7,0x00,0x03,0x00,0}, {8,0x01,0x01,0x20,1}, {9,0x01,0x02,0x00,0},
+ {10,0x01,0x03,0x00,0}, {11,0x01,0x04,0x20,1}, {12,0x01,0x05,0x00,0},
+ {13,0x01,0x06,0x00,0}, {14,0x01,0x07,0x00,0}, {15,0x01,0x08,0x00,0},
+ {16,0x01,0x09,0x00,0}, {17,0x01,0x0A,0x00,0}, {18,0x01,0x0B,0x00,0},
+ {19,0x01,0x0C,0x00,0}, {20,0x02,0x08,0x20,1}, {21,0x02,0x09,0x00,0},
+ {22,0x02,0x0A,0x00,0}, {23,0x02,0x0B,0x20,1}, {24,0x02,0x0C,0x00,0},
+ {25,0x02,0x0D,0x00,0}, {26,0x02,0x0E,0x00,0}, {27,0x02,0x0F,0x00,0},
+ {28,0x02,0x2A,0x20,1}, {29,0x02,0x2B,0x00,0}, {30,0x04,0x27,0x20,1},
+ {31,0x04,0x28,0x00,0}, {32,0x04,0x29,0x00,0}, {33,0x04,0x2A,0x00,0},
+ {34,0x04,0x2B,0x00,0}, {35,0x04,0x2C,0x00,0}, {36,0x04,0x2D,0x00,0},
+ {37,0x24,0x20,0x20,1}, {38,0x24,0x21,0x00,0}, {39,0x24,0x22,0x00,0},
+ {40,0x44,0x20,0x20,1}, {41,0x44,0x21,0x00,0}, {42,0x44,0x22,0x00,0},
+ {43,0x44,0x23,0x00,0}, {44,0x44,0x24,0x00,0}, {45,0x44,0x25,0x00,0},
+ {46,0x44,0x26,0x00,0}, {47,0x44,0x27,0x00,0}, {48,0x44,0x28,0x00,0},
+ {49,0x44,0x29,0x00,0}, {50,0x44,0x2A,0x00,0}, {51,0x44,0x2B,0x00,0},
+ {52,0x44,0x2C,0x00,0}, {53,0x44,0x2D,0x00,0}, {54,0x44,0x2E,0x00,0},
+ {55,0x64,0x2E,0x20,1}, {56,0x64,0x2F,0x00,0}, {57,0x64,0x30,0x00,0},
+ {58,0x64,0x31,0x00,0}, {59,0x64,0x32,0x00,0}, {60,0x64,0x33,0x00,0},
+ {61,0x64,0x34,0x00,0}, {62,0x64,0x35,0x00,0}, {63,0x64,0x36,0x00,0},
+ {64,0x64,0x37,0x00,0}, {65,0x64,0x38,0x00,0}, {66,0x65,0x38,0x20,1},
+ {67,0x66,0x38,0x20,1}, {68,0x67,0x38,0x20,1}, {69,0x68,0x38,0x20,1},
+ {70,0x69,0x38,0x20,1}, {71,0x6A,0x38,0x20,1}, {72,0x6B,0x38,0x20,1},
+ {73,0x6C,0x38,0x20,1}, {74,0x6D,0x38,0x20,1}, {75,0x6E,0x38,0x20,1},
+ {76,0x6F,0x38,0x20,1}};
+
+
+#endif /* INCLUDED_AD9361_GAIN_TABLES_HPP */
diff --git a/firmware/fx3/ad9361/lib/ad9361_impl.c b/firmware/fx3/ad9361/lib/ad9361_impl.c
new file mode 100644
index 000000000..61512d2c8
--- /dev/null
+++ b/firmware/fx3/ad9361/lib/ad9361_impl.c
@@ -0,0 +1,1918 @@
+//
+// Copyright 2013-2014 Ettus Research LLC
+//
+
+/* This file implements b200 vendor requests handler
+ * It handles ad9361 setup and configuration
+ */
+
+#include <stdarg.h>
+#include <stdio.h>
+#include <math.h>
+
+#include <ad9361_transaction.h>
+#include "ad9361_filter_taps.h"
+#include "ad9361_gain_tables.h"
+#include "ad9361_synth_lut.h"
+#include "ad9361_dispatch.h"
+
+////////////////////////////////////////////////////////////
+
+static void fake_msg(const char* str, ...)
+{
+}
+
+static msgfn _msgfn = fake_msg;
+
+//extern void msg(const char* str, ...); External object must provide this symbol
+#define msg (_msgfn)
+
+void ad9361_set_msgfn(msgfn pfn)
+{
+ _msgfn = pfn;
+}
+
+////////////////////////////////////////////////////////////
+#define AD9361_MAX_GAIN 89.75
+
+#define DOUBLE_PI 3.14159265359
+#define DOUBLE_LN_2 0.693147181
+
+#define RX_TYPE 0
+#define TX_TYPE 1
+
+#ifndef AD9361_CLOCKING_MODE
+#error define a AD9361_CLOCKING_MODE
+#endif
+
+#ifndef AD9361_RX_BAND_EDGE0
+#error define a AD9361_RX_BAND_EDGE0
+#endif
+
+#ifndef AD9361_RX_BAND_EDGE1
+#error define a AD9361_RX_BAND_EDGE1
+#endif
+
+#ifndef AD9361_TX_BAND_EDGE
+#error define a AD9361_TX_BAND_EDGE
+#endif
+
+////////////////////////////////////////////////////////////
+// the following macros evaluate to a compile time constant
+// macros By Tom Torfs - donated to the public domain
+
+/* turn a numeric literal into a hex constant
+(avoids problems with leading zeroes)
+8-bit constants max value 0x11111111, always fits in unsigned long
+*/
+#define HEX__(n) 0x##n##LU
+
+/* 8-bit conversion function */
+#define B8__(x) ((x&0x0000000FLU)?1:0) \
++((x&0x000000F0LU)?2:0) \
++((x&0x00000F00LU)?4:0) \
++((x&0x0000F000LU)?8:0) \
++((x&0x000F0000LU)?16:0) \
++((x&0x00F00000LU)?32:0) \
++((x&0x0F000000LU)?64:0) \
++((x&0xF0000000LU)?128:0)
+
+/* *** user macros *** */
+
+/* for upto 8-bit binary constants */
+#define B8(d) ((unsigned char)B8__(HEX__(d)))
+
+////////////////////////////////////////////////////////////
+// shadow registers
+static uint8_t reg_vcodivs;
+static uint8_t reg_inputsel;
+static uint8_t reg_rxfilt;
+static uint8_t reg_txfilt;
+static uint8_t reg_bbpll;
+static uint8_t reg_bbftune_config;
+static uint8_t reg_bbftune_mode;
+
+////////////////////////////////////////////////////////////
+// other private data fields for VRQ handler
+static double _rx_freq, _tx_freq, _req_rx_freq, _req_tx_freq;
+static double _baseband_bw, _bbpll_freq, _adcclock_freq;
+static double _req_clock_rate, _req_coreclk;
+static uint16_t _rx_bbf_tunediv;
+static uint8_t _curr_gain_table;
+static uint32_t _rx1_gain, _rx2_gain, _tx1_gain, _tx2_gain;
+static int _tfir_factor;
+
+double set_gain(int which, int n, const double value);
+void set_active_chains(bool tx1, bool tx2, bool rx1, bool rx2);
+/***********************************************************************
+ * Placeholders, unused, or test functions
+ **********************************************************************/
+static char *tmp_req_buffer;
+
+void post_err_msg(const char* error)
+{
+ msg("[AD9361 error] %s", error);
+
+ if (!tmp_req_buffer)
+ return;
+
+ ad9361_transaction_t *request = (ad9361_transaction_t *)tmp_req_buffer;
+ strncpy(request->error_msg, error, (AD9361_TRANSACTION_MAX_ERROR_MSG + 1)); // '+ 1' as length excludes terminating NUL
+ request->error_msg[AD9361_TRANSACTION_MAX_ERROR_MSG] = '\0'; // If string was too long, NUL will not be copied, so force one just in case
+}
+
+void write_ad9361_reg(uint32_t reg, uint8_t val)
+{
+ ad9361_transact_spi((reg << 8) | val | (1 << 23));
+}
+
+uint8_t read_ad9361_reg(uint32_t reg)
+{
+ return ad9361_transact_spi((reg << 8)) & 0xff;
+}
+
+//shortcuts for double packer/unpacker function
+#define double_pack ad9361_double_pack
+#define double_unpack ad9361_double_unpack
+
+/* Make Catalina output its test tone. */
+void output_test_tone(void) {
+ /* Output a 480 kHz tone at 800 MHz */
+ write_ad9361_reg(0x3F4, 0x0B);
+ write_ad9361_reg(0x3FC, 0xFF);
+ write_ad9361_reg(0x3FD, 0xFF);
+ write_ad9361_reg(0x3FE, 0x3F);
+}
+
+/* Turn on/off Catalina's TX port --> RX port loopback. */
+void data_port_loopback(const int on) {
+ msg("[data_port_loopback] Enabled: %d", on);
+ write_ad9361_reg(0x3F5, (on ? 0x01 : 0x00));
+}
+
+/* This is a simple comparison for very large double-precision floating
+ * point numbers. It is used to prevent re-tunes for frequencies that are
+ * the same but not 'exactly' because of data precision issues. */
+// TODO: see if we can avoid the need for this function
+int freq_is_nearly_equal(double a, double b) {
+ return AD9361_MAX(a,b) - AD9361_MIN(a,b) < 1;
+}
+
+/***********************************************************************
+ * Filter functions
+ **********************************************************************/
+
+/* This function takes in the calculated maximum number of FIR taps, and
+ * returns a number of taps that makes Catalina happy. */
+int get_num_taps(int max_num_taps) {
+
+ int num_taps = 0;
+ int num_taps_list[] = {16, 32, 48, 64, 80, 96, 112, 128};
+ int i;
+ for(i = 1; i < 8; i++) {
+ if(max_num_taps >= num_taps_list[i]) {
+ continue;
+ } else {
+ num_taps = num_taps_list[i - 1];
+ break;
+ }
+ } if(num_taps == 0) { num_taps = 128; }
+
+ return num_taps;
+}
+
+/* Program either the RX or TX FIR filter.
+ *
+ * The process is the same for both filters, but the function must be told
+ * how many taps are in the filter, and given a vector of the taps
+ * themselves. Note that the filters are symmetric, so value of 'num_taps'
+ * should actually be twice the length of the tap vector. */
+void program_fir_filter(int which, int num_taps, \
+ uint16_t *coeffs) {
+
+ uint16_t base;
+ if(which == RX_TYPE) {
+ base = 0x0f0;
+ write_ad9361_reg(base+6, 0x02); //filter gain
+ } else {
+ base = 0x060;
+ }
+
+ /* Write the filter configuration. */
+ uint8_t reg_numtaps = (((num_taps / 16) - 1) & 0x07) << 5;
+
+ /* Turn on the filter clock. */
+ write_ad9361_reg(base+5, reg_numtaps | 0x1a);
+ ad9361_msleep(1);
+
+ int num_unique_coeffs = (num_taps / 2);
+
+ /* The filters are symmetric, so iterate over the tap vector,
+ * programming each index, and then iterate backwards, repeating the
+ * process. */
+ int addr;
+ for(addr=0; addr < num_unique_coeffs; addr++) {
+ write_ad9361_reg(base+0, addr);
+ write_ad9361_reg(base+1, (coeffs[addr]) & 0xff);
+ write_ad9361_reg(base+2, (coeffs[addr] >> 8) & 0xff);
+ write_ad9361_reg(base+5, 0xfe);
+ write_ad9361_reg(base+4, 0x00);
+ write_ad9361_reg(base+4, 0x00);
+ }
+
+ for(addr=0; addr < num_unique_coeffs; addr++) {
+ write_ad9361_reg(base+0, addr+num_unique_coeffs);
+ write_ad9361_reg(base+1, (coeffs[num_unique_coeffs-1-addr]) & 0xff);
+ write_ad9361_reg(base+2, (coeffs[num_unique_coeffs-1-addr] >> 8) & 0xff);
+ write_ad9361_reg(base+5, 0xfe);
+ write_ad9361_reg(base+4, 0x00);
+ write_ad9361_reg(base+4, 0x00);
+ }
+
+ /* Disable the filter clock. */
+ write_ad9361_reg(base+5, 0xf8);
+}
+
+/* Program the RX FIR Filter. */
+void setup_rx_fir(int total_num_taps) {
+ int num_taps = total_num_taps / 2;
+ uint16_t coeffs[num_taps];
+ int i;
+ for(i = 0; i < num_taps; i++) {
+ coeffs[num_taps - 1 - i] = default_128tap_coeffs[63 - i];
+ }
+
+ program_fir_filter(RX_TYPE, total_num_taps, coeffs);
+}
+
+/* Program the TX FIR Filter. */
+void setup_tx_fir(int total_num_taps) {
+ int num_taps = total_num_taps / 2;
+ uint16_t coeffs[num_taps];
+ int i;
+ for(i = 0; i < num_taps; i++) {
+ coeffs[num_taps - 1 - i] = default_128tap_coeffs[63 - i];
+ }
+
+ program_fir_filter(TX_TYPE, total_num_taps, coeffs);
+}
+
+/***********************************************************************
+ * Calibration functions
+ ***********************************************************************/
+
+/* Calibrate and lock the BBPLL.
+ *
+ * This function should be called anytime the BBPLL is tuned. */
+void calibrate_lock_bbpll() {
+ write_ad9361_reg(0x03F, 0x05); // Start the BBPLL calibration
+ write_ad9361_reg(0x03F, 0x01); // Clear the 'start' bit
+
+ /* Increase BBPLL KV and phase margin. */
+ write_ad9361_reg(0x04c, 0x86);
+ write_ad9361_reg(0x04d, 0x01);
+ write_ad9361_reg(0x04d, 0x05);
+
+ /* Wait for BBPLL lock. */
+ int count = 0;
+ while(!(read_ad9361_reg(0x05e) & 0x80)) {
+ if(count > 1000) {
+ post_err_msg("BBPLL not locked");
+ break;
+ }
+
+ count++;
+ ad9361_msleep(2);
+ }
+}
+
+/* Calibrate the synthesizer charge pumps.
+ *
+ * Technically, this calibration only needs to be done once, at device
+ * initialization. */
+void calibrate_synth_charge_pumps() {
+ /* If this function ever gets called, and the ENSM isn't already in the
+ * ALERT state, then something has gone horribly wrong. */
+ if((read_ad9361_reg(0x017) & 0x0F) != 5) {
+ post_err_msg("Catalina not in ALERT during cal");
+ }
+
+ /* Calibrate the RX synthesizer charge pump. */
+ int count = 0;
+ write_ad9361_reg(0x23d, 0x04);
+ while(!(read_ad9361_reg(0x244) & 0x80)) {
+ if(count > 5) {
+ post_err_msg("RX charge pump cal failure");
+ break;
+ }
+
+ count++;
+ ad9361_msleep(1);
+ }
+ write_ad9361_reg(0x23d, 0x00);
+
+ /* Calibrate the TX synthesizer charge pump. */
+ count = 0;
+ write_ad9361_reg(0x27d, 0x04);
+ while(!(read_ad9361_reg(0x284) & 0x80)) {
+ if(count > 5) {
+ post_err_msg("TX charge pump cal failure");
+ break;
+ }
+
+ count++;
+ ad9361_msleep(1);
+ }
+ write_ad9361_reg(0x27d, 0x00);
+}
+
+/* Calibrate the analog BB RX filter.
+ *
+ * Note that the filter calibration depends heavily on the baseband
+ * bandwidth, so this must be re-done after any change to the RX sample
+ * rate. */
+double calibrate_baseband_rx_analog_filter() {
+ /* For filter tuning, baseband BW is half the complex BW, and must be
+ * between 28e6 and 0.2e6. */
+ double bbbw = _baseband_bw / 2.0;
+ if(bbbw > 28e6) {
+ bbbw = 28e6;
+ } else if (bbbw < 0.20e6) {
+ bbbw = 0.20e6;
+ }
+
+ double rxtune_clk = ((1.4 * bbbw * 2 *
+ DOUBLE_PI) / DOUBLE_LN_2);
+
+ _rx_bbf_tunediv = AD9361_MIN(511, AD9361_CEIL_INT(_bbpll_freq / rxtune_clk));
+
+ reg_bbftune_config = (reg_bbftune_config & 0xFE) \
+ | ((_rx_bbf_tunediv >> 8) & 0x0001);
+
+ double bbbw_mhz = bbbw / 1e6;
+
+ double temp = ((bbbw_mhz - AD9361_FLOOR_INT(bbbw_mhz)) * 1000) / 7.8125;
+ uint8_t bbbw_khz = (uint8_t) AD9361_MIN(127, (AD9361_FLOOR_INT(temp + 0.5)));
+
+ /* Set corner frequencies and dividers. */
+ write_ad9361_reg(0x1fb, (uint8_t)(bbbw_mhz));
+ write_ad9361_reg(0x1fc, bbbw_khz);
+ write_ad9361_reg(0x1f8, (_rx_bbf_tunediv & 0x00FF));
+ write_ad9361_reg(0x1f9, reg_bbftune_config);
+
+ /* RX Mix Voltage settings - only change with apps engineer help. */
+ write_ad9361_reg(0x1d5, 0x3f);
+ write_ad9361_reg(0x1c0, 0x03);
+
+ /* Enable RX1 & RX2 filter tuners. */
+ write_ad9361_reg(0x1e2, 0x02);
+ write_ad9361_reg(0x1e3, 0x02);
+
+ /* Run the calibration! */
+ int count = 0;
+ write_ad9361_reg(0x016, 0x80);
+ while(read_ad9361_reg(0x016) & 0x80) {
+ if(count > 100) {
+ post_err_msg("RX baseband filter cal FAILURE");
+ break;
+ }
+
+ count++;
+ ad9361_msleep(1);
+ }
+
+ /* Disable RX1 & RX2 filter tuners. */
+ write_ad9361_reg(0x1e2, 0x03);
+ write_ad9361_reg(0x1e3, 0x03);
+
+ return bbbw;
+}
+
+/* Calibrate the analog BB TX filter.
+ *
+ * Note that the filter calibration depends heavily on the baseband
+ * bandwidth, so this must be re-done after any change to the TX sample
+ * rate. */
+double calibrate_baseband_tx_analog_filter() {
+ /* For filter tuning, baseband BW is half the complex BW, and must be
+ * between 28e6 and 0.2e6. */
+ double bbbw = _baseband_bw / 2.0;
+ if(bbbw > 20e6) {
+ bbbw = 20e6;
+ } else if (bbbw < 0.625e6) {
+ bbbw = 0.625e6;
+ }
+
+ double txtune_clk = ((1.6 * bbbw * 2 *
+ DOUBLE_PI) / DOUBLE_LN_2);
+
+ uint16_t txbbfdiv = AD9361_MIN(511, (AD9361_CEIL_INT(_bbpll_freq / txtune_clk)));
+
+ reg_bbftune_mode = (reg_bbftune_mode & 0xFE) \
+ | ((txbbfdiv >> 8) & 0x0001);
+
+ /* Program the divider values. */
+ write_ad9361_reg(0x0d6, (txbbfdiv & 0x00FF));
+ write_ad9361_reg(0x0d7, reg_bbftune_mode);
+
+ /* Enable the filter tuner. */
+ write_ad9361_reg(0x0ca, 0x22);
+
+ /* Calibrate! */
+ int count = 0;
+ write_ad9361_reg(0x016, 0x40);
+ while(read_ad9361_reg(0x016) & 0x40) {
+ if(count > 100) {
+ post_err_msg("TX baseband filter cal FAILURE");
+ break;
+ }
+
+ count++;
+ ad9361_msleep(1);
+ }
+
+ /* Disable the filter tuner. */
+ write_ad9361_reg(0x0ca, 0x26);
+
+ return bbbw;
+}
+
+/* Calibrate the secondary TX filter.
+ *
+ * This filter also depends on the TX sample rate, so if a rate change is
+ * made, the previous calibration will no longer be valid. */
+void calibrate_secondary_tx_filter() {
+ /* For filter tuning, baseband BW is half the complex BW, and must be
+ * between 20e6 and 0.53e6. */
+ double bbbw = _baseband_bw / 2.0;
+ if(bbbw > 20e6) {
+ bbbw = 20e6;
+ } else if (bbbw < 0.53e6) {
+ bbbw = 0.53e6;
+ }
+
+ double bbbw_mhz = bbbw / 1e6;
+
+ /* Start with a resistor value of 100 Ohms. */
+ int res = 100;
+
+ /* Calculate target corner frequency. */
+ double corner_freq = 5 * bbbw_mhz * 2 * DOUBLE_PI;
+
+ /* Iterate through RC values to determine correct combination. */
+ int cap = 0;
+ int i;
+ for(i = 0; i <= 3; i++) {
+ cap = (AD9361_FLOOR_INT(0.5 + (( 1 / ((corner_freq * res) * 1e6)) * 1e12))) - 12;
+
+ if(cap <= 63) {
+ break;
+ }
+
+ res = res * 2;
+ }
+ if(cap > 63) {
+ cap = 63;
+ }
+
+ uint8_t reg0d0, reg0d1, reg0d2;
+
+ /* Translate baseband bandwidths to register settings. */
+ if((bbbw_mhz * 2) <= 9) {
+ reg0d0 = 0x59;
+ } else if(((bbbw_mhz * 2) > 9) && ((bbbw_mhz * 2) <= 24)) {
+ reg0d0 = 0x56;
+ } else if((bbbw_mhz * 2) > 24) {
+ reg0d0 = 0x57;
+ } else {
+ post_err_msg("Cal2ndTxFil: INVALID_CODE_PATH bad bbbw_mhz");
+ reg0d0 = 0x00;
+ }
+
+ /* Translate resistor values to register settings. */
+ if(res == 100) {
+ reg0d1 = 0x0c;
+ } else if(res == 200) {
+ reg0d1 = 0x04;
+ } else if(res == 400) {
+ reg0d1 = 0x03;
+ } else if(res == 800) {
+ reg0d1 = 0x01;
+ } else {
+ reg0d1 = 0x0c;
+ }
+
+ reg0d2 = cap;
+
+ /* Program the above-calculated values. Sweet. */
+ write_ad9361_reg(0x0d2, reg0d2);
+ write_ad9361_reg(0x0d1, reg0d1);
+ write_ad9361_reg(0x0d0, reg0d0);
+}
+
+/* Calibrate the RX TIAs.
+ *
+ * Note that the values in the TIA register, after calibration, vary with
+ * the RX gain settings. */
+void calibrate_rx_TIAs() {
+
+ uint8_t reg1eb = read_ad9361_reg(0x1eb) & 0x3F;
+ uint8_t reg1ec = read_ad9361_reg(0x1ec) & 0x7F;
+ uint8_t reg1e6 = read_ad9361_reg(0x1e6) & 0x07;
+ uint8_t reg1db = 0x00;
+ uint8_t reg1dc = 0x00;
+ uint8_t reg1dd = 0x00;
+ uint8_t reg1de = 0x00;
+ uint8_t reg1df = 0x00;
+
+ /* For calibration, baseband BW is half the complex BW, and must be
+ * between 28e6 and 0.2e6. */
+ double bbbw = _baseband_bw / 2.0;
+ if(bbbw > 20e6) {
+ bbbw = 20e6;
+ } else if (bbbw < 0.20e6) {
+ bbbw = 0.20e6;
+ }
+ double ceil_bbbw_mhz = AD9361_CEIL_INT(bbbw / 1e6);
+
+ /* Do some crazy resistor and capacitor math. */
+ int Cbbf = (reg1eb * 160) + (reg1ec * 10) + 140;
+ int R2346 = 18300 * (reg1e6 & 0x07);
+ double CTIA_fF = (Cbbf * R2346 * 0.56) / 3500;
+
+ /* Translate baseband BW to register settings. */
+ if(ceil_bbbw_mhz <= 3) {
+ reg1db = 0xe0;
+ } else if((ceil_bbbw_mhz > 3) && (ceil_bbbw_mhz <= 10)) {
+ reg1db = 0x60;
+ } else if(ceil_bbbw_mhz > 10) {
+ reg1db = 0x20;
+ } else {
+ post_err_msg("CalRxTias: INVALID_CODE_PATH bad bbbw_mhz");
+ }
+
+ if(CTIA_fF > 2920) {
+ reg1dc = 0x40;
+ reg1de = 0x40;
+
+ uint8_t temp = (uint8_t) AD9361_MIN(127, (AD9361_FLOOR_INT(0.5 + ((CTIA_fF - 400.0) / 320.0))));
+ reg1dd = temp;
+ reg1df = temp;
+ } else {
+ uint8_t temp = (uint8_t) AD9361_FLOOR_INT(0.5 + ((CTIA_fF - 400.0) / 40.0)) + 0x40;
+ reg1dc = temp;
+ reg1de = temp;
+ reg1dd = 0;
+ reg1df = 0;
+ }
+
+ /* w00t. Settings calculated. Program them and roll out. */
+ write_ad9361_reg(0x1db, reg1db);
+ write_ad9361_reg(0x1dd, reg1dd);
+ write_ad9361_reg(0x1df, reg1df);
+ write_ad9361_reg(0x1dc, reg1dc);
+ write_ad9361_reg(0x1de, reg1de);
+}
+
+/* Setup the Catalina ADC.
+ *
+ * There are 40 registers that control the ADC's operation, most of the
+ * values of which must be derived mathematically, dependent on the current
+ * setting of the BBPLL. Note that the order of calculation is critical, as
+ * some of the 40 registers depend on the values in others. */
+void setup_adc() {
+ double bbbw_mhz = (((_bbpll_freq / 1e6) / _rx_bbf_tunediv) * DOUBLE_LN_2) \
+ / (1.4 * 2 * DOUBLE_PI);
+
+ /* For calibration, baseband BW is half the complex BW, and must be
+ * between 28e6 and 0.2e6. */
+ if(bbbw_mhz > 28) {
+ bbbw_mhz = 28;
+ } else if (bbbw_mhz < 0.20) {
+ bbbw_mhz = 0.20;
+ }
+
+ uint8_t rxbbf_c3_msb = read_ad9361_reg(0x1eb) & 0x3F;
+ uint8_t rxbbf_c3_lsb = read_ad9361_reg(0x1ec) & 0x7F;
+ uint8_t rxbbf_r2346 = read_ad9361_reg(0x1e6) & 0x07;
+
+ double fsadc = _adcclock_freq / 1e6;
+
+ /* Sort out the RC time constant for our baseband bandwidth... */
+ double rc_timeconst = 0.0;
+ if(bbbw_mhz < 18) {
+ rc_timeconst = (1 / ((1.4 * 2 * DOUBLE_PI) \
+ * (18300 * rxbbf_r2346)
+ * ((160e-15 * rxbbf_c3_msb)
+ + (10e-15 * rxbbf_c3_lsb) + 140e-15)
+ * (bbbw_mhz * 1e6)));
+ } else {
+ rc_timeconst = (1 / ((1.4 * 2 * DOUBLE_PI) \
+ * (18300 * rxbbf_r2346)
+ * ((160e-15 * rxbbf_c3_msb)
+ + (10e-15 * rxbbf_c3_lsb) + 140e-15)
+ * (bbbw_mhz * 1e6) * (1 + (0.01 * (bbbw_mhz - 18)))));
+ }
+
+ double scale_res = ad9361_sqrt(1 / rc_timeconst);
+ double scale_cap = ad9361_sqrt(1 / rc_timeconst);
+
+ double scale_snr = (_adcclock_freq < 80e6) ? 1.0 : 1.584893192;
+ double maxsnr = 640 / 160;
+
+ /* Calculate the values for all 40 settings registers.
+ *
+ * DO NOT TOUCH THIS UNLESS YOU KNOW EXACTLY WHAT YOU ARE DOING. kthx.*/
+ uint8_t data[40];
+ data[0] = 0; data[1] = 0; data[2] = 0; data[3] = 0x24;
+ data[4] = 0x24; data[5] = 0; data[6] = 0;
+ data[7] = (uint8_t) AD9361_MIN(124, (AD9361_FLOOR_INT(-0.5
+ + (80.0 * scale_snr * scale_res
+ * AD9361_MIN(1.0, ad9361_sqrt(maxsnr * fsadc / 640.0))))));
+ double data007 = data[7];
+ data[8] = (uint8_t) AD9361_MIN(255, (AD9361_FLOOR_INT(0.5
+ + ((20.0 * (640.0 / fsadc) * ((data007 / 80.0))
+ / (scale_res * scale_cap))))));
+ data[10] = (uint8_t) AD9361_MIN(127, (AD9361_FLOOR_INT(-0.5 + (77.0 * scale_res
+ * AD9361_MIN(1.0, ad9361_sqrt(maxsnr * fsadc / 640.0))))));
+ double data010 = data[10];
+ data[9] = (uint8_t) AD9361_MIN(127, (AD9361_FLOOR_INT(0.8 * data010)));
+ data[11] = (uint8_t) AD9361_MIN(255, (AD9361_FLOOR_INT(0.5
+ + (20.0 * (640.0 / fsadc) * ((data010 / 77.0)
+ / (scale_res * scale_cap))))));
+ data[12] = (uint8_t) AD9361_MIN(127, (AD9361_FLOOR_INT(-0.5
+ + (80.0 * scale_res * AD9361_MIN(1.0,
+ ad9361_sqrt(maxsnr * fsadc / 640.0))))));
+ double data012 = data[12];
+ data[13] = (uint8_t) AD9361_MIN(255, (AD9361_FLOOR_INT(-1.5
+ + (20.0 * (640.0 / fsadc) * ((data012 / 80.0)
+ / (scale_res * scale_cap))))));
+ data[14] = 21 * (uint8_t)(AD9361_FLOOR_INT(0.1 * 640.0 / fsadc));
+ data[15] = (uint8_t) AD9361_MIN(127, (1.025 * data007));
+ double data015 = data[15];
+ data[16] = (uint8_t) AD9361_MIN(127, (AD9361_FLOOR_INT((data015
+ * (0.98 + (0.02 * AD9361_MAX(1.0,
+ (640.0 / fsadc) / maxsnr)))))));
+ data[17] = data[15];
+ data[18] = (uint8_t) AD9361_MIN(127, (0.975 * (data010)));
+ double data018 = data[18];
+ data[19] = (uint8_t) AD9361_MIN(127, (AD9361_FLOOR_INT((data018
+ * (0.98 + (0.02 * AD9361_MAX(1.0,
+ (640.0 / fsadc) / maxsnr)))))));
+ data[20] = data[18];
+ data[21] = (uint8_t) AD9361_MIN(127, (0.975 * data012));
+ double data021 = data[21];
+ data[22] = (uint8_t) AD9361_MIN(127, (AD9361_FLOOR_INT((data021
+ * (0.98 + (0.02 * AD9361_MAX(1.0,
+ (640.0 / fsadc) / maxsnr)))))));
+ data[23] = data[21];
+ data[24] = 0x2e;
+ data[25] = (uint8_t)(AD9361_FLOOR_INT(128.0 + AD9361_MIN(63.0,
+ 63.0 * (fsadc / 640.0))));
+ data[26] = (uint8_t)(AD9361_FLOOR_INT(AD9361_MIN(63.0, 63.0 * (fsadc / 640.0)
+ * (0.92 + (0.08 * (640.0 / fsadc))))));
+ data[27] = (uint8_t)(AD9361_FLOOR_INT(AD9361_MIN(63.0,
+ 32.0 * ad9361_sqrt(fsadc / 640.0))));
+ data[28] = (uint8_t)(AD9361_FLOOR_INT(128.0 + AD9361_MIN(63.0,
+ 63.0 * (fsadc / 640.0))));
+ data[29] = (uint8_t)(AD9361_FLOOR_INT(AD9361_MIN(63.0,
+ 63.0 * (fsadc / 640.0)
+ * (0.92 + (0.08 * (640.0 / fsadc))))));
+ data[30] = (uint8_t)(AD9361_FLOOR_INT(AD9361_MIN(63.0,
+ 32.0 * ad9361_sqrt(fsadc / 640.0))));
+ data[31] = (uint8_t)(AD9361_FLOOR_INT(128.0 + AD9361_MIN(63.0,
+ 63.0 * (fsadc / 640.0))));
+ data[32] = (uint8_t)(AD9361_FLOOR_INT(AD9361_MIN(63.0,
+ 63.0 * (fsadc / 640.0) * (0.92
+ + (0.08 * (640.0 / fsadc))))));
+ data[33] = (uint8_t)(AD9361_FLOOR_INT(AD9361_MIN(63.0,
+ 63.0 * ad9361_sqrt(fsadc / 640.0))));
+ data[34] = (uint8_t) AD9361_MIN(127, (AD9361_FLOOR_INT(64.0
+ * ad9361_sqrt(fsadc / 640.0))));
+ data[35] = 0x40;
+ data[36] = 0x40;
+ data[37] = 0x2c;
+ data[38] = 0x00;
+ data[39] = 0x00;
+
+ /* Program the registers! */
+ int i;
+ for(i=0; i<40; i++) {
+ write_ad9361_reg(0x200+i, data[i]);
+ }
+
+}
+
+/* Calibrate the baseband DC offset.
+ *
+ * Note that this function is called from within the TX quadrature
+ * calibration function! */
+void calibrate_baseband_dc_offset() {
+ write_ad9361_reg(0x193, 0x3f); // Calibration settings
+ write_ad9361_reg(0x190, 0x0f); // Set tracking coefficient
+ //write_ad9361_reg(0x190, /*0x0f*//*0xDF*/0x80*1 | 0x40*1 | (16+8/*+4*/)); // Set tracking coefficient: don't *4 counter, do decim /4, increased gain shift
+ write_ad9361_reg(0x194, 0x01); // More calibration settings
+
+ /* Start that calibration, baby. */
+ int count = 0;
+ write_ad9361_reg(0x016, 0x01);
+ while(read_ad9361_reg(0x016) & 0x01) {
+ if(count > 100) {
+ post_err_msg("Baseband DC Offset Calibration Failure");
+ break;
+ }
+
+ count++;
+ ad9361_msleep(5);
+ }
+}
+
+/* Calibrate the RF DC offset.
+ *
+ * Note that this function is called from within the TX quadrature
+ * calibration function. */
+void calibrate_rf_dc_offset() {
+ /* Some settings are frequency-dependent. */
+ if(_rx_freq < 4e9) {
+ write_ad9361_reg(0x186, 0x32); // RF DC Offset count
+ write_ad9361_reg(0x187, 0x24);
+ write_ad9361_reg(0x188, 0x05);
+ } else {
+ write_ad9361_reg(0x186, 0x28); // RF DC Offset count
+ write_ad9361_reg(0x187, 0x34);
+ write_ad9361_reg(0x188, 0x06);
+ }
+
+ write_ad9361_reg(0x185, 0x20); // RF DC Offset wait count
+ write_ad9361_reg(0x18b, 0x83);
+ write_ad9361_reg(0x189, 0x30);
+
+ /* Run the calibration! */
+ int count = 0;
+ write_ad9361_reg(0x016, 0x02);
+ while(read_ad9361_reg(0x016) & 0x02) {
+ if(count > 100) {
+ post_err_msg("RF DC Offset Calibration Failure");
+ break;
+ }
+
+ count++;
+ ad9361_msleep(50);
+ }
+}
+
+/* Start the RX quadrature calibration.
+ *
+ * Note that we are using Catalina's 'tracking' feature for RX quadrature
+ * calibration, so once it starts it continues to free-run during operation.
+ * It should be re-run for large frequency changes. */
+void calibrate_rx_quadrature(void) {
+ /* Configure RX Quadrature calibration settings. */
+ write_ad9361_reg(0x168, 0x03); // Set tone level for cal
+ write_ad9361_reg(0x16e, 0x25); // RX Gain index to use for cal
+ write_ad9361_reg(0x16a, 0x75); // Set Kexp phase
+ write_ad9361_reg(0x16b, 0x15); // Set Kexp amplitude
+ write_ad9361_reg(0x169, 0xcf); // Continuous tracking mode
+ write_ad9361_reg(0x18b, 0xad);
+}
+
+/* TX quadtrature calibration routine.
+ *
+ * The TX quadrature needs to be done twice, once for each TX chain, with
+ * only one register change in between. Thus, this function enacts the
+ * calibrations, and it is called from calibrate_tx_quadrature. */
+void tx_quadrature_cal_routine(void) {
+
+ /* This is a weird process, but here is how it works:
+ * 1) Read the calibrated NCO frequency bits out of 0A3.
+ * 2) Write the two bits to the RX NCO freq part of 0A0.
+ * 3) Re-read 0A3 to get bits [5:0] because maybe they changed?
+ * 4) Update only the TX NCO freq bits in 0A3.
+ * 5) Profit (I hope). */
+ uint8_t reg0a3 = read_ad9361_reg(0x0a3);
+ uint8_t nco_freq = (reg0a3 & 0xC0);
+ write_ad9361_reg(0x0a0, 0x15 | (nco_freq >> 1));
+ reg0a3 = read_ad9361_reg(0x0a3);
+ write_ad9361_reg(0x0a3, (reg0a3 & 0x3F) | nco_freq);
+
+ /* It is possible to reach a configuration that won't operate correctly,
+ * where the two test tones used for quadrature calibration are outside
+ * of the RX BBF, and therefore don't make it to the ADC. We will check
+ * for that scenario here. */
+ double max_cal_freq = (((_baseband_bw * _tfir_factor) * ((nco_freq >> 6) + 1)) / 32) * 2;
+ double bbbw = _baseband_bw / 2.0; // bbbw represents the one-sided BW
+ if(bbbw > 28e6) {
+ bbbw = 28e6;
+ } else if (bbbw < 0.20e6) {
+ bbbw = 0.20e6;
+ }
+ if (max_cal_freq > bbbw )
+ post_err_msg("max_cal_freq > bbbw");
+
+ write_ad9361_reg(0x0a1, 0x7B); // Set tracking coefficient
+ write_ad9361_reg(0x0a9, 0xff); // Cal count
+ write_ad9361_reg(0x0a2, 0x7f); // Cal Kexp
+ write_ad9361_reg(0x0a5, 0x01); // Cal magnitude threshold VVVV
+ write_ad9361_reg(0x0a6, 0x01);
+
+ /* The gain table index used for calibration must be adjusted for the
+ * mid-table to get a TIA index = 1 and LPF index = 0. */
+ if((_rx_freq >= 1300e6) && (_rx_freq < 4000e6)) {
+ write_ad9361_reg(0x0aa, 0x22); // Cal gain table index
+ } else {
+ write_ad9361_reg(0x0aa, 0x25); // Cal gain table index
+ }
+
+ write_ad9361_reg(0x0a4, 0xf0); // Cal setting conut
+ write_ad9361_reg(0x0ae, 0x00); // Cal LPF gain index (split mode)
+
+ /* First, calibrate the baseband DC offset. */
+ calibrate_baseband_dc_offset();
+
+ /* Second, calibrate the RF DC offset. */
+ calibrate_rf_dc_offset();
+
+ /* Now, calibrate the TX quadrature! */
+ int count = 0;
+ write_ad9361_reg(0x016, 0x10);
+ while(read_ad9361_reg(0x016) & 0x10) {
+ if(count > 100) {
+ post_err_msg("TX Quadrature Calibration Failure");
+ break;
+ }
+
+ count++;
+ ad9361_msleep(10);
+ }
+}
+
+/* Run the TX quadrature calibration.
+ *
+ * Note that from within this function we are also triggering the baseband
+ * and RF DC calibrations. */
+void calibrate_tx_quadrature(void) {
+ /* Make sure we are, in fact, in the ALERT state. If not, something is
+ * terribly wrong in the driver execution flow. */
+ if((read_ad9361_reg(0x017) & 0x0F) != 5) {
+ post_err_msg("TX Quad Cal started, but not in ALERT");
+ }
+
+ /* Turn off free-running and continuous calibrations. Note that this
+ * will get turned back on at the end of the RX calibration routine. */
+ write_ad9361_reg(0x169, 0xc0);
+
+ /* This calibration must be done in a certain order, and for both TX_A
+ * and TX_B, separately. Store the original setting so that we can
+ * restore it later. */
+ uint8_t orig_reg_inputsel = reg_inputsel;
+
+ /***********************************************************************
+ * TX1/2-A Calibration
+ **********************************************************************/
+ reg_inputsel = reg_inputsel & 0xBF;
+ write_ad9361_reg(0x004, reg_inputsel);
+
+ tx_quadrature_cal_routine();
+
+ /***********************************************************************
+ * TX1/2-B Calibration
+ **********************************************************************/
+ reg_inputsel = reg_inputsel | 0x40;
+ write_ad9361_reg(0x004, reg_inputsel);
+
+ tx_quadrature_cal_routine();
+
+ /***********************************************************************
+ * fin
+ **********************************************************************/
+ reg_inputsel = orig_reg_inputsel;
+ write_ad9361_reg(0x004, orig_reg_inputsel);
+}
+
+
+/***********************************************************************
+ * Other Misc Setup Functions
+ ***********************************************************************/
+
+/* Program the mixer gain table.
+ *
+ * Note that this table is fixed for all frequency settings. */
+void program_mixer_gm_subtable() {
+ uint8_t gain[] = {0x78, 0x74, 0x70, 0x6C, 0x68, 0x64, 0x60, 0x5C, 0x58,
+ 0x54, 0x50, 0x4C, 0x48, 0x30, 0x18, 0x00};
+ uint8_t gm[] = {0x00, 0x0D, 0x15, 0x1B, 0x21, 0x25, 0x29, 0x2C, 0x2F,
+ 0x31, 0x33, 0x34, 0x35, 0x3A, 0x3D, 0x3E};
+
+ /* Start the clock. */
+ write_ad9361_reg(0x13f, 0x02);
+
+ /* Program the GM Sub-table. */
+ int i;
+ for(i = 15; i >= 0; i--) {
+ write_ad9361_reg(0x138, i);
+ write_ad9361_reg(0x139, gain[(15 - i)]);
+ write_ad9361_reg(0x13A, 0x00);
+ write_ad9361_reg(0x13B, gm[(15 - i)]);
+ write_ad9361_reg(0x13F, 0x06);
+ write_ad9361_reg(0x13C, 0x00);
+ write_ad9361_reg(0x13C, 0x00);
+ }
+
+ /* Clear write bit and stop clock. */
+ write_ad9361_reg(0x13f, 0x02);
+ write_ad9361_reg(0x13C, 0x00);
+ write_ad9361_reg(0x13C, 0x00);
+ write_ad9361_reg(0x13f, 0x00);
+}
+
+/* Program the gain table.
+ *
+ * There are three different gain tables for different frequency ranges! */
+void program_gain_table() {
+
+ /* Figure out which gain table we should be using for our current
+ * frequency band. */
+ uint8_t (*gain_table)[5] = NULL;
+ uint8_t new_gain_table;
+ if(_rx_freq < 1300e6) {
+ gain_table = gain_table_sub_1300mhz;
+ new_gain_table = 1;
+ } else if(_rx_freq < 4e9) {
+ gain_table = gain_table_1300mhz_to_4000mhz;
+ new_gain_table = 2;
+ } else if(_rx_freq <= 6e9) {
+ gain_table = gain_table_4000mhz_to_6000mhz;
+ new_gain_table = 3;
+ } else {
+ post_err_msg("Wrong _rx_freq value");
+ new_gain_table = 1;
+ }
+
+ /* Only re-program the gain table if there has been a band change. */
+ if(_curr_gain_table == new_gain_table) {
+ return;
+ } else {
+ _curr_gain_table = new_gain_table;
+ }
+
+ /* Okay, we have to program a new gain table. Sucks, brah. Start the
+ * gain table clock. */
+ write_ad9361_reg(0x137, 0x1A);
+
+ /* IT'S PROGRAMMING TIME. */
+ uint8_t index = 0;
+ for(; index < 77; index++) {
+ write_ad9361_reg(0x130, index);
+ write_ad9361_reg(0x131, gain_table[index][1]);
+ write_ad9361_reg(0x132, gain_table[index][2]);
+ write_ad9361_reg(0x133, gain_table[index][3]);
+ write_ad9361_reg(0x137, 0x1E);
+ write_ad9361_reg(0x134, 0x00);
+ write_ad9361_reg(0x134, 0x00);
+ }
+
+ /* Everything above the 77th index is zero. */
+ for(; index < 91; index++) {
+ write_ad9361_reg(0x130, index);
+ write_ad9361_reg(0x131, 0x00);
+ write_ad9361_reg(0x132, 0x00);
+ write_ad9361_reg(0x133, 0x00);
+ write_ad9361_reg(0x137, 0x1E);
+ write_ad9361_reg(0x134, 0x00);
+ write_ad9361_reg(0x134, 0x00);
+ }
+
+ /* Clear the write bit and stop the gain clock. */
+ write_ad9361_reg(0x137, 0x1A);
+ write_ad9361_reg(0x134, 0x00);
+ write_ad9361_reg(0x134, 0x00);
+ write_ad9361_reg(0x137, 0x00);
+}
+
+/* Setup gain control registers.
+ *
+ * This really only needs to be done once, at initialization. */
+void setup_gain_control() {
+ write_ad9361_reg(0x0FA, 0xE0); // Gain Control Mode Select
+ write_ad9361_reg(0x0FB, 0x08); // Table, Digital Gain, Man Gain Ctrl
+ write_ad9361_reg(0x0FC, 0x23); // Incr Step Size, ADC Overrange Size
+ write_ad9361_reg(0x0FD, 0x4C); // Max Full/LMT Gain Table Index
+ write_ad9361_reg(0x0FE, 0x44); // Decr Step Size, Peak Overload Time
+ write_ad9361_reg(0x100, 0x6F); // Max Digital Gain
+ write_ad9361_reg(0x104, 0x2F); // ADC Small Overload Threshold
+ write_ad9361_reg(0x105, 0x3A); // ADC Large Overload Threshold
+ write_ad9361_reg(0x107, 0x31); // Large LMT Overload Threshold
+ write_ad9361_reg(0x108, 0x39); // Small LMT Overload Threshold
+ write_ad9361_reg(0x109, 0x23); // Rx1 Full/LMT Gain Index
+ write_ad9361_reg(0x10A, 0x58); // Rx1 LPF Gain Index
+ write_ad9361_reg(0x10B, 0x00); // Rx1 Digital Gain Index
+ write_ad9361_reg(0x10C, 0x23); // Rx2 Full/LMT Gain Index
+ write_ad9361_reg(0x10D, 0x18); // Rx2 LPF Gain Index
+ write_ad9361_reg(0x10E, 0x00); // Rx2 Digital Gain Index
+ write_ad9361_reg(0x114, 0x30); // Low Power Threshold
+ write_ad9361_reg(0x11A, 0x27); // Initial LMT Gain Limit
+ write_ad9361_reg(0x081, 0x00); // Tx Symbol Gain Control
+}
+
+/* Setup the RX or TX synthesizers.
+ *
+ * This setup depends on a fixed look-up table, which is stored in an
+ * included header file. The table is indexed based on the passed VCO rate.
+ */
+void setup_synth(int which, double vcorate) {
+ /* The vcorates in the vco_index array represent lower boundaries for
+ * rates. Once we find a match, we use that index to look-up the rest of
+ * the register values in the LUT. */
+ int vcoindex = 0;
+ int i;
+ for(i = 0; i < 53; i++) {
+ vcoindex = i;
+ if(vcorate > vco_index[i]) {
+ break;
+ }
+ }
+
+ if (vcoindex > 53)
+ post_err_msg("vcoindex > 53");
+
+ /* Parse the values out of the LUT based on our calculated index... */
+ uint8_t vco_output_level = synth_cal_lut[vcoindex][0];
+ uint8_t vco_varactor = synth_cal_lut[vcoindex][1];
+ uint8_t vco_bias_ref = synth_cal_lut[vcoindex][2];
+ uint8_t vco_bias_tcf = synth_cal_lut[vcoindex][3];
+ uint8_t vco_cal_offset = synth_cal_lut[vcoindex][4];
+ uint8_t vco_varactor_ref = synth_cal_lut[vcoindex][5];
+ uint8_t charge_pump_curr = synth_cal_lut[vcoindex][6];
+ uint8_t loop_filter_c2 = synth_cal_lut[vcoindex][7];
+ uint8_t loop_filter_c1 = synth_cal_lut[vcoindex][8];
+ uint8_t loop_filter_r1 = synth_cal_lut[vcoindex][9];
+ uint8_t loop_filter_c3 = synth_cal_lut[vcoindex][10];
+ uint8_t loop_filter_r3 = synth_cal_lut[vcoindex][11];
+
+ /* ... annnd program! */
+ if(which == RX_TYPE) {
+ write_ad9361_reg(0x23a, 0x40 | vco_output_level);
+ write_ad9361_reg(0x239, 0xC0 | vco_varactor);
+ write_ad9361_reg(0x242, vco_bias_ref | (vco_bias_tcf << 3));
+ write_ad9361_reg(0x238, (vco_cal_offset << 3));
+ write_ad9361_reg(0x245, 0x00);
+ write_ad9361_reg(0x251, vco_varactor_ref);
+ write_ad9361_reg(0x250, 0x70);
+ write_ad9361_reg(0x23b, 0x80 | charge_pump_curr);
+ write_ad9361_reg(0x23e, loop_filter_c1 | (loop_filter_c2 << 4));
+ write_ad9361_reg(0x23f, loop_filter_c3 | (loop_filter_r1 << 4));
+ write_ad9361_reg(0x240, loop_filter_r3);
+ } else if(which == TX_TYPE) {
+ write_ad9361_reg(0x27a, 0x40 | vco_output_level);
+ write_ad9361_reg(0x279, 0xC0 | vco_varactor);
+ write_ad9361_reg(0x282, vco_bias_ref | (vco_bias_tcf << 3));
+ write_ad9361_reg(0x278, (vco_cal_offset << 3));
+ write_ad9361_reg(0x285, 0x00);
+ write_ad9361_reg(0x291, vco_varactor_ref);
+ write_ad9361_reg(0x290, 0x70);
+ write_ad9361_reg(0x27b, 0x80 | charge_pump_curr);
+ write_ad9361_reg(0x27e, loop_filter_c1 | (loop_filter_c2 << 4));
+ write_ad9361_reg(0x27f, loop_filter_c3 | (loop_filter_r1 << 4));
+ write_ad9361_reg(0x280, loop_filter_r3);
+ } else {
+ post_err_msg("[setup_synth] INVALID_CODE_PATH");
+ }
+}
+
+
+/* Tune the baseband VCO.
+ *
+ * This clock signal is what gets fed to the ADCs and DACs. This function is
+ * not exported outside of this file, and is invoked based on the rate
+ * fed to the public set_clock_rate function. */
+double tune_bbvco(const double rate) {
+ msg("[tune_bbvco] rate=%.10f", rate);
+
+ /* Let's not re-tune to the same frequency over and over... */
+ if(freq_is_nearly_equal(rate, _req_coreclk)) {
+ return _adcclock_freq;
+ }
+
+ _req_coreclk = rate;
+
+ const double fref = 40e6;
+ const int modulus = 2088960;
+ const double vcomax = 1430e6;
+ const double vcomin = 672e6;
+ double vcorate;
+ int vcodiv;
+
+ /* Iterate over VCO dividers until appropriate divider is found. */
+ int i = 1;
+ for(; i <= 6; i++) {
+ vcodiv = 1 << i;
+ vcorate = rate * vcodiv;
+
+ if(vcorate >= vcomin && vcorate <= vcomax) break;
+ }
+ if(i == 7)
+ post_err_msg("[tune_bbvco] wrong vcorate");
+
+ msg("[tune_bbvco] vcodiv=%d vcorate=%.10f", vcodiv, vcorate);
+
+ /* Fo = Fref * (Nint + Nfrac / mod) */
+ int nint = vcorate / fref;
+ msg("[tune_bbvco] (nint)=%.10f", (vcorate / fref));
+ int nfrac = lround(((vcorate / fref) - (double)nint) * (double)modulus);
+ msg("[tune_bbvco] (nfrac)=%.10f", (((vcorate / fref) - (double)nint) * (double)modulus));
+ msg("[tune_bbvco] nint=%d nfrac=%d", nint, nfrac);
+ double actual_vcorate = fref * ((double)nint + ((double)nfrac / (double)modulus));
+
+ /* Scale CP current according to VCO rate */
+ const double icp_baseline = 150e-6;
+ const double freq_baseline = 1280e6;
+ double icp = icp_baseline * (actual_vcorate / freq_baseline);
+ int icp_reg = (icp / 25e-6) - 1;
+
+ write_ad9361_reg(0x045, 0x00); // REFCLK / 1 to BBPLL
+ write_ad9361_reg(0x046, icp_reg & 0x3F); // CP current
+ write_ad9361_reg(0x048, 0xe8); // BBPLL loop filters
+ write_ad9361_reg(0x049, 0x5b); // BBPLL loop filters
+ write_ad9361_reg(0x04a, 0x35); // BBPLL loop filters
+
+ write_ad9361_reg(0x04b, 0xe0);
+ write_ad9361_reg(0x04e, 0x10); // Max accuracy
+
+ write_ad9361_reg(0x043, nfrac & 0xFF); // Nfrac[7:0]
+ write_ad9361_reg(0x042, (nfrac >> 8) & 0xFF); // Nfrac[15:8]
+ write_ad9361_reg(0x041, (nfrac >> 16) & 0xFF); // Nfrac[23:16]
+ write_ad9361_reg(0x044, nint); // Nint
+
+ calibrate_lock_bbpll();
+
+ reg_bbpll = (reg_bbpll & 0xF8) | i;
+
+ _bbpll_freq = actual_vcorate;
+ _adcclock_freq = (actual_vcorate / vcodiv);
+
+ return _adcclock_freq;
+}
+
+/* This function re-programs all of the gains in the system.
+ *
+ * Because the gain values match to different gain indices based on the
+ * current operating band, this function can be called to update all gain
+ * settings to the appropriate index after a re-tune. */
+void program_gains() {
+ set_gain(RX_TYPE,1, _rx1_gain);
+ set_gain(RX_TYPE,2, _rx2_gain);
+ set_gain(TX_TYPE,1, _tx1_gain);
+ set_gain(TX_TYPE,2, _tx2_gain);
+}
+
+/* This is the internal tune function, not available for a host call.
+ *
+ * Calculate the VCO settings for the requested frquency, and then either
+ * tune the RX or TX VCO. */
+double tune_helper(int which, const double value) {
+
+ /* The RFPLL runs from 6 GHz - 12 GHz */
+ const double fref = 80e6;
+ const int modulus = 8388593;
+ const double vcomax = 12e9;
+ const double vcomin = 6e9;
+ double vcorate;
+ int vcodiv;
+
+ /* Iterate over VCO dividers until appropriate divider is found. */
+ int i;
+ for(i = 0; i <= 6; i++) {
+ vcodiv = 2 << i;
+ vcorate = value * vcodiv;
+ if(vcorate >= vcomin && vcorate <= vcomax) break;
+ }
+ if(i == 7)
+ post_err_msg("RFVCO can't find valid VCO rate!");
+
+ int nint = vcorate / fref;
+ int nfrac = ((vcorate / fref) - nint) * modulus;
+
+ double actual_vcorate = fref * (nint + (double)(nfrac)/modulus);
+ double actual_lo = actual_vcorate / vcodiv;
+
+ // UHD_VAR(actual_lo); // TODO:
+
+ if(which == RX_TYPE) {
+
+ _req_rx_freq = value;
+
+ /* Set band-specific settings. */
+ if(value < AD9361_RX_BAND_EDGE0) {
+ reg_inputsel = (reg_inputsel & 0xC0) | 0x30;
+ } else if((value >= AD9361_RX_BAND_EDGE0) && (value < AD9361_RX_BAND_EDGE1)) {
+ reg_inputsel = (reg_inputsel & 0xC0) | 0x0C;
+ } else if((value >= AD9361_RX_BAND_EDGE1) && (value <= 6e9)) {
+ reg_inputsel = (reg_inputsel & 0xC0) | 0x03;
+ } else {
+ post_err_msg("[tune_helper] INVALID_CODE_PATH");
+ }
+
+ write_ad9361_reg(0x004, reg_inputsel);
+
+ /* Store vcodiv setting. */
+ reg_vcodivs = (reg_vcodivs & 0xF0) | (i & 0x0F);
+
+ /* Setup the synthesizer. */
+ setup_synth(RX_TYPE, actual_vcorate);
+
+ /* Tune!!!! */
+ write_ad9361_reg(0x233, nfrac & 0xFF);
+ write_ad9361_reg(0x234, (nfrac >> 8) & 0xFF);
+ write_ad9361_reg(0x235, (nfrac >> 16) & 0xFF);
+ write_ad9361_reg(0x232, (nint >> 8) & 0xFF);
+ write_ad9361_reg(0x231, nint & 0xFF);
+ write_ad9361_reg(0x005, reg_vcodivs);
+
+ /* Lock the PLL! */
+ ad9361_msleep(2);
+ if((read_ad9361_reg(0x247) & 0x02) == 0) {
+ post_err_msg("RX PLL NOT LOCKED");
+ }
+
+ _rx_freq = actual_lo;
+
+ return actual_lo;
+
+ } else {
+
+ _req_tx_freq = value;
+
+ /* Set band-specific settings. */
+ if(value < AD9361_TX_BAND_EDGE) {
+ reg_inputsel = reg_inputsel | 0x40;
+ } else if((value >= AD9361_TX_BAND_EDGE) && (value <= 6e9)) {
+ reg_inputsel = reg_inputsel & 0xBF;
+ } else {
+ post_err_msg("[tune_helper] INVALID_CODE_PATH");
+ }
+
+ write_ad9361_reg(0x004, reg_inputsel);
+
+ /* Store vcodiv setting. */
+ reg_vcodivs = (reg_vcodivs & 0x0F) | ((i & 0x0F) << 4);
+
+ /* Setup the synthesizer. */
+ setup_synth(TX_TYPE, actual_vcorate);
+
+ /* Tune it, homey. */
+ write_ad9361_reg(0x273, nfrac & 0xFF);
+ write_ad9361_reg(0x274, (nfrac >> 8) & 0xFF);
+ write_ad9361_reg(0x275, (nfrac >> 16) & 0xFF);
+ write_ad9361_reg(0x272, (nint >> 8) & 0xFF);
+ write_ad9361_reg(0x271, nint & 0xFF);
+ write_ad9361_reg(0x005, reg_vcodivs);
+
+ /* Lock the PLL! */
+ ad9361_msleep(2);
+ if((read_ad9361_reg(0x287) & 0x02) == 0) {
+ post_err_msg("TX PLL NOT LOCKED");
+ }
+
+ _tx_freq = actual_lo;
+
+ return actual_lo;
+ }
+}
+
+/* Configure the various clock / sample rates in the RX and TX chains.
+ *
+ * Functionally, this function configures Catalina's RX and TX rates. For
+ * a requested TX & RX rate, it sets the interpolation & decimation filters,
+ * and tunes the VCO that feeds the ADCs and DACs.
+ */
+double setup_rates(const double rate) {
+
+ /* If we make it into this function, then we are tuning to a new rate.
+ * Store the new rate. */
+ _req_clock_rate = rate;
+
+ /* Set the decimation and interpolation values in the RX and TX chains.
+ * This also switches filters in / out. Note that all transmitters and
+ * receivers have to be turned on for the calibration portion of
+ * bring-up, and then they will be switched out to reflect the actual
+ * user-requested antenna selections. */
+ int divfactor = 0;
+ _tfir_factor = 0;
+ if(rate < 0.33e6) {
+ // RX1 + RX2 enabled, 3, 2, 2, 4
+ reg_rxfilt = B8( 11101111 ) ;
+
+ // TX1 + TX2 enabled, 3, 2, 2, 4
+ reg_txfilt = B8( 11101111 ) ;
+
+ divfactor = 48;
+ _tfir_factor = 2;
+ } else if(rate < 0.66e6) {
+ // RX1 + RX2 enabled, 2, 2, 2, 4
+ reg_rxfilt = B8( 11011111 ) ;
+
+ // TX1 + TX2 enabled, 2, 2, 2, 4
+ reg_txfilt = B8( 11011111 ) ;
+
+ divfactor = 32;
+ _tfir_factor = 2;
+ } else if(rate <= 20e6) {
+ // RX1 + RX2 enabled, 2, 2, 2, 2
+ reg_rxfilt = B8( 11011110 ) ;
+
+ // TX1 + TX2 enabled, 2, 2, 2, 2
+ reg_txfilt = B8( 11011110 ) ;
+
+ divfactor = 16;
+ _tfir_factor = 2;
+ } else if((rate > 20e6) && (rate < 23e6)) {
+ // RX1 + RX2 enabled, 3, 2, 2, 2
+ reg_rxfilt = B8( 11101110 ) ;
+
+ // TX1 + TX2 enabled, 3, 1, 2, 2
+ reg_txfilt = B8( 11100110 ) ;
+
+ divfactor = 24;
+ _tfir_factor = 2;
+ } else if((rate >= 23e6) && (rate < 41e6)) {
+ // RX1 + RX2 enabled, 2, 2, 2, 2
+ reg_rxfilt = B8( 11011110 ) ;
+
+ // TX1 + TX2 enabled, 1, 2, 2, 2
+ reg_txfilt = B8( 11001110 ) ;
+
+ divfactor = 16;
+ _tfir_factor = 2;
+ } else if((rate >= 41e6) && (rate <= 56e6)) {
+ // RX1 + RX2 enabled, 3, 1, 2, 2
+ reg_rxfilt = B8( 11100110 ) ;
+
+ // TX1 + TX2 enabled, 3, 1, 1, 2
+ reg_txfilt = B8( 11100010 ) ;
+
+ divfactor = 12;
+ _tfir_factor = 2;
+ } else if((rate > 56e6) && (rate <= 61.44e6)) {
+ // RX1 + RX2 enabled, 3, 1, 1, 2
+ reg_rxfilt = B8( 11100010 ) ;
+
+ // TX1 + TX2 enabled, 3, 1, 1, 1
+ reg_txfilt = B8( 11100001 ) ;
+
+ divfactor = 6;
+ _tfir_factor = 1;
+ } else {
+ // should never get in here
+ post_err_msg("[setup_rates] INVALID_CODE_PATH");
+ }
+
+ msg("[setup_rates] divfactor=%d", divfactor);
+
+ /* Tune the BBPLL to get the ADC and DAC clocks. */
+ const double adcclk = tune_bbvco(rate * divfactor);
+ double dacclk = adcclk;
+
+ /* The DAC clock must be <= 336e6, and is either the ADC clock or 1/2 the
+ * ADC clock.*/
+ if(adcclk > 336e6) {
+ /* Make the DAC clock = ADC/2, and bypass the TXFIR. */
+ reg_bbpll = reg_bbpll | 0x08;
+ dacclk = adcclk / 2.0;
+ } else {
+ reg_bbpll = reg_bbpll & 0xF7;
+ }
+
+ /* Set the dividers / interpolators in Catalina. */
+ write_ad9361_reg(0x002, reg_txfilt);
+ write_ad9361_reg(0x003, reg_rxfilt);
+ write_ad9361_reg(0x004, reg_inputsel);
+ write_ad9361_reg(0x00A, reg_bbpll);
+
+ msg("[setup_rates] adcclk=%f", adcclk);
+ _baseband_bw = (adcclk / divfactor);
+
+ /* Setup the RX and TX FIR filters. Scale the number of taps based on
+ * the clock speed. */
+ const int max_tx_taps = 16 * AD9361_MIN((int)((dacclk / rate) + 0.5), \
+ AD9361_MIN(4 * (1 << _tfir_factor), 8));
+ const int max_rx_taps = AD9361_MIN((16 * (int)(adcclk / rate)), 128);
+
+ const int num_tx_taps = get_num_taps(max_tx_taps);
+ const int num_rx_taps = get_num_taps(max_rx_taps);
+
+ setup_tx_fir(num_tx_taps);
+ setup_rx_fir(num_rx_taps);
+
+ return _baseband_bw;
+}
+
+/***********************************************************************
+ * Publicly exported functions to host calls
+ **********************************************************************/
+void init_ad9361(void) {
+
+ /* Initialize shadow registers. */
+ reg_vcodivs = 0x00;
+ reg_inputsel = 0x30;
+ reg_rxfilt = 0x00;
+ reg_txfilt = 0x00;
+ reg_bbpll = 0x02;
+ reg_bbftune_config = 0x1e;
+ reg_bbftune_mode = 0x1e;
+
+ /* Initialize private VRQ fields. */
+ _rx_freq = 0.0;
+ _tx_freq = 0.0;
+ _req_rx_freq = 0.0;
+ _req_tx_freq = 0.0;
+ _baseband_bw = 0.0;
+ _req_clock_rate = 0.0;
+ _req_coreclk = 0.0;
+ _bbpll_freq = 0.0;
+ _adcclock_freq = 0.0;
+ _rx_bbf_tunediv = 0;
+ _curr_gain_table = 0;
+ _rx1_gain = 0;
+ _rx2_gain = 0;
+ _tx1_gain = 0;
+ _tx2_gain = 0;
+
+ /* Reset the device. */
+ write_ad9361_reg(0x000,0x01);
+ write_ad9361_reg(0x000,0x00);
+ ad9361_msleep(20);
+
+ /* There is not a WAT big enough for this. */
+ write_ad9361_reg(0x3df, 0x01);
+
+ write_ad9361_reg(0x2a6, 0x0e); // Enable master bias
+ write_ad9361_reg(0x2a8, 0x0e); // Set bandgap trim
+
+ /* Set RFPLL ref clock scale to REFCLK * 2 */
+ write_ad9361_reg(0x2ab, 0x07);
+ write_ad9361_reg(0x2ac, 0xff);
+
+ /* Enable clocks. */
+ if (AD9361_CLOCKING_MODE == 0)
+ {
+ write_ad9361_reg(0x009, 0x17);
+ }
+ if (AD9361_CLOCKING_MODE == 1)
+ {
+ write_ad9361_reg(0x009, 0x07);
+ write_ad9361_reg(0x292, 0x08);
+ write_ad9361_reg(0x293, 0x80);
+ write_ad9361_reg(0x294, 0x00);
+ write_ad9361_reg(0x295, 0x14);
+ }
+ ad9361_msleep(20);
+
+ /* Tune the BBPLL, write TX and RX FIRS. */
+ setup_rates(50e6);
+
+ /* Setup data ports (FDD dual port DDR CMOS):
+ * FDD dual port DDR CMOS no swap.
+ * Force TX on one port, RX on the other. */
+ write_ad9361_reg(0x010, 0xc8);
+ write_ad9361_reg(0x011, 0x00);
+ write_ad9361_reg(0x012, 0x02);
+
+ /* Data delay for TX and RX data clocks */
+ write_ad9361_reg(0x006, 0x0F);
+ write_ad9361_reg(0x007, 0x0F);
+
+ /* Setup AuxDAC */
+ write_ad9361_reg(0x018, 0x00); // AuxDAC1 Word[9:2]
+ write_ad9361_reg(0x019, 0x00); // AuxDAC2 Word[9:2]
+ write_ad9361_reg(0x01A, 0x00); // AuxDAC1 Config and Word[1:0]
+ write_ad9361_reg(0x01B, 0x00); // AuxDAC2 Config and Word[1:0]
+ write_ad9361_reg(0x023, 0xFF); // AuxDAC Manaul/Auto Control
+ write_ad9361_reg(0x026, 0x00); // AuxDAC Manual Select Bit/GPO Manual Select
+ write_ad9361_reg(0x030, 0x00); // AuxDAC1 Rx Delay
+ write_ad9361_reg(0x031, 0x00); // AuxDAC1 Tx Delay
+ write_ad9361_reg(0x032, 0x00); // AuxDAC2 Rx Delay
+ write_ad9361_reg(0x033, 0x00); // AuxDAC2 Tx Delay
+
+ /* Setup AuxADC */
+ write_ad9361_reg(0x00B, 0x00); // Temp Sensor Setup (Offset)
+ write_ad9361_reg(0x00C, 0x00); // Temp Sensor Setup (Temp Window)
+ write_ad9361_reg(0x00D, 0x03); // Temp Sensor Setup (Periodic Measure)
+ write_ad9361_reg(0x00F, 0x04); // Temp Sensor Setup (Decimation)
+ write_ad9361_reg(0x01C, 0x10); // AuxADC Setup (Clock Div)
+ write_ad9361_reg(0x01D, 0x01); // AuxADC Setup (Decimation/Enable)
+
+ /* Setup control outputs. */
+ write_ad9361_reg(0x035, 0x07);
+ write_ad9361_reg(0x036, 0xFF);
+
+ /* Setup GPO */
+ write_ad9361_reg(0x03a, 0x27); //set delay register
+ write_ad9361_reg(0x020, 0x00); // GPO Auto Enable Setup in RX and TX
+ write_ad9361_reg(0x027, 0x03); // GPO Manual and GPO auto value in ALERT
+ write_ad9361_reg(0x028, 0x00); // GPO_0 RX Delay
+ write_ad9361_reg(0x029, 0x00); // GPO_1 RX Delay
+ write_ad9361_reg(0x02A, 0x00); // GPO_2 RX Delay
+ write_ad9361_reg(0x02B, 0x00); // GPO_3 RX Delay
+ write_ad9361_reg(0x02C, 0x00); // GPO_0 TX Delay
+ write_ad9361_reg(0x02D, 0x00); // GPO_1 TX Delay
+ write_ad9361_reg(0x02E, 0x00); // GPO_2 TX Delay
+ write_ad9361_reg(0x02F, 0x00); // GPO_3 TX Delay
+
+ write_ad9361_reg(0x261, 0x00); // RX LO power
+ write_ad9361_reg(0x2a1, 0x00); // TX LO power
+ write_ad9361_reg(0x248, 0x0b); // en RX VCO LDO
+ write_ad9361_reg(0x288, 0x0b); // en TX VCO LDO
+ write_ad9361_reg(0x246, 0x02); // pd RX cal Tcf
+ write_ad9361_reg(0x286, 0x02); // pd TX cal Tcf
+ write_ad9361_reg(0x249, 0x8e); // rx vco cal length
+ write_ad9361_reg(0x289, 0x8e); // rx vco cal length
+ write_ad9361_reg(0x23b, 0x80); // set RX MSB?, FIXME 0x89 magic cp
+ write_ad9361_reg(0x27b, 0x80); // "" TX //FIXME 0x88 see above
+ write_ad9361_reg(0x243, 0x0d); // set rx prescaler bias
+ write_ad9361_reg(0x283, 0x0d); // "" TX
+
+ write_ad9361_reg(0x23d, 0x00); // Clear half VCO cal clock setting
+ write_ad9361_reg(0x27d, 0x00); // Clear half VCO cal clock setting
+
+ /* The order of the following process is EXTREMELY important. If the
+ * below functions are modified at all, device initialization and
+ * calibration might be broken in the process! */
+
+ write_ad9361_reg(0x015, 0x04); // dual synth mode, synth en ctrl en
+ write_ad9361_reg(0x014, 0x05); // use SPI for TXNRX ctrl, to ALERT, TX on
+ write_ad9361_reg(0x013, 0x01); // enable ENSM
+ ad9361_msleep(1);
+
+ calibrate_synth_charge_pumps();
+
+ tune_helper(RX_TYPE, 800e6);
+ tune_helper(TX_TYPE, 850e6);
+
+ program_mixer_gm_subtable();
+ program_gain_table();
+ setup_gain_control();
+
+ calibrate_baseband_rx_analog_filter();
+ calibrate_baseband_tx_analog_filter();
+ calibrate_rx_TIAs();
+ calibrate_secondary_tx_filter();
+
+ setup_adc();
+
+ calibrate_tx_quadrature();
+ calibrate_rx_quadrature();
+
+ write_ad9361_reg(0x012, 0x02); // cals done, set PPORT config
+ write_ad9361_reg(0x013, 0x01); // Set ENSM FDD bit
+ write_ad9361_reg(0x015, 0x04); // dual synth mode, synth en ctrl en
+
+ /* Default TX attentuation to 10dB on both TX1 and TX2 */
+ write_ad9361_reg(0x073, 0x00);
+ write_ad9361_reg(0x074, 0x00);
+ write_ad9361_reg(0x075, 0x00);
+ write_ad9361_reg(0x076, 0x00);
+
+ /* Setup RSSI Measurements */
+ write_ad9361_reg(0x150, 0x0E); // RSSI Measurement Duration 0, 1
+ write_ad9361_reg(0x151, 0x00); // RSSI Measurement Duration 2, 3
+ write_ad9361_reg(0x152, 0xFF); // RSSI Weighted Multiplier 0
+ write_ad9361_reg(0x153, 0x00); // RSSI Weighted Multiplier 1
+ write_ad9361_reg(0x154, 0x00); // RSSI Weighted Multiplier 2
+ write_ad9361_reg(0x155, 0x00); // RSSI Weighted Multiplier 3
+ write_ad9361_reg(0x156, 0x00); // RSSI Delay
+ write_ad9361_reg(0x157, 0x00); // RSSI Wait
+ write_ad9361_reg(0x158, 0x0D); // RSSI Mode Select
+ write_ad9361_reg(0x15C, 0x67); // Power Measurement Duration
+
+ /* Turn on the default RX & TX chains. */
+ set_active_chains(true, false, false, false);
+
+ /* Set TXers & RXers on (only works in FDD mode) */
+ write_ad9361_reg(0x014, 0x21);
+}
+
+
+/* This function sets the RX / TX rate between Catalina and the FPGA, and
+ * thus determines the interpolation / decimation required in the FPGA to
+ * achieve the user's requested rate.
+ *
+ * This is the only clock setting function that is exposed to the outside. */
+double set_clock_rate(const double req_rate) {
+ if(req_rate > 61.44e6) {
+ post_err_msg("Requested master clock rate outside range");
+ }
+
+ msg("[set_clock_rate] req_rate=%.10f", req_rate);
+
+ /* UHD has a habit of requesting the same rate like four times when it
+ * starts up. This prevents that, and any bugs in user code that request
+ * the same rate over and over. */
+ if(freq_is_nearly_equal(req_rate, _req_clock_rate)) {
+ return _baseband_bw;
+ }
+
+ /* We must be in the SLEEP / WAIT state to do this. If we aren't already
+ * there, transition the ENSM to State 0. */
+ uint8_t current_state = read_ad9361_reg(0x017) & 0x0F;
+ switch(current_state) {
+ case 0x05:
+ /* We are in the ALERT state. */
+ write_ad9361_reg(0x014, 0x21);
+ ad9361_msleep(5);
+ write_ad9361_reg(0x014, 0x00);
+ break;
+
+ case 0x0A:
+ /* We are in the FDD state. */
+ write_ad9361_reg(0x014, 0x00);
+ break;
+
+ default:
+ post_err_msg("[set_clock_rate:1] AD9361 in unknown state");
+ break;
+ };
+
+ /* Store the current chain / antenna selections so that we can restore
+ * them at the end of this routine; all chains will be enabled from
+ * within setup_rates for calibration purposes. */
+ uint8_t orig_tx_chains = reg_txfilt & 0xC0;
+ uint8_t orig_rx_chains = reg_rxfilt & 0xC0;
+
+ /* Call into the clock configuration / settings function. This is where
+ * all the hard work gets done. */
+ double rate = setup_rates(req_rate);
+
+ msg("[set_clock_rate] rate=%.10f", rate);
+
+ /* Transition to the ALERT state and calibrate everything. */
+ write_ad9361_reg(0x015, 0x04); //dual synth mode, synth en ctrl en
+ write_ad9361_reg(0x014, 0x05); //use SPI for TXNRX ctrl, to ALERT, TX on
+ write_ad9361_reg(0x013, 0x01); //enable ENSM
+ ad9361_msleep(1);
+
+ calibrate_synth_charge_pumps();
+
+ tune_helper(RX_TYPE, _rx_freq);
+ tune_helper(TX_TYPE, _tx_freq);
+
+ program_mixer_gm_subtable();
+ program_gain_table();
+ setup_gain_control();
+ program_gains();
+
+ calibrate_baseband_rx_analog_filter();
+ calibrate_baseband_tx_analog_filter();
+ calibrate_rx_TIAs();
+ calibrate_secondary_tx_filter();
+
+ setup_adc();
+
+ calibrate_tx_quadrature();
+ calibrate_rx_quadrature();
+
+ write_ad9361_reg(0x012, 0x02); // cals done, set PPORT config
+ write_ad9361_reg(0x013, 0x01); // Set ENSM FDD bit
+ write_ad9361_reg(0x015, 0x04); // dual synth mode, synth en ctrl en
+
+ /* End the function in the same state as the entry state. */
+ switch(current_state) {
+ case 0x05:
+ /* We are already in ALERT. */
+ break;
+
+ case 0x0A:
+ /* Transition back to FDD, and restore the original antenna
+ * / chain selections. */
+ reg_txfilt = (reg_txfilt & 0x3F) | orig_tx_chains;
+ reg_rxfilt = (reg_rxfilt & 0x3F) | orig_rx_chains;
+
+ write_ad9361_reg(0x002, reg_txfilt);
+ write_ad9361_reg(0x003, reg_rxfilt);
+ write_ad9361_reg(0x014, 0x21);
+ break;
+
+ default:
+ post_err_msg("[set_clock_rate:2] AD9361 in unknown state");
+ break;
+ };
+
+ return rate;
+}
+
+
+/* Set which of the four TX / RX chains provided by Catalina are active.
+ *
+ * Catalina provides two sets of chains, Side A and Side B. Each side
+ * provides one TX antenna, and one RX antenna. The B200 maintains the USRP
+ * standard of providing one antenna connection that is both TX & RX, and
+ * one that is RX-only - for each chain. Thus, the possible antenna and
+ * chain selections are:
+ *
+ * B200 Antenna Catalina Side Catalina Chain
+ * -------------------------------------------------------------------
+ * TX / RX1 Side A TX1 (when switched to TX)
+ * TX / RX1 Side A RX1 (when switched to RX)
+ * RX1 Side A RX1
+ *
+ * TX / RX2 Side B TX2 (when switched to TX)
+ * TX / RX2 Side B RX2 (when switched to RX)
+ * RX2 Side B RX2
+ */
+void set_active_chains(bool tx1, bool tx2, bool rx1, bool rx2) {
+ /* Clear out the current active chain settings. */
+ reg_txfilt = reg_txfilt & 0x3F;
+ reg_rxfilt = reg_rxfilt & 0x3F;
+
+ /* Turn on the different chains based on the passed parameters. */
+ if(tx1) { reg_txfilt = reg_txfilt | 0x40; }
+ if(tx2) { reg_txfilt = reg_txfilt | 0x80; }
+ if(rx1) { reg_rxfilt = reg_rxfilt | 0x40; }
+ if(rx2) { reg_rxfilt = reg_rxfilt | 0x80; }
+
+ /* Turn on / off the chains. */
+ write_ad9361_reg(0x002, reg_txfilt);
+ write_ad9361_reg(0x003, reg_rxfilt);
+}
+
+/* Tune the RX or TX frequency.
+ *
+ * This is the publicly-accessible tune function. It makes sure the tune
+ * isn't a redundant request, and if not, passes it on to the class's
+ * internal tune function.
+ *
+ * After tuning, it runs any appropriate calibrations. */
+double tune(int which, const double value) {
+
+ if(which == RX_TYPE) {
+ if(freq_is_nearly_equal(value, _req_rx_freq)) {
+ return _rx_freq;
+ }
+
+ } else if(which == TX_TYPE) {
+ if(freq_is_nearly_equal(value, _req_tx_freq)) {
+ return _tx_freq;
+ }
+
+ } else {
+ post_err_msg("[tune] INVALID_CODE_PATH");
+ }
+
+ /* If we aren't already in the ALERT state, we will need to return to
+ * the FDD state after tuning. */
+ int not_in_alert = 0;
+ if((read_ad9361_reg(0x017) & 0x0F) != 5) {
+ /* Force the device into the ALERT state. */
+ not_in_alert = 1;
+ write_ad9361_reg(0x014, 0x01);
+ }
+
+ /* Tune the RF VCO! */
+ double tune_freq = tune_helper(which, value);
+
+ /* Run any necessary calibrations / setups */
+ if(which == RX_TYPE) {
+ program_gain_table();
+ }
+
+ /* Update the gain settings. */
+ program_gains();
+
+ /* Run the calibration algorithms. */
+ calibrate_tx_quadrature();
+ calibrate_rx_quadrature();
+
+ /* If we were in the FDD state, return it now. */
+ if(not_in_alert) {
+ write_ad9361_reg(0x014, 0x21);
+ }
+
+ return tune_freq;
+}
+
+/* Set the gain of RX1, RX2, TX1, or TX2.
+ *
+ * Note that the 'value' passed to this function is the actual gain value,
+ * _not_ the gain index. This is the opposite of the eval software's GUI!
+ * Also note that the RX chains are done in terms of gain, and the TX chains
+ * are done in terms of attenuation. */
+double set_gain(int which, int n, const double value) {
+
+ if(which == RX_TYPE) {
+ /* Indexing the gain tables requires an offset from the requested
+ * amount of total gain in dB:
+ * < 1300MHz: dB + 5
+ * >= 1300MHz and < 4000MHz: dB + 3
+ * >= 4000MHz and <= 6000MHz: dB + 14
+ */
+ int gain_offset = 0;
+ if(_rx_freq < 1300e6) {
+ gain_offset = 5;
+ } else if(_rx_freq < 4000e6) {
+ gain_offset = 3;
+ } else {
+ gain_offset = 14;
+ }
+
+ int gain_index = value + gain_offset;
+
+ /* Clip the gain values to the proper min/max gain values. */
+ if(gain_index > 76) gain_index = 76;
+ if(gain_index < 0) gain_index = 0;
+
+ if(n == 1) {
+ _rx1_gain = value;
+ write_ad9361_reg(0x109, gain_index);
+ } else {
+ _rx2_gain = value;
+ write_ad9361_reg(0x10c, gain_index);
+ }
+
+ return gain_index - gain_offset;
+ } else {
+ /* Setting the below bits causes a change in the TX attenuation word
+ * to immediately take effect. */
+ write_ad9361_reg(0x077, 0x40);
+ write_ad9361_reg(0x07c, 0x40);
+
+ /* Each gain step is -0.25dB. Calculate the attenuation necessary
+ * for the requested gain, convert it into gain steps, then write
+ * the attenuation word. Max gain (so zero attenuation) is 89.75. */
+ double atten = AD9361_MAX_GAIN - value;
+ int attenreg = atten * 4;
+ if(n == 1) {
+ _tx1_gain = value;
+ write_ad9361_reg(0x073, attenreg & 0xFF);
+ write_ad9361_reg(0x074, (attenreg >> 8) & 0x01);
+ } else {
+ _tx2_gain = value;
+ write_ad9361_reg(0x075, attenreg & 0xFF);
+ write_ad9361_reg(0x076, (attenreg >> 8) & 0x01);
+ }
+ return AD9361_MAX_GAIN - ((double)(attenreg)/ 4);
+ }
+}
+
+/* This function is responsible to dispatch the vendor request call
+ * to the proper handler
+ */
+void ad9361_dispatch(const char* vrb, char* vrb_out) {
+ memcpy(vrb_out, vrb, AD9361_DISPATCH_PACKET_SIZE); // Copy request to response memory
+ tmp_req_buffer = vrb_out; // Set this to enable 'post_err_msg'
+
+ //////////////////////////////////////////////
+
+ double ret_val = 0.0;
+ int mask = 0;
+
+ const ad9361_transaction_t *request = (const ad9361_transaction_t *)vrb;
+ ad9361_transaction_t *response = (ad9361_transaction_t *)vrb_out;
+ response->error_msg[0] = '\0'; // Ensure error is cleared
+
+ //msg("[ad9361_dispatch] action=%d", request->action);
+
+ switch (request->action) {
+ case AD9361_ACTION_ECHO:
+ break; // nothing to do
+ case AD9361_ACTION_INIT:
+ init_ad9361();
+ break;
+ case AD9361_ACTION_SET_RX1_GAIN:
+ ret_val = set_gain(RX_TYPE,1,double_unpack(request->value.gain));
+ double_pack(ret_val, response->value.gain);
+ break;
+ case AD9361_ACTION_SET_TX1_GAIN:
+ ret_val = set_gain(TX_TYPE,1,double_unpack(request->value.gain));
+ double_pack(ret_val, response->value.gain);
+ break;
+ case AD9361_ACTION_SET_RX2_GAIN:
+ ret_val = set_gain(RX_TYPE,2,double_unpack(request->value.gain));
+ double_pack(ret_val, response->value.gain);
+ break;
+ case AD9361_ACTION_SET_TX2_GAIN:
+ ret_val = set_gain(TX_TYPE,2,double_unpack(request->value.gain));
+ double_pack(ret_val, response->value.gain);
+ break;
+ case AD9361_ACTION_SET_RX_FREQ:
+ ret_val = tune(RX_TYPE, double_unpack(request->value.freq));
+ double_pack(ret_val, response->value.freq);
+ break;
+ case AD9361_ACTION_SET_TX_FREQ:
+ ret_val = tune(TX_TYPE, double_unpack(request->value.freq));
+ double_pack(ret_val, response->value.freq);
+ break;
+ case AD9361_ACTION_SET_CODEC_LOOP:
+ data_port_loopback(request->value.codec_loop != 0);
+ break;
+ case AD9361_ACTION_SET_CLOCK_RATE:
+ ret_val = set_clock_rate(double_unpack(request->value.rate));
+ double_pack(ret_val, response->value.rate);
+ break;
+ case AD9361_ACTION_SET_ACTIVE_CHAINS:
+ mask = request->value.enable_mask;
+ set_active_chains(mask & 1, mask & 2, mask & 4, mask & 8);
+ break;
+ default:
+ post_err_msg("[ad9361_dispatch] NOT IMPLEMENTED");
+ break;
+ }
+}
diff --git a/firmware/fx3/ad9361/lib/ad9361_synth_lut.h b/firmware/fx3/ad9361/lib/ad9361_synth_lut.h
new file mode 100644
index 000000000..79214526d
--- /dev/null
+++ b/firmware/fx3/ad9361/lib/ad9361_synth_lut.h
@@ -0,0 +1,135 @@
+//
+// Copyright 2013-2014 Ettus Research LLC
+//
+
+#ifndef INCLUDED_AD9361_SYNTH_LUT_HPP
+#define INCLUDED_AD9361_SYNTH_LUT_HPP
+
+
+double vco_index[53] = {12605000000, 12245000000, 11906000000, 11588000000,
+ 11288000000, 11007000000, 10742000000, 10492000000,
+ 10258000000, 10036000000, 9827800000, 9631100000,
+ 9445300000, 9269800000, 9103600000, 8946300000,
+ 8797000000, 8655300000, 8520600000, 8392300000,
+ 8269900000, 8153100000, 8041400000, 7934400000,
+ 7831800000, 7733200000, 7638400000, 7547100000,
+ 7459000000, 7374000000, 7291900000, 7212400000,
+ 7135500000, 7061000000, 6988700000, 6918600000,
+ 6850600000, 6784600000, 6720500000, 6658200000,
+ 6597800000, 6539200000, 6482300000, 6427000000,
+ 6373400000, 6321400000, 6270900000, 6222000000,
+ 6174500000, 6128400000, 6083600000, 6040100000,
+ 5997700000};
+
+int synth_cal_lut[53][12] = { {10, 0, 4, 0, 15, 8, 8, 13, 4, 13, 15, 9},
+ {10, 0, 4, 0, 15, 8, 9, 13, 4, 13, 15, 9},
+ {10, 0, 4, 0, 15, 8, 10, 13, 4, 13, 15, 9},
+ {10, 0, 4, 0, 15, 8, 11, 13, 4, 13, 15, 9},
+ {10, 0, 4, 0, 15, 8, 11, 13, 4, 13, 15, 9},
+ {10, 0, 4, 0, 14, 8, 12, 13, 4, 13, 15, 9},
+ {10, 0, 4, 0, 14, 8, 13, 13, 4, 13, 15, 9},
+ {10, 0, 5, 1, 14, 9, 13, 13, 4, 13, 15, 9},
+ {10, 0, 5, 1, 14, 9, 14, 13, 4, 13, 15, 9},
+ {10, 0, 5, 1, 14, 9, 15, 13, 4, 13, 15, 9},
+ {10, 0, 5, 1, 14, 9, 15, 13, 4, 13, 15, 9},
+ {10, 0, 5, 1, 13, 9, 16, 13, 4, 13, 15, 9},
+ {10, 0, 5, 1, 13, 9, 17, 13, 4, 13, 15, 9},
+ {10, 0, 5, 1, 13, 9, 18, 13, 4, 13, 15, 9},
+ {10, 0, 5, 1, 13, 9, 18, 13, 4, 13, 15, 9},
+ {10, 0, 5, 1, 13, 9, 19, 13, 4, 13, 15, 9},
+ {10, 1, 6, 1, 15, 11, 14, 13, 4, 13, 15, 9},
+ {10, 1, 6, 1, 15, 11, 14, 13, 4, 13, 15, 9},
+ {10, 1, 6, 1, 15, 11, 15, 13, 4, 13, 15, 9},
+ {10, 1, 6, 1, 15, 11, 15, 13, 4, 13, 15, 9},
+ {10, 1, 6, 1, 15, 11, 16, 13, 4, 13, 15, 9},
+ {10, 1, 6, 1, 15, 11, 16, 13, 4, 13, 15, 9},
+ {10, 1, 6, 1, 15, 11, 17, 13, 4, 13, 15, 9},
+ {10, 1, 6, 1, 15, 11, 17, 13, 4, 13, 15, 9},
+ {10, 1, 6, 1, 15, 11, 18, 13, 4, 13, 15, 9},
+ {10, 1, 6, 1, 15, 11, 18, 13, 4, 13, 15, 9},
+ {10, 1, 6, 1, 15, 11, 19, 13, 4, 13, 15, 9},
+ {10, 1, 6, 1, 15, 11, 19, 13, 4, 13, 15, 9},
+ {10, 1, 6, 1, 15, 11, 20, 13, 4, 13, 15, 9},
+ {10, 1, 7, 2, 15, 12, 20, 13, 4, 13, 15, 9},
+ {10, 1, 7, 2, 15, 12, 21, 13, 4, 13, 15, 9},
+ {10, 1, 7, 2, 15, 12, 21, 13, 4, 13, 15, 9},
+ {10, 1, 7, 2, 15, 14, 22, 13, 4, 13, 15, 9},
+ {10, 1, 7, 2, 15, 14, 22, 13, 4, 13, 15, 9},
+ {10, 1, 7, 2, 15, 14, 23, 13, 4, 13, 15, 9},
+ {10, 1, 7, 2, 15, 14, 23, 13, 4, 13, 15, 9},
+ {10, 1, 7, 2, 15, 14, 24, 13, 4, 13, 15, 9},
+ {10, 1, 7, 2, 15, 14, 24, 13, 4, 13, 15, 9},
+ {10, 1, 7, 2, 15, 14, 25, 13, 4, 13, 15, 9},
+ {10, 1, 7, 2, 15, 14, 25, 13, 4, 13, 15, 9},
+ {10, 1, 7, 2, 15, 14, 26, 13, 4, 13, 15, 9},
+ {10, 1, 7, 2, 15, 14, 26, 13, 4, 13, 15, 9},
+ {10, 1, 7, 2, 15, 14, 27, 13, 4, 13, 15, 9},
+ {10, 1, 7, 2, 15, 14, 27, 13, 4, 13, 15, 9},
+ {10, 3, 7, 3, 15, 12, 18, 13, 4, 13, 15, 9},
+ {10, 3, 7, 3, 15, 12, 18, 13, 4, 13, 15, 9},
+ {10, 3, 7, 3, 15, 12, 18, 13, 4, 13, 15, 9},
+ {10, 3, 7, 3, 15, 12, 19, 13, 4, 13, 15, 9},
+ {10, 3, 7, 3, 15, 12, 19, 13, 4, 13, 15, 9},
+ {10, 3, 7, 3, 15, 12, 19, 13, 4, 13, 15, 9},
+ {10, 3, 7, 3, 15, 12, 19, 13, 4, 13, 15, 9},
+ {10, 3, 7, 3, 15, 12, 20, 13, 4, 13, 15, 9},
+ {10, 3, 7, 3, 15, 12, 20, 13, 4, 13, 15, 9}};
+
+
+#if 0 /* This is the table for a 40MHz RFPLL Reference */
+int synth_cal_lut[53][12] = { {10, 0, 4, 0, 15, 8, 8, 12, 3, 14, 15, 11},
+ {10, 0, 4, 0, 15, 8, 9, 12, 3, 14, 15, 11},
+ {10, 0, 4, 0, 15, 8, 9, 12, 3, 14, 15, 11},
+ {10, 0, 4, 0, 15, 8, 10, 12, 3, 14, 15, 11},
+ {10, 0, 4, 0, 15, 8, 11, 12, 3, 14, 15, 11},
+ {10, 0, 4, 0, 15, 8, 11, 12, 3, 14, 15, 11},
+ {10, 0, 4, 0, 14, 8, 12, 12, 3, 14, 15, 11},
+ {10, 0, 5, 1, 14, 9, 13, 12, 3, 14, 15, 11},
+ {10, 0, 5, 1, 14, 9, 13, 12, 3, 14, 15, 11},
+ {10, 0, 5, 1, 14, 9, 14, 12, 3, 14, 15, 11},
+ {10, 0, 5, 1, 14, 9, 15, 12, 3, 14, 15, 11},
+ {10, 0, 5, 1, 14, 9, 15, 12, 3, 14, 15, 11},
+ {10, 0, 5, 1, 14, 9, 16, 12, 3, 14, 15, 11},
+ {10, 0, 5, 1, 14, 9, 17, 12, 3, 14, 15, 11},
+ {10, 0, 5, 1, 14, 9, 17, 12, 3, 14, 15, 11},
+ {10, 0, 5, 1, 14, 9, 18, 12, 3, 14, 15, 11},
+ {10, 1, 6, 1, 15, 11, 13, 12, 3, 14, 15, 11},
+ {10, 1, 6, 1, 15, 11, 14, 12, 3, 14, 15, 11},
+ {10, 1, 6, 1, 15, 11, 14, 12, 3, 14, 15, 11},
+ {10, 1, 6, 1, 15, 11, 15, 12, 3, 14, 15, 11},
+ {10, 1, 6, 1, 15, 11, 15, 12, 3, 14, 15, 11},
+ {10, 1, 6, 1, 15, 11, 16, 12, 3, 14, 15, 11},
+ {10, 1, 6, 1, 15, 11, 16, 12, 3, 14, 15, 11},
+ {10, 1, 6, 1, 15, 11, 17, 12, 3, 14, 15, 11},
+ {10, 1, 6, 1, 15, 11, 17, 12, 3, 14, 15, 11},
+ {10, 1, 6, 1, 15, 11, 17, 12, 3, 14, 15, 11},
+ {10, 1, 6, 1, 15, 11, 18, 12, 3, 14, 15, 11},
+ {10, 1, 6, 1, 15, 11, 18, 12, 3, 14, 15, 11},
+ {10, 1, 6, 1, 15, 11, 19, 12, 3, 14, 15, 11},
+ {10, 1, 7, 2, 15, 12, 19, 12, 3, 14, 15, 11},
+ {10, 1, 7, 2, 15, 12, 20, 12, 3, 14, 15, 11},
+ {10, 1, 7, 2, 15, 12, 20, 12, 3, 14, 15, 11},
+ {10, 1, 7, 2, 15, 14, 21, 12, 3, 14, 15, 11},
+ {10, 1, 7, 2, 15, 14, 21, 12, 3, 14, 15, 11},
+ {10, 1, 7, 2, 15, 14, 22, 12, 3, 14, 15, 11},
+ {10, 1, 7, 2, 15, 14, 22, 12, 3, 14, 15, 11},
+ {10, 1, 7, 2, 15, 14, 23, 12, 3, 14, 15, 11},
+ {10, 1, 7, 2, 15, 14, 23, 12, 3, 14, 15, 11},
+ {10, 1, 7, 2, 15, 14, 24, 12, 3, 14, 15, 11},
+ {10, 1, 7, 2, 15, 14, 24, 12, 3, 14, 15, 11},
+ {10, 1, 7, 2, 15, 14, 25, 12, 3, 14, 15, 11},
+ {10, 1, 7, 2, 15, 14, 25, 12, 3, 14, 15, 11},
+ {10, 1, 7, 2, 15, 14, 26, 12, 3, 14, 15, 11},
+ {10, 1, 7, 2, 15, 14, 26, 12, 3, 14, 15, 11},
+ {10, 3, 7, 3, 15, 12, 17, 12, 3, 14, 15, 11},
+ {10, 3, 7, 3, 15, 12, 17, 12, 3, 14, 15, 11},
+ {10, 3, 7, 3, 15, 12, 17, 12, 3, 14, 15, 11},
+ {10, 3, 7, 3, 15, 12, 18, 12, 3, 14, 15, 11},
+ {10, 3, 7, 3, 15, 12, 18, 12, 3, 14, 15, 11},
+ {10, 3, 7, 3, 15, 12, 18, 12, 3, 14, 15, 11},
+ {10, 3, 7, 3, 15, 12, 18, 12, 3, 14, 15, 11},
+ {10, 3, 7, 3, 15, 12, 19, 12, 3, 14, 15, 11},
+ {10, 3, 7, 3, 15, 12, 19, 12, 3, 14, 15, 11} };
+#endif
+
+#endif /* INCLUDED_AD9361_SYNTH_LUT_HPP */