aboutsummaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
-rw-r--r--host/examples/wavetable.hpp43
1 files changed, 24 insertions, 19 deletions
diff --git a/host/examples/wavetable.hpp b/host/examples/wavetable.hpp
index 216fe5012..dc2a93c36 100644
--- a/host/examples/wavetable.hpp
+++ b/host/examples/wavetable.hpp
@@ -1,7 +1,7 @@
//
// Copyright 2010-2012,2014 Ettus Research LLC
// Copyright 2018 Ettus Research, a National Instruments Company
-// Copyright 2019 Ettus Research, A National Instruments Brand
+// Copyright 2019-2020 Ettus Research, A National Instruments Brand
//
// SPDX-License-Identifier: GPL-3.0-or-later
//
@@ -11,6 +11,7 @@
#include <stdexcept>
#include <string>
#include <vector>
+#include <algorithm>
static const size_t wave_table_len = 8192;
@@ -18,35 +19,39 @@ class wave_table_class
{
public:
wave_table_class(const std::string& wave_type, const float ampl)
- : _wave_table(wave_table_len)
+ : _wave_table(wave_table_len, {0.0, 0.0})
{
- // compute real wave table with 1.0 amplitude
- std::vector<float> real_wave_table(wave_table_len);
+ // Note: CONST, SQUARE, and RAMP only fill the I portion, since they are
+ // amplitude-modulating signals, not phase-modulating.
if (wave_type == "CONST") {
- for (size_t i = 0; i < wave_table_len; i++)
- real_wave_table[i] = 1.0f;
+ // Fill with I == ampl, Q == 0
+ std::fill(
+ _wave_table.begin(), _wave_table.end(), std::complex<float>{ampl, 0.0});
} else if (wave_type == "SQUARE") {
- for (size_t i = 0; i < wave_table_len; i++)
- real_wave_table[i] = (i < wave_table_len / 2) ? 0.0f : 1.0f;
+ // Fill the second half of the table with ampl, first half with
+ // zeros
+ std::fill(_wave_table.begin() + wave_table_len / 2,
+ _wave_table.end(),
+ std::complex<float>{ampl, 0.0});
} else if (wave_type == "RAMP") {
- for (size_t i = 0; i < wave_table_len; i++)
- real_wave_table[i] = 2.0f * i / (wave_table_len - 1) - 1.0f;
+ // Fill I values with ramp from -1 to 1, Q with zero
+ for (size_t i = 0; i < wave_table_len; i++) {
+ _wave_table[i] = {(2.0f * i / (wave_table_len - 1) - 1.0f) * ampl, 0.0};
+ }
} else if (wave_type == "SINE") {
static const double tau = 2 * std::acos(-1.0);
+ static const std::complex<float> J(0, 1);
+ // Careful: i is the loop counter, not the imaginary unit
for (size_t i = 0; i < wave_table_len; i++) {
- real_wave_table[i] =
- static_cast<float>(std::sin((tau * i) / wave_table_len));
+ // Directly generate complex sinusoid (a*e^{j 2\pi i/N}). We
+ // create a single rotation. The call site will sub-sample
+ // appropriately to create a sine wave of it's desired frequency
+ _wave_table[i] =
+ ampl * std::exp(J * static_cast<float>(tau * i / wave_table_len));
}
} else {
throw std::runtime_error("unknown waveform type: " + wave_type);
}
-
- // compute i and q pairs with 90% offset and scale to amplitude
- for (size_t i = 0; i < wave_table_len; i++) {
- const size_t q = (i + (3 * wave_table_len) / 4) % wave_table_len;
- _wave_table[i] =
- std::complex<float>(ampl * real_wave_table[i], ampl * real_wave_table[q]);
- }
}
inline std::complex<float> operator()(const size_t index) const