diff options
25 files changed, 7493 insertions, 333 deletions
diff --git a/firmware/README.md b/firmware/README.md index 08340603d..c8ad9df16 100644 --- a/firmware/README.md +++ b/firmware/README.md @@ -16,6 +16,18 @@ __Build Instructions:__ 3. cmake `<source directory>` 4. make +## fx3/ + +__Description:__ This is the firmware for the FX3 USB PHY, and the AD9361 RFIC. + +__Devices:__ USRP B200 and USRP B210 + +__Tools:__ Cypress FX3 SDK + +__Build Instructions:__ + +Please see the `fx3/README.md` file for additional instructions. + ## octoclock/ __Description:__ Firmware for the Octoclock device. diff --git a/firmware/fx3/README.md b/firmware/fx3/README.md new file mode 100644 index 000000000..e2e8a13d4 --- /dev/null +++ b/firmware/fx3/README.md @@ -0,0 +1,84 @@ +INSTRUCTIONS +================================ + +# Building the B2xx FX3 Firmware + +The USRP B200 and B210 each use the Cypress FX3 USB3 PHY for USB3 connectivity. +This device has an ARM core on it, which is programmed in C. This README will +show you how to build our firmware source + +**A brief "Theory of Operations":** +The host sends commands to the FX3, our USB3 PHY, which has an on-board ARM +which runs the FX3 firmware code (hex file). That code translates commands into +SPI commands to/from the AD9361. The SPI lines run through the FPGA (bin or bit +file), where they are level-translated, and then head to the AD9361. Note that +the FPGA takes no action on these SPI lines. They are passive pass-throughs. + +## Setting up the Cypress SDK + +In order to compile the USRP B200 and B210 firmware, you will need the FX3 SDK +distributed by the FX3 manufacturer, Cypress Semiconductor. You can download the +[FX3 SDK from here](http://www.cypress.com/?rID=57990). + +Once you have downloaded it, extract the ARM cross-compiler sub-directory from +the zip file and put it somewhere useful. The highest level directory you need +is `arm-2011.03/`. + +Now that you have extracted the cross compilation toolchain, you need to set up +some environment variables to tell the B2xx `makefile` where to look for the +tools. These variables are: + +``` + $ export ARMGCC_INSTALL_PATH=<your path>/arm-2011.03 + $ export ARMGCC_VERSION=4.5.2 +``` + +Now, you'll need to set-up the Cypress SDK, as well. In the SDK, navigate to +the `firmware` directory, and copy the following sub-directories into +`uhd.git/firmware/fx3`: `common/`, `lpp_source/`, `u3p_firmware/`. + +Your directory structure should now look like: + +``` +uhd.git/ + | + --firmware/ + | + --fx3/ + | + --ad9361/ # From UHD + --b200/ # From UHD + --common/ # From Cypress SDK + --gpif2_designer/ # From UHD + --lpp_source/ # From Cypress SDK + --u3p_firmware/ # From Cypress SDK + --README.md # From UHD +``` + + +## Applying the Patch to the Toolchain + +Now, you'll need to apply a patch to a couple of files in the Cypress SDK. Head +into the `common/` directory you just copied from the Cypress SDK, and apply the +patch `b200/fx3_mem_map.patch`. + +``` + # cd uhd.git/firmware/common/ + $ patch -p2 < ../b200/fx3_mem_map.patch +``` + +If you don't see any errors print on the screen, then the patch was successful. + +## Building the Firmware + +Now, you should be able to head into the `b200/` directory and simply build the +firmware: + +``` + $ cd uhd.git/firmware/fx3/b200 + $ make +``` + +It will generate a `usrp_b200_fw.hex` file, which you can then give to UHD to +program your USRP B200 or USRP B210. + diff --git a/firmware/fx3/ad9361/include/ad9361_dispatch.h b/firmware/fx3/ad9361/include/ad9361_dispatch.h new file mode 100644 index 000000000..e89a4e0b0 --- /dev/null +++ b/firmware/fx3/ad9361/include/ad9361_dispatch.h @@ -0,0 +1,16 @@ +// +// Copyright 2013-2014 Ettus Research LLC +// + +#ifndef INCLUDED_AD9361_DISPATCH_H +#define INCLUDED_AD9361_DISPATCH_H + +#include <ad9361_transaction.h> + +extern void ad9361_dispatch(const char* request, char* response); + +typedef void (*msgfn)(const char*, ...); + +extern void ad9361_set_msgfn(msgfn pfn); + +#endif /* INCLUDED_AD9361_DISPATCH_H */ diff --git a/firmware/fx3/ad9361/include/ad9361_transaction.h b/firmware/fx3/ad9361/include/ad9361_transaction.h new file mode 100644 index 000000000..2349a5d3d --- /dev/null +++ b/firmware/fx3/ad9361/include/ad9361_transaction.h @@ -0,0 +1,90 @@ +// +// Copyright 2013-2014 Ettus Research LLC +// + +#ifndef INCLUDED_AD9361_TRANSACTION_H +#define INCLUDED_AD9361_TRANSACTION_H + +#include <stdint.h> + +#ifdef __cplusplus +extern "C" { +#endif + +//various constants +#define AD9361_TRANSACTION_VERSION 0x4 +#define AD9361_DISPATCH_PACKET_SIZE 64 + +//action types +#define AD9361_ACTION_ECHO 0 +#define AD9361_ACTION_INIT 1 +#define AD9361_ACTION_SET_RX1_GAIN 2 +#define AD9361_ACTION_SET_TX1_GAIN 3 +#define AD9361_ACTION_SET_RX2_GAIN 4 +#define AD9361_ACTION_SET_TX2_GAIN 5 +#define AD9361_ACTION_SET_RX_FREQ 6 +#define AD9361_ACTION_SET_TX_FREQ 7 +#define AD9361_ACTION_SET_CODEC_LOOP 8 +#define AD9361_ACTION_SET_CLOCK_RATE 9 +#define AD9361_ACTION_SET_ACTIVE_CHAINS 10 + +static inline void ad9361_double_pack(const double input, uint32_t output[2]) +{ + const uint32_t *p = (const uint32_t *)&input; + output[0] = p[0]; + output[1] = p[1]; +} + +static inline double ad9361_double_unpack(const uint32_t input[2]) +{ + double output = 0.0; + uint32_t *p = (uint32_t *)&output; + p[0] = input[0]; + p[1] = input[1]; + return output; +} + +typedef struct +{ + //version is expected to be AD9361_TRANSACTION_VERSION + //check otherwise for compatibility + uint32_t version; + + //sequence number - increment every call for sanity + uint32_t sequence; + + //action tells us what to do, see AD9361_ACTION_* + uint32_t action; + + union + { + //enable mask for chains + uint32_t enable_mask; + + //true to enable codec internal loopback + uint32_t codec_loop; + + //freq holds request LO freq and result from tune + uint32_t freq[2]; + + //gain holds request gain and result from action + uint32_t gain[2]; + + //rate holds request clock rate and result from action + uint32_t rate[2]; + + } value; + + //error message comes back as a reply - + //set to null string for no error \0 + char error_msg[]; + +} ad9361_transaction_t; + +#define AD9361_TRANSACTION_MAX_ERROR_MSG (AD9361_DISPATCH_PACKET_SIZE - (sizeof(ad9361_transaction_t)-4)-1) // -4 for 'error_msg' alignment padding, -1 for terminating \0 + +#ifdef __cplusplus +} +#endif + +#endif /* INCLUDED_AD9361_TRANSACTION_H */ diff --git a/firmware/fx3/ad9361/lib/ad9361_filter_taps.h b/firmware/fx3/ad9361/lib/ad9361_filter_taps.h new file mode 100644 index 000000000..afbe27630 --- /dev/null +++ b/firmware/fx3/ad9361/lib/ad9361_filter_taps.h @@ -0,0 +1,47 @@ +// +// Copyright 2013-2014 Ettus Research LLC +// + +#ifndef INCLUDED_AD9361_FILTER_TAPS_HPP +#define INCLUDED_AD9361_FILTER_TAPS_HPP + +/* A default 128-tap filter that can be used for generic circumstances. */ +static uint16_t default_128tap_coeffs[] = { + 0x0001,0xfff1,0xffcf,0xffc0,0xffe8,0x0020,0x001a,0xffe3, + 0xffe1,0x001f,0x0028,0xffdf,0xffcc,0x0024,0x0043,0xffdb, + 0xffac,0x0026,0x0068,0xffdb,0xff80,0x0022,0x009a,0xffe2, + 0xff47,0x0017,0x00db,0xfff3,0xfeff,0xffff,0x012b,0x0013, + 0xfea5,0xffd7,0x0190,0x0046,0xfe35,0xff97,0x020e,0x0095, + 0xfda7,0xff36,0x02ae,0x010d,0xfcf0,0xfea1,0x0383,0x01c6, + 0xfbf3,0xfdb6,0x04b7,0x02f8,0xfa6d,0xfc1a,0x06be,0x0541, + 0xf787,0xf898,0x0b60,0x0b6d,0xee88,0xea40,0x2786,0x7209 +}; + + +/* The below pair of filters is optimized for a 10MHz LTE application. */ +/* +static uint16_t lte10mhz_rx_coeffs[] = { + 0xffe2,0x0042,0x0024,0x0095,0x0056,0x004d,0xffcf,0xffb7, + 0xffb1,0x0019,0x0059,0x006a,0x0004,0xff9d,0xff72,0xffd4, + 0x0063,0x00b7,0x0062,0xffac,0xff21,0xff59,0x0032,0x0101, + 0x00f8,0x0008,0xfeea,0xfeac,0xffa3,0x0117,0x01b5,0x00d0, + 0xff05,0xfdea,0xfe9e,0x00ba,0x026f,0x0215,0xffb5,0xfd4a, + 0xfd18,0xffa0,0x02de,0x03dc,0x0155,0xfd2a,0xfb0d,0xfd54, + 0x0287,0x062f,0x048a,0xfe37,0xf862,0xf8c1,0x004d,0x0963, + 0x0b88,0x02a4,0xf3e7,0xebdd,0xf5f8,0x1366,0x3830,0x518b +}; + +static uint16_t lte10mhz_tx_coeffs[] = { + 0xfffb,0x0000,0x0004,0x0017,0x0024,0x0028,0x0013,0xfff3, + 0xffdc,0xffe5,0x000b,0x0030,0x002e,0xfffe,0xffc4,0xffb8, + 0xfff0,0x0045,0x0068,0x002b,0xffb6,0xff72,0xffad,0x0047, + 0x00b8,0x0088,0xffc8,0xff1c,0xff33,0x001a,0x0110,0x0124, + 0x0019,0xfec8,0xfe74,0xff9a,0x0156,0x0208,0x00d3,0xfe9b, + 0xfd68,0xfe96,0x015d,0x033f,0x0236,0xfecd,0xfc00,0xfcb5, + 0x00d7,0x04e5,0x04cc,0xffd5,0xf9fe,0xf8fb,0xfef2,0x078c, + 0x0aae,0x036d,0xf5c0,0xed89,0xf685,0x12af,0x36a4,0x4faa +}; +*/ + + +#endif // INCLUDED_AD9361_FILTER_TAPS_HPP diff --git a/firmware/fx3/ad9361/lib/ad9361_gain_tables.h b/firmware/fx3/ad9361/lib/ad9361_gain_tables.h new file mode 100644 index 000000000..58dcbeb65 --- /dev/null +++ b/firmware/fx3/ad9361/lib/ad9361_gain_tables.h @@ -0,0 +1,95 @@ +// +// Copyright 2013-2014 Ettus Research LLC +// + +#ifndef INCLUDED_AD9361_GAIN_TABLES_HPP +#define INCLUDED_AD9361_GAIN_TABLES_HPP + +uint8_t gain_table_sub_1300mhz[77][5] = { {0,0x00,0x00,0x20,1}, + {1,0x00,0x00,0x00,0}, {2,0x00,0x00,0x00,0}, {3,0x00,0x01,0x00,0}, + {4,0x00,0x02,0x00,0}, {5,0x00,0x03,0x00,0}, {6,0x00,0x04,0x00,0}, + {7,0x00,0x05,0x00,0}, {8,0x01,0x03,0x20,1}, {9,0x01,0x04,0x00,0}, + {10,0x01,0x05,0x00,0}, {11,0x01,0x06,0x00,0}, {12,0x01,0x07,0x00,0}, + {13,0x01,0x08,0x00,0}, {14,0x01,0x09,0x00,0}, {15,0x01,0x0A,0x00,0}, + {16,0x01,0x0B,0x00,0}, {17,0x01,0x0C,0x00,0}, {18,0x01,0x0D,0x00,0}, + {19,0x01,0x0E,0x00,0}, {20,0x02,0x09,0x20,1}, {21,0x02,0x0A,0x00,0}, + {22,0x02,0x0B,0x00,0}, {23,0x02,0x0C,0x00,0}, {24,0x02,0x0D,0x00,0}, + {25,0x02,0x0E,0x00,0}, {26,0x02,0x0F,0x00,0}, {27,0x02,0x10,0x00,0}, + {28,0x02,0x2B,0x20,1}, {29,0x02,0x2C,0x00,0}, {30,0x04,0x27,0x20,1}, + {31,0x04,0x28,0x00,0}, {32,0x04,0x29,0x00,0}, {33,0x04,0x2A,0x00,0}, + {34,0x04,0x2B,0x00,1}, {35,0x24,0x21,0x20,0}, {36,0x24,0x22,0x00,1}, + {37,0x44,0x20,0x20,0}, {38,0x44,0x21,0x00,0}, {39,0x44,0x22,0x00,0}, + {40,0x44,0x23,0x00,0}, {41,0x44,0x24,0x00,0}, {42,0x44,0x25,0x00,0}, + {43,0x44,0x26,0x00,0}, {44,0x44,0x27,0x00,0}, {45,0x44,0x28,0x00,0}, + {46,0x44,0x29,0x00,0}, {47,0x44,0x2A,0x00,0}, {48,0x44,0x2B,0x00,0}, + {49,0x44,0x2C,0x00,0}, {50,0x44,0x2D,0x00,0}, {51,0x44,0x2E,0x00,0}, + {52,0x44,0x2F,0x00,0}, {53,0x44,0x30,0x00,0}, {54,0x44,0x31,0x00,0}, + {55,0x64,0x2E,0x20,1}, {56,0x64,0x2F,0x00,0}, {57,0x64,0x30,0x00,0}, + {58,0x64,0x31,0x00,0}, {59,0x64,0x32,0x00,0}, {60,0x64,0x33,0x00,0}, + {61,0x64,0x34,0x00,0}, {62,0x64,0x35,0x00,0}, {63,0x64,0x36,0x00,0}, + {64,0x64,0x37,0x00,0}, {65,0x64,0x38,0x00,0}, {66,0x65,0x38,0x20,1}, + {67,0x66,0x38,0x20,1}, {68,0x67,0x38,0x20,1}, {69,0x68,0x38,0x20,1}, + {70,0x69,0x38,0x20,1}, {71,0x6A,0x38,0x20,1}, {72,0x6B,0x38,0x20,1}, + {73,0x6C,0x38,0x20,1}, {74,0x6D,0x38,0x20,1}, {75,0x6E,0x38,0x20,1}, + {76,0x6F,0x38,0x20,1}}; + + +uint8_t gain_table_1300mhz_to_4000mhz[77][5] = { {0,0x00,0x00,0x20,1}, + {1,0x00,0x00,0x00,0}, {2,0x00,0x00,0x00,0}, {3,0x00,0x01,0x00,0}, + {4,0x00,0x02,0x00,0}, {5,0x00,0x03,0x00,0}, {6,0x00,0x04,0x00,0}, + {7,0x00,0x05,0x00,0}, {8,0x01,0x03,0x20,1}, {9,0x01,0x04,0x00,0}, + {10,0x01,0x05,0x00,0}, {11,0x01,0x06,0x00,0}, {12,0x01,0x07,0x00,0}, + {13,0x01,0x08,0x00,0}, {14,0x01,0x09,0x00,0}, {15,0x01,0x0A,0x00,0}, + {16,0x01,0x0B,0x00,0}, {17,0x01,0x0C,0x00,0}, {18,0x01,0x0D,0x00,0}, + {19,0x01,0x0E,0x00,0}, {20,0x02,0x09,0x20,1}, {21,0x02,0x0A,0x00,0}, + {22,0x02,0x0B,0x00,0}, {23,0x02,0x0C,0x00,0}, {24,0x02,0x0D,0x00,0}, + {25,0x02,0x0E,0x00,0}, {26,0x02,0x0F,0x00,0}, {27,0x02,0x10,0x00,0}, + {28,0x02,0x2B,0x20,1}, {29,0x02,0x2C,0x00,0}, {30,0x04,0x28,0x20,1}, + {31,0x04,0x29,0x00,0}, {32,0x04,0x2A,0x00,0}, {33,0x04,0x2B,0x00,0}, + {34,0x24,0x20,0x20,0}, {35,0x24,0x21,0x00,1}, {36,0x44,0x20,0x20,0}, + {37,0x44,0x21,0x00,1}, {38,0x44,0x22,0x00,0}, {39,0x44,0x23,0x00,0}, + {40,0x44,0x24,0x00,0}, {41,0x44,0x25,0x00,0}, {42,0x44,0x26,0x00,0}, + {43,0x44,0x27,0x00,0}, {44,0x44,0x28,0x00,0}, {45,0x44,0x29,0x00,0}, + {46,0x44,0x2A,0x00,0}, {47,0x44,0x2B,0x00,0}, {48,0x44,0x2C,0x00,0}, + {49,0x44,0x2D,0x00,0}, {50,0x44,0x2E,0x00,0}, {51,0x44,0x2F,0x00,0}, + {52,0x44,0x30,0x00,0}, {53,0x44,0x31,0x00,0}, {54,0x44,0x32,0x00,0}, + {55,0x64,0x2E,0x20,1}, {56,0x64,0x2F,0x00,0}, {57,0x64,0x30,0x00,0}, + {58,0x64,0x31,0x00,0}, {59,0x64,0x32,0x00,0}, {60,0x64,0x33,0x00,0}, + {61,0x64,0x34,0x00,0}, {62,0x64,0x35,0x00,0}, {63,0x64,0x36,0x00,0}, + {64,0x64,0x37,0x00,0}, {65,0x64,0x38,0x00,0}, {66,0x65,0x38,0x20,1}, + {67,0x66,0x38,0x20,1}, {68,0x67,0x38,0x20,1}, {69,0x68,0x38,0x20,1}, + {70,0x69,0x38,0x20,1}, {71,0x6A,0x38,0x20,1}, {72,0x6B,0x38,0x20,1}, + {73,0x6C,0x38,0x20,1}, {74,0x6D,0x38,0x20,1}, {75,0x6E,0x38,0x20,1}, + {76,0x6F,0x38,0x20,1}}; + + +uint8_t gain_table_4000mhz_to_6000mhz[77][5] = { {0,0x00,0x00,0x20,1}, + {1,0x00,0x00,0x00,0}, {2,0x00,0x00,0x00,0}, {3,0x00,0x00,0x00,0}, + {4,0x00,0x00,0x00,0}, {5,0x00,0x01,0x00,0}, {6,0x00,0x02,0x00,0}, + {7,0x00,0x03,0x00,0}, {8,0x01,0x01,0x20,1}, {9,0x01,0x02,0x00,0}, + {10,0x01,0x03,0x00,0}, {11,0x01,0x04,0x20,1}, {12,0x01,0x05,0x00,0}, + {13,0x01,0x06,0x00,0}, {14,0x01,0x07,0x00,0}, {15,0x01,0x08,0x00,0}, + {16,0x01,0x09,0x00,0}, {17,0x01,0x0A,0x00,0}, {18,0x01,0x0B,0x00,0}, + {19,0x01,0x0C,0x00,0}, {20,0x02,0x08,0x20,1}, {21,0x02,0x09,0x00,0}, + {22,0x02,0x0A,0x00,0}, {23,0x02,0x0B,0x20,1}, {24,0x02,0x0C,0x00,0}, + {25,0x02,0x0D,0x00,0}, {26,0x02,0x0E,0x00,0}, {27,0x02,0x0F,0x00,0}, + {28,0x02,0x2A,0x20,1}, {29,0x02,0x2B,0x00,0}, {30,0x04,0x27,0x20,1}, + {31,0x04,0x28,0x00,0}, {32,0x04,0x29,0x00,0}, {33,0x04,0x2A,0x00,0}, + {34,0x04,0x2B,0x00,0}, {35,0x04,0x2C,0x00,0}, {36,0x04,0x2D,0x00,0}, + {37,0x24,0x20,0x20,1}, {38,0x24,0x21,0x00,0}, {39,0x24,0x22,0x00,0}, + {40,0x44,0x20,0x20,1}, {41,0x44,0x21,0x00,0}, {42,0x44,0x22,0x00,0}, + {43,0x44,0x23,0x00,0}, {44,0x44,0x24,0x00,0}, {45,0x44,0x25,0x00,0}, + {46,0x44,0x26,0x00,0}, {47,0x44,0x27,0x00,0}, {48,0x44,0x28,0x00,0}, + {49,0x44,0x29,0x00,0}, {50,0x44,0x2A,0x00,0}, {51,0x44,0x2B,0x00,0}, + {52,0x44,0x2C,0x00,0}, {53,0x44,0x2D,0x00,0}, {54,0x44,0x2E,0x00,0}, + {55,0x64,0x2E,0x20,1}, {56,0x64,0x2F,0x00,0}, {57,0x64,0x30,0x00,0}, + {58,0x64,0x31,0x00,0}, {59,0x64,0x32,0x00,0}, {60,0x64,0x33,0x00,0}, + {61,0x64,0x34,0x00,0}, {62,0x64,0x35,0x00,0}, {63,0x64,0x36,0x00,0}, + {64,0x64,0x37,0x00,0}, {65,0x64,0x38,0x00,0}, {66,0x65,0x38,0x20,1}, + {67,0x66,0x38,0x20,1}, {68,0x67,0x38,0x20,1}, {69,0x68,0x38,0x20,1}, + {70,0x69,0x38,0x20,1}, {71,0x6A,0x38,0x20,1}, {72,0x6B,0x38,0x20,1}, + {73,0x6C,0x38,0x20,1}, {74,0x6D,0x38,0x20,1}, {75,0x6E,0x38,0x20,1}, + {76,0x6F,0x38,0x20,1}}; + + +#endif /* INCLUDED_AD9361_GAIN_TABLES_HPP */ diff --git a/firmware/fx3/ad9361/lib/ad9361_impl.c b/firmware/fx3/ad9361/lib/ad9361_impl.c new file mode 100644 index 000000000..61512d2c8 --- /dev/null +++ b/firmware/fx3/ad9361/lib/ad9361_impl.c @@ -0,0 +1,1918 @@ +// +// Copyright 2013-2014 Ettus Research LLC +// + +/* This file implements b200 vendor requests handler + * It handles ad9361 setup and configuration + */ + +#include <stdarg.h> +#include <stdio.h> +#include <math.h> + +#include <ad9361_transaction.h> +#include "ad9361_filter_taps.h" +#include "ad9361_gain_tables.h" +#include "ad9361_synth_lut.h" +#include "ad9361_dispatch.h" + +//////////////////////////////////////////////////////////// + +static void fake_msg(const char* str, ...) +{ +} + +static msgfn _msgfn = fake_msg; + +//extern void msg(const char* str, ...); External object must provide this symbol +#define msg (_msgfn) + +void ad9361_set_msgfn(msgfn pfn) +{ + _msgfn = pfn; +} + +//////////////////////////////////////////////////////////// +#define AD9361_MAX_GAIN 89.75 + +#define DOUBLE_PI 3.14159265359 +#define DOUBLE_LN_2 0.693147181 + +#define RX_TYPE 0 +#define TX_TYPE 1 + +#ifndef AD9361_CLOCKING_MODE +#error define a AD9361_CLOCKING_MODE +#endif + +#ifndef AD9361_RX_BAND_EDGE0 +#error define a AD9361_RX_BAND_EDGE0 +#endif + +#ifndef AD9361_RX_BAND_EDGE1 +#error define a AD9361_RX_BAND_EDGE1 +#endif + +#ifndef AD9361_TX_BAND_EDGE +#error define a AD9361_TX_BAND_EDGE +#endif + +//////////////////////////////////////////////////////////// +// the following macros evaluate to a compile time constant +// macros By Tom Torfs - donated to the public domain + +/* turn a numeric literal into a hex constant +(avoids problems with leading zeroes) +8-bit constants max value 0x11111111, always fits in unsigned long +*/ +#define HEX__(n) 0x##n##LU + +/* 8-bit conversion function */ +#define B8__(x) ((x&0x0000000FLU)?1:0) \ ++((x&0x000000F0LU)?2:0) \ ++((x&0x00000F00LU)?4:0) \ ++((x&0x0000F000LU)?8:0) \ ++((x&0x000F0000LU)?16:0) \ ++((x&0x00F00000LU)?32:0) \ ++((x&0x0F000000LU)?64:0) \ ++((x&0xF0000000LU)?128:0) + +/* *** user macros *** */ + +/* for upto 8-bit binary constants */ +#define B8(d) ((unsigned char)B8__(HEX__(d))) + +//////////////////////////////////////////////////////////// +// shadow registers +static uint8_t reg_vcodivs; +static uint8_t reg_inputsel; +static uint8_t reg_rxfilt; +static uint8_t reg_txfilt; +static uint8_t reg_bbpll; +static uint8_t reg_bbftune_config; +static uint8_t reg_bbftune_mode; + +//////////////////////////////////////////////////////////// +// other private data fields for VRQ handler +static double _rx_freq, _tx_freq, _req_rx_freq, _req_tx_freq; +static double _baseband_bw, _bbpll_freq, _adcclock_freq; +static double _req_clock_rate, _req_coreclk; +static uint16_t _rx_bbf_tunediv; +static uint8_t _curr_gain_table; +static uint32_t _rx1_gain, _rx2_gain, _tx1_gain, _tx2_gain; +static int _tfir_factor; + +double set_gain(int which, int n, const double value); +void set_active_chains(bool tx1, bool tx2, bool rx1, bool rx2); +/*********************************************************************** + * Placeholders, unused, or test functions + **********************************************************************/ +static char *tmp_req_buffer; + +void post_err_msg(const char* error) +{ + msg("[AD9361 error] %s", error); + + if (!tmp_req_buffer) + return; + + ad9361_transaction_t *request = (ad9361_transaction_t *)tmp_req_buffer; + strncpy(request->error_msg, error, (AD9361_TRANSACTION_MAX_ERROR_MSG + 1)); // '+ 1' as length excludes terminating NUL + request->error_msg[AD9361_TRANSACTION_MAX_ERROR_MSG] = '\0'; // If string was too long, NUL will not be copied, so force one just in case +} + +void write_ad9361_reg(uint32_t reg, uint8_t val) +{ + ad9361_transact_spi((reg << 8) | val | (1 << 23)); +} + +uint8_t read_ad9361_reg(uint32_t reg) +{ + return ad9361_transact_spi((reg << 8)) & 0xff; +} + +//shortcuts for double packer/unpacker function +#define double_pack ad9361_double_pack +#define double_unpack ad9361_double_unpack + +/* Make Catalina output its test tone. */ +void output_test_tone(void) { + /* Output a 480 kHz tone at 800 MHz */ + write_ad9361_reg(0x3F4, 0x0B); + write_ad9361_reg(0x3FC, 0xFF); + write_ad9361_reg(0x3FD, 0xFF); + write_ad9361_reg(0x3FE, 0x3F); +} + +/* Turn on/off Catalina's TX port --> RX port loopback. */ +void data_port_loopback(const int on) { + msg("[data_port_loopback] Enabled: %d", on); + write_ad9361_reg(0x3F5, (on ? 0x01 : 0x00)); +} + +/* This is a simple comparison for very large double-precision floating + * point numbers. It is used to prevent re-tunes for frequencies that are + * the same but not 'exactly' because of data precision issues. */ +// TODO: see if we can avoid the need for this function +int freq_is_nearly_equal(double a, double b) { + return AD9361_MAX(a,b) - AD9361_MIN(a,b) < 1; +} + +/*********************************************************************** + * Filter functions + **********************************************************************/ + +/* This function takes in the calculated maximum number of FIR taps, and + * returns a number of taps that makes Catalina happy. */ +int get_num_taps(int max_num_taps) { + + int num_taps = 0; + int num_taps_list[] = {16, 32, 48, 64, 80, 96, 112, 128}; + int i; + for(i = 1; i < 8; i++) { + if(max_num_taps >= num_taps_list[i]) { + continue; + } else { + num_taps = num_taps_list[i - 1]; + break; + } + } if(num_taps == 0) { num_taps = 128; } + + return num_taps; +} + +/* Program either the RX or TX FIR filter. + * + * The process is the same for both filters, but the function must be told + * how many taps are in the filter, and given a vector of the taps + * themselves. Note that the filters are symmetric, so value of 'num_taps' + * should actually be twice the length of the tap vector. */ +void program_fir_filter(int which, int num_taps, \ + uint16_t *coeffs) { + + uint16_t base; + if(which == RX_TYPE) { + base = 0x0f0; + write_ad9361_reg(base+6, 0x02); //filter gain + } else { + base = 0x060; + } + + /* Write the filter configuration. */ + uint8_t reg_numtaps = (((num_taps / 16) - 1) & 0x07) << 5; + + /* Turn on the filter clock. */ + write_ad9361_reg(base+5, reg_numtaps | 0x1a); + ad9361_msleep(1); + + int num_unique_coeffs = (num_taps / 2); + + /* The filters are symmetric, so iterate over the tap vector, + * programming each index, and then iterate backwards, repeating the + * process. */ + int addr; + for(addr=0; addr < num_unique_coeffs; addr++) { + write_ad9361_reg(base+0, addr); + write_ad9361_reg(base+1, (coeffs[addr]) & 0xff); + write_ad9361_reg(base+2, (coeffs[addr] >> 8) & 0xff); + write_ad9361_reg(base+5, 0xfe); + write_ad9361_reg(base+4, 0x00); + write_ad9361_reg(base+4, 0x00); + } + + for(addr=0; addr < num_unique_coeffs; addr++) { + write_ad9361_reg(base+0, addr+num_unique_coeffs); + write_ad9361_reg(base+1, (coeffs[num_unique_coeffs-1-addr]) & 0xff); + write_ad9361_reg(base+2, (coeffs[num_unique_coeffs-1-addr] >> 8) & 0xff); + write_ad9361_reg(base+5, 0xfe); + write_ad9361_reg(base+4, 0x00); + write_ad9361_reg(base+4, 0x00); + } + + /* Disable the filter clock. */ + write_ad9361_reg(base+5, 0xf8); +} + +/* Program the RX FIR Filter. */ +void setup_rx_fir(int total_num_taps) { + int num_taps = total_num_taps / 2; + uint16_t coeffs[num_taps]; + int i; + for(i = 0; i < num_taps; i++) { + coeffs[num_taps - 1 - i] = default_128tap_coeffs[63 - i]; + } + + program_fir_filter(RX_TYPE, total_num_taps, coeffs); +} + +/* Program the TX FIR Filter. */ +void setup_tx_fir(int total_num_taps) { + int num_taps = total_num_taps / 2; + uint16_t coeffs[num_taps]; + int i; + for(i = 0; i < num_taps; i++) { + coeffs[num_taps - 1 - i] = default_128tap_coeffs[63 - i]; + } + + program_fir_filter(TX_TYPE, total_num_taps, coeffs); +} + +/*********************************************************************** + * Calibration functions + ***********************************************************************/ + +/* Calibrate and lock the BBPLL. + * + * This function should be called anytime the BBPLL is tuned. */ +void calibrate_lock_bbpll() { + write_ad9361_reg(0x03F, 0x05); // Start the BBPLL calibration + write_ad9361_reg(0x03F, 0x01); // Clear the 'start' bit + + /* Increase BBPLL KV and phase margin. */ + write_ad9361_reg(0x04c, 0x86); + write_ad9361_reg(0x04d, 0x01); + write_ad9361_reg(0x04d, 0x05); + + /* Wait for BBPLL lock. */ + int count = 0; + while(!(read_ad9361_reg(0x05e) & 0x80)) { + if(count > 1000) { + post_err_msg("BBPLL not locked"); + break; + } + + count++; + ad9361_msleep(2); + } +} + +/* Calibrate the synthesizer charge pumps. + * + * Technically, this calibration only needs to be done once, at device + * initialization. */ +void calibrate_synth_charge_pumps() { + /* If this function ever gets called, and the ENSM isn't already in the + * ALERT state, then something has gone horribly wrong. */ + if((read_ad9361_reg(0x017) & 0x0F) != 5) { + post_err_msg("Catalina not in ALERT during cal"); + } + + /* Calibrate the RX synthesizer charge pump. */ + int count = 0; + write_ad9361_reg(0x23d, 0x04); + while(!(read_ad9361_reg(0x244) & 0x80)) { + if(count > 5) { + post_err_msg("RX charge pump cal failure"); + break; + } + + count++; + ad9361_msleep(1); + } + write_ad9361_reg(0x23d, 0x00); + + /* Calibrate the TX synthesizer charge pump. */ + count = 0; + write_ad9361_reg(0x27d, 0x04); + while(!(read_ad9361_reg(0x284) & 0x80)) { + if(count > 5) { + post_err_msg("TX charge pump cal failure"); + break; + } + + count++; + ad9361_msleep(1); + } + write_ad9361_reg(0x27d, 0x00); +} + +/* Calibrate the analog BB RX filter. + * + * Note that the filter calibration depends heavily on the baseband + * bandwidth, so this must be re-done after any change to the RX sample + * rate. */ +double calibrate_baseband_rx_analog_filter() { + /* For filter tuning, baseband BW is half the complex BW, and must be + * between 28e6 and 0.2e6. */ + double bbbw = _baseband_bw / 2.0; + if(bbbw > 28e6) { + bbbw = 28e6; + } else if (bbbw < 0.20e6) { + bbbw = 0.20e6; + } + + double rxtune_clk = ((1.4 * bbbw * 2 * + DOUBLE_PI) / DOUBLE_LN_2); + + _rx_bbf_tunediv = AD9361_MIN(511, AD9361_CEIL_INT(_bbpll_freq / rxtune_clk)); + + reg_bbftune_config = (reg_bbftune_config & 0xFE) \ + | ((_rx_bbf_tunediv >> 8) & 0x0001); + + double bbbw_mhz = bbbw / 1e6; + + double temp = ((bbbw_mhz - AD9361_FLOOR_INT(bbbw_mhz)) * 1000) / 7.8125; + uint8_t bbbw_khz = (uint8_t) AD9361_MIN(127, (AD9361_FLOOR_INT(temp + 0.5))); + + /* Set corner frequencies and dividers. */ + write_ad9361_reg(0x1fb, (uint8_t)(bbbw_mhz)); + write_ad9361_reg(0x1fc, bbbw_khz); + write_ad9361_reg(0x1f8, (_rx_bbf_tunediv & 0x00FF)); + write_ad9361_reg(0x1f9, reg_bbftune_config); + + /* RX Mix Voltage settings - only change with apps engineer help. */ + write_ad9361_reg(0x1d5, 0x3f); + write_ad9361_reg(0x1c0, 0x03); + + /* Enable RX1 & RX2 filter tuners. */ + write_ad9361_reg(0x1e2, 0x02); + write_ad9361_reg(0x1e3, 0x02); + + /* Run the calibration! */ + int count = 0; + write_ad9361_reg(0x016, 0x80); + while(read_ad9361_reg(0x016) & 0x80) { + if(count > 100) { + post_err_msg("RX baseband filter cal FAILURE"); + break; + } + + count++; + ad9361_msleep(1); + } + + /* Disable RX1 & RX2 filter tuners. */ + write_ad9361_reg(0x1e2, 0x03); + write_ad9361_reg(0x1e3, 0x03); + + return bbbw; +} + +/* Calibrate the analog BB TX filter. + * + * Note that the filter calibration depends heavily on the baseband + * bandwidth, so this must be re-done after any change to the TX sample + * rate. */ +double calibrate_baseband_tx_analog_filter() { + /* For filter tuning, baseband BW is half the complex BW, and must be + * between 28e6 and 0.2e6. */ + double bbbw = _baseband_bw / 2.0; + if(bbbw > 20e6) { + bbbw = 20e6; + } else if (bbbw < 0.625e6) { + bbbw = 0.625e6; + } + + double txtune_clk = ((1.6 * bbbw * 2 * + DOUBLE_PI) / DOUBLE_LN_2); + + uint16_t txbbfdiv = AD9361_MIN(511, (AD9361_CEIL_INT(_bbpll_freq / txtune_clk))); + + reg_bbftune_mode = (reg_bbftune_mode & 0xFE) \ + | ((txbbfdiv >> 8) & 0x0001); + + /* Program the divider values. */ + write_ad9361_reg(0x0d6, (txbbfdiv & 0x00FF)); + write_ad9361_reg(0x0d7, reg_bbftune_mode); + + /* Enable the filter tuner. */ + write_ad9361_reg(0x0ca, 0x22); + + /* Calibrate! */ + int count = 0; + write_ad9361_reg(0x016, 0x40); + while(read_ad9361_reg(0x016) & 0x40) { + if(count > 100) { + post_err_msg("TX baseband filter cal FAILURE"); + break; + } + + count++; + ad9361_msleep(1); + } + + /* Disable the filter tuner. */ + write_ad9361_reg(0x0ca, 0x26); + + return bbbw; +} + +/* Calibrate the secondary TX filter. + * + * This filter also depends on the TX sample rate, so if a rate change is + * made, the previous calibration will no longer be valid. */ +void calibrate_secondary_tx_filter() { + /* For filter tuning, baseband BW is half the complex BW, and must be + * between 20e6 and 0.53e6. */ + double bbbw = _baseband_bw / 2.0; + if(bbbw > 20e6) { + bbbw = 20e6; + } else if (bbbw < 0.53e6) { + bbbw = 0.53e6; + } + + double bbbw_mhz = bbbw / 1e6; + + /* Start with a resistor value of 100 Ohms. */ + int res = 100; + + /* Calculate target corner frequency. */ + double corner_freq = 5 * bbbw_mhz * 2 * DOUBLE_PI; + + /* Iterate through RC values to determine correct combination. */ + int cap = 0; + int i; + for(i = 0; i <= 3; i++) { + cap = (AD9361_FLOOR_INT(0.5 + (( 1 / ((corner_freq * res) * 1e6)) * 1e12))) - 12; + + if(cap <= 63) { + break; + } + + res = res * 2; + } + if(cap > 63) { + cap = 63; + } + + uint8_t reg0d0, reg0d1, reg0d2; + + /* Translate baseband bandwidths to register settings. */ + if((bbbw_mhz * 2) <= 9) { + reg0d0 = 0x59; + } else if(((bbbw_mhz * 2) > 9) && ((bbbw_mhz * 2) <= 24)) { + reg0d0 = 0x56; + } else if((bbbw_mhz * 2) > 24) { + reg0d0 = 0x57; + } else { + post_err_msg("Cal2ndTxFil: INVALID_CODE_PATH bad bbbw_mhz"); + reg0d0 = 0x00; + } + + /* Translate resistor values to register settings. */ + if(res == 100) { + reg0d1 = 0x0c; + } else if(res == 200) { + reg0d1 = 0x04; + } else if(res == 400) { + reg0d1 = 0x03; + } else if(res == 800) { + reg0d1 = 0x01; + } else { + reg0d1 = 0x0c; + } + + reg0d2 = cap; + + /* Program the above-calculated values. Sweet. */ + write_ad9361_reg(0x0d2, reg0d2); + write_ad9361_reg(0x0d1, reg0d1); + write_ad9361_reg(0x0d0, reg0d0); +} + +/* Calibrate the RX TIAs. + * + * Note that the values in the TIA register, after calibration, vary with + * the RX gain settings. */ +void calibrate_rx_TIAs() { + + uint8_t reg1eb = read_ad9361_reg(0x1eb) & 0x3F; + uint8_t reg1ec = read_ad9361_reg(0x1ec) & 0x7F; + uint8_t reg1e6 = read_ad9361_reg(0x1e6) & 0x07; + uint8_t reg1db = 0x00; + uint8_t reg1dc = 0x00; + uint8_t reg1dd = 0x00; + uint8_t reg1de = 0x00; + uint8_t reg1df = 0x00; + + /* For calibration, baseband BW is half the complex BW, and must be + * between 28e6 and 0.2e6. */ + double bbbw = _baseband_bw / 2.0; + if(bbbw > 20e6) { + bbbw = 20e6; + } else if (bbbw < 0.20e6) { + bbbw = 0.20e6; + } + double ceil_bbbw_mhz = AD9361_CEIL_INT(bbbw / 1e6); + + /* Do some crazy resistor and capacitor math. */ + int Cbbf = (reg1eb * 160) + (reg1ec * 10) + 140; + int R2346 = 18300 * (reg1e6 & 0x07); + double CTIA_fF = (Cbbf * R2346 * 0.56) / 3500; + + /* Translate baseband BW to register settings. */ + if(ceil_bbbw_mhz <= 3) { + reg1db = 0xe0; + } else if((ceil_bbbw_mhz > 3) && (ceil_bbbw_mhz <= 10)) { + reg1db = 0x60; + } else if(ceil_bbbw_mhz > 10) { + reg1db = 0x20; + } else { + post_err_msg("CalRxTias: INVALID_CODE_PATH bad bbbw_mhz"); + } + + if(CTIA_fF > 2920) { + reg1dc = 0x40; + reg1de = 0x40; + + uint8_t temp = (uint8_t) AD9361_MIN(127, (AD9361_FLOOR_INT(0.5 + ((CTIA_fF - 400.0) / 320.0)))); + reg1dd = temp; + reg1df = temp; + } else { + uint8_t temp = (uint8_t) AD9361_FLOOR_INT(0.5 + ((CTIA_fF - 400.0) / 40.0)) + 0x40; + reg1dc = temp; + reg1de = temp; + reg1dd = 0; + reg1df = 0; + } + + /* w00t. Settings calculated. Program them and roll out. */ + write_ad9361_reg(0x1db, reg1db); + write_ad9361_reg(0x1dd, reg1dd); + write_ad9361_reg(0x1df, reg1df); + write_ad9361_reg(0x1dc, reg1dc); + write_ad9361_reg(0x1de, reg1de); +} + +/* Setup the Catalina ADC. + * + * There are 40 registers that control the ADC's operation, most of the + * values of which must be derived mathematically, dependent on the current + * setting of the BBPLL. Note that the order of calculation is critical, as + * some of the 40 registers depend on the values in others. */ +void setup_adc() { + double bbbw_mhz = (((_bbpll_freq / 1e6) / _rx_bbf_tunediv) * DOUBLE_LN_2) \ + / (1.4 * 2 * DOUBLE_PI); + + /* For calibration, baseband BW is half the complex BW, and must be + * between 28e6 and 0.2e6. */ + if(bbbw_mhz > 28) { + bbbw_mhz = 28; + } else if (bbbw_mhz < 0.20) { + bbbw_mhz = 0.20; + } + + uint8_t rxbbf_c3_msb = read_ad9361_reg(0x1eb) & 0x3F; + uint8_t rxbbf_c3_lsb = read_ad9361_reg(0x1ec) & 0x7F; + uint8_t rxbbf_r2346 = read_ad9361_reg(0x1e6) & 0x07; + + double fsadc = _adcclock_freq / 1e6; + + /* Sort out the RC time constant for our baseband bandwidth... */ + double rc_timeconst = 0.0; + if(bbbw_mhz < 18) { + rc_timeconst = (1 / ((1.4 * 2 * DOUBLE_PI) \ + * (18300 * rxbbf_r2346) + * ((160e-15 * rxbbf_c3_msb) + + (10e-15 * rxbbf_c3_lsb) + 140e-15) + * (bbbw_mhz * 1e6))); + } else { + rc_timeconst = (1 / ((1.4 * 2 * DOUBLE_PI) \ + * (18300 * rxbbf_r2346) + * ((160e-15 * rxbbf_c3_msb) + + (10e-15 * rxbbf_c3_lsb) + 140e-15) + * (bbbw_mhz * 1e6) * (1 + (0.01 * (bbbw_mhz - 18))))); + } + + double scale_res = ad9361_sqrt(1 / rc_timeconst); + double scale_cap = ad9361_sqrt(1 / rc_timeconst); + + double scale_snr = (_adcclock_freq < 80e6) ? 1.0 : 1.584893192; + double maxsnr = 640 / 160; + + /* Calculate the values for all 40 settings registers. + * + * DO NOT TOUCH THIS UNLESS YOU KNOW EXACTLY WHAT YOU ARE DOING. kthx.*/ + uint8_t data[40]; + data[0] = 0; data[1] = 0; data[2] = 0; data[3] = 0x24; + data[4] = 0x24; data[5] = 0; data[6] = 0; + data[7] = (uint8_t) AD9361_MIN(124, (AD9361_FLOOR_INT(-0.5 + + (80.0 * scale_snr * scale_res + * AD9361_MIN(1.0, ad9361_sqrt(maxsnr * fsadc / 640.0)))))); + double data007 = data[7]; + data[8] = (uint8_t) AD9361_MIN(255, (AD9361_FLOOR_INT(0.5 + + ((20.0 * (640.0 / fsadc) * ((data007 / 80.0)) + / (scale_res * scale_cap)))))); + data[10] = (uint8_t) AD9361_MIN(127, (AD9361_FLOOR_INT(-0.5 + (77.0 * scale_res + * AD9361_MIN(1.0, ad9361_sqrt(maxsnr * fsadc / 640.0)))))); + double data010 = data[10]; + data[9] = (uint8_t) AD9361_MIN(127, (AD9361_FLOOR_INT(0.8 * data010))); + data[11] = (uint8_t) AD9361_MIN(255, (AD9361_FLOOR_INT(0.5 + + (20.0 * (640.0 / fsadc) * ((data010 / 77.0) + / (scale_res * scale_cap)))))); + data[12] = (uint8_t) AD9361_MIN(127, (AD9361_FLOOR_INT(-0.5 + + (80.0 * scale_res * AD9361_MIN(1.0, + ad9361_sqrt(maxsnr * fsadc / 640.0)))))); + double data012 = data[12]; + data[13] = (uint8_t) AD9361_MIN(255, (AD9361_FLOOR_INT(-1.5 + + (20.0 * (640.0 / fsadc) * ((data012 / 80.0) + / (scale_res * scale_cap)))))); + data[14] = 21 * (uint8_t)(AD9361_FLOOR_INT(0.1 * 640.0 / fsadc)); + data[15] = (uint8_t) AD9361_MIN(127, (1.025 * data007)); + double data015 = data[15]; + data[16] = (uint8_t) AD9361_MIN(127, (AD9361_FLOOR_INT((data015 + * (0.98 + (0.02 * AD9361_MAX(1.0, + (640.0 / fsadc) / maxsnr))))))); + data[17] = data[15]; + data[18] = (uint8_t) AD9361_MIN(127, (0.975 * (data010))); + double data018 = data[18]; + data[19] = (uint8_t) AD9361_MIN(127, (AD9361_FLOOR_INT((data018 + * (0.98 + (0.02 * AD9361_MAX(1.0, + (640.0 / fsadc) / maxsnr))))))); + data[20] = data[18]; + data[21] = (uint8_t) AD9361_MIN(127, (0.975 * data012)); + double data021 = data[21]; + data[22] = (uint8_t) AD9361_MIN(127, (AD9361_FLOOR_INT((data021 + * (0.98 + (0.02 * AD9361_MAX(1.0, + (640.0 / fsadc) / maxsnr))))))); + data[23] = data[21]; + data[24] = 0x2e; + data[25] = (uint8_t)(AD9361_FLOOR_INT(128.0 + AD9361_MIN(63.0, + 63.0 * (fsadc / 640.0)))); + data[26] = (uint8_t)(AD9361_FLOOR_INT(AD9361_MIN(63.0, 63.0 * (fsadc / 640.0) + * (0.92 + (0.08 * (640.0 / fsadc)))))); + data[27] = (uint8_t)(AD9361_FLOOR_INT(AD9361_MIN(63.0, + 32.0 * ad9361_sqrt(fsadc / 640.0)))); + data[28] = (uint8_t)(AD9361_FLOOR_INT(128.0 + AD9361_MIN(63.0, + 63.0 * (fsadc / 640.0)))); + data[29] = (uint8_t)(AD9361_FLOOR_INT(AD9361_MIN(63.0, + 63.0 * (fsadc / 640.0) + * (0.92 + (0.08 * (640.0 / fsadc)))))); + data[30] = (uint8_t)(AD9361_FLOOR_INT(AD9361_MIN(63.0, + 32.0 * ad9361_sqrt(fsadc / 640.0)))); + data[31] = (uint8_t)(AD9361_FLOOR_INT(128.0 + AD9361_MIN(63.0, + 63.0 * (fsadc / 640.0)))); + data[32] = (uint8_t)(AD9361_FLOOR_INT(AD9361_MIN(63.0, + 63.0 * (fsadc / 640.0) * (0.92 + + (0.08 * (640.0 / fsadc)))))); + data[33] = (uint8_t)(AD9361_FLOOR_INT(AD9361_MIN(63.0, + 63.0 * ad9361_sqrt(fsadc / 640.0)))); + data[34] = (uint8_t) AD9361_MIN(127, (AD9361_FLOOR_INT(64.0 + * ad9361_sqrt(fsadc / 640.0)))); + data[35] = 0x40; + data[36] = 0x40; + data[37] = 0x2c; + data[38] = 0x00; + data[39] = 0x00; + + /* Program the registers! */ + int i; + for(i=0; i<40; i++) { + write_ad9361_reg(0x200+i, data[i]); + } + +} + +/* Calibrate the baseband DC offset. + * + * Note that this function is called from within the TX quadrature + * calibration function! */ +void calibrate_baseband_dc_offset() { + write_ad9361_reg(0x193, 0x3f); // Calibration settings + write_ad9361_reg(0x190, 0x0f); // Set tracking coefficient + //write_ad9361_reg(0x190, /*0x0f*//*0xDF*/0x80*1 | 0x40*1 | (16+8/*+4*/)); // Set tracking coefficient: don't *4 counter, do decim /4, increased gain shift + write_ad9361_reg(0x194, 0x01); // More calibration settings + + /* Start that calibration, baby. */ + int count = 0; + write_ad9361_reg(0x016, 0x01); + while(read_ad9361_reg(0x016) & 0x01) { + if(count > 100) { + post_err_msg("Baseband DC Offset Calibration Failure"); + break; + } + + count++; + ad9361_msleep(5); + } +} + +/* Calibrate the RF DC offset. + * + * Note that this function is called from within the TX quadrature + * calibration function. */ +void calibrate_rf_dc_offset() { + /* Some settings are frequency-dependent. */ + if(_rx_freq < 4e9) { + write_ad9361_reg(0x186, 0x32); // RF DC Offset count + write_ad9361_reg(0x187, 0x24); + write_ad9361_reg(0x188, 0x05); + } else { + write_ad9361_reg(0x186, 0x28); // RF DC Offset count + write_ad9361_reg(0x187, 0x34); + write_ad9361_reg(0x188, 0x06); + } + + write_ad9361_reg(0x185, 0x20); // RF DC Offset wait count + write_ad9361_reg(0x18b, 0x83); + write_ad9361_reg(0x189, 0x30); + + /* Run the calibration! */ + int count = 0; + write_ad9361_reg(0x016, 0x02); + while(read_ad9361_reg(0x016) & 0x02) { + if(count > 100) { + post_err_msg("RF DC Offset Calibration Failure"); + break; + } + + count++; + ad9361_msleep(50); + } +} + +/* Start the RX quadrature calibration. + * + * Note that we are using Catalina's 'tracking' feature for RX quadrature + * calibration, so once it starts it continues to free-run during operation. + * It should be re-run for large frequency changes. */ +void calibrate_rx_quadrature(void) { + /* Configure RX Quadrature calibration settings. */ + write_ad9361_reg(0x168, 0x03); // Set tone level for cal + write_ad9361_reg(0x16e, 0x25); // RX Gain index to use for cal + write_ad9361_reg(0x16a, 0x75); // Set Kexp phase + write_ad9361_reg(0x16b, 0x15); // Set Kexp amplitude + write_ad9361_reg(0x169, 0xcf); // Continuous tracking mode + write_ad9361_reg(0x18b, 0xad); +} + +/* TX quadtrature calibration routine. + * + * The TX quadrature needs to be done twice, once for each TX chain, with + * only one register change in between. Thus, this function enacts the + * calibrations, and it is called from calibrate_tx_quadrature. */ +void tx_quadrature_cal_routine(void) { + + /* This is a weird process, but here is how it works: + * 1) Read the calibrated NCO frequency bits out of 0A3. + * 2) Write the two bits to the RX NCO freq part of 0A0. + * 3) Re-read 0A3 to get bits [5:0] because maybe they changed? + * 4) Update only the TX NCO freq bits in 0A3. + * 5) Profit (I hope). */ + uint8_t reg0a3 = read_ad9361_reg(0x0a3); + uint8_t nco_freq = (reg0a3 & 0xC0); + write_ad9361_reg(0x0a0, 0x15 | (nco_freq >> 1)); + reg0a3 = read_ad9361_reg(0x0a3); + write_ad9361_reg(0x0a3, (reg0a3 & 0x3F) | nco_freq); + + /* It is possible to reach a configuration that won't operate correctly, + * where the two test tones used for quadrature calibration are outside + * of the RX BBF, and therefore don't make it to the ADC. We will check + * for that scenario here. */ + double max_cal_freq = (((_baseband_bw * _tfir_factor) * ((nco_freq >> 6) + 1)) / 32) * 2; + double bbbw = _baseband_bw / 2.0; // bbbw represents the one-sided BW + if(bbbw > 28e6) { + bbbw = 28e6; + } else if (bbbw < 0.20e6) { + bbbw = 0.20e6; + } + if (max_cal_freq > bbbw ) + post_err_msg("max_cal_freq > bbbw"); + + write_ad9361_reg(0x0a1, 0x7B); // Set tracking coefficient + write_ad9361_reg(0x0a9, 0xff); // Cal count + write_ad9361_reg(0x0a2, 0x7f); // Cal Kexp + write_ad9361_reg(0x0a5, 0x01); // Cal magnitude threshold VVVV + write_ad9361_reg(0x0a6, 0x01); + + /* The gain table index used for calibration must be adjusted for the + * mid-table to get a TIA index = 1 and LPF index = 0. */ + if((_rx_freq >= 1300e6) && (_rx_freq < 4000e6)) { + write_ad9361_reg(0x0aa, 0x22); // Cal gain table index + } else { + write_ad9361_reg(0x0aa, 0x25); // Cal gain table index + } + + write_ad9361_reg(0x0a4, 0xf0); // Cal setting conut + write_ad9361_reg(0x0ae, 0x00); // Cal LPF gain index (split mode) + + /* First, calibrate the baseband DC offset. */ + calibrate_baseband_dc_offset(); + + /* Second, calibrate the RF DC offset. */ + calibrate_rf_dc_offset(); + + /* Now, calibrate the TX quadrature! */ + int count = 0; + write_ad9361_reg(0x016, 0x10); + while(read_ad9361_reg(0x016) & 0x10) { + if(count > 100) { + post_err_msg("TX Quadrature Calibration Failure"); + break; + } + + count++; + ad9361_msleep(10); + } +} + +/* Run the TX quadrature calibration. + * + * Note that from within this function we are also triggering the baseband + * and RF DC calibrations. */ +void calibrate_tx_quadrature(void) { + /* Make sure we are, in fact, in the ALERT state. If not, something is + * terribly wrong in the driver execution flow. */ + if((read_ad9361_reg(0x017) & 0x0F) != 5) { + post_err_msg("TX Quad Cal started, but not in ALERT"); + } + + /* Turn off free-running and continuous calibrations. Note that this + * will get turned back on at the end of the RX calibration routine. */ + write_ad9361_reg(0x169, 0xc0); + + /* This calibration must be done in a certain order, and for both TX_A + * and TX_B, separately. Store the original setting so that we can + * restore it later. */ + uint8_t orig_reg_inputsel = reg_inputsel; + + /*********************************************************************** + * TX1/2-A Calibration + **********************************************************************/ + reg_inputsel = reg_inputsel & 0xBF; + write_ad9361_reg(0x004, reg_inputsel); + + tx_quadrature_cal_routine(); + + /*********************************************************************** + * TX1/2-B Calibration + **********************************************************************/ + reg_inputsel = reg_inputsel | 0x40; + write_ad9361_reg(0x004, reg_inputsel); + + tx_quadrature_cal_routine(); + + /*********************************************************************** + * fin + **********************************************************************/ + reg_inputsel = orig_reg_inputsel; + write_ad9361_reg(0x004, orig_reg_inputsel); +} + + +/*********************************************************************** + * Other Misc Setup Functions + ***********************************************************************/ + +/* Program the mixer gain table. + * + * Note that this table is fixed for all frequency settings. */ +void program_mixer_gm_subtable() { + uint8_t gain[] = {0x78, 0x74, 0x70, 0x6C, 0x68, 0x64, 0x60, 0x5C, 0x58, + 0x54, 0x50, 0x4C, 0x48, 0x30, 0x18, 0x00}; + uint8_t gm[] = {0x00, 0x0D, 0x15, 0x1B, 0x21, 0x25, 0x29, 0x2C, 0x2F, + 0x31, 0x33, 0x34, 0x35, 0x3A, 0x3D, 0x3E}; + + /* Start the clock. */ + write_ad9361_reg(0x13f, 0x02); + + /* Program the GM Sub-table. */ + int i; + for(i = 15; i >= 0; i--) { + write_ad9361_reg(0x138, i); + write_ad9361_reg(0x139, gain[(15 - i)]); + write_ad9361_reg(0x13A, 0x00); + write_ad9361_reg(0x13B, gm[(15 - i)]); + write_ad9361_reg(0x13F, 0x06); + write_ad9361_reg(0x13C, 0x00); + write_ad9361_reg(0x13C, 0x00); + } + + /* Clear write bit and stop clock. */ + write_ad9361_reg(0x13f, 0x02); + write_ad9361_reg(0x13C, 0x00); + write_ad9361_reg(0x13C, 0x00); + write_ad9361_reg(0x13f, 0x00); +} + +/* Program the gain table. + * + * There are three different gain tables for different frequency ranges! */ +void program_gain_table() { + + /* Figure out which gain table we should be using for our current + * frequency band. */ + uint8_t (*gain_table)[5] = NULL; + uint8_t new_gain_table; + if(_rx_freq < 1300e6) { + gain_table = gain_table_sub_1300mhz; + new_gain_table = 1; + } else if(_rx_freq < 4e9) { + gain_table = gain_table_1300mhz_to_4000mhz; + new_gain_table = 2; + } else if(_rx_freq <= 6e9) { + gain_table = gain_table_4000mhz_to_6000mhz; + new_gain_table = 3; + } else { + post_err_msg("Wrong _rx_freq value"); + new_gain_table = 1; + } + + /* Only re-program the gain table if there has been a band change. */ + if(_curr_gain_table == new_gain_table) { + return; + } else { + _curr_gain_table = new_gain_table; + } + + /* Okay, we have to program a new gain table. Sucks, brah. Start the + * gain table clock. */ + write_ad9361_reg(0x137, 0x1A); + + /* IT'S PROGRAMMING TIME. */ + uint8_t index = 0; + for(; index < 77; index++) { + write_ad9361_reg(0x130, index); + write_ad9361_reg(0x131, gain_table[index][1]); + write_ad9361_reg(0x132, gain_table[index][2]); + write_ad9361_reg(0x133, gain_table[index][3]); + write_ad9361_reg(0x137, 0x1E); + write_ad9361_reg(0x134, 0x00); + write_ad9361_reg(0x134, 0x00); + } + + /* Everything above the 77th index is zero. */ + for(; index < 91; index++) { + write_ad9361_reg(0x130, index); + write_ad9361_reg(0x131, 0x00); + write_ad9361_reg(0x132, 0x00); + write_ad9361_reg(0x133, 0x00); + write_ad9361_reg(0x137, 0x1E); + write_ad9361_reg(0x134, 0x00); + write_ad9361_reg(0x134, 0x00); + } + + /* Clear the write bit and stop the gain clock. */ + write_ad9361_reg(0x137, 0x1A); + write_ad9361_reg(0x134, 0x00); + write_ad9361_reg(0x134, 0x00); + write_ad9361_reg(0x137, 0x00); +} + +/* Setup gain control registers. + * + * This really only needs to be done once, at initialization. */ +void setup_gain_control() { + write_ad9361_reg(0x0FA, 0xE0); // Gain Control Mode Select + write_ad9361_reg(0x0FB, 0x08); // Table, Digital Gain, Man Gain Ctrl + write_ad9361_reg(0x0FC, 0x23); // Incr Step Size, ADC Overrange Size + write_ad9361_reg(0x0FD, 0x4C); // Max Full/LMT Gain Table Index + write_ad9361_reg(0x0FE, 0x44); // Decr Step Size, Peak Overload Time + write_ad9361_reg(0x100, 0x6F); // Max Digital Gain + write_ad9361_reg(0x104, 0x2F); // ADC Small Overload Threshold + write_ad9361_reg(0x105, 0x3A); // ADC Large Overload Threshold + write_ad9361_reg(0x107, 0x31); // Large LMT Overload Threshold + write_ad9361_reg(0x108, 0x39); // Small LMT Overload Threshold + write_ad9361_reg(0x109, 0x23); // Rx1 Full/LMT Gain Index + write_ad9361_reg(0x10A, 0x58); // Rx1 LPF Gain Index + write_ad9361_reg(0x10B, 0x00); // Rx1 Digital Gain Index + write_ad9361_reg(0x10C, 0x23); // Rx2 Full/LMT Gain Index + write_ad9361_reg(0x10D, 0x18); // Rx2 LPF Gain Index + write_ad9361_reg(0x10E, 0x00); // Rx2 Digital Gain Index + write_ad9361_reg(0x114, 0x30); // Low Power Threshold + write_ad9361_reg(0x11A, 0x27); // Initial LMT Gain Limit + write_ad9361_reg(0x081, 0x00); // Tx Symbol Gain Control +} + +/* Setup the RX or TX synthesizers. + * + * This setup depends on a fixed look-up table, which is stored in an + * included header file. The table is indexed based on the passed VCO rate. + */ +void setup_synth(int which, double vcorate) { + /* The vcorates in the vco_index array represent lower boundaries for + * rates. Once we find a match, we use that index to look-up the rest of + * the register values in the LUT. */ + int vcoindex = 0; + int i; + for(i = 0; i < 53; i++) { + vcoindex = i; + if(vcorate > vco_index[i]) { + break; + } + } + + if (vcoindex > 53) + post_err_msg("vcoindex > 53"); + + /* Parse the values out of the LUT based on our calculated index... */ + uint8_t vco_output_level = synth_cal_lut[vcoindex][0]; + uint8_t vco_varactor = synth_cal_lut[vcoindex][1]; + uint8_t vco_bias_ref = synth_cal_lut[vcoindex][2]; + uint8_t vco_bias_tcf = synth_cal_lut[vcoindex][3]; + uint8_t vco_cal_offset = synth_cal_lut[vcoindex][4]; + uint8_t vco_varactor_ref = synth_cal_lut[vcoindex][5]; + uint8_t charge_pump_curr = synth_cal_lut[vcoindex][6]; + uint8_t loop_filter_c2 = synth_cal_lut[vcoindex][7]; + uint8_t loop_filter_c1 = synth_cal_lut[vcoindex][8]; + uint8_t loop_filter_r1 = synth_cal_lut[vcoindex][9]; + uint8_t loop_filter_c3 = synth_cal_lut[vcoindex][10]; + uint8_t loop_filter_r3 = synth_cal_lut[vcoindex][11]; + + /* ... annnd program! */ + if(which == RX_TYPE) { + write_ad9361_reg(0x23a, 0x40 | vco_output_level); + write_ad9361_reg(0x239, 0xC0 | vco_varactor); + write_ad9361_reg(0x242, vco_bias_ref | (vco_bias_tcf << 3)); + write_ad9361_reg(0x238, (vco_cal_offset << 3)); + write_ad9361_reg(0x245, 0x00); + write_ad9361_reg(0x251, vco_varactor_ref); + write_ad9361_reg(0x250, 0x70); + write_ad9361_reg(0x23b, 0x80 | charge_pump_curr); + write_ad9361_reg(0x23e, loop_filter_c1 | (loop_filter_c2 << 4)); + write_ad9361_reg(0x23f, loop_filter_c3 | (loop_filter_r1 << 4)); + write_ad9361_reg(0x240, loop_filter_r3); + } else if(which == TX_TYPE) { + write_ad9361_reg(0x27a, 0x40 | vco_output_level); + write_ad9361_reg(0x279, 0xC0 | vco_varactor); + write_ad9361_reg(0x282, vco_bias_ref | (vco_bias_tcf << 3)); + write_ad9361_reg(0x278, (vco_cal_offset << 3)); + write_ad9361_reg(0x285, 0x00); + write_ad9361_reg(0x291, vco_varactor_ref); + write_ad9361_reg(0x290, 0x70); + write_ad9361_reg(0x27b, 0x80 | charge_pump_curr); + write_ad9361_reg(0x27e, loop_filter_c1 | (loop_filter_c2 << 4)); + write_ad9361_reg(0x27f, loop_filter_c3 | (loop_filter_r1 << 4)); + write_ad9361_reg(0x280, loop_filter_r3); + } else { + post_err_msg("[setup_synth] INVALID_CODE_PATH"); + } +} + + +/* Tune the baseband VCO. + * + * This clock signal is what gets fed to the ADCs and DACs. This function is + * not exported outside of this file, and is invoked based on the rate + * fed to the public set_clock_rate function. */ +double tune_bbvco(const double rate) { + msg("[tune_bbvco] rate=%.10f", rate); + + /* Let's not re-tune to the same frequency over and over... */ + if(freq_is_nearly_equal(rate, _req_coreclk)) { + return _adcclock_freq; + } + + _req_coreclk = rate; + + const double fref = 40e6; + const int modulus = 2088960; + const double vcomax = 1430e6; + const double vcomin = 672e6; + double vcorate; + int vcodiv; + + /* Iterate over VCO dividers until appropriate divider is found. */ + int i = 1; + for(; i <= 6; i++) { + vcodiv = 1 << i; + vcorate = rate * vcodiv; + + if(vcorate >= vcomin && vcorate <= vcomax) break; + } + if(i == 7) + post_err_msg("[tune_bbvco] wrong vcorate"); + + msg("[tune_bbvco] vcodiv=%d vcorate=%.10f", vcodiv, vcorate); + + /* Fo = Fref * (Nint + Nfrac / mod) */ + int nint = vcorate / fref; + msg("[tune_bbvco] (nint)=%.10f", (vcorate / fref)); + int nfrac = lround(((vcorate / fref) - (double)nint) * (double)modulus); + msg("[tune_bbvco] (nfrac)=%.10f", (((vcorate / fref) - (double)nint) * (double)modulus)); + msg("[tune_bbvco] nint=%d nfrac=%d", nint, nfrac); + double actual_vcorate = fref * ((double)nint + ((double)nfrac / (double)modulus)); + + /* Scale CP current according to VCO rate */ + const double icp_baseline = 150e-6; + const double freq_baseline = 1280e6; + double icp = icp_baseline * (actual_vcorate / freq_baseline); + int icp_reg = (icp / 25e-6) - 1; + + write_ad9361_reg(0x045, 0x00); // REFCLK / 1 to BBPLL + write_ad9361_reg(0x046, icp_reg & 0x3F); // CP current + write_ad9361_reg(0x048, 0xe8); // BBPLL loop filters + write_ad9361_reg(0x049, 0x5b); // BBPLL loop filters + write_ad9361_reg(0x04a, 0x35); // BBPLL loop filters + + write_ad9361_reg(0x04b, 0xe0); + write_ad9361_reg(0x04e, 0x10); // Max accuracy + + write_ad9361_reg(0x043, nfrac & 0xFF); // Nfrac[7:0] + write_ad9361_reg(0x042, (nfrac >> 8) & 0xFF); // Nfrac[15:8] + write_ad9361_reg(0x041, (nfrac >> 16) & 0xFF); // Nfrac[23:16] + write_ad9361_reg(0x044, nint); // Nint + + calibrate_lock_bbpll(); + + reg_bbpll = (reg_bbpll & 0xF8) | i; + + _bbpll_freq = actual_vcorate; + _adcclock_freq = (actual_vcorate / vcodiv); + + return _adcclock_freq; +} + +/* This function re-programs all of the gains in the system. + * + * Because the gain values match to different gain indices based on the + * current operating band, this function can be called to update all gain + * settings to the appropriate index after a re-tune. */ +void program_gains() { + set_gain(RX_TYPE,1, _rx1_gain); + set_gain(RX_TYPE,2, _rx2_gain); + set_gain(TX_TYPE,1, _tx1_gain); + set_gain(TX_TYPE,2, _tx2_gain); +} + +/* This is the internal tune function, not available for a host call. + * + * Calculate the VCO settings for the requested frquency, and then either + * tune the RX or TX VCO. */ +double tune_helper(int which, const double value) { + + /* The RFPLL runs from 6 GHz - 12 GHz */ + const double fref = 80e6; + const int modulus = 8388593; + const double vcomax = 12e9; + const double vcomin = 6e9; + double vcorate; + int vcodiv; + + /* Iterate over VCO dividers until appropriate divider is found. */ + int i; + for(i = 0; i <= 6; i++) { + vcodiv = 2 << i; + vcorate = value * vcodiv; + if(vcorate >= vcomin && vcorate <= vcomax) break; + } + if(i == 7) + post_err_msg("RFVCO can't find valid VCO rate!"); + + int nint = vcorate / fref; + int nfrac = ((vcorate / fref) - nint) * modulus; + + double actual_vcorate = fref * (nint + (double)(nfrac)/modulus); + double actual_lo = actual_vcorate / vcodiv; + + // UHD_VAR(actual_lo); // TODO: + + if(which == RX_TYPE) { + + _req_rx_freq = value; + + /* Set band-specific settings. */ + if(value < AD9361_RX_BAND_EDGE0) { + reg_inputsel = (reg_inputsel & 0xC0) | 0x30; + } else if((value >= AD9361_RX_BAND_EDGE0) && (value < AD9361_RX_BAND_EDGE1)) { + reg_inputsel = (reg_inputsel & 0xC0) | 0x0C; + } else if((value >= AD9361_RX_BAND_EDGE1) && (value <= 6e9)) { + reg_inputsel = (reg_inputsel & 0xC0) | 0x03; + } else { + post_err_msg("[tune_helper] INVALID_CODE_PATH"); + } + + write_ad9361_reg(0x004, reg_inputsel); + + /* Store vcodiv setting. */ + reg_vcodivs = (reg_vcodivs & 0xF0) | (i & 0x0F); + + /* Setup the synthesizer. */ + setup_synth(RX_TYPE, actual_vcorate); + + /* Tune!!!! */ + write_ad9361_reg(0x233, nfrac & 0xFF); + write_ad9361_reg(0x234, (nfrac >> 8) & 0xFF); + write_ad9361_reg(0x235, (nfrac >> 16) & 0xFF); + write_ad9361_reg(0x232, (nint >> 8) & 0xFF); + write_ad9361_reg(0x231, nint & 0xFF); + write_ad9361_reg(0x005, reg_vcodivs); + + /* Lock the PLL! */ + ad9361_msleep(2); + if((read_ad9361_reg(0x247) & 0x02) == 0) { + post_err_msg("RX PLL NOT LOCKED"); + } + + _rx_freq = actual_lo; + + return actual_lo; + + } else { + + _req_tx_freq = value; + + /* Set band-specific settings. */ + if(value < AD9361_TX_BAND_EDGE) { + reg_inputsel = reg_inputsel | 0x40; + } else if((value >= AD9361_TX_BAND_EDGE) && (value <= 6e9)) { + reg_inputsel = reg_inputsel & 0xBF; + } else { + post_err_msg("[tune_helper] INVALID_CODE_PATH"); + } + + write_ad9361_reg(0x004, reg_inputsel); + + /* Store vcodiv setting. */ + reg_vcodivs = (reg_vcodivs & 0x0F) | ((i & 0x0F) << 4); + + /* Setup the synthesizer. */ + setup_synth(TX_TYPE, actual_vcorate); + + /* Tune it, homey. */ + write_ad9361_reg(0x273, nfrac & 0xFF); + write_ad9361_reg(0x274, (nfrac >> 8) & 0xFF); + write_ad9361_reg(0x275, (nfrac >> 16) & 0xFF); + write_ad9361_reg(0x272, (nint >> 8) & 0xFF); + write_ad9361_reg(0x271, nint & 0xFF); + write_ad9361_reg(0x005, reg_vcodivs); + + /* Lock the PLL! */ + ad9361_msleep(2); + if((read_ad9361_reg(0x287) & 0x02) == 0) { + post_err_msg("TX PLL NOT LOCKED"); + } + + _tx_freq = actual_lo; + + return actual_lo; + } +} + +/* Configure the various clock / sample rates in the RX and TX chains. + * + * Functionally, this function configures Catalina's RX and TX rates. For + * a requested TX & RX rate, it sets the interpolation & decimation filters, + * and tunes the VCO that feeds the ADCs and DACs. + */ +double setup_rates(const double rate) { + + /* If we make it into this function, then we are tuning to a new rate. + * Store the new rate. */ + _req_clock_rate = rate; + + /* Set the decimation and interpolation values in the RX and TX chains. + * This also switches filters in / out. Note that all transmitters and + * receivers have to be turned on for the calibration portion of + * bring-up, and then they will be switched out to reflect the actual + * user-requested antenna selections. */ + int divfactor = 0; + _tfir_factor = 0; + if(rate < 0.33e6) { + // RX1 + RX2 enabled, 3, 2, 2, 4 + reg_rxfilt = B8( 11101111 ) ; + + // TX1 + TX2 enabled, 3, 2, 2, 4 + reg_txfilt = B8( 11101111 ) ; + + divfactor = 48; + _tfir_factor = 2; + } else if(rate < 0.66e6) { + // RX1 + RX2 enabled, 2, 2, 2, 4 + reg_rxfilt = B8( 11011111 ) ; + + // TX1 + TX2 enabled, 2, 2, 2, 4 + reg_txfilt = B8( 11011111 ) ; + + divfactor = 32; + _tfir_factor = 2; + } else if(rate <= 20e6) { + // RX1 + RX2 enabled, 2, 2, 2, 2 + reg_rxfilt = B8( 11011110 ) ; + + // TX1 + TX2 enabled, 2, 2, 2, 2 + reg_txfilt = B8( 11011110 ) ; + + divfactor = 16; + _tfir_factor = 2; + } else if((rate > 20e6) && (rate < 23e6)) { + // RX1 + RX2 enabled, 3, 2, 2, 2 + reg_rxfilt = B8( 11101110 ) ; + + // TX1 + TX2 enabled, 3, 1, 2, 2 + reg_txfilt = B8( 11100110 ) ; + + divfactor = 24; + _tfir_factor = 2; + } else if((rate >= 23e6) && (rate < 41e6)) { + // RX1 + RX2 enabled, 2, 2, 2, 2 + reg_rxfilt = B8( 11011110 ) ; + + // TX1 + TX2 enabled, 1, 2, 2, 2 + reg_txfilt = B8( 11001110 ) ; + + divfactor = 16; + _tfir_factor = 2; + } else if((rate >= 41e6) && (rate <= 56e6)) { + // RX1 + RX2 enabled, 3, 1, 2, 2 + reg_rxfilt = B8( 11100110 ) ; + + // TX1 + TX2 enabled, 3, 1, 1, 2 + reg_txfilt = B8( 11100010 ) ; + + divfactor = 12; + _tfir_factor = 2; + } else if((rate > 56e6) && (rate <= 61.44e6)) { + // RX1 + RX2 enabled, 3, 1, 1, 2 + reg_rxfilt = B8( 11100010 ) ; + + // TX1 + TX2 enabled, 3, 1, 1, 1 + reg_txfilt = B8( 11100001 ) ; + + divfactor = 6; + _tfir_factor = 1; + } else { + // should never get in here + post_err_msg("[setup_rates] INVALID_CODE_PATH"); + } + + msg("[setup_rates] divfactor=%d", divfactor); + + /* Tune the BBPLL to get the ADC and DAC clocks. */ + const double adcclk = tune_bbvco(rate * divfactor); + double dacclk = adcclk; + + /* The DAC clock must be <= 336e6, and is either the ADC clock or 1/2 the + * ADC clock.*/ + if(adcclk > 336e6) { + /* Make the DAC clock = ADC/2, and bypass the TXFIR. */ + reg_bbpll = reg_bbpll | 0x08; + dacclk = adcclk / 2.0; + } else { + reg_bbpll = reg_bbpll & 0xF7; + } + + /* Set the dividers / interpolators in Catalina. */ + write_ad9361_reg(0x002, reg_txfilt); + write_ad9361_reg(0x003, reg_rxfilt); + write_ad9361_reg(0x004, reg_inputsel); + write_ad9361_reg(0x00A, reg_bbpll); + + msg("[setup_rates] adcclk=%f", adcclk); + _baseband_bw = (adcclk / divfactor); + + /* Setup the RX and TX FIR filters. Scale the number of taps based on + * the clock speed. */ + const int max_tx_taps = 16 * AD9361_MIN((int)((dacclk / rate) + 0.5), \ + AD9361_MIN(4 * (1 << _tfir_factor), 8)); + const int max_rx_taps = AD9361_MIN((16 * (int)(adcclk / rate)), 128); + + const int num_tx_taps = get_num_taps(max_tx_taps); + const int num_rx_taps = get_num_taps(max_rx_taps); + + setup_tx_fir(num_tx_taps); + setup_rx_fir(num_rx_taps); + + return _baseband_bw; +} + +/*********************************************************************** + * Publicly exported functions to host calls + **********************************************************************/ +void init_ad9361(void) { + + /* Initialize shadow registers. */ + reg_vcodivs = 0x00; + reg_inputsel = 0x30; + reg_rxfilt = 0x00; + reg_txfilt = 0x00; + reg_bbpll = 0x02; + reg_bbftune_config = 0x1e; + reg_bbftune_mode = 0x1e; + + /* Initialize private VRQ fields. */ + _rx_freq = 0.0; + _tx_freq = 0.0; + _req_rx_freq = 0.0; + _req_tx_freq = 0.0; + _baseband_bw = 0.0; + _req_clock_rate = 0.0; + _req_coreclk = 0.0; + _bbpll_freq = 0.0; + _adcclock_freq = 0.0; + _rx_bbf_tunediv = 0; + _curr_gain_table = 0; + _rx1_gain = 0; + _rx2_gain = 0; + _tx1_gain = 0; + _tx2_gain = 0; + + /* Reset the device. */ + write_ad9361_reg(0x000,0x01); + write_ad9361_reg(0x000,0x00); + ad9361_msleep(20); + + /* There is not a WAT big enough for this. */ + write_ad9361_reg(0x3df, 0x01); + + write_ad9361_reg(0x2a6, 0x0e); // Enable master bias + write_ad9361_reg(0x2a8, 0x0e); // Set bandgap trim + + /* Set RFPLL ref clock scale to REFCLK * 2 */ + write_ad9361_reg(0x2ab, 0x07); + write_ad9361_reg(0x2ac, 0xff); + + /* Enable clocks. */ + if (AD9361_CLOCKING_MODE == 0) + { + write_ad9361_reg(0x009, 0x17); + } + if (AD9361_CLOCKING_MODE == 1) + { + write_ad9361_reg(0x009, 0x07); + write_ad9361_reg(0x292, 0x08); + write_ad9361_reg(0x293, 0x80); + write_ad9361_reg(0x294, 0x00); + write_ad9361_reg(0x295, 0x14); + } + ad9361_msleep(20); + + /* Tune the BBPLL, write TX and RX FIRS. */ + setup_rates(50e6); + + /* Setup data ports (FDD dual port DDR CMOS): + * FDD dual port DDR CMOS no swap. + * Force TX on one port, RX on the other. */ + write_ad9361_reg(0x010, 0xc8); + write_ad9361_reg(0x011, 0x00); + write_ad9361_reg(0x012, 0x02); + + /* Data delay for TX and RX data clocks */ + write_ad9361_reg(0x006, 0x0F); + write_ad9361_reg(0x007, 0x0F); + + /* Setup AuxDAC */ + write_ad9361_reg(0x018, 0x00); // AuxDAC1 Word[9:2] + write_ad9361_reg(0x019, 0x00); // AuxDAC2 Word[9:2] + write_ad9361_reg(0x01A, 0x00); // AuxDAC1 Config and Word[1:0] + write_ad9361_reg(0x01B, 0x00); // AuxDAC2 Config and Word[1:0] + write_ad9361_reg(0x023, 0xFF); // AuxDAC Manaul/Auto Control + write_ad9361_reg(0x026, 0x00); // AuxDAC Manual Select Bit/GPO Manual Select + write_ad9361_reg(0x030, 0x00); // AuxDAC1 Rx Delay + write_ad9361_reg(0x031, 0x00); // AuxDAC1 Tx Delay + write_ad9361_reg(0x032, 0x00); // AuxDAC2 Rx Delay + write_ad9361_reg(0x033, 0x00); // AuxDAC2 Tx Delay + + /* Setup AuxADC */ + write_ad9361_reg(0x00B, 0x00); // Temp Sensor Setup (Offset) + write_ad9361_reg(0x00C, 0x00); // Temp Sensor Setup (Temp Window) + write_ad9361_reg(0x00D, 0x03); // Temp Sensor Setup (Periodic Measure) + write_ad9361_reg(0x00F, 0x04); // Temp Sensor Setup (Decimation) + write_ad9361_reg(0x01C, 0x10); // AuxADC Setup (Clock Div) + write_ad9361_reg(0x01D, 0x01); // AuxADC Setup (Decimation/Enable) + + /* Setup control outputs. */ + write_ad9361_reg(0x035, 0x07); + write_ad9361_reg(0x036, 0xFF); + + /* Setup GPO */ + write_ad9361_reg(0x03a, 0x27); //set delay register + write_ad9361_reg(0x020, 0x00); // GPO Auto Enable Setup in RX and TX + write_ad9361_reg(0x027, 0x03); // GPO Manual and GPO auto value in ALERT + write_ad9361_reg(0x028, 0x00); // GPO_0 RX Delay + write_ad9361_reg(0x029, 0x00); // GPO_1 RX Delay + write_ad9361_reg(0x02A, 0x00); // GPO_2 RX Delay + write_ad9361_reg(0x02B, 0x00); // GPO_3 RX Delay + write_ad9361_reg(0x02C, 0x00); // GPO_0 TX Delay + write_ad9361_reg(0x02D, 0x00); // GPO_1 TX Delay + write_ad9361_reg(0x02E, 0x00); // GPO_2 TX Delay + write_ad9361_reg(0x02F, 0x00); // GPO_3 TX Delay + + write_ad9361_reg(0x261, 0x00); // RX LO power + write_ad9361_reg(0x2a1, 0x00); // TX LO power + write_ad9361_reg(0x248, 0x0b); // en RX VCO LDO + write_ad9361_reg(0x288, 0x0b); // en TX VCO LDO + write_ad9361_reg(0x246, 0x02); // pd RX cal Tcf + write_ad9361_reg(0x286, 0x02); // pd TX cal Tcf + write_ad9361_reg(0x249, 0x8e); // rx vco cal length + write_ad9361_reg(0x289, 0x8e); // rx vco cal length + write_ad9361_reg(0x23b, 0x80); // set RX MSB?, FIXME 0x89 magic cp + write_ad9361_reg(0x27b, 0x80); // "" TX //FIXME 0x88 see above + write_ad9361_reg(0x243, 0x0d); // set rx prescaler bias + write_ad9361_reg(0x283, 0x0d); // "" TX + + write_ad9361_reg(0x23d, 0x00); // Clear half VCO cal clock setting + write_ad9361_reg(0x27d, 0x00); // Clear half VCO cal clock setting + + /* The order of the following process is EXTREMELY important. If the + * below functions are modified at all, device initialization and + * calibration might be broken in the process! */ + + write_ad9361_reg(0x015, 0x04); // dual synth mode, synth en ctrl en + write_ad9361_reg(0x014, 0x05); // use SPI for TXNRX ctrl, to ALERT, TX on + write_ad9361_reg(0x013, 0x01); // enable ENSM + ad9361_msleep(1); + + calibrate_synth_charge_pumps(); + + tune_helper(RX_TYPE, 800e6); + tune_helper(TX_TYPE, 850e6); + + program_mixer_gm_subtable(); + program_gain_table(); + setup_gain_control(); + + calibrate_baseband_rx_analog_filter(); + calibrate_baseband_tx_analog_filter(); + calibrate_rx_TIAs(); + calibrate_secondary_tx_filter(); + + setup_adc(); + + calibrate_tx_quadrature(); + calibrate_rx_quadrature(); + + write_ad9361_reg(0x012, 0x02); // cals done, set PPORT config + write_ad9361_reg(0x013, 0x01); // Set ENSM FDD bit + write_ad9361_reg(0x015, 0x04); // dual synth mode, synth en ctrl en + + /* Default TX attentuation to 10dB on both TX1 and TX2 */ + write_ad9361_reg(0x073, 0x00); + write_ad9361_reg(0x074, 0x00); + write_ad9361_reg(0x075, 0x00); + write_ad9361_reg(0x076, 0x00); + + /* Setup RSSI Measurements */ + write_ad9361_reg(0x150, 0x0E); // RSSI Measurement Duration 0, 1 + write_ad9361_reg(0x151, 0x00); // RSSI Measurement Duration 2, 3 + write_ad9361_reg(0x152, 0xFF); // RSSI Weighted Multiplier 0 + write_ad9361_reg(0x153, 0x00); // RSSI Weighted Multiplier 1 + write_ad9361_reg(0x154, 0x00); // RSSI Weighted Multiplier 2 + write_ad9361_reg(0x155, 0x00); // RSSI Weighted Multiplier 3 + write_ad9361_reg(0x156, 0x00); // RSSI Delay + write_ad9361_reg(0x157, 0x00); // RSSI Wait + write_ad9361_reg(0x158, 0x0D); // RSSI Mode Select + write_ad9361_reg(0x15C, 0x67); // Power Measurement Duration + + /* Turn on the default RX & TX chains. */ + set_active_chains(true, false, false, false); + + /* Set TXers & RXers on (only works in FDD mode) */ + write_ad9361_reg(0x014, 0x21); +} + + +/* This function sets the RX / TX rate between Catalina and the FPGA, and + * thus determines the interpolation / decimation required in the FPGA to + * achieve the user's requested rate. + * + * This is the only clock setting function that is exposed to the outside. */ +double set_clock_rate(const double req_rate) { + if(req_rate > 61.44e6) { + post_err_msg("Requested master clock rate outside range"); + } + + msg("[set_clock_rate] req_rate=%.10f", req_rate); + + /* UHD has a habit of requesting the same rate like four times when it + * starts up. This prevents that, and any bugs in user code that request + * the same rate over and over. */ + if(freq_is_nearly_equal(req_rate, _req_clock_rate)) { + return _baseband_bw; + } + + /* We must be in the SLEEP / WAIT state to do this. If we aren't already + * there, transition the ENSM to State 0. */ + uint8_t current_state = read_ad9361_reg(0x017) & 0x0F; + switch(current_state) { + case 0x05: + /* We are in the ALERT state. */ + write_ad9361_reg(0x014, 0x21); + ad9361_msleep(5); + write_ad9361_reg(0x014, 0x00); + break; + + case 0x0A: + /* We are in the FDD state. */ + write_ad9361_reg(0x014, 0x00); + break; + + default: + post_err_msg("[set_clock_rate:1] AD9361 in unknown state"); + break; + }; + + /* Store the current chain / antenna selections so that we can restore + * them at the end of this routine; all chains will be enabled from + * within setup_rates for calibration purposes. */ + uint8_t orig_tx_chains = reg_txfilt & 0xC0; + uint8_t orig_rx_chains = reg_rxfilt & 0xC0; + + /* Call into the clock configuration / settings function. This is where + * all the hard work gets done. */ + double rate = setup_rates(req_rate); + + msg("[set_clock_rate] rate=%.10f", rate); + + /* Transition to the ALERT state and calibrate everything. */ + write_ad9361_reg(0x015, 0x04); //dual synth mode, synth en ctrl en + write_ad9361_reg(0x014, 0x05); //use SPI for TXNRX ctrl, to ALERT, TX on + write_ad9361_reg(0x013, 0x01); //enable ENSM + ad9361_msleep(1); + + calibrate_synth_charge_pumps(); + + tune_helper(RX_TYPE, _rx_freq); + tune_helper(TX_TYPE, _tx_freq); + + program_mixer_gm_subtable(); + program_gain_table(); + setup_gain_control(); + program_gains(); + + calibrate_baseband_rx_analog_filter(); + calibrate_baseband_tx_analog_filter(); + calibrate_rx_TIAs(); + calibrate_secondary_tx_filter(); + + setup_adc(); + + calibrate_tx_quadrature(); + calibrate_rx_quadrature(); + + write_ad9361_reg(0x012, 0x02); // cals done, set PPORT config + write_ad9361_reg(0x013, 0x01); // Set ENSM FDD bit + write_ad9361_reg(0x015, 0x04); // dual synth mode, synth en ctrl en + + /* End the function in the same state as the entry state. */ + switch(current_state) { + case 0x05: + /* We are already in ALERT. */ + break; + + case 0x0A: + /* Transition back to FDD, and restore the original antenna + * / chain selections. */ + reg_txfilt = (reg_txfilt & 0x3F) | orig_tx_chains; + reg_rxfilt = (reg_rxfilt & 0x3F) | orig_rx_chains; + + write_ad9361_reg(0x002, reg_txfilt); + write_ad9361_reg(0x003, reg_rxfilt); + write_ad9361_reg(0x014, 0x21); + break; + + default: + post_err_msg("[set_clock_rate:2] AD9361 in unknown state"); + break; + }; + + return rate; +} + + +/* Set which of the four TX / RX chains provided by Catalina are active. + * + * Catalina provides two sets of chains, Side A and Side B. Each side + * provides one TX antenna, and one RX antenna. The B200 maintains the USRP + * standard of providing one antenna connection that is both TX & RX, and + * one that is RX-only - for each chain. Thus, the possible antenna and + * chain selections are: + * + * B200 Antenna Catalina Side Catalina Chain + * ------------------------------------------------------------------- + * TX / RX1 Side A TX1 (when switched to TX) + * TX / RX1 Side A RX1 (when switched to RX) + * RX1 Side A RX1 + * + * TX / RX2 Side B TX2 (when switched to TX) + * TX / RX2 Side B RX2 (when switched to RX) + * RX2 Side B RX2 + */ +void set_active_chains(bool tx1, bool tx2, bool rx1, bool rx2) { + /* Clear out the current active chain settings. */ + reg_txfilt = reg_txfilt & 0x3F; + reg_rxfilt = reg_rxfilt & 0x3F; + + /* Turn on the different chains based on the passed parameters. */ + if(tx1) { reg_txfilt = reg_txfilt | 0x40; } + if(tx2) { reg_txfilt = reg_txfilt | 0x80; } + if(rx1) { reg_rxfilt = reg_rxfilt | 0x40; } + if(rx2) { reg_rxfilt = reg_rxfilt | 0x80; } + + /* Turn on / off the chains. */ + write_ad9361_reg(0x002, reg_txfilt); + write_ad9361_reg(0x003, reg_rxfilt); +} + +/* Tune the RX or TX frequency. + * + * This is the publicly-accessible tune function. It makes sure the tune + * isn't a redundant request, and if not, passes it on to the class's + * internal tune function. + * + * After tuning, it runs any appropriate calibrations. */ +double tune(int which, const double value) { + + if(which == RX_TYPE) { + if(freq_is_nearly_equal(value, _req_rx_freq)) { + return _rx_freq; + } + + } else if(which == TX_TYPE) { + if(freq_is_nearly_equal(value, _req_tx_freq)) { + return _tx_freq; + } + + } else { + post_err_msg("[tune] INVALID_CODE_PATH"); + } + + /* If we aren't already in the ALERT state, we will need to return to + * the FDD state after tuning. */ + int not_in_alert = 0; + if((read_ad9361_reg(0x017) & 0x0F) != 5) { + /* Force the device into the ALERT state. */ + not_in_alert = 1; + write_ad9361_reg(0x014, 0x01); + } + + /* Tune the RF VCO! */ + double tune_freq = tune_helper(which, value); + + /* Run any necessary calibrations / setups */ + if(which == RX_TYPE) { + program_gain_table(); + } + + /* Update the gain settings. */ + program_gains(); + + /* Run the calibration algorithms. */ + calibrate_tx_quadrature(); + calibrate_rx_quadrature(); + + /* If we were in the FDD state, return it now. */ + if(not_in_alert) { + write_ad9361_reg(0x014, 0x21); + } + + return tune_freq; +} + +/* Set the gain of RX1, RX2, TX1, or TX2. + * + * Note that the 'value' passed to this function is the actual gain value, + * _not_ the gain index. This is the opposite of the eval software's GUI! + * Also note that the RX chains are done in terms of gain, and the TX chains + * are done in terms of attenuation. */ +double set_gain(int which, int n, const double value) { + + if(which == RX_TYPE) { + /* Indexing the gain tables requires an offset from the requested + * amount of total gain in dB: + * < 1300MHz: dB + 5 + * >= 1300MHz and < 4000MHz: dB + 3 + * >= 4000MHz and <= 6000MHz: dB + 14 + */ + int gain_offset = 0; + if(_rx_freq < 1300e6) { + gain_offset = 5; + } else if(_rx_freq < 4000e6) { + gain_offset = 3; + } else { + gain_offset = 14; + } + + int gain_index = value + gain_offset; + + /* Clip the gain values to the proper min/max gain values. */ + if(gain_index > 76) gain_index = 76; + if(gain_index < 0) gain_index = 0; + + if(n == 1) { + _rx1_gain = value; + write_ad9361_reg(0x109, gain_index); + } else { + _rx2_gain = value; + write_ad9361_reg(0x10c, gain_index); + } + + return gain_index - gain_offset; + } else { + /* Setting the below bits causes a change in the TX attenuation word + * to immediately take effect. */ + write_ad9361_reg(0x077, 0x40); + write_ad9361_reg(0x07c, 0x40); + + /* Each gain step is -0.25dB. Calculate the attenuation necessary + * for the requested gain, convert it into gain steps, then write + * the attenuation word. Max gain (so zero attenuation) is 89.75. */ + double atten = AD9361_MAX_GAIN - value; + int attenreg = atten * 4; + if(n == 1) { + _tx1_gain = value; + write_ad9361_reg(0x073, attenreg & 0xFF); + write_ad9361_reg(0x074, (attenreg >> 8) & 0x01); + } else { + _tx2_gain = value; + write_ad9361_reg(0x075, attenreg & 0xFF); + write_ad9361_reg(0x076, (attenreg >> 8) & 0x01); + } + return AD9361_MAX_GAIN - ((double)(attenreg)/ 4); + } +} + +/* This function is responsible to dispatch the vendor request call + * to the proper handler + */ +void ad9361_dispatch(const char* vrb, char* vrb_out) { + memcpy(vrb_out, vrb, AD9361_DISPATCH_PACKET_SIZE); // Copy request to response memory + tmp_req_buffer = vrb_out; // Set this to enable 'post_err_msg' + + ////////////////////////////////////////////// + + double ret_val = 0.0; + int mask = 0; + + const ad9361_transaction_t *request = (const ad9361_transaction_t *)vrb; + ad9361_transaction_t *response = (ad9361_transaction_t *)vrb_out; + response->error_msg[0] = '\0'; // Ensure error is cleared + + //msg("[ad9361_dispatch] action=%d", request->action); + + switch (request->action) { + case AD9361_ACTION_ECHO: + break; // nothing to do + case AD9361_ACTION_INIT: + init_ad9361(); + break; + case AD9361_ACTION_SET_RX1_GAIN: + ret_val = set_gain(RX_TYPE,1,double_unpack(request->value.gain)); + double_pack(ret_val, response->value.gain); + break; + case AD9361_ACTION_SET_TX1_GAIN: + ret_val = set_gain(TX_TYPE,1,double_unpack(request->value.gain)); + double_pack(ret_val, response->value.gain); + break; + case AD9361_ACTION_SET_RX2_GAIN: + ret_val = set_gain(RX_TYPE,2,double_unpack(request->value.gain)); + double_pack(ret_val, response->value.gain); + break; + case AD9361_ACTION_SET_TX2_GAIN: + ret_val = set_gain(TX_TYPE,2,double_unpack(request->value.gain)); + double_pack(ret_val, response->value.gain); + break; + case AD9361_ACTION_SET_RX_FREQ: + ret_val = tune(RX_TYPE, double_unpack(request->value.freq)); + double_pack(ret_val, response->value.freq); + break; + case AD9361_ACTION_SET_TX_FREQ: + ret_val = tune(TX_TYPE, double_unpack(request->value.freq)); + double_pack(ret_val, response->value.freq); + break; + case AD9361_ACTION_SET_CODEC_LOOP: + data_port_loopback(request->value.codec_loop != 0); + break; + case AD9361_ACTION_SET_CLOCK_RATE: + ret_val = set_clock_rate(double_unpack(request->value.rate)); + double_pack(ret_val, response->value.rate); + break; + case AD9361_ACTION_SET_ACTIVE_CHAINS: + mask = request->value.enable_mask; + set_active_chains(mask & 1, mask & 2, mask & 4, mask & 8); + break; + default: + post_err_msg("[ad9361_dispatch] NOT IMPLEMENTED"); + break; + } +} diff --git a/firmware/fx3/ad9361/lib/ad9361_synth_lut.h b/firmware/fx3/ad9361/lib/ad9361_synth_lut.h new file mode 100644 index 000000000..79214526d --- /dev/null +++ b/firmware/fx3/ad9361/lib/ad9361_synth_lut.h @@ -0,0 +1,135 @@ +// +// Copyright 2013-2014 Ettus Research LLC +// + +#ifndef INCLUDED_AD9361_SYNTH_LUT_HPP +#define INCLUDED_AD9361_SYNTH_LUT_HPP + + +double vco_index[53] = {12605000000, 12245000000, 11906000000, 11588000000, + 11288000000, 11007000000, 10742000000, 10492000000, + 10258000000, 10036000000, 9827800000, 9631100000, + 9445300000, 9269800000, 9103600000, 8946300000, + 8797000000, 8655300000, 8520600000, 8392300000, + 8269900000, 8153100000, 8041400000, 7934400000, + 7831800000, 7733200000, 7638400000, 7547100000, + 7459000000, 7374000000, 7291900000, 7212400000, + 7135500000, 7061000000, 6988700000, 6918600000, + 6850600000, 6784600000, 6720500000, 6658200000, + 6597800000, 6539200000, 6482300000, 6427000000, + 6373400000, 6321400000, 6270900000, 6222000000, + 6174500000, 6128400000, 6083600000, 6040100000, + 5997700000}; + +int synth_cal_lut[53][12] = { {10, 0, 4, 0, 15, 8, 8, 13, 4, 13, 15, 9}, + {10, 0, 4, 0, 15, 8, 9, 13, 4, 13, 15, 9}, + {10, 0, 4, 0, 15, 8, 10, 13, 4, 13, 15, 9}, + {10, 0, 4, 0, 15, 8, 11, 13, 4, 13, 15, 9}, + {10, 0, 4, 0, 15, 8, 11, 13, 4, 13, 15, 9}, + {10, 0, 4, 0, 14, 8, 12, 13, 4, 13, 15, 9}, + {10, 0, 4, 0, 14, 8, 13, 13, 4, 13, 15, 9}, + {10, 0, 5, 1, 14, 9, 13, 13, 4, 13, 15, 9}, + {10, 0, 5, 1, 14, 9, 14, 13, 4, 13, 15, 9}, + {10, 0, 5, 1, 14, 9, 15, 13, 4, 13, 15, 9}, + {10, 0, 5, 1, 14, 9, 15, 13, 4, 13, 15, 9}, + {10, 0, 5, 1, 13, 9, 16, 13, 4, 13, 15, 9}, + {10, 0, 5, 1, 13, 9, 17, 13, 4, 13, 15, 9}, + {10, 0, 5, 1, 13, 9, 18, 13, 4, 13, 15, 9}, + {10, 0, 5, 1, 13, 9, 18, 13, 4, 13, 15, 9}, + {10, 0, 5, 1, 13, 9, 19, 13, 4, 13, 15, 9}, + {10, 1, 6, 1, 15, 11, 14, 13, 4, 13, 15, 9}, + {10, 1, 6, 1, 15, 11, 14, 13, 4, 13, 15, 9}, + {10, 1, 6, 1, 15, 11, 15, 13, 4, 13, 15, 9}, + {10, 1, 6, 1, 15, 11, 15, 13, 4, 13, 15, 9}, + {10, 1, 6, 1, 15, 11, 16, 13, 4, 13, 15, 9}, + {10, 1, 6, 1, 15, 11, 16, 13, 4, 13, 15, 9}, + {10, 1, 6, 1, 15, 11, 17, 13, 4, 13, 15, 9}, + {10, 1, 6, 1, 15, 11, 17, 13, 4, 13, 15, 9}, + {10, 1, 6, 1, 15, 11, 18, 13, 4, 13, 15, 9}, + {10, 1, 6, 1, 15, 11, 18, 13, 4, 13, 15, 9}, + {10, 1, 6, 1, 15, 11, 19, 13, 4, 13, 15, 9}, + {10, 1, 6, 1, 15, 11, 19, 13, 4, 13, 15, 9}, + {10, 1, 6, 1, 15, 11, 20, 13, 4, 13, 15, 9}, + {10, 1, 7, 2, 15, 12, 20, 13, 4, 13, 15, 9}, + {10, 1, 7, 2, 15, 12, 21, 13, 4, 13, 15, 9}, + {10, 1, 7, 2, 15, 12, 21, 13, 4, 13, 15, 9}, + {10, 1, 7, 2, 15, 14, 22, 13, 4, 13, 15, 9}, + {10, 1, 7, 2, 15, 14, 22, 13, 4, 13, 15, 9}, + {10, 1, 7, 2, 15, 14, 23, 13, 4, 13, 15, 9}, + {10, 1, 7, 2, 15, 14, 23, 13, 4, 13, 15, 9}, + {10, 1, 7, 2, 15, 14, 24, 13, 4, 13, 15, 9}, + {10, 1, 7, 2, 15, 14, 24, 13, 4, 13, 15, 9}, + {10, 1, 7, 2, 15, 14, 25, 13, 4, 13, 15, 9}, + {10, 1, 7, 2, 15, 14, 25, 13, 4, 13, 15, 9}, + {10, 1, 7, 2, 15, 14, 26, 13, 4, 13, 15, 9}, + {10, 1, 7, 2, 15, 14, 26, 13, 4, 13, 15, 9}, + {10, 1, 7, 2, 15, 14, 27, 13, 4, 13, 15, 9}, + {10, 1, 7, 2, 15, 14, 27, 13, 4, 13, 15, 9}, + {10, 3, 7, 3, 15, 12, 18, 13, 4, 13, 15, 9}, + {10, 3, 7, 3, 15, 12, 18, 13, 4, 13, 15, 9}, + {10, 3, 7, 3, 15, 12, 18, 13, 4, 13, 15, 9}, + {10, 3, 7, 3, 15, 12, 19, 13, 4, 13, 15, 9}, + {10, 3, 7, 3, 15, 12, 19, 13, 4, 13, 15, 9}, + {10, 3, 7, 3, 15, 12, 19, 13, 4, 13, 15, 9}, + {10, 3, 7, 3, 15, 12, 19, 13, 4, 13, 15, 9}, + {10, 3, 7, 3, 15, 12, 20, 13, 4, 13, 15, 9}, + {10, 3, 7, 3, 15, 12, 20, 13, 4, 13, 15, 9}}; + + +#if 0 /* This is the table for a 40MHz RFPLL Reference */ +int synth_cal_lut[53][12] = { {10, 0, 4, 0, 15, 8, 8, 12, 3, 14, 15, 11}, + {10, 0, 4, 0, 15, 8, 9, 12, 3, 14, 15, 11}, + {10, 0, 4, 0, 15, 8, 9, 12, 3, 14, 15, 11}, + {10, 0, 4, 0, 15, 8, 10, 12, 3, 14, 15, 11}, + {10, 0, 4, 0, 15, 8, 11, 12, 3, 14, 15, 11}, + {10, 0, 4, 0, 15, 8, 11, 12, 3, 14, 15, 11}, + {10, 0, 4, 0, 14, 8, 12, 12, 3, 14, 15, 11}, + {10, 0, 5, 1, 14, 9, 13, 12, 3, 14, 15, 11}, + {10, 0, 5, 1, 14, 9, 13, 12, 3, 14, 15, 11}, + {10, 0, 5, 1, 14, 9, 14, 12, 3, 14, 15, 11}, + {10, 0, 5, 1, 14, 9, 15, 12, 3, 14, 15, 11}, + {10, 0, 5, 1, 14, 9, 15, 12, 3, 14, 15, 11}, + {10, 0, 5, 1, 14, 9, 16, 12, 3, 14, 15, 11}, + {10, 0, 5, 1, 14, 9, 17, 12, 3, 14, 15, 11}, + {10, 0, 5, 1, 14, 9, 17, 12, 3, 14, 15, 11}, + {10, 0, 5, 1, 14, 9, 18, 12, 3, 14, 15, 11}, + {10, 1, 6, 1, 15, 11, 13, 12, 3, 14, 15, 11}, + {10, 1, 6, 1, 15, 11, 14, 12, 3, 14, 15, 11}, + {10, 1, 6, 1, 15, 11, 14, 12, 3, 14, 15, 11}, + {10, 1, 6, 1, 15, 11, 15, 12, 3, 14, 15, 11}, + {10, 1, 6, 1, 15, 11, 15, 12, 3, 14, 15, 11}, + {10, 1, 6, 1, 15, 11, 16, 12, 3, 14, 15, 11}, + {10, 1, 6, 1, 15, 11, 16, 12, 3, 14, 15, 11}, + {10, 1, 6, 1, 15, 11, 17, 12, 3, 14, 15, 11}, + {10, 1, 6, 1, 15, 11, 17, 12, 3, 14, 15, 11}, + {10, 1, 6, 1, 15, 11, 17, 12, 3, 14, 15, 11}, + {10, 1, 6, 1, 15, 11, 18, 12, 3, 14, 15, 11}, + {10, 1, 6, 1, 15, 11, 18, 12, 3, 14, 15, 11}, + {10, 1, 6, 1, 15, 11, 19, 12, 3, 14, 15, 11}, + {10, 1, 7, 2, 15, 12, 19, 12, 3, 14, 15, 11}, + {10, 1, 7, 2, 15, 12, 20, 12, 3, 14, 15, 11}, + {10, 1, 7, 2, 15, 12, 20, 12, 3, 14, 15, 11}, + {10, 1, 7, 2, 15, 14, 21, 12, 3, 14, 15, 11}, + {10, 1, 7, 2, 15, 14, 21, 12, 3, 14, 15, 11}, + {10, 1, 7, 2, 15, 14, 22, 12, 3, 14, 15, 11}, + {10, 1, 7, 2, 15, 14, 22, 12, 3, 14, 15, 11}, + {10, 1, 7, 2, 15, 14, 23, 12, 3, 14, 15, 11}, + {10, 1, 7, 2, 15, 14, 23, 12, 3, 14, 15, 11}, + {10, 1, 7, 2, 15, 14, 24, 12, 3, 14, 15, 11}, + {10, 1, 7, 2, 15, 14, 24, 12, 3, 14, 15, 11}, + {10, 1, 7, 2, 15, 14, 25, 12, 3, 14, 15, 11}, + {10, 1, 7, 2, 15, 14, 25, 12, 3, 14, 15, 11}, + {10, 1, 7, 2, 15, 14, 26, 12, 3, 14, 15, 11}, + {10, 1, 7, 2, 15, 14, 26, 12, 3, 14, 15, 11}, + {10, 3, 7, 3, 15, 12, 17, 12, 3, 14, 15, 11}, + {10, 3, 7, 3, 15, 12, 17, 12, 3, 14, 15, 11}, + {10, 3, 7, 3, 15, 12, 17, 12, 3, 14, 15, 11}, + {10, 3, 7, 3, 15, 12, 18, 12, 3, 14, 15, 11}, + {10, 3, 7, 3, 15, 12, 18, 12, 3, 14, 15, 11}, + {10, 3, 7, 3, 15, 12, 18, 12, 3, 14, 15, 11}, + {10, 3, 7, 3, 15, 12, 18, 12, 3, 14, 15, 11}, + {10, 3, 7, 3, 15, 12, 19, 12, 3, 14, 15, 11}, + {10, 3, 7, 3, 15, 12, 19, 12, 3, 14, 15, 11} }; +#endif + +#endif /* INCLUDED_AD9361_SYNTH_LUT_HPP */ diff --git a/firmware/fx3/b200/.gitignore b/firmware/fx3/b200/.gitignore new file mode 100644 index 000000000..13c187886 --- /dev/null +++ b/firmware/fx3/b200/.gitignore @@ -0,0 +1,4 @@ +*.o +*.elf +*.hex +*.map diff --git a/firmware/fx3/b200/b200_ad9361.c b/firmware/fx3/b200/b200_ad9361.c new file mode 100644 index 000000000..ebb0dda70 --- /dev/null +++ b/firmware/fx3/b200/b200_ad9361.c @@ -0,0 +1,57 @@ +// +// Copyright 2013-2014 Ettus Research LLC +// + +#include "cyu3error.h" +#include "cyu3i2c.h" +#include "cyu3spi.h" +#include "cyu3os.h" +#include "cyu3pib.h" +#include "cyu3system.h" +#include "cyu3usb.h" +#include "cyu3utils.h" +#include "pib_regs.h" +#include "b200_vrq.h" +#include <stdint.h> + +#define true CyTrue +#define false CyFalse + +typedef CyBool_t bool; + +/* Fast sqrt() - precision can be improved by increasing + * the number of iterations + */ +float ad9361_sqrt(const float number) +{ + uint32_t i; + float x2, y; + + x2 = number * 0.5F; + y = number; + i = *(uint32_t *) &y; + i = 0x5f3759df - ( i >> 1 ); + y = *(float *) &i; + y = y * (1.5F - (x2 * y * y)); + + return number * y; +} + +void ad9361_msleep(const unsigned millis) +{ + CyU3PThreadSleep(millis); +} + +#define AD9361_MIN(a, b) CY_U3P_MIN(a, b) +#define AD9361_MAX(a, b) CY_U3P_MAX(a, b) + +#define AD9361_CEIL_INT(a) ((int)(a+1)) +#define AD9361_FLOOR_INT(a) ((int)(a)) + +#define AD9361_CLOCKING_MODE 0 + +#define AD9361_RX_BAND_EDGE0 2.2e9 +#define AD9361_RX_BAND_EDGE1 4e9 +#define AD9361_TX_BAND_EDGE 2.5e9 + +#include "../ad9361/lib/ad9361_impl.c" diff --git a/firmware/fx3/b200/b200_gpifconfig.h b/firmware/fx3/b200/b200_gpifconfig.h new file mode 100644 index 000000000..58836fac8 --- /dev/null +++ b/firmware/fx3/b200/b200_gpifconfig.h @@ -0,0 +1,178 @@ +//
+// Copyright 2013-2014 Ettus Research LLC
+//
+
+/*
+ * Project Name: b200_v2.cyfx
+ * Time : 01/17/2013 12:50:08
+ * Device Type: FX3
+ * Project Type: GPIF2
+ *
+ *
+ *
+ *
+ * This is a generated file and should not be modified
+ * This file need to be included only once in the firmware
+ * This file is generated by Gpif2 designer tool version - 1.0.715.0
+ *
+ */
+
+#ifndef _INCLUDED_CYFXGPIF2CONFIG_
+#define _INCLUDED_CYFXGPIF2CONFIG_
+#include "cyu3types.h"
+#include "cyu3gpif.h"
+
+/* Summary
+ Number of states in the state machine
+ */
+#define CY_NUMBER_OF_STATES 6
+
+/* Summary
+ Mapping of user defined state names to state indices
+ */
+#define RESET 0
+#define IDLE 1
+#define READ 2
+#define WRITE 3
+#define SHORT_PKT 4
+#define ZLP 5
+
+
+/* Summary
+ Initial value of early outputs from the state machine.
+ */
+#define ALPHA_RESET 0x8
+
+
+/* Summary
+ Transition function values used in the state machine.
+ */
+uint16_t CyFxGpifTransition[] = {
+ 0x0000, 0x8080, 0x2222, 0x5555, 0x7F7F, 0x1F1F, 0x8888
+};
+
+/* Summary
+ Table containing the transition information for various states.
+ This table has to be stored in the WAVEFORM Registers.
+ This array consists of non-replicated waveform descriptors and acts as a
+ waveform table.
+ */
+CyU3PGpifWaveData CyFxGpifWavedata[] = {
+ {{0x1E086001,0x000100C4,0x80000000},{0x00000000,0x00000000,0x00000000}},
+ {{0x4E080302,0x00000200,0x80000000},{0x00000000,0x00000000,0x00000000}},
+ {{0x1E086001,0x000100C4,0x80000000},{0x4E040704,0x20000200,0xC0100000}},
+ {{0x00000000,0x00000000,0x00000000},{0x00000000,0x00000000,0x00000000}},
+ {{0x00000000,0x00000000,0x00000000},{0x3E738705,0x00000200,0xC0100000}},
+ {{0x00000000,0x00000000,0x00000000},{0x5E002703,0x2001020C,0x80000000}},
+ {{0x00000000,0x00000000,0x00000000},{0x4E040704,0x20000200,0xC0100000}}
+};
+
+/* Summary
+ Table that maps state indices to the descriptor table indices.
+ */
+uint8_t CyFxGpifWavedataPosition[] = {
+ 0,1,0,2,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,
+ 3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,
+ 0,4,0,2,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,
+ 3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,
+ 0,5,0,2,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,
+ 3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,
+ 0,6,0,2,0,0
+};
+
+/* Summary
+ GPIF II configuration register values.
+ */
+uint32_t CyFxGpifRegValue[] = {
+ 0x80000380, /* CY_U3P_PIB_GPIF_CONFIG */
+ 0x000010AC, /* CY_U3P_PIB_GPIF_BUS_CONFIG */
+ 0x01070002, /* CY_U3P_PIB_GPIF_BUS_CONFIG2 */
+ 0x00000044, /* CY_U3P_PIB_GPIF_AD_CONFIG */
+ 0x00000000, /* CY_U3P_PIB_GPIF_STATUS */
+ 0x00000000, /* CY_U3P_PIB_GPIF_INTR */
+ 0x00000000, /* CY_U3P_PIB_GPIF_INTR_MASK */
+ 0x00000082, /* CY_U3P_PIB_GPIF_SERIAL_IN_CONFIG */
+ 0x00000782, /* CY_U3P_PIB_GPIF_SERIAL_OUT_CONFIG */
+ 0x00000500, /* CY_U3P_PIB_GPIF_CTRL_BUS_DIRECTION */
+ 0x0000FFCF, /* CY_U3P_PIB_GPIF_CTRL_BUS_DEFAULT */
+ 0x000000BF, /* CY_U3P_PIB_GPIF_CTRL_BUS_POLARITY */
+ 0x00000000, /* CY_U3P_PIB_GPIF_CTRL_BUS_TOGGLE */
+ 0x00000000, /* CY_U3P_PIB_GPIF_CTRL_BUS_SELECT */
+ 0x00000000, /* CY_U3P_PIB_GPIF_CTRL_BUS_SELECT */
+ 0x00000000, /* CY_U3P_PIB_GPIF_CTRL_BUS_SELECT */
+ 0x00000000, /* CY_U3P_PIB_GPIF_CTRL_BUS_SELECT */
+ 0x00000018, /* CY_U3P_PIB_GPIF_CTRL_BUS_SELECT */
+ 0x00000019, /* CY_U3P_PIB_GPIF_CTRL_BUS_SELECT */
+ 0x00000000, /* CY_U3P_PIB_GPIF_CTRL_BUS_SELECT */
+ 0x00000000, /* CY_U3P_PIB_GPIF_CTRL_BUS_SELECT */
+ 0x00000000, /* CY_U3P_PIB_GPIF_CTRL_BUS_SELECT */
+ 0x00000000, /* CY_U3P_PIB_GPIF_CTRL_BUS_SELECT */
+ 0x00000000, /* CY_U3P_PIB_GPIF_CTRL_BUS_SELECT */
+ 0x00000000, /* CY_U3P_PIB_GPIF_CTRL_BUS_SELECT */
+ 0x00000000, /* CY_U3P_PIB_GPIF_CTRL_BUS_SELECT */
+ 0x00000000, /* CY_U3P_PIB_GPIF_CTRL_BUS_SELECT */
+ 0x00000000, /* CY_U3P_PIB_GPIF_CTRL_BUS_SELECT */
+ 0x00000000, /* CY_U3P_PIB_GPIF_CTRL_BUS_SELECT */
+ 0x00000006, /* CY_U3P_PIB_GPIF_CTRL_COUNT_CONFIG */
+ 0x00000000, /* CY_U3P_PIB_GPIF_CTRL_COUNT_RESET */
+ 0x0000FFFF, /* CY_U3P_PIB_GPIF_CTRL_COUNT_LIMIT */
+ 0x0000010A, /* CY_U3P_PIB_GPIF_ADDR_COUNT_CONFIG */
+ 0x00000000, /* CY_U3P_PIB_GPIF_ADDR_COUNT_RESET */
+ 0x0000FFFF, /* CY_U3P_PIB_GPIF_ADDR_COUNT_LIMIT */
+ 0x00000000, /* CY_U3P_PIB_GPIF_STATE_COUNT_CONFIG */
+ 0x0000FFFF, /* CY_U3P_PIB_GPIF_STATE_COUNT_LIMIT */
+ 0x0000010A, /* CY_U3P_PIB_GPIF_DATA_COUNT_CONFIG */
+ 0x00000000, /* CY_U3P_PIB_GPIF_DATA_COUNT_RESET */
+ 0x0000FFFF, /* CY_U3P_PIB_GPIF_DATA_COUNT_LIMIT */
+ 0x00000000, /* CY_U3P_PIB_GPIF_CTRL_COMP_VALUE */
+ 0x00000000, /* CY_U3P_PIB_GPIF_CTRL_COMP_MASK */
+ 0x00000000, /* CY_U3P_PIB_GPIF_DATA_COMP_VALUE */
+ 0x00000000, /* CY_U3P_PIB_GPIF_DATA_COMP_MASK */
+ 0x00000000, /* CY_U3P_PIB_GPIF_ADDR_COMP_VALUE */
+ 0x00000000, /* CY_U3P_PIB_GPIF_ADDR_COMP_MASK */
+ 0x00000000, /* CY_U3P_PIB_GPIF_DATA_CTRL */
+ 0x00000000, /* CY_U3P_PIB_GPIF_INGRESS_DATA */
+ 0x00000000, /* CY_U3P_PIB_GPIF_INGRESS_DATA */
+ 0x00000000, /* CY_U3P_PIB_GPIF_INGRESS_DATA */
+ 0x00000000, /* CY_U3P_PIB_GPIF_INGRESS_DATA */
+ 0x00000000, /* CY_U3P_PIB_GPIF_EGRESS_DATA */
+ 0x00000000, /* CY_U3P_PIB_GPIF_EGRESS_DATA */
+ 0x00000000, /* CY_U3P_PIB_GPIF_EGRESS_DATA */
+ 0x00000000, /* CY_U3P_PIB_GPIF_EGRESS_DATA */
+ 0x00000000, /* CY_U3P_PIB_GPIF_INGRESS_ADDRESS */
+ 0x00000000, /* CY_U3P_PIB_GPIF_INGRESS_ADDRESS */
+ 0x00000000, /* CY_U3P_PIB_GPIF_INGRESS_ADDRESS */
+ 0x00000000, /* CY_U3P_PIB_GPIF_INGRESS_ADDRESS */
+ 0x00000000, /* CY_U3P_PIB_GPIF_EGRESS_ADDRESS */
+ 0x00000000, /* CY_U3P_PIB_GPIF_EGRESS_ADDRESS */
+ 0x00000000, /* CY_U3P_PIB_GPIF_EGRESS_ADDRESS */
+ 0x00000000, /* CY_U3P_PIB_GPIF_EGRESS_ADDRESS */
+ 0x80010400, /* CY_U3P_PIB_GPIF_THREAD_CONFIG */
+ 0x80010401, /* CY_U3P_PIB_GPIF_THREAD_CONFIG */
+ 0x80010402, /* CY_U3P_PIB_GPIF_THREAD_CONFIG */
+ 0x80010403, /* CY_U3P_PIB_GPIF_THREAD_CONFIG */
+ 0x00000000, /* CY_U3P_PIB_GPIF_LAMBDA_STAT */
+ 0x00000000, /* CY_U3P_PIB_GPIF_ALPHA_STAT */
+ 0x00000000, /* CY_U3P_PIB_GPIF_BETA_STAT */
+ 0x00080000, /* CY_U3P_PIB_GPIF_WAVEFORM_CTRL_STAT */
+ 0x00000000, /* CY_U3P_PIB_GPIF_WAVEFORM_SWITCH */
+ 0x00000000, /* CY_U3P_PIB_GPIF_WAVEFORM_SWITCH_TIMEOUT */
+ 0x00000000, /* CY_U3P_PIB_GPIF_CRC_CONFIG */
+ 0x00000000, /* CY_U3P_PIB_GPIF_CRC_DATA */
+ 0xFFFFFFF1 /* CY_U3P_PIB_GPIF_BETA_DEASSERT */
+};
+
+/* Summary
+ This structure holds all the configuration inputs for the GPIF II.
+ */
+const CyU3PGpifConfig_t CyFxGpifConfig = {
+ (uint16_t)(sizeof(CyFxGpifWavedataPosition)/sizeof(uint8_t)),
+ CyFxGpifWavedata,
+ CyFxGpifWavedataPosition,
+ (uint16_t)(sizeof(CyFxGpifTransition)/sizeof(uint16_t)),
+ CyFxGpifTransition,
+ (uint16_t)(sizeof(CyFxGpifRegValue)/sizeof(uint32_t)),
+ CyFxGpifRegValue
+};
+
+#endif /* _INCLUDED_CYFXGPIF2CONFIG_ */
diff --git a/firmware/fx3/b200/b200_i2c.c b/firmware/fx3/b200/b200_i2c.c new file mode 100644 index 000000000..c6fa67c77 --- /dev/null +++ b/firmware/fx3/b200/b200_i2c.c @@ -0,0 +1,82 @@ +// +// Copyright 2013-2014 Ettus Research LLC +// + +#include "b200_i2c.h" + +#include "cyu3i2c.h" + +/* I2c initialization for EEPROM programming. */ +void CyFxI2cInit (uint16_t pageLen) { + CyU3PI2cConfig_t i2cConfig; + + /* Initialize and configure the I2C master module. */ + CyU3PI2cInit (); + + /* Start the I2C master block. The bit rate is set at 100KHz. + * The data transfer is done via DMA. */ + CyU3PMemSet ((uint8_t *)&i2cConfig, 0, sizeof(i2cConfig)); + i2cConfig.bitRate = CY_FX_USBI2C_I2C_BITRATE; + i2cConfig.busTimeout = 0xFFFFFFFF; + i2cConfig.dmaTimeout = 0xFFFF; + i2cConfig.isDma = CyFalse; + + CyU3PI2cSetConfig (&i2cConfig, NULL); + glI2cPageSize = pageLen; +} + +/* I2C read / write for programmer application. */ +void CyFxUsbI2cTransfer ( + uint16_t byteAddress, + uint8_t devAddr, + uint16_t byteCount, + uint8_t *buffer, + CyBool_t isRead) +{ + CyU3PI2cPreamble_t preamble; + uint16_t pageCount = (byteCount / glI2cPageSize); + uint16_t resCount = glI2cPageSize; + + if (byteCount == 0) { + return; + } + + if ((byteCount % glI2cPageSize) != 0) { + pageCount ++; + resCount = byteCount % glI2cPageSize; + } + + while (pageCount != 0) { + if (isRead) { + /* Update the preamble information. */ + preamble.length = 4; + preamble.buffer[0] = devAddr; + preamble.buffer[1] = (uint8_t)(byteAddress >> 8); + preamble.buffer[2] = (uint8_t)(byteAddress & 0xFF); + preamble.buffer[3] = (devAddr | 0x01); + preamble.ctrlMask = 0x0004; + + CyU3PI2cReceiveBytes (&preamble, buffer, (pageCount == 1) ? resCount : glI2cPageSize, 0); + } else { + /* Write. Update the preamble information. */ + preamble.length = 3; + preamble.buffer[0] = devAddr; + preamble.buffer[1] = (uint8_t)(byteAddress >> 8); + preamble.buffer[2] = (uint8_t)(byteAddress & 0xFF); + preamble.ctrlMask = 0x0000; + + CyU3PI2cTransmitBytes (&preamble, buffer, (pageCount == 1) ? resCount : glI2cPageSize, 0); + /* Wait for the write to complete. */ + preamble.length = 1; + CyU3PI2cWaitForAck(&preamble, 200); + } + + /* An additional delay seems to be required after receiving an ACK. */ + CyU3PThreadSleep (1); + + /* Update the parameters */ + byteAddress += glI2cPageSize; + buffer += glI2cPageSize; + pageCount --; + } +} diff --git a/firmware/fx3/b200/b200_i2c.h b/firmware/fx3/b200/b200_i2c.h new file mode 100644 index 000000000..c5c781946 --- /dev/null +++ b/firmware/fx3/b200/b200_i2c.h @@ -0,0 +1,40 @@ +// +// Copyright 2013-2014 Ettus Research LLC +// + +#ifndef _B200_I2C_H +#define _B200_I2C_H + +#include "cyu3externcstart.h" + +#include "cyu3usbconst.h" +#include "cyu3types.h" + +/* Following two definitions made in b200_main.h for consistency. */ +/* define B200_VREQ_EEPROM_WRITE (uint8_t)(0xBA) */ +/* define B200_VREQ_EEPROM_READ (uint8_t)(0xBB) */ + +static uint16_t glI2cPageSize = 0x40; /* I2C Page size to be used for transfers. */ + +/* This application uses EEPROM as the slave I2C device. The I2C EEPROM + * part number used is 24LC256. The capacity of the EEPROM is 256K bits */ +#define CY_FX_USBI2C_I2C_MAX_CAPACITY (32 * 1024) /* Capacity in bytes */ + +/* The following constant is defined based on the page size that the I2C + * device support. 24LC256 support 64 byte page write access. */ +#define CY_FX_USBI2C_I2C_PAGE_SIZE (64) + +/* I2C Data rate */ +#define CY_FX_USBI2C_I2C_BITRATE (100000) + +/* Give a timeout value of 5s for any programming. */ +#define CY_FX_USB_I2C_TIMEOUT (5000) + +/* Function forward-declerations. */ +void CyFxI2cInit (uint16_t pageLen); +void CyFxUsbI2cTransfer (uint16_t byteAddress, uint8_t devAddr, + uint16_t byteCount, uint8_t *buffer, CyBool_t isRead); + +#include "cyu3externcend.h" + +#endif /* _B200_I2C_H */ diff --git a/firmware/fx3/b200/b200_main.c b/firmware/fx3/b200/b200_main.c new file mode 100644 index 000000000..38af9ed4e --- /dev/null +++ b/firmware/fx3/b200/b200_main.c @@ -0,0 +1,3160 @@ +// +// Copyright 2013-2014 Ettus Research LLC +// + +/* This file defines the application that runs on the Cypress FX3 device, and + * enables the user to program the FPGA with an FPGA image. Since the FPGA + * doesn't yet have a clock, the image must be bit-banged into the FPGA. + */ + +#include <stdarg.h> +#include <stdio.h> + +#include "b200_main.h" +#include "b200_gpifconfig.h" +#include "b200_vrq.h" +#include "b200_i2c.h" + +#include "cyu3dma.h" +#include "cyu3error.h" +#include "cyu3gpif.h" +#include "cyu3gpio.h" +#include "cyu3spi.h" +#include "cyu3os.h" +#include "cyu3pib.h" +#include "cyu3system.h" +#include "cyu3usb.h" +#include "cyu3utils.h" +#include "cyfxversion.h" +#include "pib_regs.h" + +#include <ad9361_transaction.h> +#include <ad9361_dispatch.h> + +#define STATIC_SAVER static // Save stack space for variables in a non-re-entrant function (e.g. USB setup callback) + +/* + * WARNING: Before you enable any of the features below, please read the comments on the same line for that feature! + * Indented features must have the parent feature enabled as well. + */ + +//#define HAS_HEAP // This requires memory to be set aside for the heap (e.g. required for printing floating-point numbers). You can apply the accompanying patch ('fx3_mem_map.patch') to fx3.ld & cyfxtx.c to create one. +//#define ENABLE_MSG // This will cause the compiled code to exceed the default text memory area (SYS_MEM). You can apply the accompanying patch ('fx3_mem_map.patch') to fx3.ld & cyfxtx.c to resize the memory map so it will fit. +//#define ENABLE_AD9361_LOGGING // When enabling this, you *must* enable the heap with HAS_HEAP (and apply the accompanying memory map patch 'fx3_mem_map.patch') otherwise the FW will crash when printing a floating-point number (as there is no heap for _sbrk by default) +//#define ENABLE_MANUAL_DMA_XFER +//#define ENABLE_MANUAL_DMA_XFER_FROM_HOST +//#define ENABLE_MANUAL_DMA_XFER_TO_HOST +//#define ENABLE_DMA_BUFFER_PACKET_DEBUG +//#define ENABLE_FPGA_SB // Be careful: this will add an ever-so-slight delay to some operations (e.g. AD3961 tune) +#define ENABLE_RE_ENUM_THREAD +#define ENABLE_USB_EVENT_LOGGING +//#define PREVENT_LOW_POWER_MODE +//#define ENABLE_INIT_B_WORKAROUND // This should only be enabled if you have a board where the FPGA INIT_B line is broken, but the FPGA is known to work +//#define ENABLE_DONE_WORKAROUND // This should only be enabled if you have a board where the FPGA DONE line is broken, but the FPGA is known to work + +#define WATCHDOG_TIMEOUT 1500 +#define CHECK_POWER_STATE_SLEEP_TIME 500 // Should be less than WATCHDOG_TIMEOUT + +#define FPGA_PROGRAMMING_POLL_SLEEP 10 // ticks +#define FPGA_PROGRAMMING_BITSTREAM_START_POLL_COUNT 250 // ~2.5 secs +#define FPGA_PROGRAMMING_INITB_POLL_COUNT 100 // ~1 sec +#define FPGA_PROGRAMMING_DONE_POLL_COUNT 250 // ~2.5 secs // This is the interval *after* no FPGA programming activity has been detected + +#define FPGA_RESET_SETTLING_TIME (1*10) // ~10ms (for SB to initialise) + +#define RE_ENUM_THREAD_SLEEP_TIME 100 +#define KEEP_ALIVE_LOOP_COUNT 200 + +#pragma message "----------------------" + +#ifdef ENABLE_MSG +#pragma message "msg enabled" + +#ifdef ENABLE_AD9361_LOGGING +#pragma message " AD9361 logging enabled" +#else +#pragma message " AD9361 logging disabled" +#endif // ENABLE_AD9361_LOGGING + +#else +#pragma message "msg disabled" +#endif // ENABLE_MSG + +#ifdef ENABLE_MANUAL_DMA_XFER +#pragma message "Manual DMA transfers" + +#ifdef ENABLE_MANUAL_DMA_XFER_FROM_HOST +#pragma message " -> From host" +#endif // ENABLE_MANUAL_DMA_XFER_FROM_HOST + +#ifdef ENABLE_MANUAL_DMA_XFER_TO_HOST +#pragma message " <- To host" +#endif // ENABLE_MANUAL_DMA_XFER_TO_HOST + +#ifdef ENABLE_DMA_BUFFER_PACKET_DEBUG +#pragma message " Packet debugging enabled" +#endif // ENABLE_DMA_BUFFER_PACKET_DEBUG + +#else +#pragma message "Auto DMA transfers" +#endif // ENABLE_MANUAL_DMA_XFER + +#ifdef ENABLE_FPGA_SB +#pragma message "FPGA Settings Bus enabled" +#else +#pragma message "FPGA Settings Bus disabled" +#endif // ENABLE_FPGA_SB + +#ifdef ENABLE_RE_ENUM_THREAD +#pragma message "Re-enumeration & statistics thread enabled" +#else +#pragma message "Re-enumeration & statistics thread disabled" +#endif // ENABLE_RE_ENUM_THREAD + +#ifdef ENABLE_USB_EVENT_LOGGING +#pragma message "USB event logging enabled" +#else +#pragma message "USB event logging disabled" +#endif // ENABLE_USB_EVENT_LOGGING + +#ifdef PREVENT_LOW_POWER_MODE +#pragma message "Preventing Low Power Mode" +#else +#pragma message "Allowing Low Power Mode" +#endif // PREVENT_LOW_POWER_MODE + +#ifdef HAS_HEAP +#pragma message "Heap enabled" +#else +#pragma message "Heap disabled" +#endif // HAS_HEAP + +#ifdef ENABLE_INIT_B_WORKAROUND +#pragma message "INIT_B workaround enabled" +#else +#pragma message "INIT_B workaround disabled" +#endif // ENABLE_INIT_B_WORKAROUND + +#ifdef ENABLE_DONE_WORKAROUND +#pragma message "DONE workaround enabled" +#else +#pragma message "DONE workaround disabled" +#endif // ENABLE_DONE_WORKAROUND + +#pragma message "----------------------" + +/* Declare global & static fields for our bit-bang application. */ +static CyU3PDmaChannel data_cons_to_prod_chan_handle; +static CyU3PDmaChannel data_prod_to_cons_chan_handle; + +static CyU3PDmaChannel ctrl_cons_to_prod_chan_handle; +static CyU3PDmaChannel ctrl_prod_to_cons_chan_handle; + +static CyU3PEvent g_event_usb_config; +static CyU3PThread thread_main_app; +static CyU3PThread thread_fpga_config; +#ifdef ENABLE_RE_ENUM_THREAD +static CyU3PThread thread_re_enum; +#endif // ENABLE_RE_ENUM_THREAD +static CyU3PThread thread_ad9361; + +static CyBool_t g_app_running = CyFalse; +static uint8_t g_fx3_state = STATE_UNDEFINED; + +//#define AD9361_DISPATCH_PACKET_SIZE 64 // Must fit into smallest VREQ +#define USB2_VREQ_BUF_SIZE 64 +#define USB3_VREQ_BUF_SIZE 512 +#define MIN_VREQ_BUF_SIZE USB2_VREQ_BUF_SIZE +#define MAX_VREQ_BUF_SIZE USB3_VREQ_BUF_SIZE + +#if AD9361_DISPATCH_PACKET_SIZE > MIN_VREQ_BUF_SIZE +#error "AD9361_DISPATCH_PACKET_SIZE must be less than MIN_VREQ_BUF_SIZE" +#endif + +static uint16_t g_vendor_req_buff_size = MIN_VREQ_BUF_SIZE; +static uint8_t g_vendor_req_buffer[MAX_VREQ_BUF_SIZE] __attribute__ ((aligned (32))); +static uint16_t g_vendor_req_read_count = 0; + +static uint8_t fpga_hash[4] __attribute__ ((aligned (32))); +static uint8_t fw_hash[4] __attribute__ ((aligned (32))); +static uint8_t compat_num[2]; +static uint32_t g_fpga_programming_write_count = 0; + +static char g_ad9361_response[AD9361_DISPATCH_PACKET_SIZE]; + +#define COUNTER_MAGIC 0x10024001 +#define LOG_BUFFER_SIZE /*MAX_VREQ_BUF_SIZE*/1024 // [Max vreq @ USB3 (64 @ USB2)] Can be larger +static char log_buffer[LOG_BUFFER_SIZE]; +static char log_contiguous_buffer[LOG_BUFFER_SIZE]; +static int log_buffer_idx = 0, log_buffer_len = 0; +#ifdef ENABLE_MSG +static int log_count = 0; +#endif // ENABLE_MSG + +#define USB_EVENT_LOG_SIZE 64 +static uint8_t g_usb_event_log[USB_EVENT_LOG_SIZE]; +static uint16_t g_last_usb_event_log_index = 0; +static uint8_t g_usb_event_log_contiguous_buf[USB_EVENT_LOG_SIZE]; + +#ifdef ENABLE_FPGA_SB +static CyBool_t g_fpga_sb_enabled = CyFalse; +static uint16_t g_fpga_sb_uart_div = 434*2; +static uint16_t g_fpga_sb_last_usb_event_log_index = 0; +static CyU3PThread thread_fpga_sb_poll; +static CyU3PMutex g_suart_lock; +#endif // ENABLE_FPGA_SB + +static CyU3PMutex g_log_lock, g_counters_lock, g_counters_dma_from_host_lock, g_counters_dma_to_host_lock; + +#define FPGA_SB_UART_ADDR_BASE 0x00 + +enum UARTRegs +{ + SUART_CLKDIV, + SUART_TXLEVEL, + SUART_RXLEVEL, + SUART_TXCHAR, + SUART_RXCHAR +}; + +enum UARTPacketType +{ + UPT_NONE = '\0', + UPT_MSG = ' ', + UPT_COUNTERS = 'C', + UPT_USB_EVENTS = 'U', +}; + +enum ConfigFlags { + CF_NONE = 0, + CF_TX_SWING = 1 << 0, + CF_TX_DEEMPHASIS = 1 << 1, + CF_DISABLE_USB2 = 1 << 2, + CF_ENABLE_AS_SUPERSPEED = 1 << 3, + CF_PPORT_DRIVE_STRENGTH = 1 << 4, + CF_DMA_BUFFER_SIZE = 1 << 5, + CF_DMA_BUFFER_COUNT = 1 << 6, + CF_MANUAL_DMA = 1 << 7, + + CF_RE_ENUM = 1 << 31 +}; + +typedef struct Config { + int tx_swing; // [90] [65] 45 + int tx_deemphasis; // 0x11 + int disable_usb2; // 0 + int enable_as_superspeed; // 1 + int pport_drive_strength; // CY_U3P_DS_THREE_QUARTER_STRENGTH + int dma_buffer_size; // [USB3] (max) + int dma_buffer_count; // [USB3] 1 + int manual_dma; // 0 + int sb_baud_div; // 434*2 +} CONFIG, *PCONFIG; + +typedef struct ConfigMod { + int flags; + CONFIG config; +} CONFIG_MOD, *PCONFIG_MOD; + +static CONFIG g_config; +static CONFIG_MOD g_config_mod; + +#define REG_LNK_PHY_ERROR_STATUS 0xE0033044 + +enum PhyErrors { + PHYERR_PHY_LOCK_EV = 1 << 8, + PHYERR_TRAINING_ERROR_EV = 1 << 7, + PHYERR_RX_ERROR_CRC32_EV = 1 << 6, + PHYERR_RX_ERROR_CRC16_EV = 1 << 5, + PHYERR_RX_ERROR_CRC5_EV = 1 << 4, + PHYERR_PHY_ERROR_DISPARITY_EV = 1 << 3, + PHYERR_PHY_ERROR_EB_UND_EV = 1 << 2, + PHYERR_PHY_ERROR_EB_OVR_EV = 1 << 1, + PHYERR_PHY_ERROR_DECODE_EV = 1 << 0, + + PHYERR_MAX = PHYERR_PHY_LOCK_EV, + PHYERR_MASK = (PHYERR_MAX << 1) - 1 +}; + +typedef struct USBErrorCounters { + int phy_error_count; + int link_error_count; + + int PHY_LOCK_EV; + int TRAINING_ERROR_EV; + int RX_ERROR_CRC32_EV; + int RX_ERROR_CRC16_EV; + int RX_ERROR_CRC5_EV; + int PHY_ERROR_DISPARITY_EV; + int PHY_ERROR_EB_UND_EV; + int PHY_ERROR_EB_OVR_EV; + int PHY_ERROR_DECODE_EV; +} USB_ERROR_COUNTERS, *PUSB_ERROR_COUNTERS; + +typedef struct DMACounters { + int XFER_CPLT; + int SEND_CPLT; + int RECV_CPLT; + int PROD_EVENT; + int CONS_EVENT; + int ABORTED; + int ERROR; + int PROD_SUSP; + int CONS_SUSP; + + int BUFFER_MARKER; + int BUFFER_EOP; + int BUFFER_ERROR; + int BUFFER_OCCUPIED; + + int last_count; + int last_size; + + int last_sid; + int bad_sid_count; +} DMA_COUNTERS, *PDMA_COUNTERS; + +typedef struct Counters { + int magic; + + DMA_COUNTERS dma_to_host; + DMA_COUNTERS dma_from_host; + + int log_overrun_count; + + int usb_error_update_count; + USB_ERROR_COUNTERS usb_error_counters; + + int usb_ep_underrun_count; + + int heap_size; + + int resume_count; +} COUNTERS, *PCOUNTERS; + +volatile static COUNTERS g_counters; + +#ifndef min +#define min(a,b) ((a)<(b)?(a):(b)) +#endif // min + +#define LOCKP(p) CyU3PMutexGet(p, CYU3P_WAIT_FOREVER) +#define UNLOCKP(p) CyU3PMutexPut(p) +#define LOCK(p) LOCKP(&p) +#define UNLOCK(p) UNLOCKP(&p) + +//////////////////////////////////////////////////////////////////////////////// + +char *heap_end = 0; +caddr_t _sbrk(int incr) +{ +#ifdef HAS_HEAP + extern char __heap_start; + extern char __heap_end; + char *prev_heap_end; + + if (heap_end == 0) + { + heap_end = (char *)&__heap_start; + } + prev_heap_end = heap_end; + + if (heap_end + incr > &__heap_end) + { + return (caddr_t) 0; + } + heap_end += incr; + g_counters.heap_size += incr; // Not sync'd + + return (caddr_t) prev_heap_end; +#else + return (caddr_t) -1; +#endif // HAS_HEAP +} + +//////////////////////////////////////////////////////////////////////////////// + +void b200_start_fpga_sb_gpio(void); +void sb_write(uint8_t reg, uint32_t val); +void _sb_write_string(const char* msg); + +void msg(const char* str, ...) { +#define msg_CHECK_USE_LOCK +//void _msgv(int use_lock, const char* str, va_list args) { +//#define msg_CHECK_USE_LOCK if (use_lock) +#ifdef ENABLE_MSG + va_list args; + static char buf[LOG_BUFFER_SIZE]; + int idx = 0; + + msg_CHECK_USE_LOCK + LOCK(g_log_lock); + + ++log_count; + log_count %= 10000; + + va_start(args, str); + + if (1) { // FIXME: Optional + uint32_t time_now = CyU3PGetTime(); + idx += sprintf(buf, "%08X %04i ", (uint)time_now, log_count); + } + else + idx += sprintf(buf, "%04i ", log_count); + idx += vsnprintf(buf + idx, LOG_BUFFER_SIZE - idx, str, args); + + va_end(args); + + if ((LOG_BUFFER_SIZE - log_buffer_len) < (idx + 1 + 1)) { + msg_CHECK_USE_LOCK + LOCK(g_counters_lock); + ++g_counters.log_overrun_count; + msg_CHECK_USE_LOCK + UNLOCK(g_counters_lock); + + goto msg_exit; + } + + // Circular buffer if we need it later, but currently won't wrap due to above condition + memcpy(log_buffer + log_buffer_len, buf, min(idx + 1, LOG_BUFFER_SIZE - log_buffer_len)); + if ((idx + 1) > (LOG_BUFFER_SIZE - log_buffer_len)) + { + memcpy(log_buffer, buf + (LOG_BUFFER_SIZE - log_buffer_len), (idx + 1) - (LOG_BUFFER_SIZE - log_buffer_len)); + log_buffer[(idx + 1) - (LOG_BUFFER_SIZE - log_buffer_len)] = '\0'; + } + else + log_buffer[log_buffer_len + idx + 1] = '\0'; + + log_buffer_len += (idx + 1); +msg_exit: + msg_CHECK_USE_LOCK + UNLOCK(g_log_lock); +#ifdef ENABLE_FPGA_SB + LOCK(g_suart_lock); + sb_write(SUART_TXCHAR, UPT_MSG); + _sb_write_string(buf); + _sb_write_string("\r\n"); + UNLOCK(g_suart_lock); +#endif // ENABLE_FPGA_SB +#endif // ENABLE_MSG +} +/* +void msg(const char* str, ...) +{ + va_list args; + va_start(args, str); + _msgv(1, str, args); + va_end(args); +} + +void msg_nl(const char* str, ...) +{ + va_list args; + va_start(args, str); + _msgv(0, str, args); + va_end(args); +} +*/ +void log_reset(void) { + //LOCK(g_log_lock); + + log_buffer_idx = 0; + log_buffer_len = 0; + log_buffer[0] = '\0'; + + //UNLOCK(g_log_lock); +} + +void counters_auto_reset(void) { + //LOCK(g_counters_lock); + + g_counters.log_overrun_count = 0; + + //UNLOCK(g_counters_lock); +} + +void counters_dma_reset(void) { + LOCK(g_counters_lock); + + LOCK(g_counters_dma_to_host_lock); + memset((void*)&g_counters.dma_to_host, 0x00, sizeof(DMA_COUNTERS)); + UNLOCK(g_counters_dma_to_host_lock); + + LOCK(g_counters_dma_from_host_lock); + memset((void*)&g_counters.dma_from_host, 0x00, sizeof(DMA_COUNTERS)); + UNLOCK(g_counters_dma_from_host_lock); + + UNLOCK(g_counters_lock); +} + +void counters_reset_usb_errors(void) { + LOCK(g_counters_lock); + + g_counters.usb_error_update_count = 0; + memset((void*)&g_counters.usb_error_counters, 0x00, sizeof(g_counters.usb_error_counters)); + + UNLOCK(g_counters_lock); +} + +#ifdef ENABLE_MANUAL_DMA_XFER +/* Callback funtion for the DMA event notification. */ +void dma_callback ( + CyU3PDmaChannel *chHandle, /* Handle to the DMA channel. */ + CyU3PDmaCbType_t type, /* Callback type. */ + CyU3PDmaCBInput_t *input, /* Callback status. */ + int from_host) +{ + CyU3PReturnStatus_t status = CY_U3P_SUCCESS; + + PDMA_COUNTERS cnt = (PDMA_COUNTERS)(from_host ? &g_counters.dma_from_host : &g_counters.dma_to_host); + CyU3PMutex* lock = (from_host ? &g_counters_dma_from_host_lock : &g_counters_dma_to_host_lock); + + uint16_t buffer_status = (input->buffer_p.status & CY_U3P_DMA_BUFFER_STATUS_MASK); + if (buffer_status & CY_U3P_DMA_BUFFER_MARKER) + { + cnt->BUFFER_MARKER++; + } + if (buffer_status & CY_U3P_DMA_BUFFER_EOP) + { + cnt->BUFFER_EOP++; + } + if (buffer_status & CY_U3P_DMA_BUFFER_ERROR) + { + cnt->BUFFER_ERROR++; + } + if (buffer_status & CY_U3P_DMA_BUFFER_OCCUPIED) + { + cnt->BUFFER_OCCUPIED++; + } + + if (type == CY_U3P_DMA_CB_PROD_EVENT) + { +#ifdef ENABLE_DMA_BUFFER_PACKET_DEBUG + LOCKP(lock); + int prod_cnt = cnt->PROD_EVENT++; + UNLOCKP(lock); + + if (cnt->last_count != input->buffer_p.count) + msg("[DMA %05d] buffer.count (%d) != last_count (%d)", prod_cnt, input->buffer_p.count, cnt->last_count); + cnt->last_count = input->buffer_p.count; + + if (cnt->last_size != input->buffer_p.size) + msg("[DMA %05d] buffer.size (%d) != last_size (%d)", prod_cnt, input->buffer_p.size, cnt->last_size); + cnt->last_size = input->buffer_p.size; + + uint32_t* p32 = input->buffer_p.buffer; + uint32_t sid = p32[1]; + cnt->last_sid = (int)sid; + if ((sid != 0xa0) && (sid != 0xb0)) + { + cnt->bad_sid_count++; + msg("[DMA %05d] Bad SID: 0x%08x", prod_cnt, sid); + } + + uint16_t* p16 = input->buffer_p.buffer; + + if (p32[0] & (((uint32_t)1) << 31)) + { + msg("[DMA %05d] Error code: 0x%x (packet len: %d)", prod_cnt, p32[4], p16[0]); // Status + + //msg("[DMA] 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x", p32[0], p32[1], p32[2], p32[3], p32[4], p32[5]); + } + else + { + if (p16[1] & (((uint16_t)1) << 12)) + { + msg("[DMA %05d] EOB", prod_cnt); // Comes with one sample + } + + if ((p16[0] != input->buffer_p.count) && + ((p16[0] + 4) != input->buffer_p.count)) + { + msg("[DMA %05d] Packet len (%d) != buffer count (%d)", prod_cnt, p16[0], input->buffer_p.count); + } + + //msg("[DMA] 0x%04x 0x%04x 0x%04x 0x%04x", p16[0], p16[1], p16[2], p16[3]); + + if (p16[1] & (((uint16_t)1) << 12)) + msg("[DMA %05d] 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x", prod_cnt, p32[0], p32[1], p32[2], p32[3], p32[4], p32[5]); + } +#endif // ENABLE_DMA_BUFFER_PACKET_DEBUG + status = CyU3PDmaChannelCommitBuffer (chHandle, input->buffer_p.count, 0); +#ifndef ENABLE_DMA_BUFFER_PACKET_DEBUG + LOCKP(lock); + cnt->PROD_EVENT++; + UNLOCKP(lock); +#endif // !ENABLE_DMA_BUFFER_PACKET_DEBUG + } + else if (type == CY_U3P_DMA_CB_CONS_EVENT) + { + LOCKP(lock); + cnt->CONS_EVENT++; + UNLOCKP(lock); + } + else if (type == CY_U3P_DMA_CB_XFER_CPLT) + { + LOCKP(lock); + cnt->XFER_CPLT++; + UNLOCKP(lock); + } + else if (type == CY_U3P_DMA_CB_SEND_CPLT) + { + LOCKP(lock); + cnt->SEND_CPLT++; + UNLOCKP(lock); + } + else if (type == CY_U3P_DMA_CB_RECV_CPLT) + { + LOCKP(lock); + cnt->RECV_CPLT++; + UNLOCKP(lock); + } + else if (type == CY_U3P_DMA_CB_ABORTED) + { + LOCKP(lock); + cnt->ABORTED++; + UNLOCKP(lock); + + msg("! Aborted %i", from_host); + } + else if (type == CY_U3P_DMA_CB_ERROR) + { + LOCKP(lock); + cnt->ERROR++; + UNLOCKP(lock); + + msg("! Error %i", from_host); + } + else if (type == CY_U3P_DMA_CB_PROD_SUSP) + { + LOCKP(lock); + cnt->PROD_SUSP++; + UNLOCKP(lock); + + msg("! Prod suspend %i", from_host); + } + else if (type == CY_U3P_DMA_CB_CONS_SUSP) + { + LOCKP(lock); + cnt->CONS_SUSP++; + UNLOCKP(lock); + + msg("! Cons suspend %i", from_host); + } +} + +void from_host_dma_callback ( + CyU3PDmaChannel *chHandle, /* Handle to the DMA channel. */ + CyU3PDmaCbType_t type, /* Callback type. */ + CyU3PDmaCBInput_t *input) /* Callback status. */ +{ + return dma_callback(chHandle, type, input, 1); +} + +void to_host_dma_callback ( + CyU3PDmaChannel *chHandle, /* Handle to the DMA channel. */ + CyU3PDmaCbType_t type, /* Callback type. */ + CyU3PDmaCBInput_t *input) /* Callback status. */ +{ + return dma_callback(chHandle, type, input, 0); +} +#endif // ENABLE_MANUAL_DMA_XFER + +/*! Interrupt callback for GPIOs. + * + * This function is invoked by the GPIO interrupt handler when pins configured + * as inputs with interrupts are triggered. */ +void gpio_interrupt_callback(uint8_t gpio_id) { + CyBool_t gpio_value; + + if ((gpio_id == GPIO_DONE) && (g_fx3_state == STATE_CONFIGURING_FPGA)) { // Only proceed if in the correct FX3 state + CyU3PGpioGetValue(gpio_id, &gpio_value); + + if(gpio_value == CyTrue) { + //msg("DONE HIGH"); + CyU3PEventSet(&g_event_usb_config, EVENT_GPIO_DONE_HIGH, CYU3P_EVENT_OR); + } + } else if ((gpio_id == GPIO_INIT_B) && (g_fx3_state == STATE_FPGA_READY)) { // Only proceed if in the correct FX3 state + CyU3PGpioGetValue(gpio_id, &gpio_value); + + if(gpio_value == CyTrue) { + //msg("INITB_RISE"); + CyU3PEventSet(&g_event_usb_config, EVENT_GPIO_INITB_RISE, CYU3P_EVENT_OR); + } + } +} + + +// The following two functions are intended to replace write_spi_to_ad9361 +// and read_spi_from_ad9361 after the code porting is complete +/*! Perform a register write to the ad9361 chip. + * A pointer to the register address followed by data will be provided as + * parameter + */ +static void write_ad9361_reg(uint16_t reg, uint8_t val) { + + CyBool_t gpio_value; + uint8_t write_buff[3]; + MAKE_AD9361_WRITE(write_buff, reg, val) + + // Number of bytes we are writing. + uint8_t num_bytes = 3; //register address = 2 bytes, data = 1 byte + + CyU3PGpioSetValue(GPIO_FX3_CE, 0); + + // Clock the data out to AD9361 over SPI. + int8_t bit_count, byte_count; + for(byte_count = 0; byte_count < num_bytes; byte_count++) { + + uint8_t miso = 0x00; + uint8_t data = write_buff[byte_count]; + + for(bit_count = 7; bit_count >= 0; bit_count--) { + CyU3PGpioSetValue(GPIO_FX3_SCLK, 1); + CyU3PGpioSetValue(GPIO_FX3_MOSI, ((data >> bit_count) & 0x01)); + CyU3PGpioSetValue(GPIO_FX3_SCLK, 0); + + CyU3PGpioGetValue(GPIO_FX3_MISO, &gpio_value); + if(gpio_value) { + miso |= (1 << bit_count); + } + } + // FIXME: Determine what to do with miso value; + } + + CyU3PGpioSetValue(GPIO_FX3_MOSI, 0); + CyU3PGpioSetValue(GPIO_FX3_CE, 1); +} + +/*! Perform a register read from to the ad9361 chip. + * A pointer to register address will be provided as parameter + * The function returns the value read from the register + */ +static uint8_t read_ad9361_reg(uint16_t reg) { + + CyBool_t gpio_value; + uint8_t write_buff[2]; + MAKE_AD9361_READ(write_buff, reg) + + // Each 9361 register read returns 1 byte + + CyU3PGpioSetValue(GPIO_FX3_CE, 0); + + // Write the two register address bytes. + int8_t bit_count, byte_count; + for(byte_count = 0; byte_count < 2; byte_count++) { + + uint8_t miso = 0x00; + uint8_t data = write_buff[byte_count]; + + for(bit_count = 7; bit_count >= 0; bit_count--) { + CyU3PGpioSetValue(GPIO_FX3_SCLK, 1); + CyU3PGpioSetValue(GPIO_FX3_MOSI, ((data >> bit_count) & 0x01)); + CyU3PGpioSetValue(GPIO_FX3_SCLK, 0); + + CyU3PGpioGetValue(GPIO_FX3_MISO, &gpio_value); + if(gpio_value) { + miso |= (1 << bit_count); + } + } + // FIXME: Determine what to do with miso value; + } + + CyU3PGpioSetValue(GPIO_FX3_MOSI, 0); + + // Read the response data from the chip. + uint8_t data = 0x00; + + for(bit_count = 7; bit_count >= 0; bit_count--) { + CyU3PGpioSetValue(GPIO_FX3_SCLK, 1); + + CyU3PGpioGetValue(GPIO_FX3_MISO, &gpio_value); + if(gpio_value) { + data |= (1 << bit_count); + } + + CyU3PGpioSetValue(GPIO_FX3_SCLK, 0); + } + CyU3PGpioSetValue(GPIO_FX3_CE, 1); + return data; +} + +/*! Perform a register write to the ad9361 chip. + * + * This function will take data received over EP0, as a vendor request, and + * perform a SPI write to ad9361. This requires that the FPGA be passing these + * SPI lines through to the ad9361 chip. */ +void write_spi_to_ad9361(void) { + + CyBool_t gpio_value; + + /* Pull out the number of bytes we are writing. */ + uint8_t num_bytes = ((g_vendor_req_buffer[0] & 0x70) >> 4) + 1; + + CyU3PGpioSetValue(GPIO_FX3_CE, 0); + + /* Clock the data out to AD9361 over SPI. */ + int8_t bit_count, byte_count; + for(byte_count = 0; byte_count < (num_bytes + 2); byte_count++) { + + uint8_t miso = 0x00; + uint8_t data = g_vendor_req_buffer[byte_count]; + + for(bit_count = 7; bit_count >= 0; bit_count--) { + CyU3PGpioSetValue(GPIO_FX3_SCLK, 1); + CyU3PGpioSetValue(GPIO_FX3_MOSI, ((data >> bit_count) & 0x01)); + CyU3PGpioSetValue(GPIO_FX3_SCLK, 0); + + CyU3PGpioGetValue(GPIO_FX3_MISO, &gpio_value); + if(gpio_value) { + miso |= (1 << bit_count); + } + } + + g_vendor_req_buffer[byte_count] = miso; + } + + CyU3PGpioSetValue(GPIO_FX3_MOSI, 0); + CyU3PGpioSetValue(GPIO_FX3_CE, 1); +} + + +/*! Perform a register read from the ad9361 chip. + * + * This function will write a command to the ad9361 chip, performing a register + * read, and store the returned data in the vendor request buffer. This data can + * then be retrieved with another vendor request from the host. + * + * This requires that the FPGA be passing these SPI lines through to the + * ad9361 chip. */ +void read_spi_from_ad9361(void) { + + CyBool_t gpio_value; + + /* Pull out the number of bytes we are reading. */ + uint8_t num_bytes = ((g_vendor_req_buffer[0] & 0x70) >> 4) + 1; + + CyU3PGpioSetValue(GPIO_FX3_CE, 0); + + /* Write the two instruction bytes. */ + int8_t bit_count, byte_count; + for(byte_count = 0; byte_count < 2; byte_count++) { + + uint8_t miso = 0x00; + uint8_t data = g_vendor_req_buffer[byte_count]; + + for(bit_count = 7; bit_count >= 0; bit_count--) { + CyU3PGpioSetValue(GPIO_FX3_SCLK, 1); + CyU3PGpioSetValue(GPIO_FX3_MOSI, ((data >> bit_count) & 0x01)); + CyU3PGpioSetValue(GPIO_FX3_SCLK, 0); + + CyU3PGpioGetValue(GPIO_FX3_MISO, &gpio_value); + if(gpio_value) { + miso |= (1 << bit_count); + } + } + + g_vendor_req_buffer[byte_count] = miso; + } + + CyU3PGpioSetValue(GPIO_FX3_MOSI, 0); + + /* Read the response data from the chip. */ + for(byte_count = 0; byte_count < num_bytes; byte_count++) { + + uint8_t data = 0x00; + + for(bit_count = 7; bit_count >= 0; bit_count--) { + CyU3PGpioSetValue(GPIO_FX3_SCLK, 1); + + CyU3PGpioGetValue(GPIO_FX3_MISO, &gpio_value); + if(gpio_value) { + data |= (1 << bit_count); + } + + CyU3PGpioSetValue(GPIO_FX3_SCLK, 0); + } + + g_vendor_req_buffer[byte_count + 2] = data; + } + + CyU3PGpioSetValue(GPIO_FX3_CE, 1); +} + + +uint32_t ad9361_transact_spi(const uint32_t bits) { + // FIXME: Could make this more sane + if ((bits >> 23) & 0x1) + { + write_ad9361_reg(bits >> 8, bits & 0xff); + return 0; + } + return read_ad9361_reg(bits >> 8); +} + + +/*! Stops the application, and destroys transport data structures. + * + * This function is essentially a destructor for all transport configurations. + * It ensures that if the USB configuration is reset without a power reboot, + * everything will come back up properly. */ +void b200_fw_stop(void) { + msg("b200_fw_stop"); + + CyU3PEpConfig_t usb_endpoint_config; + + /* Update the flag. */ + g_app_running = CyFalse; + + /* Flush the endpoint memory */ + CyU3PUsbFlushEp(DATA_ENDPOINT_PRODUCER); + CyU3PUsbFlushEp(DATA_ENDPOINT_CONSUMER); + CyU3PUsbFlushEp(CTRL_ENDPOINT_PRODUCER); + CyU3PUsbFlushEp(CTRL_ENDPOINT_CONSUMER); + + /* Reset the DMA channels */ + // SDK 1.3 known issue #1 - probably not necessary since Destroy is next, but just in case + CyU3PDmaChannelReset(&data_cons_to_prod_chan_handle); + CyU3PDmaChannelReset(&data_prod_to_cons_chan_handle); + CyU3PDmaChannelReset(&ctrl_cons_to_prod_chan_handle); + CyU3PDmaChannelReset(&ctrl_prod_to_cons_chan_handle); + + /* Destroy the DMA channels */ + CyU3PDmaChannelDestroy(&data_cons_to_prod_chan_handle); + CyU3PDmaChannelDestroy(&data_prod_to_cons_chan_handle); + CyU3PDmaChannelDestroy(&ctrl_cons_to_prod_chan_handle); + CyU3PDmaChannelDestroy(&ctrl_prod_to_cons_chan_handle); + + /* Disable endpoints. */ + CyU3PMemSet((uint8_t *) &usb_endpoint_config, 0, \ + sizeof(usb_endpoint_config)); + usb_endpoint_config.enable = CyFalse; + + CyU3PSetEpConfig(DATA_ENDPOINT_PRODUCER, &usb_endpoint_config); + CyU3PSetEpConfig(DATA_ENDPOINT_CONSUMER, &usb_endpoint_config); + CyU3PSetEpConfig(CTRL_ENDPOINT_PRODUCER, &usb_endpoint_config); + CyU3PSetEpConfig(CTRL_ENDPOINT_CONSUMER, &usb_endpoint_config); +} + + +void reset_gpif(void) { + g_fx3_state = STATE_BUSY; + + // Put the FPGA into RESET + CyU3PGpioSetValue(GPIO_FPGA_RESET, CyTrue); + + // Bring down GPIF + CyU3PGpifDisable(CyTrue); + + /* Reset the DMA channels */ + CyU3PDmaChannelReset(&data_cons_to_prod_chan_handle); + CyU3PDmaChannelReset(&data_prod_to_cons_chan_handle); + CyU3PDmaChannelReset(&ctrl_cons_to_prod_chan_handle); + CyU3PDmaChannelReset(&ctrl_prod_to_cons_chan_handle); + + /* Reset the DMA transfers */ + CyU3PDmaChannelSetXfer(&data_cons_to_prod_chan_handle, \ + DMA_SIZE_INFINITE); + + CyU3PDmaChannelSetXfer(&data_prod_to_cons_chan_handle, \ + DMA_SIZE_INFINITE); + + CyU3PDmaChannelSetXfer(&ctrl_cons_to_prod_chan_handle, \ + DMA_SIZE_INFINITE); + + CyU3PDmaChannelSetXfer(&ctrl_prod_to_cons_chan_handle, \ + DMA_SIZE_INFINITE); + + /* Flush the USB endpoints */ + CyU3PUsbFlushEp(DATA_ENDPOINT_PRODUCER); + CyU3PUsbFlushEp(DATA_ENDPOINT_CONSUMER); + CyU3PUsbFlushEp(CTRL_ENDPOINT_PRODUCER); + CyU3PUsbFlushEp(CTRL_ENDPOINT_CONSUMER); + + /* Load the GPIF configuration for Slave FIFO sync mode. */ + CyU3PGpifLoad(&CyFxGpifConfig); + + /* Start the state machine. */ + CyU3PGpifSMStart(RESET, ALPHA_RESET); + + /* Configure the watermarks for the slfifo-write buffers. */ + CyU3PGpifSocketConfigure(0, DATA_TX_PPORT_SOCKET, 5, CyFalse, 1); + CyU3PGpifSocketConfigure(1, DATA_RX_PPORT_SOCKET, 6, CyFalse, 1); + CyU3PGpifSocketConfigure(2, CTRL_COMM_PPORT_SOCKET, 5, CyFalse, 1); + CyU3PGpifSocketConfigure(3, CTRL_RESP_PPORT_SOCKET, 6, CyFalse, 1); + + CyU3PGpioSetValue(GPIO_FPGA_RESET, CyFalse); + + CyU3PThreadSleep(FPGA_RESET_SETTLING_TIME); + + b200_start_fpga_sb_gpio(); + + g_fx3_state = STATE_RUNNING; +} + + +CyU3PReturnStatus_t b200_set_io_matrix(CyBool_t fpga_config_mode) { + CyU3PIoMatrixConfig_t io_config_matrix; + CyU3PReturnStatus_t res; + + /* Configure the IO peripherals on the FX3. The gpioSimpleEn arrays are + * bitmaps, where each bit represents the GPIO of the matching index - the + * second array is index + 32. */ + CyU3PMemSet((uint8_t *) &io_config_matrix, 0, sizeof(io_config_matrix)); + io_config_matrix.isDQ32Bit = (fpga_config_mode == CyFalse); + io_config_matrix.lppMode = CY_U3P_IO_MATRIX_LPP_DEFAULT; + io_config_matrix.gpioSimpleEn[0] = 0 | MASK_GPIO_FPGA_SB_SCL | MASK_GPIO_FPGA_SB_SDA; + io_config_matrix.gpioSimpleEn[1] = MASK_GPIO_PROGRAM_B \ + | MASK_GPIO_INIT_B \ + | (fpga_config_mode ? 0 : \ + // Used once FPGA config is done to bit-bang SPI, etc. + MASK_GPIO_SHDN_SW \ + | MASK_GPIO_AUX_PWR_ON \ + | MASK_GPIO_FX3_SCLK \ + | MASK_GPIO_FX3_CE \ + | MASK_GPIO_FX3_MISO \ + | MASK_GPIO_FX3_MOSI); + io_config_matrix.gpioComplexEn[0] = 0; + io_config_matrix.gpioComplexEn[1] = 0; + io_config_matrix.useUart = CyFalse; + io_config_matrix.useI2C = CyTrue; + io_config_matrix.useI2S = CyFalse; + io_config_matrix.useSpi = fpga_config_mode; + + res = CyU3PDeviceConfigureIOMatrix(&io_config_matrix); + if (res != CY_U3P_SUCCESS) + msg("! ConfigureIOMatrix"); + + return res; +} + + +CyU3PReturnStatus_t b200_gpio_init(CyBool_t set_callback) { + CyU3PGpioClock_t gpio_clock_config; + CyU3PReturnStatus_t res; + + /* Since we are only using FX3's 'simple GPIO' functionality, these values + * must *NOT* change. Cypress says changing them will break stuff. */ + CyU3PMemSet((uint8_t *) &gpio_clock_config, 0, \ + sizeof(gpio_clock_config)); + gpio_clock_config.fastClkDiv = 2; + gpio_clock_config.slowClkDiv = 0; + gpio_clock_config.simpleDiv = CY_U3P_GPIO_SIMPLE_DIV_BY_2; + gpio_clock_config.clkSrc = CY_U3P_SYS_CLK; + gpio_clock_config.halfDiv = 0; + + res = CyU3PGpioInit(&gpio_clock_config, (set_callback ? gpio_interrupt_callback : NULL)); + if (res != CY_U3P_SUCCESS) + msg("! CyU3PGpioInit"); + + return res; +} + + +void sb_write(uint8_t reg, uint32_t val) { +#ifdef ENABLE_FPGA_SB + const int len = 32; + int i; + + if (g_fpga_sb_enabled == CyFalse) + return; + + reg += FPGA_SB_UART_ADDR_BASE; + + //CyU3PBusyWait(1); // Can be used after each SetValue to slow down bit changes + + // START + CyU3PGpioSetValue(GPIO_FPGA_SB_SCL, 1); // Should already be 1 + CyU3PGpioSetValue(GPIO_FPGA_SB_SDA, 0); + + // ADDR[8] + for (i = 7; i >= 0; i--) { + uint8_t bit = ((reg & (0x1 << i)) ? 0x01 : 0x00); + CyU3PGpioSetValue(GPIO_FPGA_SB_SCL, 0); + CyU3PGpioSetValue(GPIO_FPGA_SB_SDA, bit); + + CyU3PGpioSetValue(GPIO_FPGA_SB_SCL, 1); // FPGA reads bit + } + + // DATA[32] + for (i = (len-1); i >= 0; i--) { + uint8_t bit = ((val & (0x1 << i)) ? 0x01 : 0x00); + CyU3PGpioSetValue(GPIO_FPGA_SB_SCL, 0); + CyU3PGpioSetValue(GPIO_FPGA_SB_SDA, bit); + + CyU3PGpioSetValue(GPIO_FPGA_SB_SCL, 1); // FPGA reads bit + } + + // STOP + CyU3PGpioSetValue(GPIO_FPGA_SB_SDA, 0); + CyU3PGpioSetValue(GPIO_FPGA_SB_SCL, 0); + CyU3PGpioSetValue(GPIO_FPGA_SB_SCL, 1); // Actual stop + CyU3PGpioSetValue(GPIO_FPGA_SB_SDA, 1); // Xact occurs +#endif // ENABLE_FPGA_SB +} + + +void _sb_write_string(const char* msg) { +#ifdef ENABLE_FPGA_SB + while (*msg) { + sb_write(SUART_TXCHAR, (uint8_t)(*(msg++))); + } +#endif // ENABLE_FPGA_SB +} + + +void sb_write_string(const char* msg) { +#ifdef ENABLE_FPGA_SB + LOCK(g_suart_lock); + _sb_write_string(msg); + UNLOCK(g_suart_lock); +#endif // ENABLE_FPGA_SB +} + + +void b200_enable_fpga_sb_gpio(CyBool_t enable) { +#ifdef ENABLE_FPGA_SB + CyU3PGpioSimpleConfig_t gpio_config; + CyU3PReturnStatus_t res; + + if (enable == CyFalse) { + g_fpga_sb_enabled = CyFalse; + + return; + } + + gpio_config.outValue = CyFalse; + gpio_config.driveLowEn = CyTrue; + gpio_config.driveHighEn = CyTrue; + gpio_config.inputEn = CyFalse; + gpio_config.intrMode = CY_U3P_GPIO_NO_INTR; + + res = CyU3PGpioSetSimpleConfig(GPIO_FPGA_SB_SCL, &gpio_config); + if (res != CY_U3P_SUCCESS) { + msg("! GpioSetSimpleConfig GPIO_FPGA_SB_SCL"); + } + res = CyU3PGpioSetSimpleConfig(GPIO_FPGA_SB_SDA, &gpio_config); + if (res != CY_U3P_SUCCESS) { + msg("! GpioSetSimpleConfig GPIO_FPGA_SB_SDA"); + } + + CyU3PGpioSetValue(GPIO_FPGA_SB_SCL, 1); + CyU3PGpioSetValue(GPIO_FPGA_SB_SDA, 1); + + g_fpga_sb_enabled = CyTrue; + + msg("Debug SB OK"); +#endif // ENABLE_FPGA_SB +} + + +void b200_start_fpga_sb_gpio(void) { +#ifdef ENABLE_FPGA_SB + LOCK(g_suart_lock); + sb_write(SUART_CLKDIV, g_fpga_sb_uart_div); // 16-bit reg, master clock = 100 MHz (434*2x = 230400/2) + _sb_write_string("\r\n B2x0 FPGA reset\r\n"); + UNLOCK(g_suart_lock); + + msg("Compat: %d.%d", FX3_COMPAT_MAJOR, FX3_COMPAT_MINOR); + msg("FX3 SDK: %d.%d.%d (build %d)", CYFX_VERSION_MAJOR, CYFX_VERSION_MINOR, CYFX_VERSION_PATCH, CYFX_VERSION_BUILD); +#endif // ENABLE_FPGA_SB +} + + +/*! Initialize and configure the GPIO module for FPGA programming. + * + * This function initializes the FX3 GPIO module, creating a configuration that + * allows us to program the FPGA. After the FPGA has been programmed, the + * application thread will re-configure some of the pins. */ +void b200_gpios_pre_fpga_config(void) { + CyU3PGpioSimpleConfig_t gpio_config; + + //b200_enable_fpga_sb_gpio(CyFalse); + + //CyU3PGpioDeInit(); + + b200_set_io_matrix(CyTrue); + + //b200_gpio_init(CyTrue); // This now done once during startup + + //////////////////////////////////// + + /* GPIO[0:32] must be set with the DeviceOverride function, instead of the + * SimpleEn array configuration. */ + CyU3PDeviceGpioOverride(GPIO_FPGA_RESET, CyTrue); + CyU3PDeviceGpioOverride(GPIO_DONE, CyTrue); + + /* Configure GPIOs: + * Outputs: + * driveLowEn = True + * driveHighEn = True + * inputEn = False + * Inputs: + * driveLowEn = False + * driveHighEn = False + * outValue = Ignored + */ + gpio_config.outValue = CyFalse; + gpio_config.driveLowEn = CyTrue; + gpio_config.driveHighEn = CyTrue; + gpio_config.inputEn = CyFalse; + gpio_config.intrMode = CY_U3P_GPIO_NO_INTR; + + CyU3PGpioSetSimpleConfig(GPIO_FPGA_RESET, &gpio_config); + CyU3PGpioSetSimpleConfig(GPIO_PROGRAM_B, &gpio_config); + + /* Reconfigure the GPIO configure struct for inputs that DO require + * interrupts attached to them. */ + gpio_config.outValue = CyTrue; + gpio_config.inputEn = CyTrue; + gpio_config.driveLowEn = CyFalse; + gpio_config.driveHighEn = CyFalse; + gpio_config.intrMode = CY_U3P_GPIO_INTR_POS_EDGE; + + CyU3PGpioSetSimpleConfig(GPIO_DONE, &gpio_config); + CyU3PGpioSetSimpleConfig(GPIO_INIT_B, &gpio_config); + + /* Initialize GPIO output values. */ + CyU3PGpioSetValue(GPIO_FPGA_RESET, 0); + CyU3PGpioSetValue(GPIO_PROGRAM_B, 1); + + b200_enable_fpga_sb_gpio(CyTrue); // So SCL/SDA are already high when SB state machine activates +} + + +void b200_slfifo_mode_gpio_config(void) { + CyU3PGpioSimpleConfig_t gpio_config; + + //b200_enable_fpga_sb_gpio(CyFalse); + + //CyU3PGpioDeInit(); + + b200_set_io_matrix(CyFalse); + + //b200_gpio_init(CyFalse); // This now done once during startup + + //////////////////////////////////// + + /* GPIO[0:32] must be set with the DeviceOverride function, instead of the + * SimpleEn array configuration. */ + CyU3PDeviceGpioOverride(GPIO_FPGA_RESET, CyTrue); + CyU3PDeviceGpioOverride(GPIO_DONE, CyTrue); + CyU3PDeviceGpioOverride(GPIO_FX3_SCLK, CyTrue); + CyU3PDeviceGpioOverride(GPIO_FX3_CE, CyTrue); + CyU3PDeviceGpioOverride(GPIO_FX3_MISO, CyTrue); + CyU3PDeviceGpioOverride(GPIO_FX3_MOSI, CyTrue); + + /* Configure GPIOs: + * Outputs: + * driveLowEn = True + * driveHighEn = True + * inputEn = False + * Inputs: + * driveLowEn = False + * driveHighEn = False + * outValue = Ignored + */ + gpio_config.outValue = CyFalse; + gpio_config.driveLowEn = CyTrue; + gpio_config.driveHighEn = CyTrue; + gpio_config.inputEn = CyFalse; + gpio_config.intrMode = CY_U3P_GPIO_NO_INTR; + + CyU3PGpioSetSimpleConfig(GPIO_FPGA_RESET, &gpio_config); + CyU3PGpioSetSimpleConfig(GPIO_SHDN_SW, &gpio_config); + CyU3PGpioSetSimpleConfig(GPIO_FX3_SCLK, &gpio_config); + CyU3PGpioSetSimpleConfig(GPIO_FX3_CE, &gpio_config); + CyU3PGpioSetSimpleConfig(GPIO_FX3_MOSI, &gpio_config); + + /* Reconfigure the GPIO configure struct for inputs that do NOT require + * interrupts attached to them. */ + gpio_config.outValue = CyFalse; + gpio_config.inputEn = CyTrue; + gpio_config.driveLowEn = CyFalse; + gpio_config.driveHighEn = CyFalse; + gpio_config.intrMode = CY_U3P_GPIO_NO_INTR; + + CyU3PGpioSetSimpleConfig(GPIO_FX3_MISO, &gpio_config); + CyU3PGpioSetSimpleConfig(GPIO_AUX_PWR_ON, &gpio_config); + CyU3PGpioSetSimpleConfig(GPIO_PROGRAM_B, &gpio_config); + CyU3PGpioSetSimpleConfig(GPIO_INIT_B, &gpio_config); + CyU3PGpioSetSimpleConfig(GPIO_DONE, &gpio_config); + + /* Initialize GPIO output values. */ + CyU3PGpioSetValue(GPIO_FPGA_RESET, 0); + CyU3PGpioSetValue(GPIO_SHDN_SW, 1); + CyU3PGpioSetValue(GPIO_FX3_SCLK, 0); + CyU3PGpioSetValue(GPIO_FX3_CE, 1); + CyU3PGpioSetValue(GPIO_FX3_MOSI, 0); + + // Disabled here as only useful once FPGA has been programmed + //b200_enable_fpga_sb_gpio(CyTrue); + //b200_start_fpga_sb_gpio(); // Set set up SB USART +} + + +/*! Initializes and configures USB, and DMA. + * + * This function creates and connects the USB endpoints, and sets up the DMA + * channels. After this is done, everything is 'running' on the FX3 chip, and + * ready to receive data from the host. */ +void b200_fw_start(void) { + msg("b200_fw_start"); + + CyU3PDmaChannelConfig_t dma_channel_config; + CyU3PEpConfig_t usb_endpoint_config; + CyU3PUSBSpeed_t usb_speed; + uint16_t max_packet_size = 0; + uint16_t data_buffer_count = 0; + uint16_t data_buffer_size = 0; + uint16_t data_buffer_size_to_host = 0; + uint16_t data_buffer_size_from_host = 0; + uint8_t num_packets_per_burst = 0; + CyU3PReturnStatus_t apiRetStatus = CY_U3P_SUCCESS; + + /* Based on the USB bus speed, configure the endpoint packet size + * and the DMA buffer size */ + usb_speed = CyU3PUsbGetSpeed(); + switch(usb_speed) { + case CY_U3P_FULL_SPEED: + case CY_U3P_HIGH_SPEED: + max_packet_size = 512; + data_buffer_count = 16; + data_buffer_size = 512; + g_vendor_req_buff_size = USB2_VREQ_BUF_SIZE; // Max 64 + num_packets_per_burst = USB2_PACKETS_PER_BURST; // 1 + + data_buffer_size_to_host = data_buffer_size_from_host = data_buffer_size; + + break; + + case CY_U3P_SUPER_SPEED: +//#ifdef PREVENT_LOW_POWER_MODE + apiRetStatus = CyU3PUsbLPMDisable(); // This still allows my laptop to sleep + + if (apiRetStatus != CY_U3P_SUCCESS) + msg("! LPMDisable failed (%d)", apiRetStatus); + else + msg("LPMDisable OK"); +//#endif // PREVENT_LOW_POWER_MODE + max_packet_size = 1024; // Per USB3 spec + + // SDK ver: total available buffer memory + // 1.2.3: 204KB + // 1.3.1: 188KB + + // These options should be ignored - data_buffer_count *MUST* be 1 + // They follow is kept for future testing + + // 1K + //data_buffer_count = 64; + //data_buffer_size = 1024; + + // 4K + //data_buffer_count = 8; + //data_buffer_size = 4096; + + // 16K + //data_buffer_count = 2*2; + //data_buffer_size = 16384; // Default 16K + + // 32K + //data_buffer_count = 2; + //data_buffer_size = 16384*2; + + data_buffer_count = 1; + data_buffer_size = ((1 << 16) - 1); + data_buffer_size -= (data_buffer_size % 1024); // Align to 1K boundary + + data_buffer_size_to_host = data_buffer_size; + data_buffer_size_from_host = data_buffer_size; + + g_vendor_req_buff_size = USB3_VREQ_BUF_SIZE; // Max 512 + num_packets_per_burst = USB3_PACKETS_PER_BURST; // 16 + break; + + case CY_U3P_NOT_CONNECTED: + msg("! CY_U3P_NOT_CONNECTED"); + return; + + default: + return; + } + + msg("[DMA] to host: %d, from host: %d, depth: %d, burst size: %d", data_buffer_size_to_host, data_buffer_size_from_host, data_buffer_count, num_packets_per_burst); + + /************************************************************************* + * Slave FIFO Data DMA Channel Configuration + *************************************************************************/ + + /* Wipe out any old config. */ + CyU3PMemSet((uint8_t *) &usb_endpoint_config, 0, \ + sizeof(usb_endpoint_config)); + + /* This is the configuration for the USB Producer and Consumer endpoints. + * + * The Producer endpoint is actually the endpoint on the FX3 that is + * sending data BACK to the host. This endpoint enumerates as the + * 'BULK IN' endpoint. + + * The Consumer endpoint is the endpoint on the FX3 that is + * receiving data from the host. This endpoint enumerates as the + * 'BULK OUT' endpoint. + * + * Note that this is opposite of what you might expect!. */ + usb_endpoint_config.enable = CyTrue; + usb_endpoint_config.epType = CY_U3P_USB_EP_BULK; + usb_endpoint_config.burstLen = num_packets_per_burst; + usb_endpoint_config.streams = 0; + usb_endpoint_config.pcktSize = max_packet_size; + + /* Configure the endpoints that we are using for slave FIFO transfers. */ + CyU3PSetEpConfig(DATA_ENDPOINT_PRODUCER, &usb_endpoint_config); + CyU3PSetEpConfig(DATA_ENDPOINT_CONSUMER, &usb_endpoint_config); + + /* Create a DMA AUTO channel for U2P transfer. + * DMA size is set based on the USB speed. */ + //dma_channel_config.size = data_buffer_size; + dma_channel_config.size = data_buffer_size_from_host; + dma_channel_config.count = data_buffer_count; + dma_channel_config.prodSckId = PRODUCER_DATA_SOCKET; + dma_channel_config.consSckId = DATA_TX_PPORT_SOCKET; + dma_channel_config.dmaMode = CY_U3P_DMA_MODE_BYTE; + dma_channel_config.notification = 0 | +#if defined(ENABLE_MANUAL_DMA_XFER) && defined(ENABLE_MANUAL_DMA_XFER_FROM_HOST) +CY_U3P_DMA_CB_XFER_CPLT | +CY_U3P_DMA_CB_SEND_CPLT | +CY_U3P_DMA_CB_RECV_CPLT | +CY_U3P_DMA_CB_PROD_EVENT | +CY_U3P_DMA_CB_CONS_EVENT | +CY_U3P_DMA_CB_ABORTED | +CY_U3P_DMA_CB_ERROR | +CY_U3P_DMA_CB_PROD_SUSP | +CY_U3P_DMA_CB_CONS_SUSP | +#endif // ENABLE_MANUAL_DMA_XFER + 0; + dma_channel_config.cb = +#if defined(ENABLE_MANUAL_DMA_XFER) && defined(ENABLE_MANUAL_DMA_XFER_FROM_HOST) + from_host_dma_callback; +#else + NULL; +#endif // ENABLE_MANUAL_DMA_XFER + dma_channel_config.prodHeader = 0; + dma_channel_config.prodFooter = 0; + dma_channel_config.consHeader = 0; + dma_channel_config.prodAvailCount = 0; + + CyU3PDmaChannelCreate (&data_cons_to_prod_chan_handle, +#if defined(ENABLE_MANUAL_DMA_XFER) && defined(ENABLE_MANUAL_DMA_XFER_FROM_HOST) + /*CY_U3P_DMA_TYPE_AUTO_SIGNAL*/CY_U3P_DMA_TYPE_MANUAL, +#else + CY_U3P_DMA_TYPE_AUTO, +#endif // ENABLE_MANUAL_DMA_XFER + &dma_channel_config); + + // By default these will adopt 'usb_endpoint_config.pcktSize' + //CyU3PSetEpPacketSize(DATA_ENDPOINT_PRODUCER, 16384); + //CyU3PSetEpPacketSize(DATA_ENDPOINT_CONSUMER, 16384); + + /* Create a DMA AUTO channel for P2U transfer. */ + dma_channel_config.size = data_buffer_size_to_host; + dma_channel_config.prodSckId = DATA_RX_PPORT_SOCKET; + dma_channel_config.consSckId = CONSUMER_DATA_SOCKET; + dma_channel_config.notification = 0 | +#if defined(ENABLE_MANUAL_DMA_XFER) && defined(ENABLE_MANUAL_DMA_XFER_TO_HOST) +CY_U3P_DMA_CB_XFER_CPLT | +CY_U3P_DMA_CB_SEND_CPLT | +CY_U3P_DMA_CB_RECV_CPLT | +CY_U3P_DMA_CB_PROD_EVENT | +CY_U3P_DMA_CB_CONS_EVENT | +CY_U3P_DMA_CB_ABORTED | +CY_U3P_DMA_CB_ERROR | +CY_U3P_DMA_CB_PROD_SUSP | +CY_U3P_DMA_CB_CONS_SUSP | +#endif // ENABLE_MANUAL_DMA_XFER + 0; + dma_channel_config.cb = +#if defined(ENABLE_MANUAL_DMA_XFER) && defined(ENABLE_MANUAL_DMA_XFER_TO_HOST) + to_host_dma_callback; +#else + NULL; +#endif // ENABLE_MANUAL_DMA_XFER + CyU3PDmaChannelCreate (&data_prod_to_cons_chan_handle, +#if defined(ENABLE_MANUAL_DMA_XFER) && defined(ENABLE_MANUAL_DMA_XFER_TO_HOST) + /*CY_U3P_DMA_TYPE_AUTO_SIGNAL*/CY_U3P_DMA_TYPE_MANUAL, +#else + CY_U3P_DMA_TYPE_AUTO, +#endif // ENABLE_MANUAL_DMA_XFER + &dma_channel_config); + + /* Flush the Endpoint memory */ + CyU3PUsbFlushEp(DATA_ENDPOINT_PRODUCER); + CyU3PUsbFlushEp(DATA_ENDPOINT_CONSUMER); + + /* Set DMA channel transfer size. */ + CyU3PDmaChannelSetXfer(&data_cons_to_prod_chan_handle, DMA_SIZE_INFINITE); + CyU3PDmaChannelSetXfer(&data_prod_to_cons_chan_handle, DMA_SIZE_INFINITE); + + + /************************************************************************* + * Slave FIFO Control DMA Channel Configuration + *************************************************************************/ + + /* Wipe out any old config. */ + CyU3PMemSet((uint8_t *) &usb_endpoint_config, 0, \ + sizeof(usb_endpoint_config)); + + /* This is the configuration for the USB Producer and Consumer endpoints. + * + * The Producer endpoint is actually the endpoint on the FX3 that is + * sending data BACK to the host. This endpoint enumerates as the + * 'BULK IN' endpoint. + + * The Consumer endpoint is the endpoint on the FX3 that is + * receiving data from the host. This endpoint enumerates as the + * 'BULK OUT' endpoint. + * + * Note that this is opposite of what you might expect!. */ + usb_endpoint_config.enable = CyTrue; + usb_endpoint_config.epType = CY_U3P_USB_EP_BULK; + usb_endpoint_config.burstLen = num_packets_per_burst; + usb_endpoint_config.streams = 0; + usb_endpoint_config.pcktSize = max_packet_size; + + /* Configure the endpoints that we are using for slave FIFO transfers. */ + CyU3PSetEpConfig(CTRL_ENDPOINT_PRODUCER, &usb_endpoint_config); + CyU3PSetEpConfig(CTRL_ENDPOINT_CONSUMER, &usb_endpoint_config); + + /* Create a DMA AUTO channel for U2P transfer. + * DMA size is set based on the USB speed. */ + dma_channel_config.size = max_packet_size; + dma_channel_config.count = 2; + dma_channel_config.prodSckId = PRODUCER_CTRL_SOCKET; + dma_channel_config.consSckId = CTRL_COMM_PPORT_SOCKET; + dma_channel_config.dmaMode = CY_U3P_DMA_MODE_BYTE; + dma_channel_config.notification = 0; + dma_channel_config.cb = NULL; + dma_channel_config.prodHeader = 0; + dma_channel_config.prodFooter = 0; + dma_channel_config.consHeader = 0; + dma_channel_config.prodAvailCount = 0; + + CyU3PDmaChannelCreate (&ctrl_cons_to_prod_chan_handle, + CY_U3P_DMA_TYPE_AUTO, &dma_channel_config); + + /* Create a DMA AUTO channel for P2U transfer. */ + dma_channel_config.prodSckId = CTRL_RESP_PPORT_SOCKET; + dma_channel_config.consSckId = CONSUMER_CTRL_SOCKET; + dma_channel_config.cb = NULL; + CyU3PDmaChannelCreate (&ctrl_prod_to_cons_chan_handle, + CY_U3P_DMA_TYPE_AUTO, &dma_channel_config); + + /* Flush the Endpoint memory */ + CyU3PUsbFlushEp(CTRL_ENDPOINT_PRODUCER); + CyU3PUsbFlushEp(CTRL_ENDPOINT_CONSUMER); + + /* Set DMA channel transfer size. */ + CyU3PDmaChannelSetXfer(&ctrl_cons_to_prod_chan_handle, DMA_SIZE_INFINITE); + CyU3PDmaChannelSetXfer(&ctrl_prod_to_cons_chan_handle, DMA_SIZE_INFINITE); + + //CyU3PUsbEnableEPPrefetch(); // To address USB_EVENT_EP_UNDERRUN on EP 0x86 (didn't fix it though) + + /* Update the application status flag. */ + g_app_running = CyTrue; +} + + +/*! This callback is invoked when the FX3 detects a USB event. + * + * We currently handle SETCONF, RESET, and DISCONNECT. + * + * We are _not_ handling SUSPEND or CONNECT. + */ +void event_usb_callback (CyU3PUsbEventType_t event_type, uint16_t event_data) { + + switch(event_type) { + case CY_U3P_USB_EVENT_SETCONF: + msg("USB_EVENT_SETCONF (#%d)", event_data); //evData provides the configuration number that is selected by the host. + if(g_app_running) { + b200_fw_stop(); + } + + b200_fw_start(); + break; + + case CY_U3P_USB_EVENT_RESET: + case CY_U3P_USB_EVENT_DISCONNECT: + if (event_type == CY_U3P_USB_EVENT_RESET) + msg("USB_EVENT_RESET"); + else + msg("USB_EVENT_DISCONNECT"); + if(g_app_running) { + b200_fw_stop(); + } + break; + + case CY_U3P_USB_EVENT_CONNECT: + msg("USB_EVENT_CONNECT"); + break; + + case CY_U3P_USB_EVENT_SUSPEND: + msg("USB_EVENT_SUSPEND"); + break; + + case CY_U3P_USB_EVENT_RESUME: // Known issue: this is called repeatedly after a resume + //msg("USB_EVENT_RESUME"); + g_counters.resume_count++; // Not locked + break; + + case CY_U3P_USB_EVENT_SPEED: + msg("USB_EVENT_SPEED"); + break; + + case CY_U3P_USB_EVENT_SETINTF: + msg("USB_EVENT_SETINTF"); + break; + + case CY_U3P_USB_EVENT_SET_SEL: + msg("USB_EVENT_SET_SEL"); + break; + + case CY_U3P_USB_EVENT_SOF_ITP: // CyU3PUsbEnableITPEvent + //msg("USB_EVENT_SOF_ITP"); + break; + + case CY_U3P_USB_EVENT_EP0_STAT_CPLT: + //msg("USB_EVENT_EP0_STAT_CPLT"); // Occurs each time there's a control transfer + break; + + case CY_U3P_USB_EVENT_VBUS_VALID: + msg("USB_EVENT_VBUS_VALID"); + break; + + case CY_U3P_USB_EVENT_VBUS_REMOVED: + msg("USB_EVENT_VBUS_REMOVED"); + break; + + case CY_U3P_USB_EVENT_HOST_CONNECT: + msg("USB_EVENT_HOST_CONNECT"); + break; + + case CY_U3P_USB_EVENT_HOST_DISCONNECT: + msg("USB_EVENT_HOST_DISCONNECT"); + break; + + case CY_U3P_USB_EVENT_OTG_CHANGE: + msg("USB_EVENT_OTG_CHANGE"); + break; + + case CY_U3P_USB_EVENT_OTG_VBUS_CHG: + msg("USB_EVENT_OTG_VBUS_CHG"); + break; + + case CY_U3P_USB_EVENT_OTG_SRP: + msg("USB_EVENT_OTG_SRP"); + break; + + case CY_U3P_USB_EVENT_EP_UNDERRUN: // See SDK 1.3 known issues 17 if this happens (can probably ignore first logged occurence) + LOCK(g_counters_lock); + ++g_counters.usb_ep_underrun_count; + UNLOCK(g_counters_lock); + + msg("! USB_EVENT_EP_UNDERRUN on EP 0x%02x", event_data); + break; + + case CY_U3P_USB_EVENT_LNK_RECOVERY: + msg("USB_EVENT_LNK_RECOVERY"); + break; +#if (CYFX_VERSION_MAJOR >= 1) && (CYFX_VERSION_MINOR >= 3) + case CY_U3P_USB_EVENT_USB3_LNKFAIL: + msg("USB_EVENT_USB3_LNKFAIL"); + break; + + case CY_U3P_USB_EVENT_SS_COMP_ENTRY: + msg("USB_EVENT_SS_COMP_ENTRY"); + break; + + case CY_U3P_USB_EVENT_SS_COMP_EXIT: + msg("USB_EVENT_SS_COMP_EXIT"); + break; +#endif // (CYFX_VERSION_MAJOR >= 1) && (CYFX_VERSION_MINOR >= 3) + + default: + msg("! Unhandled USB event"); + break; + } +} + + +/*! Callback function that is invoked when a USB setup event occurs. + * + * We aren't actually handling the USB setup ourselves, but rather letting the + * USB driver take care of it since the default options work fine. The purpose + * of this function is to register that the event happened at all, so that the + * application thread knows it can proceed. + * + * This function is also responsible for receiving vendor requests, and trigging + * the appropriate RTOS event to wake up the vendor request handler thread. + */ +CyBool_t usb_setup_callback(uint32_t data0, uint32_t data1) { + STATIC_SAVER uint8_t bRequestType, bRequest, bType, bTarget, i2cAddr; + STATIC_SAVER uint16_t wValue, wIndex, wLength; + + CyBool_t handled = CyFalse; + + /* Decode the fields from the setup request. */ + bRequestType = (uint8_t)(data0 & CY_U3P_USB_REQUEST_TYPE_MASK); + bType = (uint8_t)(bRequestType & CY_U3P_USB_TYPE_MASK); + bTarget = (uint8_t)(bRequestType & CY_U3P_USB_TARGET_MASK); + bRequest = (uint8_t)((data0 & CY_U3P_USB_REQUEST_MASK) >> CY_U3P_USB_REQUEST_POS); + wValue = (uint16_t)((data0 & CY_U3P_USB_VALUE_MASK) >> CY_U3P_USB_VALUE_POS); + wIndex = (uint16_t)((data1 & CY_U3P_USB_INDEX_MASK) >> CY_U3P_USB_INDEX_POS); + wLength = (uint16_t)((data1 & CY_U3P_USB_LENGTH_MASK) >> CY_U3P_USB_LENGTH_POS); + + if(bType == CY_U3P_USB_STANDARD_RQT) { + /* Handle SET_FEATURE(FUNCTION_SUSPEND) and CLEAR_FEATURE(FUNCTION_SUSPEND) + * requests here. It should be allowed to pass if the device is in configured + * state and failed otherwise. */ + if((bTarget == CY_U3P_USB_TARGET_INTF) \ + && ((bRequest == CY_U3P_USB_SC_SET_FEATURE) \ + || (bRequest == CY_U3P_USB_SC_CLEAR_FEATURE)) && (wValue == 0)) { + + if(g_app_running) { + CyU3PUsbAckSetup(); + msg("ACK set/clear"); + } else { + CyU3PUsbStall(0, CyTrue, CyFalse); + msg("! STALL set/clear"); + } + + handled = CyTrue; + } + + /* Handle Microsoft OS String Descriptor request. */ + if((bTarget == CY_U3P_USB_TARGET_DEVICE) \ + && (bRequest == CY_U3P_USB_SC_GET_DESCRIPTOR) \ + && (wValue == ((CY_U3P_USB_STRING_DESCR << 8) | 0xEE))) { + /* Make sure we do not send more data than requested. */ + if(wLength > b200_usb_product_desc[0]) { + wLength = b200_usb_product_desc[0]; + } + + //msg("MS string desc"); + + CyU3PUsbSendEP0Data(wLength, ((uint8_t *) b200_usb_product_desc)); + handled = CyTrue; + } + + /* CLEAR_FEATURE request for endpoint is always passed to the setup callback + * regardless of the enumeration model used. When a clear feature is received, + * the previous transfer has to be flushed and cleaned up. This is done at the + * protocol level. Since this is just a loopback operation, there is no higher + * level protocol. So flush the EP memory and reset the DMA channel associated + * with it. If there are more than one EP associated with the channel reset both + * the EPs. The endpoint stall and toggle / sequence number is also expected to be + * reset. Return CyFalse to make the library clear the stall and reset the endpoint + * toggle. Or invoke the CyU3PUsbStall (ep, CyFalse, CyTrue) and return CyTrue. + * Here we are clearing the stall. */ + if((bTarget == CY_U3P_USB_TARGET_ENDPT) \ + && (bRequest == CY_U3P_USB_SC_CLEAR_FEATURE) + && (wValue == CY_U3P_USBX_FS_EP_HALT)) { + if(g_app_running) { + if(wIndex == DATA_ENDPOINT_PRODUCER) { + CyU3PDmaChannelReset(&data_cons_to_prod_chan_handle); + CyU3PUsbFlushEp(DATA_ENDPOINT_PRODUCER); + CyU3PUsbResetEp(DATA_ENDPOINT_PRODUCER); + CyU3PDmaChannelSetXfer(&data_cons_to_prod_chan_handle, \ + DMA_SIZE_INFINITE); + CyU3PUsbStall(wIndex, CyFalse, CyTrue); + handled = CyTrue; + CyU3PUsbAckSetup(); + + msg("Clear DATA_ENDPOINT_PRODUCER"); + } + + if(wIndex == DATA_ENDPOINT_CONSUMER) { + CyU3PDmaChannelReset(&data_prod_to_cons_chan_handle); + CyU3PUsbFlushEp(DATA_ENDPOINT_CONSUMER); + CyU3PUsbResetEp(DATA_ENDPOINT_CONSUMER); + CyU3PDmaChannelSetXfer(&data_prod_to_cons_chan_handle, \ + DMA_SIZE_INFINITE); + CyU3PUsbStall(wIndex, CyFalse, CyTrue); + handled = CyTrue; + CyU3PUsbAckSetup(); + + msg("Clear DATA_ENDPOINT_CONSUMER"); + } + + if(wIndex == CTRL_ENDPOINT_PRODUCER) { + CyU3PDmaChannelReset(&ctrl_cons_to_prod_chan_handle); + CyU3PUsbFlushEp(CTRL_ENDPOINT_PRODUCER); + CyU3PUsbResetEp(CTRL_ENDPOINT_PRODUCER); + CyU3PDmaChannelSetXfer(&ctrl_cons_to_prod_chan_handle, \ + DMA_SIZE_INFINITE); + CyU3PUsbStall(wIndex, CyFalse, CyTrue); + handled = CyTrue; + CyU3PUsbAckSetup(); + + msg("Clear CTRL_ENDPOINT_PRODUCER"); + } + + if(wIndex == CTRL_ENDPOINT_CONSUMER) { + CyU3PDmaChannelReset(&ctrl_prod_to_cons_chan_handle); + CyU3PUsbFlushEp(CTRL_ENDPOINT_CONSUMER); + CyU3PUsbResetEp(CTRL_ENDPOINT_CONSUMER); + CyU3PDmaChannelSetXfer(&ctrl_prod_to_cons_chan_handle, \ + DMA_SIZE_INFINITE); + CyU3PUsbStall(wIndex, CyFalse, CyTrue); + handled = CyTrue; + CyU3PUsbAckSetup(); + + msg("Clear CTRL_ENDPOINT_CONSUMER"); + } + } + } + } + /* This must be & and not == so that we catch VREQs that are both 'IN' and + * 'OUT' in direction. */ + else if(bRequestType & CY_U3P_USB_VENDOR_RQT) { + + handled = CyTrue; + uint16_t read_count = 0; + + switch(bRequest) { + case B200_VREQ_BITSTREAM_START: { + CyU3PUsbGetEP0Data(1, g_vendor_req_buffer, &read_count); + + g_fpga_programming_write_count = 0; + + CyU3PEventSet(&g_event_usb_config, EVENT_BITSTREAM_START, \ + CYU3P_EVENT_OR); + break; + } + + case B200_VREQ_BITSTREAM_DATA: { + CyU3PUsbGetEP0Data(g_vendor_req_buff_size, g_vendor_req_buffer, \ + &read_count); + + if (g_fx3_state == STATE_CONFIGURING_FPGA) { + ++g_fpga_programming_write_count; + CyU3PSpiTransmitWords(g_vendor_req_buffer, read_count); + CyU3PThreadSleep(1); // Newer controllers don't have an issue when this short sleep here + } + break; + } + + case B200_VREQ_BITSTREAM_DATA_FILL: { + CyU3PUsbGetEP0Data(g_vendor_req_buff_size, g_vendor_req_buffer, &g_vendor_req_read_count); + break; + } + + case B200_VREQ_BITSTREAM_DATA_COMMIT: { + /*CyU3PReturnStatus_t*/int spi_result = -1; + if (g_fx3_state == STATE_CONFIGURING_FPGA) { + ++g_fpga_programming_write_count; + spi_result = CyU3PSpiTransmitWords(g_vendor_req_buffer, g_vendor_req_read_count); + CyU3PThreadSleep(1); // 20 MHz, 512 bytes + } + CyU3PUsbSendEP0Data(sizeof(spi_result), (uint8_t*)&spi_result); + break; + } + + case B200_VREQ_FPGA_CONFIG: { + CyU3PUsbGetEP0Data(1, g_vendor_req_buffer, &read_count); + + CyU3PEventSet(&g_event_usb_config, EVENT_FPGA_CONFIG, CYU3P_EVENT_OR); + break; + } + + case B200_VREQ_GET_COMPAT: { + CyU3PUsbSendEP0Data(/*2*/sizeof(compat_num), compat_num); + break; + } + + case B200_VREQ_SET_FPGA_HASH: { + CyU3PUsbGetEP0Data(4, fpga_hash, &read_count); + break; + } + + case B200_VREQ_GET_FPGA_HASH: { + CyU3PUsbSendEP0Data(/*4*/sizeof(fpga_hash), fpga_hash); + break; + } + + case B200_VREQ_SET_FW_HASH: { + CyU3PUsbGetEP0Data(4, fw_hash, &read_count); + break; + } + + case B200_VREQ_GET_FW_HASH: { + CyU3PUsbSendEP0Data(/*4*/sizeof(fw_hash), fw_hash); + break; + } + + case B200_VREQ_SPI_WRITE_AD9361: { + CyU3PUsbGetEP0Data(g_vendor_req_buff_size, g_vendor_req_buffer, \ + &read_count); + + write_spi_to_ad9361(); // FIXME: Should have g_vendor_req_buffer & read_count passed in as args + break; + } + + case B200_VREQ_SPI_READ_AD9361: { + CyU3PUsbGetEP0Data(g_vendor_req_buff_size, g_vendor_req_buffer, \ + &read_count); + + read_spi_from_ad9361(); // FIXME: Should have g_vendor_req_buffer & read_count passed in as args + break; + } + + case B200_VREQ_LOOP_CODE: { + CyU3PUsbSendEP0Data(g_vendor_req_buff_size, g_vendor_req_buffer); + break; + } + + case B200_VREQ_GET_LOG: { + LOCK(g_log_lock); + + if (log_buffer_idx == 0) + CyU3PUsbSendEP0Data(log_buffer_len, (uint8_t*)log_buffer); + else { + int len1 = min(LOG_BUFFER_SIZE - log_buffer_idx, log_buffer_len); + memcpy(log_contiguous_buffer, log_buffer + log_buffer_idx, len1); + //if ((log_buffer_idx + log_buffer_len) > LOG_BUFFER_SIZE) + if (len1 < log_buffer_len) + memcpy(log_contiguous_buffer + len1, log_buffer, log_buffer_len - len1); + CyU3PUsbSendEP0Data(log_buffer_len, (uint8_t*)log_contiguous_buffer); + } + + // FIXME: Necessary? Not used in the other ones + //CyU3PUsbSendEP0Data(0, NULL); // Send ZLP since previous send has resulted in an integral # of packets + + log_reset(); + + UNLOCK(g_log_lock); + + //log_reset(); + + break; + } + + case B200_VREQ_GET_COUNTERS: { + LOCK(g_counters_lock); + + CyU3PUsbSendEP0Data(sizeof(COUNTERS), (uint8_t*)&g_counters); + + counters_auto_reset(); + + UNLOCK(g_counters_lock); + + //counters_auto_reset(); + + break; + } + + case B200_VREQ_CLEAR_COUNTERS: { + CyU3PUsbAckSetup(); + //CyU3PUsbGetEP0Data(g_vendor_req_buff_size, g_vendor_req_buffer, &read_count); // Dummy + + counters_dma_reset(); + + break; + } + + case B200_VREQ_GET_USB_EVENT_LOG: { + uint16_t idx = CyU3PUsbGetEventLogIndex(); // Current *write* pointer + if (idx > (USB_EVENT_LOG_SIZE-1)) { + msg("! USB event log idx = %i", (int)idx); + break; + } + // Assuming logging won't wrap around between get calls (i.e. buffer should be long enough) + uint16_t len = 0; + if (idx < g_last_usb_event_log_index) { + uint16_t len1 = (USB_EVENT_LOG_SIZE - g_last_usb_event_log_index); + if (len1 > (USB_EVENT_LOG_SIZE-1)) { + msg("! USB event log len 2.1 = %i", (int)len1); + break; + } + len = len1 + idx; + if (len > (USB_EVENT_LOG_SIZE-1)) { + msg("! USB event log len 2.2 = %i", (int)len); + break; + } + memcpy(g_usb_event_log_contiguous_buf, g_usb_event_log + g_last_usb_event_log_index, len1); + memcpy(g_usb_event_log_contiguous_buf + len1, g_usb_event_log, idx); + //msg("USB event log [2] %i %i", (int)len1, (int)len); + } else { + len = idx - g_last_usb_event_log_index; + if (len > (USB_EVENT_LOG_SIZE-1)) { + msg("! USB event log len 1 = %i", (int)len); + break; + } + if (len > 0) { // ZLP should be OK + memcpy(g_usb_event_log_contiguous_buf, g_usb_event_log + g_last_usb_event_log_index, len); + //msg("USB event log [1] %i", (int)len); + } + } + + //if (len > 0) // Send a ZLP, otherwise it'll timeout + CyU3PUsbSendEP0Data(len, g_usb_event_log_contiguous_buf); + + g_last_usb_event_log_index = idx; + break; + } + + case B200_VREQ_SET_CONFIG: { + CyU3PUsbGetEP0Data(sizeof(CONFIG_MOD), (uint8_t*)g_vendor_req_buffer, &read_count); + if (read_count == sizeof(CONFIG_MOD)) { + memcpy(&g_config_mod, g_vendor_req_buffer, sizeof(CONFIG_MOD)); + CyU3PEventSet(&g_event_usb_config, EVENT_RE_ENUM, CYU3P_EVENT_OR); + } + break; + } + + case B200_VREQ_GET_CONFIG: { + CyU3PUsbSendEP0Data(sizeof(g_config), (uint8_t*)&g_config); + break; + } + + case B200_VREQ_WRITE_SB: { + CyU3PUsbGetEP0Data(g_vendor_req_buff_size, (uint8_t*)g_vendor_req_buffer, &read_count); +#ifdef ENABLE_FPGA_SB + uint16_t i; + LOCK(g_suart_lock); + for (i = 0; i < read_count; ++i) + sb_write(SUART_TXCHAR, g_vendor_req_buffer[i]); + UNLOCK(g_suart_lock); + + msg("Wrote %d SB chars", read_count); +#else + msg("SB is disabled"); +#endif // ENABLE_FPGA_SB + break; + } + + case B200_VREQ_SET_SB_BAUD_DIV: { + uint16_t div; + CyU3PUsbGetEP0Data(sizeof(div), (uint8_t*)&div, &read_count); + + if (read_count == sizeof(div)) { +#ifdef ENABLE_FPGA_SB + LOCK(g_suart_lock); + sb_write(SUART_CLKDIV, div); + UNLOCK(g_suart_lock); + msg("SUART_CLKDIV = %d", div); + g_fpga_sb_uart_div = div; // Store for GPIF (FPGA) reset +#else + msg("SB is disabled"); +#endif // ENABLE_FPGA_SB + } + else + msg("! SUART_CLKDIV received %d bytes", read_count); + + break; + } + + case B200_VREQ_FLUSH_DATA_EPS: { + //msg("Flushing data EPs..."); + + CyU3PUsbAckSetup(); + + // From host + //CyU3PDmaChannelReset(&data_cons_to_prod_chan_handle); + //CyU3PUsbFlushEp(DATA_ENDPOINT_PRODUCER); + //CyU3PUsbResetEp(DATA_ENDPOINT_PRODUCER); + //CyU3PDmaChannelSetXfer(&data_cons_to_prod_chan_handle, DMA_SIZE_INFINITE); + + //CyU3PDmaChannelReset(&data_cons_to_prod_chan_handle); + CyU3PDmaChannelReset(&data_prod_to_cons_chan_handle); + //CyU3PUsbFlushEp(DATA_ENDPOINT_PRODUCER); + CyU3PUsbFlushEp(DATA_ENDPOINT_CONSUMER); + //CyU3PUsbResetEp(DATA_ENDPOINT_PRODUCER); + CyU3PUsbResetEp(DATA_ENDPOINT_CONSUMER); + //CyU3PDmaChannelSetXfer(&data_cons_to_prod_chan_handle, DMA_SIZE_INFINITE); + CyU3PDmaChannelSetXfer(&data_prod_to_cons_chan_handle, DMA_SIZE_INFINITE); + + // To host + //CyU3PDmaChannelReset(&data_prod_to_cons_chan_handle); + //CyU3PUsbFlushEp(DATA_ENDPOINT_CONSUMER); + //CyU3PUsbResetEp(DATA_ENDPOINT_CONSUMER); + //CyU3PDmaChannelSetXfer(&data_prod_to_cons_chan_handle, DMA_SIZE_INFINITE); + + break; + } + + case B200_VREQ_EEPROM_WRITE: { + i2cAddr = 0xA0 | ((wValue & 0x0007) << 1); + CyU3PUsbGetEP0Data(((wLength + 15) & 0xFFF0), g_vendor_req_buffer, NULL); + + CyFxUsbI2cTransfer (wIndex, i2cAddr, wLength, + g_vendor_req_buffer, CyFalse); + break; + } + + case B200_VREQ_EEPROM_READ: { + i2cAddr = 0xA0 | ((wValue & 0x0007) << 1); + CyU3PMemSet (g_vendor_req_buffer, 0, sizeof (g_vendor_req_buffer)); + CyFxUsbI2cTransfer (wIndex, i2cAddr, wLength, + g_vendor_req_buffer, CyTrue); + + CyU3PUsbSendEP0Data(wLength, g_vendor_req_buffer); + break; + } + + case B200_VREQ_TOGGLE_FPGA_RESET: { + CyU3PUsbGetEP0Data(g_vendor_req_buff_size, g_vendor_req_buffer, \ + &read_count); + + /* CyBool_t value = (g_vendor_req_buffer[0] & 0x01) ? CyTrue : CyFalse; + CyU3PGpioSetValue(GPIO_FPGA_RESET, value); */ + break; + } + + case B200_VREQ_TOGGLE_GPIF_RESET: { + CyU3PUsbGetEP0Data(g_vendor_req_buff_size, g_vendor_req_buffer, \ + &read_count); + + reset_gpif(); + break; + } + + case B200_VREQ_RESET_DEVICE: { + CyU3PUsbGetEP0Data(4, g_vendor_req_buffer, &read_count); + + CyU3PDeviceReset(CyFalse); // FIXME: If CyTrue, this will *not* call static initialisers for global variables - must do this manually + break; + } + + case B200_VREQ_GET_USB_SPEED: { + CyU3PUSBSpeed_t usb_speed = CyU3PUsbGetSpeed(); + switch(usb_speed) { + case CY_U3P_SUPER_SPEED: + g_vendor_req_buffer[0] = 3; + break; + + case CY_U3P_FULL_SPEED: + case CY_U3P_HIGH_SPEED: + g_vendor_req_buffer[0] = 2; + break; + + default: + g_vendor_req_buffer[0] = 1; + break; + } + + CyU3PUsbSendEP0Data(1, g_vendor_req_buffer); + break; + } + + case B200_VREQ_GET_STATUS: { + g_vendor_req_buffer[0] = g_fx3_state; + CyU3PUsbSendEP0Data(1, g_vendor_req_buffer); + break; + } + + case B200_VREQ_AD9361_CTRL_READ: { + CyU3PUsbSendEP0Data(g_vendor_req_buff_size, g_vendor_req_buffer); + /* + * This is where vrb gets sent back to the host + */ + break; + } + + case B200_VREQ_AD9361_CTRL_WRITE: { + CyU3PUsbGetEP0Data(g_vendor_req_buff_size, g_vendor_req_buffer, &read_count); + CyU3PEventSet(&g_event_usb_config, EVENT_AD9361_XACT_INIT, CYU3P_EVENT_OR); + + uint32_t event_flag; + CyU3PEventGet(&g_event_usb_config, EVENT_AD9361_XACT_DONE, CYU3P_EVENT_AND_CLEAR, &event_flag, CYU3P_WAIT_FOREVER); + + memcpy(g_vendor_req_buffer, g_ad9361_response, AD9361_DISPATCH_PACKET_SIZE); + break; + } + + case B200_VREQ_AD9361_LOOPBACK: { + CyU3PUsbGetEP0Data(g_vendor_req_buff_size, g_vendor_req_buffer, &read_count); + + if (read_count > 0) { + ad9361_transaction_t xact; + memset(&xact, 0x00, sizeof(xact)); + + xact.version = AD9361_TRANSACTION_VERSION; + xact.action = AD9361_ACTION_SET_CODEC_LOOP; + xact.sequence = 0; + xact.value.codec_loop = g_vendor_req_buffer[0]; + + memcpy(g_vendor_req_buffer, &xact, sizeof(xact)); + + CyU3PEventSet(&g_event_usb_config, EVENT_AD9361_XACT_INIT, CYU3P_EVENT_OR); + + uint32_t event_flag; + CyU3PEventGet(&g_event_usb_config, EVENT_AD9361_XACT_DONE, CYU3P_EVENT_AND_CLEAR, &event_flag, CYU3P_WAIT_FOREVER); + + memcpy(g_vendor_req_buffer, g_ad9361_response, AD9361_DISPATCH_PACKET_SIZE); + + if (xact.value.codec_loop) + msg("Codec loopback ON"); + else + msg("Codec loopback OFF"); + } + + break; + } + + default: + msg("! Unknown VREQ %02X", (uint32_t)bRequest); + handled = CyFalse; + } + + /* After processing the vendor request, flush the endpoints. */ + CyU3PUsbFlushEp(VREQ_ENDPOINT_PRODUCER); + CyU3PUsbFlushEp(VREQ_ENDPOINT_CONSUMER); + } + + return handled; +} + + +/* Callback function to handle LPM requests from the USB 3.0 host. This function + * is invoked by the API whenever a state change from U0 -> U1 or U0 -> U2 + * happens. + * + * If we return CyTrue from this function, the FX3 device is retained + * in the low power state. If we return CyFalse, the FX3 device immediately + * tries to trigger an exit back to U0. + */ +CyBool_t lpm_request_callback(CyU3PUsbLinkPowerMode link_mode) { + msg("! lpm_request_callback = %i", link_mode); + return +//#ifdef PREVENT_LOW_POWER_MODE + CyFalse; // This still allows my laptop to sleep +//#else +// CyTrue; +//#endif // PREVENT_LOW_POWER_MODE +} + + +/*! Initialize and start the GPIF state machine. + * + * This function starts the GPIF Slave FIFO state machine on the FX3. Because on + * of the GPIF pins is used for FPGA configuration, this cannot be done until + * after FPGA configuration is complete. */ +void b200_gpif_init(void) { + msg("b200_gpif_init"); + + CyU3PPibClock_t pib_clock_config; + + /* Initialize the p-port block; disable DLL for sync GPIF. */ + pib_clock_config.clkDiv = 2; + pib_clock_config.clkSrc = CY_U3P_SYS_CLK; + pib_clock_config.isHalfDiv = CyFalse; + pib_clock_config.isDllEnable = CyFalse; + CyU3PPibInit(CyTrue, &pib_clock_config); + + /* Load the GPIF configuration for Slave FIFO sync mode. */ + CyU3PGpifLoad(&CyFxGpifConfig); + + /* Start the state machine. */ + CyU3PGpifSMStart(RESET, ALPHA_RESET); + + /* Configure the watermarks for the slfifo-write buffers. */ + CyU3PGpifSocketConfigure(0, DATA_TX_PPORT_SOCKET, 5, CyFalse, 1); + CyU3PGpifSocketConfigure(1, DATA_RX_PPORT_SOCKET, 6, CyFalse, 1); + CyU3PGpifSocketConfigure(2, CTRL_COMM_PPORT_SOCKET, 5, CyFalse, 1); + CyU3PGpifSocketConfigure(3, CTRL_RESP_PPORT_SOCKET, 6, CyFalse, 1); +} + + +/*! Start and configure the FX3's SPI module. + * + * This module is used for programming the FPGA. After the FPGA is configured, + * the SPI module is disabled, as it cannot be used while we are using GPIF + * 32-bit mode. */ +CyU3PReturnStatus_t b200_spi_init(void) { + msg("b200_spi_init"); + + CyU3PSpiConfig_t spiConfig; + + /* Start the SPI module and configure the master. */ + CyU3PSpiInit(); + + /* Start the SPI master block. Run the SPI clock at 8MHz + * and configure the word length to 8 bits. Also configure + * the slave select using FW. */ + CyU3PMemSet ((uint8_t *)&spiConfig, 0, sizeof(spiConfig)); + spiConfig.isLsbFirst = CyFalse; + spiConfig.cpol = CyFalse; + spiConfig.cpha = CyFalse; + spiConfig.ssnPol = CyTrue; + spiConfig.leadTime = CY_U3P_SPI_SSN_LAG_LEAD_HALF_CLK; + spiConfig.lagTime = CY_U3P_SPI_SSN_LAG_LEAD_HALF_CLK; + spiConfig.ssnCtrl = CY_U3P_SPI_SSN_CTRL_FW; + spiConfig.clock = 20000000; + spiConfig.wordLen = 8; + + CyU3PReturnStatus_t res = CyU3PSpiSetConfig(&spiConfig, NULL); + + if (res != CY_U3P_SUCCESS) + msg("! CyU3PSpiSetConfig"); + + return res; +} + + +/*! Initialize the USB module of the FX3 chip. + * + * This function handles USB initialization, re-enumeration (and thus coming up + * as a USRP B200 device), configures USB endpoints and the DMA module. + */ +void b200_usb_init(void) { + //msg("b200_usb_init"); + + /* Initialize the I2C interface for the EEPROM of page size 64 bytes. */ + CyFxI2cInit(CY_FX_USBI2C_I2C_PAGE_SIZE); + + /* Start the USB system! */ + CyU3PUsbStart(); + + /* Register our USB Setup callback. The boolean parameter indicates whether + * or not we are using FX3's 'Fast Enumeration' mode, which relies on the + * USB driver auto-detecting the connection speed and setting the correct + * descriptors. */ + CyU3PUsbRegisterSetupCallback(usb_setup_callback, CyTrue); + + CyU3PUsbRegisterEventCallback(event_usb_callback); + + CyU3PUsbRegisterLPMRequestCallback(lpm_request_callback); + + /* Check to see if a VID/PID is in the EEPROM that we should use. */ + uint8_t valid[4]; + CyU3PMemSet(valid, 0, 4); + CyFxUsbI2cTransfer(0x0, 0xA0, 4, valid, CyTrue); + if(*((uint32_t *) &(valid[0])) == 0xB2145943) { + + /* Pull the programmed device serial out of the i2c EEPROM, and copy the + * characters into the device serial string, which is then advertised as + * part of the USB descriptors. */ + uint8_t vidpid[4]; + CyU3PMemSet(vidpid, 0, 4); + CyFxUsbI2cTransfer(0x4, 0xA0, 4, vidpid, CyTrue); + b200_usb2_dev_desc[8] = vidpid[2]; + b200_usb2_dev_desc[9] = vidpid[3]; + b200_usb2_dev_desc[10] = vidpid[0]; + b200_usb2_dev_desc[11] = vidpid[1]; + + b200_usb3_dev_desc[8] = vidpid[2]; + b200_usb3_dev_desc[9] = vidpid[3]; + b200_usb3_dev_desc[10] = vidpid[0]; + b200_usb3_dev_desc[11] = vidpid[1]; + } + + uint8_t ascii_serial[9]; + CyU3PMemSet(ascii_serial, 0, 9); + CyFxUsbI2cTransfer(0x4f7, 0xA0, 9, ascii_serial, CyTrue); + uint8_t count; + dev_serial[0] = 2; + for(count = 0; count < 9; count++) { + uint8_t byte = ascii_serial[count]; + if (byte < 32 || byte > 127) break; + dev_serial[2 + (count * 2)] = byte; + // FIXME: Set count*2 + 1 = 0x00 ? + dev_serial[0] += 2; + } + + /* Set our USB enumeration descriptors! Note that there are different + * function calls for each USB speed: FS, HS, SS. */ + + /* Device descriptors */ + CyU3PUsbSetDesc(CY_U3P_USB_SET_HS_DEVICE_DESCR, 0, + (uint8_t *) b200_usb2_dev_desc); + + CyU3PUsbSetDesc(CY_U3P_USB_SET_SS_DEVICE_DESCR, 0, + (uint8_t *) b200_usb3_dev_desc); + + /* Device qualifier descriptors */ + CyU3PUsbSetDesc(CY_U3P_USB_SET_DEVQUAL_DESCR, 0, + (uint8_t *) b200_dev_qual_desc); + + /* Configuration descriptors */ + CyU3PUsbSetDesc(CY_U3P_USB_SET_HS_CONFIG_DESCR, 0, + (uint8_t *) b200_usb_hs_config_desc); + + CyU3PUsbSetDesc(CY_U3P_USB_SET_FS_CONFIG_DESCR, 0, + (uint8_t *) b200_usb_fs_config_desc); + + CyU3PUsbSetDesc(CY_U3P_USB_SET_SS_CONFIG_DESCR, 0, + (uint8_t *) b200_usb_ss_config_desc); + + /* BOS Descriptor */ + CyU3PUsbSetDesc(CY_U3P_USB_SET_SS_BOS_DESCR, 0, + (uint8_t *) b200_usb_bos_desc); + + /* String descriptors */ + CyU3PUsbSetDesc(CY_U3P_USB_SET_STRING_DESCR, 0, + (uint8_t *) b200_string_lang_id_desc); + + CyU3PUsbSetDesc(CY_U3P_USB_SET_STRING_DESCR, 1, + (uint8_t *) b200_usb_manufacture_desc); + + CyU3PUsbSetDesc(CY_U3P_USB_SET_STRING_DESCR, 2, + (uint8_t *) b200_usb_product_desc); + + CyU3PUsbSetDesc(CY_U3P_USB_SET_STRING_DESCR, 3, + (uint8_t *) dev_serial); + + //////////////////////////////////////////////////////// + + // FIXME: CyU3PUsbSetTxDeemphasis(0x11); <0x1F // Shouldn't need to change this + + uint32_t tx_swing = /*65*/45; // 65 & 45 are OK, 120 causes much link recovery. <128. 1.2V is USB3 limit. + if (CyU3PUsbSetTxSwing(tx_swing) == CY_U3P_SUCCESS) + msg("CyU3PUsbSetTxSwing %d", tx_swing); + else + msg("! CyU3PUsbSetTxSwing %d", tx_swing); + + //////////////////////////////////////////////////////// + + /* Connect the USB pins, and enable SuperSpeed (USB 3.0). */ + CyU3PConnectState(CyTrue, CyTrue); // connect, ssEnable +} + + +void b200_restore_gpio_for_fpga_config(void) { + CyU3PDeviceGpioRestore(GPIO_FPGA_RESET); + CyU3PDeviceGpioRestore(GPIO_DONE); + + CyU3PDeviceGpioRestore(GPIO_FX3_SCLK); + CyU3PDeviceGpioRestore(GPIO_FX3_CE); + CyU3PDeviceGpioRestore(GPIO_FX3_MISO); + CyU3PDeviceGpioRestore(GPIO_FX3_MOSI); + + //CyU3PGpioDeInit(); // Moved to just before init +} + +void thread_fpga_config_entry(uint32_t input) { + uint32_t event_flag; + + //msg("thread_fpga_config_entry"); + + for(;;) { + + // Event is set through VREQ + if(CyU3PEventGet(&g_event_usb_config, \ + (EVENT_FPGA_CONFIG), CYU3P_EVENT_AND_CLEAR, \ + &event_flag, CYU3P_WAIT_FOREVER) == CY_U3P_SUCCESS) { + + //uint8_t old_state = g_fx3_state; + uint32_t old_fpga_programming_write_count = 0; + + if(g_fx3_state == STATE_ERROR) { + CyU3PThreadRelinquish(); + continue; + } + + if(g_fx3_state == STATE_RUNNING) { + /* The FX3 is currently configured for SLFIFO mode. We need to tear down + * this configuration and re-configure to program the FPGA. */ + b200_restore_gpio_for_fpga_config(); + CyU3PGpifDisable(CyTrue); + } + + CyU3PSysWatchDogClear(); + + g_fx3_state = STATE_BUSY; + + /* Configure the device GPIOs for FPGA programming. */ + b200_gpios_pre_fpga_config(); + + CyU3PSysWatchDogClear(); + + /* Initialize the SPI module that will be used for FPGA programming. */ + b200_spi_init(); // This must be done *after* 'b200_gpios_pre_fpga_config' + + CyU3PSysWatchDogClear(); + + /* Wait for the signal from the host that the bitstream is starting. */ + uint32_t wait_count = 0; + + /* We can now begin configuring the FPGA. */ + g_fx3_state = STATE_FPGA_READY; + + msg("Begin FPGA"); + + // Event is set through VREQ + while(CyU3PEventGet(&g_event_usb_config, \ + (EVENT_BITSTREAM_START), CYU3P_EVENT_AND_CLEAR, \ + &event_flag, CYU3P_NO_WAIT) != CY_U3P_SUCCESS) { + + if(wait_count >= FPGA_PROGRAMMING_BITSTREAM_START_POLL_COUNT) { + msg("! Bitstream didn't start"); + g_fx3_state = STATE_UNCONFIGURED; // Since IO configuration has changed, leave it in the unconfigured state (rather than the previous one, which might have been running) + CyU3PThreadRelinquish(); + break; + } + + wait_count++; + CyU3PThreadSleep(FPGA_PROGRAMMING_POLL_SLEEP); + CyU3PSysWatchDogClear(); + } + + if (wait_count >= FPGA_PROGRAMMING_BITSTREAM_START_POLL_COUNT) + continue; + + /* Pull PROGRAM_B low and then release it. */ + CyU3PGpioSetValue(GPIO_PROGRAM_B, 0); + CyU3PThreadSleep(20); + CyU3PGpioSetValue(GPIO_PROGRAM_B, 1); + + /* Wait for INIT_B to fall and rise. */ + wait_count = 0; + + msg("Wait FPGA"); + + while(CyU3PEventGet(&g_event_usb_config, \ + (EVENT_GPIO_INITB_RISE), CYU3P_EVENT_AND_CLEAR, \ + &event_flag, CYU3P_NO_WAIT) != CY_U3P_SUCCESS) { + + if(wait_count >= FPGA_PROGRAMMING_INITB_POLL_COUNT) { + msg("! INITB didn't rise"); + g_fx3_state = STATE_UNCONFIGURED; // Safer to call it unconfigured than the previous state + CyU3PThreadRelinquish(); + break; + } + + wait_count++; + CyU3PThreadSleep(FPGA_PROGRAMMING_POLL_SLEEP); + CyU3PSysWatchDogClear(); + } +#ifdef ENABLE_INIT_B_WORKAROUND + if (wait_count >= FPGA_PROGRAMMING_INITB_POLL_COUNT) + { + CyBool_t gpio_init_b; + CyU3PGpioGetValue(GPIO_INIT_B, &gpio_init_b); + if (gpio_init_b == CyTrue) + { + wait_count = 0; + } + else + { + msg("! INIT_B still not high"); + } + } +#endif // ENABLE_INIT_B_WORKAROUND + if (wait_count >= FPGA_PROGRAMMING_INITB_POLL_COUNT) + continue; + + /* We are ready to accept the FPGA bitstream! */ + wait_count = 0; + g_fx3_state = STATE_CONFIGURING_FPGA; + + msg("Configuring FPGA"); + + // g_fpga_programming_write_count is zero'd by VREQ triggering EVENT_BITSTREAM_START + + while(CyU3PEventGet(&g_event_usb_config, \ + (EVENT_GPIO_DONE_HIGH), CYU3P_EVENT_AND_CLEAR, \ + &event_flag, CYU3P_NO_WAIT) != CY_U3P_SUCCESS) { + + /* Wait for the configuration to complete, which will be indicated + * by the DONE pin going high and triggering the associated + * interrupt. */ + + if(wait_count >= FPGA_PROGRAMMING_DONE_POLL_COUNT) { + msg("! DONE didn't go high"); + g_fx3_state = STATE_UNCONFIGURED; + CyU3PThreadRelinquish(); + break; + } + + if (old_fpga_programming_write_count == g_fpga_programming_write_count) // Only increment wait count if we haven't written anything + wait_count++; + else { + wait_count = 0; + old_fpga_programming_write_count = g_fpga_programming_write_count; + } + + CyU3PThreadSleep(FPGA_PROGRAMMING_POLL_SLEEP); + CyU3PSysWatchDogClear(); + } +#ifdef ENABLE_DONE_WORKAROUND + if (wait_count >= FPGA_PROGRAMMING_DONE_POLL_COUNT) + { + CyBool_t gpio_done; + CyU3PGpioGetValue(GPIO_DONE, &gpio_done); + if (gpio_done == CyTrue) + { + wait_count = 0; + } + else + { + msg("! DONE still not high"); + } + } +#endif // ENABLE_DONE_WORKAROUND + if (wait_count >= FPGA_PROGRAMMING_DONE_POLL_COUNT) + continue; + + msg("FPGA done"); + + /* Tell the host that we are ignoring it for a while. */ + g_fx3_state = STATE_BUSY; + + CyU3PSysWatchDogClear(); + + /* Now that the FPGA is configured, we need to tear down the current SPI and + * GPIO configs, and re-config for GPIF & bit-banged SPI operation. */ + CyU3PSpiDeInit(); + b200_restore_gpio_for_fpga_config(); + + CyU3PSysWatchDogClear(); + + /* Load the GPIO configuration for normal SLFIFO use. */ + b200_slfifo_mode_gpio_config(); + + /* Tone down the drive strength on the P-port. */ + //CyU3PSetPportDriveStrength(CY_U3P_DS_HALF_STRENGTH); + + CyU3PSysWatchDogClear(); + + /* FPGA configuration is complete! Time to get the GPIF state machine + * running for Slave FIFO. */ + b200_gpif_init(); + + CyU3PThreadSleep(1); + b200_start_fpga_sb_gpio(); // Moved here to give SB time to init + + /* RUN, BABY, RUN! */ + g_fx3_state = STATE_RUNNING; + + msg("Running"); + } + + CyU3PThreadRelinquish(); + } +} + + +/*! The primary program thread. + * + * This is the primary application thread running on the FX3 device. It is + * responsible for initializing much of the chip, and then bit-banging the FPGA + * image, as it is sent from the host, into the FPGA. It then re-configures the + * FX3 for slave-fifo, and enters an infinite loop where it simply updates the + * watchdog timer and does some minor power management state checking. + */ +void thread_main_app_entry(uint32_t input) { + //msg("thread_main_app_entry"); + + /* In your spectrum, stealing your Hz. */ + for(;;) { + CyU3PSysWatchDogClear(); + CyU3PThreadSleep(CHECK_POWER_STATE_SLEEP_TIME); +#ifdef PREVENT_LOW_POWER_MODE + /* Once data transfer has started, we keep trying to get the USB + * link to stay in U0. If this is done + * before data transfers have started, there is a likelihood of + * failing the TD 9.24 U1/U2 test. */ + { + CyU3PUsbLinkPowerMode current_state; + + if((CyU3PUsbGetSpeed () == CY_U3P_SUPER_SPEED)) { + + /* If the link is in U1/U2 states, try to get back to U0. */ + CyU3PUsbGetLinkPowerState(¤t_state); + + if (current_state > CyU3PUsbLPM_U3) + msg("Power state %i", current_state); + + while((current_state >= CyU3PUsbLPM_U1) \ + && (current_state <= CyU3PUsbLPM_U3)) { + + msg("! LPS = %i", current_state); + + CyU3PUsbSetLinkPowerState(CyU3PUsbLPM_U0); // This will wake up the host if it's trying to sleep + CyU3PThreadSleep(1); + + if (CyU3PUsbGetSpeed () != CY_U3P_SUPER_SPEED) + break; + + CyU3PUsbGetLinkPowerState (¤t_state); + } + } + } +#endif // PREVENT_LOW_POWER_MODE + } +} + + +void thread_ad9361_entry(uint32_t input) { + uint32_t event_flag; + + //msg("thread_ad9361_entry"); + + while (1) { + if (CyU3PEventGet(&g_event_usb_config, \ + EVENT_AD9361_XACT_INIT, CYU3P_EVENT_AND_CLEAR, \ + &event_flag, CYU3P_WAIT_FOREVER) == CY_U3P_SUCCESS) { + ad9361_dispatch((const char*)g_vendor_req_buffer, g_ad9361_response); + + CyU3PEventSet(&g_event_usb_config, EVENT_AD9361_XACT_DONE, CYU3P_EVENT_OR); + } + } +} + +static uint16_t g_poll_last_phy_error_count = 0, g_poll_last_link_error_count = 0; +static uint32_t g_poll_last_phy_error_status = 0; + +void update_error_counters(void) { + if (CyU3PUsbGetSpeed () != CY_U3P_SUPER_SPEED) + return; + + uvint32_t reg = REG_LNK_PHY_ERROR_STATUS; + uint32_t val = 0; + if (CyU3PReadDeviceRegisters((uvint32_t*)reg, 1, &val) == CY_U3P_SUCCESS) { + g_poll_last_phy_error_status |= (val & PHYERR_MASK); + + // Reset after read + uint32_t zero = PHYERR_MASK; + if (CyU3PWriteDeviceRegisters((uvint32_t*)reg, 1, &zero) != CY_U3P_SUCCESS) + msg("! CyU3PWriteDeviceRegisters"); + } + else { + // FIXME: Log once + msg("! Reg read fail"); + } + + // Equivalent code: + //uint32_t* p = (uint32_t*)REG_LNK_PHY_ERROR_STATUS; + //val = (*p); + //(*p) = PHYERR_MASK; + + uint16_t phy_error_count = 0, link_error_count = 0; + if (CyU3PUsbGetErrorCounts(&phy_error_count, &link_error_count) == CY_U3P_SUCCESS) { // Resets internal counters after call + g_poll_last_phy_error_count += phy_error_count; + g_poll_last_link_error_count += link_error_count; + } + else { + // FIXME: Log once + msg("! CyU3PUsbGetErrorCounts"); + } + + LOCK(g_counters_lock); + g_counters.usb_error_update_count++; + g_counters.usb_error_counters.phy_error_count += phy_error_count; + g_counters.usb_error_counters.link_error_count += link_error_count; + if (val & PHYERR_MASK) { + if (val & PHYERR_PHY_LOCK_EV) g_counters.usb_error_counters.PHY_LOCK_EV++; + if (val & PHYERR_TRAINING_ERROR_EV) g_counters.usb_error_counters.TRAINING_ERROR_EV++; + if (val & PHYERR_RX_ERROR_CRC32_EV) g_counters.usb_error_counters.RX_ERROR_CRC32_EV++; + if (val & PHYERR_RX_ERROR_CRC16_EV) g_counters.usb_error_counters.RX_ERROR_CRC16_EV++; + if (val & PHYERR_RX_ERROR_CRC5_EV) g_counters.usb_error_counters.RX_ERROR_CRC5_EV++; + if (val & PHYERR_PHY_ERROR_DISPARITY_EV)g_counters.usb_error_counters.PHY_ERROR_DISPARITY_EV++; + if (val & PHYERR_PHY_ERROR_EB_UND_EV) g_counters.usb_error_counters.PHY_ERROR_EB_UND_EV++; + if (val & PHYERR_PHY_ERROR_EB_OVR_EV) g_counters.usb_error_counters.PHY_ERROR_EB_OVR_EV++; + if (val & PHYERR_PHY_ERROR_DECODE_EV) g_counters.usb_error_counters.PHY_ERROR_DECODE_EV++; + } + UNLOCK(g_counters_lock); // FIXME: Read/write regs +} + + +void thread_re_enum_entry(uint32_t input) { + uint32_t event_flag; + + //msg("thread_re_enum_entry"); + + int keep_alive = 0; + + while (1) { + if (CyU3PEventGet(&g_event_usb_config, \ + (EVENT_RE_ENUM), CYU3P_EVENT_AND_CLEAR, \ + &event_flag, RE_ENUM_THREAD_SLEEP_TIME) == CY_U3P_SUCCESS) { + msg("Re-config"); + + // FIXME: This section is not finished + + // Not locking this since we only expect one write in VREQ and read afterward here + + int re_enum = g_config_mod.flags & (CF_RE_ENUM | CF_TX_SWING | CF_TX_DEEMPHASIS); + + CyU3PThreadSleep(100); // Wait for EP0 xaction to complete + + //b200_fw_stop(); + + if (re_enum) { + msg("Link down"); + CyU3PConnectState(CyFalse, CyTrue); + } + + if (g_config_mod.flags & CF_TX_DEEMPHASIS) { + //g_config_mod.config.tx_deemphasis + //CyU3PUsbSetTxDeemphasis(0x11); <0x1F + } + if (g_config_mod.flags & CF_TX_SWING) { + //CyU3PUsbSetTxSwing(90); <128 + } + + //CyU3PUsbControlUsb2Support(); + + //b200_fw_start() + + /* Connect the USB pins, and enable SuperSpeed (USB 3.0). */ + if (re_enum) { + msg("Link up"); + CyU3PConnectState(CyTrue, CyTrue); // CHECK: Assuming all other important state will persist + } + + counters_reset_usb_errors(); + } + else { + if (++keep_alive == KEEP_ALIVE_LOOP_COUNT) { + msg("Keep-alive"); + keep_alive = 0; + } +#ifndef ENABLE_FPGA_SB + update_error_counters(); +#endif // !ENABLE_FPGA_SB + } + + CyU3PThreadRelinquish(); + } +} + + +void base16_encode(uint8_t v, char out[2], char first) { + out[0] = first + (v >> 4); + out[1] = first + (v & 0x0F); +} + + +#ifdef ENABLE_FPGA_SB +void thread_fpga_sb_poll_entry(uint32_t input) { + //msg("thread_fpga_sb_poll_entry"); + + while (1) { + uint16_t i; + uint8_t has_change = 0; + + update_error_counters(); + + /*if (g_poll_last_phy_error_count > 0) + has_change = 1; + if (g_poll_last_link_error_count > 0) + has_change = 1;*/ + if (g_poll_last_phy_error_status != 0) + has_change = 1; + + uint16_t idx = CyU3PUsbGetEventLogIndex(); // Current *write* pointer + if (idx > (USB_EVENT_LOG_SIZE-1)) { + msg("! USB event log idx = %i", (int)idx); + break; + } + + uint8_t has_usb_events = 0; + // Assuming logging won't wrap around between get calls (i.e. buffer should be long enough) + if (g_fpga_sb_last_usb_event_log_index != idx) { + if (idx < g_fpga_sb_last_usb_event_log_index) { + for (i = g_fpga_sb_last_usb_event_log_index; i < USB_EVENT_LOG_SIZE; i++) { + if (g_usb_event_log[i] != 0x14 && g_usb_event_log[i] != 0x15 && g_usb_event_log[i] != 0x16) { // CTRL, STATUS, ACKSETUP + has_usb_events = 1; + break; + } + } + + if (has_usb_events == 0) { + for (i = 0; i < idx; i++) { + if (g_usb_event_log[i] != 0x14 && g_usb_event_log[i] != 0x15 && g_usb_event_log[i] != 0x16) { // CTRL, STATUS, ACKSETUP + has_usb_events = 1; + break; + } + } + } + } + else { + for (i = g_fpga_sb_last_usb_event_log_index; i < idx; i++) { + if (g_usb_event_log[i] != 0x14 && g_usb_event_log[i] != 0x15 && g_usb_event_log[i] != 0x16) { // CTRL, STATUS, ACKSETUP + has_usb_events = 1; + break; + } + } + } + } + + if (has_change || has_usb_events) { + LOCK(g_suart_lock); + + sb_write(SUART_TXCHAR, UPT_USB_EVENTS); + + char out[3]; + out[2] = '\0'; + + if (has_usb_events) { + if (idx < g_fpga_sb_last_usb_event_log_index) { + for (i = g_fpga_sb_last_usb_event_log_index; i < USB_EVENT_LOG_SIZE; i++) { + if (g_usb_event_log[i] == 0x14 || g_usb_event_log[i] == 0x15 || g_usb_event_log[i] == 0x16) // CTRL, STATUS, ACKSETUP + continue; + base16_encode(g_usb_event_log[i], out, 'A'); + _sb_write_string(out); + } + + for (i = 0; i < idx; i++) { + if (g_usb_event_log[i] == 0x14 || g_usb_event_log[i] == 0x15 || g_usb_event_log[i] == 0x16) // CTRL, STATUS, ACKSETUP + continue; + base16_encode(g_usb_event_log[i], out, 'A'); + _sb_write_string(out); + } + } + else { + for (i = g_fpga_sb_last_usb_event_log_index; i < idx; i++) { + if (g_usb_event_log[i] == 0x14 || g_usb_event_log[i] == 0x15 || g_usb_event_log[i] == 0x16) // CTRL, STATUS, ACKSETUP + continue; + base16_encode(g_usb_event_log[i], out, 'A'); + _sb_write_string(out); + } + } + } + + // USB events: A-P,A-P + // PHY error status: a,a-i + + if (g_poll_last_phy_error_status != 0) { + uint32_t mask; + size_t offset; + for (mask = PHYERR_MAX, offset = 0; mask != 0; mask >>= 1, ++offset) { + if ((g_poll_last_phy_error_status & mask) != 0) { + sb_write(SUART_TXCHAR, 'a'); + sb_write(SUART_TXCHAR, 'a' + offset); + } + } + } + + /*char buf[6]; + + if (g_poll_last_phy_error_count > 0) { + sb_write(SUART_TXCHAR, 'b'); + snprintf(buf, sizeof(buf)-1, "%d", g_poll_last_phy_error_count); + _sb_write_string(buf); + } + + if (g_poll_last_link_error_count > 0) { + sb_write(SUART_TXCHAR, 'c'); + snprintf(buf, sizeof(buf)-1, "%d", g_poll_last_link_error_count); + _sb_write_string(buf); + }*/ + + _sb_write_string("\r\n"); + + UNLOCK(g_suart_lock); + } + + g_poll_last_phy_error_count = 0; + g_poll_last_link_error_count = 0; + g_poll_last_phy_error_status = 0; + + g_fpga_sb_last_usb_event_log_index = idx; + + CyU3PThreadRelinquish(); + } +} +#endif // ENABLE_FPGA_SB + +/*! Application define function which creates the threads. + * + * The name of this application cannot be changed, as it is called from the + * tx_application _define function, referenced in the rest of the FX3 build + * system. + * + * If thread creation fails, lock the system and force a power reset. + */ +void CyFxApplicationDefine(void) { + void *app_thread_ptr, *fpga_thread_ptr, *ad9361_thread_ptr; +#ifdef ENABLE_RE_ENUM_THREAD + void *re_enum_thread_ptr; +#endif // ENABLE_RE_ENUM_THREAD +#ifdef ENABLE_FPGA_SB + void *fpga_sb_poll_thread_ptr; +#endif // ENABLE_FPGA_SB + + g_counters.magic = COUNTER_MAGIC; +#ifdef ENABLE_AD9361_LOGGING + ad9361_set_msgfn(msg); +#endif // ENABLE_AD9361_LOGGING + memset(&g_config, 0xFF, sizeof(g_config)); // Initialise to -1 + + CyU3PMutexCreate(&g_log_lock, CYU3P_NO_INHERIT); + CyU3PMutexCreate(&g_counters_lock, CYU3P_NO_INHERIT); + CyU3PMutexCreate(&g_counters_dma_from_host_lock, CYU3P_NO_INHERIT); + CyU3PMutexCreate(&g_counters_dma_to_host_lock, CYU3P_NO_INHERIT); +#ifdef ENABLE_FPGA_SB + CyU3PMutexCreate(&g_suart_lock, CYU3P_NO_INHERIT); +#endif // ENABLE_FPGA_SB +#ifdef ENABLE_USB_EVENT_LOGGING + CyU3PUsbInitEventLog(g_usb_event_log, USB_EVENT_LOG_SIZE); +#endif // ENABLE_USB_EVENT_LOGGING + + //////////////////////////////////////////////////////// + + /* Tell the host that we are ignoring it for a while. */ + g_fx3_state = STATE_BUSY; + + /* Set the FX3 compatibility number. */ + compat_num[0] = FX3_COMPAT_MAJOR; + compat_num[1] = FX3_COMPAT_MINOR; + + /* Initialize the USB system. */ + b200_usb_init(); + + /* Turn on the Watchdog Timer. */ + CyU3PSysWatchDogConfigure(CyTrue, WATCHDOG_TIMEOUT); + + /* Go do something. Probably not useful, because you aren't configured. */ + g_fx3_state = STATE_UNCONFIGURED; + + //////////////////////////////////////////////////////// + + b200_gpio_init(CyTrue); + + b200_enable_fpga_sb_gpio(CyTrue); + + msg("Compat: %d.%d", FX3_COMPAT_MAJOR, FX3_COMPAT_MINOR); + msg("FX3 SDK: %d.%d.%d (build %d)", CYFX_VERSION_MAJOR, CYFX_VERSION_MINOR, CYFX_VERSION_PATCH, CYFX_VERSION_BUILD); + + //////////////////////////////////////////////////////// + + /* Create the USB event group that we will use to track USB events from the + * application thread. */ + CyU3PEventCreate(&g_event_usb_config); + + /* Allocate memory for the application thread. */ + app_thread_ptr = CyU3PMemAlloc(APP_THREAD_STACK_SIZE); + + /* Allocate memory for the FPGA configuration thread. */ + fpga_thread_ptr = CyU3PMemAlloc(APP_THREAD_STACK_SIZE); +#ifdef ENABLE_RE_ENUM_THREAD + re_enum_thread_ptr = CyU3PMemAlloc(APP_THREAD_STACK_SIZE); +#endif // ENABLE_RE_ENUM_THREAD + ad9361_thread_ptr = CyU3PMemAlloc(APP_THREAD_STACK_SIZE); +#ifdef ENABLE_FPGA_SB + fpga_sb_poll_thread_ptr = CyU3PMemAlloc(APP_THREAD_STACK_SIZE); +#endif // ENABLE_FPGA_SB + //////////////////////////////////////////////////////// + + /* Create the thread for the application */ + if (app_thread_ptr != NULL) + CyU3PThreadCreate(&thread_main_app, + "200:B200 Main", + thread_main_app_entry, + 0, + app_thread_ptr, + APP_THREAD_STACK_SIZE, + THREAD_PRIORITY, + THREAD_PRIORITY, + CYU3P_NO_TIME_SLICE, + CYU3P_AUTO_START); + + /* Create the thread for FPGA configuration. */ + if (fpga_thread_ptr != NULL) + CyU3PThreadCreate(&thread_fpga_config, + "300:B200 FPGA", + thread_fpga_config_entry, + 0, + fpga_thread_ptr, + APP_THREAD_STACK_SIZE, + THREAD_PRIORITY, + THREAD_PRIORITY, + CYU3P_NO_TIME_SLICE, + CYU3P_AUTO_START); +#ifdef ENABLE_RE_ENUM_THREAD + /* Create the thread for stats collection and re-enumeration/configuration */ + if (re_enum_thread_ptr != NULL) + CyU3PThreadCreate(&thread_re_enum, + "400:B200 Re-enum", + thread_re_enum_entry, + 0, + re_enum_thread_ptr, + APP_THREAD_STACK_SIZE, + THREAD_PRIORITY, + THREAD_PRIORITY, + CYU3P_NO_TIME_SLICE, + CYU3P_AUTO_START); +#endif // ENABLE_RE_ENUM_THREAD + /* Create thread to handle AD9361 transactions */ + if (ad9361_thread_ptr != NULL) + CyU3PThreadCreate(&thread_ad9361, + "500:B200 AD9361", + thread_ad9361_entry, + 0, + ad9361_thread_ptr, + APP_THREAD_STACK_SIZE, + THREAD_PRIORITY, + THREAD_PRIORITY, + CYU3P_NO_TIME_SLICE, + CYU3P_AUTO_START); +#ifdef ENABLE_FPGA_SB + /* Create thread to handling Settings Bus logging/transactions */ + if (fpga_sb_poll_thread_ptr != NULL) + CyU3PThreadCreate(&thread_fpga_sb_poll, + "600:B200 FPGA SB poll", + thread_fpga_sb_poll_entry, + 0, + fpga_sb_poll_thread_ptr, + APP_THREAD_STACK_SIZE, + THREAD_PRIORITY, + THREAD_PRIORITY, + CYU3P_NO_TIME_SLICE, + CYU3P_AUTO_START); +#endif // ENABLE_FPGA_SB +} + + +int main(void) { + CyU3PReturnStatus_t status = CY_U3P_SUCCESS; + CyU3PSysClockConfig_t clock_config; + + /* Configure the FX3 Clocking scheme: + * CPU Divider: 2 (~200 MHz) + * DMA Divider: 2 (~100 MHz) + * MMIO Divider: 2 (~100 MHz) + * 32 kHz Standby Clock: Disabled + * System Clock Divider: 1 */ + clock_config.cpuClkDiv = 2; + clock_config.dmaClkDiv = 2; + clock_config.mmioClkDiv = 2; + clock_config.useStandbyClk = CyFalse; + clock_config.clkSrc = CY_U3P_SYS_CLK; + clock_config.setSysClk400 = CyTrue; + + status = CyU3PDeviceInit(&clock_config); + if(status != CY_U3P_SUCCESS) + goto handle_fatal_error; + + /* Initialize the caches. Enable instruction cache and keep data cache disabled. + * The data cache is useful only when there is a large amount of CPU based memory + * accesses. When used in simple cases, it can decrease performance due to large + * number of cache flushes and cleans and also it adds to the complexity of the + * code. */ + status = CyU3PDeviceCacheControl(CyTrue, CyFalse, CyFalse); // Icache, Dcache, DMAcache + if (status != CY_U3P_SUCCESS) + goto handle_fatal_error; + + /* Configure the IO peripherals on the FX3. The gpioSimpleEn arrays are + * bitmaps, where each bit represents the GPIO of the matching index - the + * second array is index + 32. */ + status = b200_set_io_matrix(CyTrue); + if(status != CY_U3P_SUCCESS) + goto handle_fatal_error; + + /* This function calls starts the RTOS kernel. + * + * ABANDON ALL HOPE, YE WHO ENTER HERE */ + CyU3PKernelEntry(); + + /* Although we will never make it here, this has to be here to make the + * compiler happy. */ + return 0; + + /* If an error occurs before the launch of the kernel, it is unrecoverable. + * Once you go down this hole, you aren't coming back out without a power + * reset. */ + handle_fatal_error: + while(1); +} diff --git a/firmware/fx3/b200/b200_main.h b/firmware/fx3/b200/b200_main.h new file mode 100644 index 000000000..7971c1625 --- /dev/null +++ b/firmware/fx3/b200/b200_main.h @@ -0,0 +1,143 @@ +// +// Copyright 2013-2014 Ettus Research LLC +// + +#ifndef _B200_MAIN_H +#define _B200_MAIN_H + +#include "cyu3externcstart.h" + +#include "cyu3types.h" +#include "cyu3usbconst.h" + +#define FX3_COMPAT_MAJOR (uint8_t)(4) +#define FX3_COMPAT_MINOR (uint8_t)(0) + +/* GPIO Pins */ +#define GPIO_FPGA_RESET (uint32_t)(26) // CTL[9] +#define GPIO_DONE (uint32_t)(27) +#define GPIO_PROGRAM_B (uint32_t)(45) +#define GPIO_INIT_B (uint32_t)(50) +#define GPIO_AUX_PWR_ON (uint32_t)(51) +#define GPIO_SHDN_SW (uint32_t)(52) +#define GPIO_FX3_SCLK (uint32_t)(53) +#define GPIO_FX3_CE (uint32_t)(54) +#define GPIO_FX3_MISO (uint32_t)(55) +#define GPIO_FX3_MOSI (uint32_t)(56) +#define GPIO_FPGA_SB_SCL (uint32_t)(25) // CTL[8] +#define GPIO_FPGA_SB_SDA (uint32_t)(23) // CTL[6] + +/* Create the bit-shifts that define the above GPIOs for bitmaps. The bitshifts + * are relative to 32-bit masks, so shifts > 32 are adjusted accordingly. Note + * that GPIOs < 32 are configured without the use of masks. */ +#define MASK_GPIO_PROGRAM_B (uint32_t)(1 << (GPIO_PROGRAM_B - 32)) +#define MASK_GPIO_INIT_B (uint32_t)(1 << (GPIO_INIT_B - 32)) +#define MASK_GPIO_AUX_PWR_ON (uint32_t)(1 << (GPIO_FX3_SCLK - 32)) +#define MASK_GPIO_SHDN_SW (uint32_t)(1 << (GPIO_FX3_SCLK - 32)) +#define MASK_GPIO_FX3_SCLK (uint32_t)(1 << (GPIO_FX3_SCLK - 32)) +#define MASK_GPIO_FX3_CE (uint32_t)(1 << (GPIO_FX3_CE - 32)) +#define MASK_GPIO_FX3_MISO (uint32_t)(1 << (GPIO_FX3_MISO - 32)) +#define MASK_GPIO_FX3_MOSI (uint32_t)(1 << (GPIO_FX3_MOSI - 32)) +#define MASK_GPIO_FPGA_SB_SCL (uint32_t)(1 << (GPIO_FPGA_SB_SCL - 0)) +#define MASK_GPIO_FPGA_SB_SDA (uint32_t)(1 << (GPIO_FPGA_SB_SDA - 0)) + +#define USB3_PACKETS_PER_BURST (16) +#define USB2_PACKETS_PER_BURST (1) +#define DMA_SIZE_INFINITE (0) + +#define APP_THREAD_STACK_SIZE (0x0800) +#define THREAD_PRIORITY (8) + +#define B200_VREQ_BITSTREAM_START (uint8_t)(0x02) +#define B200_VREQ_BITSTREAM_DATA (uint8_t)(0x12) +#define B200_VREQ_BITSTREAM_DATA_FILL (uint8_t)(0x13) +#define B200_VREQ_BITSTREAM_DATA_COMMIT (uint8_t)(0x14) +#define B200_VREQ_GET_COMPAT (uint8_t)(0x15) +#define B200_VREQ_SET_FPGA_HASH (uint8_t)(0x1C) +#define B200_VREQ_GET_FPGA_HASH (uint8_t)(0x1D) +#define B200_VREQ_SET_FW_HASH (uint8_t)(0x1E) +#define B200_VREQ_GET_FW_HASH (uint8_t)(0x1F) +#define B200_VREQ_LOOP_CODE (uint8_t)(0x22) +#define B200_VREQ_GET_LOG (uint8_t)(0x23) +#define B200_VREQ_GET_COUNTERS (uint8_t)(0x24) +#define B200_VREQ_CLEAR_COUNTERS (uint8_t)(0x25) +#define B200_VREQ_GET_USB_EVENT_LOG (uint8_t)(0x26) +#define B200_VREQ_SET_CONFIG (uint8_t)(0x27) +#define B200_VREQ_GET_CONFIG (uint8_t)(0x28) +#define B200_VREQ_WRITE_SB (uint8_t)(0x29) +#define B200_VREQ_SET_SB_BAUD_DIV (uint8_t)(0x30) +#define B200_VREQ_FLUSH_DATA_EPS (uint8_t)(0x31) +#define B200_VREQ_SPI_WRITE_AD9361 (uint8_t)(0x32) +#define B200_VREQ_SPI_READ_AD9361 (uint8_t)(0x42) +#define B200_VREQ_FPGA_CONFIG (uint8_t)(0x55) +#define B200_VREQ_TOGGLE_FPGA_RESET (uint8_t)(0x62) +#define B200_VREQ_TOGGLE_GPIF_RESET (uint8_t)(0x72) +#define B200_VREQ_GET_USB_SPEED (uint8_t)(0x80) +#define B200_VREQ_GET_STATUS (uint8_t)(0x83) +#define B200_VREQ_AD9361_CTRL_WRITE (uint8_t)(0x90) +#define B200_VREQ_AD9361_CTRL_READ (uint8_t)(0x91) +#define B200_VREQ_AD9361_LOOPBACK (uint8_t)(0x92) +#define B200_VREQ_RESET_DEVICE (uint8_t)(0x99) +#define B200_VREQ_EEPROM_WRITE (uint8_t)(0xBA) +#define B200_VREQ_EEPROM_READ (uint8_t)(0xBB) + +#define EVENT_BITSTREAM_START (1 << 1) +#define EVENT_GPIO_DONE_HIGH (1 << 2) +#define EVENT_GPIO_INITB_RISE (1 << 3) +#define EVENT_FPGA_CONFIG (1 << 4) +#define EVENT_RE_ENUM (1 << 5) +#define EVENT_AD9361_XACT_INIT (1 << 6) +#define EVENT_AD9361_XACT_DONE (1 << 7) + + +/* FX3 States */ +#define STATE_UNDEFINED (0) +#define STATE_FPGA_READY (1) +#define STATE_CONFIGURING_FPGA (2) +#define STATE_BUSY (3) +#define STATE_RUNNING (4) +#define STATE_UNCONFIGURED (5) +#define STATE_ERROR (6) + + +/* Define the USB endpoints, sockets, and directions. The LSB is the socket + * number, and the MSB is the direction. For USB 2.0, sockets are mapped + * one-to-one since they must be uni-directional. */ +#define VREQ_ENDPOINT_PRODUCER 0x00 // OUT (host -> FX3) +#define VREQ_ENDPOINT_CONSUMER 0x80 // IN (FX3 -> host) + +#define DATA_ENDPOINT_PRODUCER 0x02 // OUT (host -> FX3), produces for FPGA +#define DATA_ENDPOINT_CONSUMER 0x86 // IN (FX3 -> host), consumes from FPGA + +#define CTRL_ENDPOINT_PRODUCER 0x04 // OUT (host -> FX3), produces for FPGA +#define CTRL_ENDPOINT_CONSUMER 0x88 // IN (FX3 -> host), consumes from FPGA + +#define PRODUCER_DATA_SOCKET CY_U3P_UIB_SOCKET_PROD_2 +#define CONSUMER_DATA_SOCKET CY_U3P_UIB_SOCKET_CONS_6 + +#define PRODUCER_CTRL_SOCKET CY_U3P_UIB_SOCKET_PROD_4 +#define CONSUMER_CTRL_SOCKET CY_U3P_UIB_SOCKET_CONS_8 + +#define DATA_TX_PPORT_SOCKET CY_U3P_PIB_SOCKET_0 +#define DATA_RX_PPORT_SOCKET CY_U3P_PIB_SOCKET_1 +#define CTRL_COMM_PPORT_SOCKET CY_U3P_PIB_SOCKET_2 +#define CTRL_RESP_PPORT_SOCKET CY_U3P_PIB_SOCKET_3 + + +/* Descriptor definitions for USB enumerations. */ +extern uint8_t b200_usb2_dev_desc[]; +extern uint8_t b200_usb3_dev_desc[]; +extern const uint8_t b200_dev_qual_desc[]; +extern const uint8_t b200_usb_fs_config_desc[]; +extern const uint8_t b200_usb_hs_config_desc[]; +extern const uint8_t b200_usb_bos_desc[]; +extern const uint8_t b200_usb_ss_config_desc[]; +extern const uint8_t b200_string_lang_id_desc[]; +extern const uint8_t b200_usb_manufacture_desc[]; +extern const uint8_t b200_usb_product_desc[]; +extern uint8_t dev_serial[]; + + +#include "cyu3externcend.h" + +#endif /* _B200_MAIN_H */ diff --git a/firmware/fx3/b200/b200_usb_descriptors.c b/firmware/fx3/b200/b200_usb_descriptors.c new file mode 100644 index 000000000..e8a765b24 --- /dev/null +++ b/firmware/fx3/b200/b200_usb_descriptors.c @@ -0,0 +1,510 @@ +// +// Copyright 2013-2014 Ettus Research LLC +// + +/* Define the USB 2.0 and USB 3.0 enumeration descriptions for the USRP B200 + * device. */ + + +#include "b200_main.h" + + +/* Standard Device Descriptor for USB 2.0 */ +uint8_t b200_usb2_dev_desc[] __attribute__ ((aligned (32))) = +{ + 0x12, /* Descriptor size */ + CY_U3P_USB_DEVICE_DESCR, /* Device descriptor type */ + 0x10,0x02, /* USB 2.10 */ + 0xFF, /* Device class */ + 0x00, /* Device sub-class */ + 0x00, /* Device protocol */ + 0x40, /* Maxpacket size for EP0 : 64 bytes */ + 0xB4,0x04, /* Vendor ID */ + 0xF0,0x00, /* Product ID */ + 0x00,0x00, /* Device release number */ + 0x01, /* Manufacture string index */ + 0x02, /* Product string index */ + 0x03, /* Serial number string index */ + 0x01 /* Number of configurations */ +}; + + +/* Standard Device Descriptor for USB 3.0 */ +uint8_t b200_usb3_dev_desc[] __attribute__ ((aligned (32))) = +{ + 0x12, /* Descriptor size */ + CY_U3P_USB_DEVICE_DESCR, /* Device descriptor type */ + 0x00,0x03, /* USB 3.0 */ + 0xFF, /* Device class */ + 0x00, /* Device sub-class */ + 0x00, /* Device protocol */ + 0x09, /* Maxpacket size for EP0 : 2^9 */ + 0xB4,0x04, /* Vendor ID */ + 0xF0,0x00, /* Product ID */ + 0x00,0x00, /* Device release number */ + 0x01, /* Manufacture string index */ + 0x02, /* Product string index */ + 0x03, /* Serial number string index */ + 0x01 /* Number of configurations */ +}; + + +/* Binary Device Object Store Descriptor */ +const uint8_t b200_usb_bos_desc[] __attribute__ ((aligned (32))) = +{ + 0x05, /* Descriptor size */ + CY_U3P_BOS_DESCR, /* Device descriptor type */ + 0x16,0x00, /* Length of this descriptor and all sub descriptors */ + 0x02, /* Number of device capability descriptors */ + + /* USB 2.0 extension */ + 0x07, /* Descriptor size */ + CY_U3P_DEVICE_CAPB_DESCR, /* Device capability type descriptor */ + CY_U3P_USB2_EXTN_CAPB_TYPE, /* USB 2.0 extension capability type */ + 0x02,0x00,0x00,0x00, /* Supported device level features: LPM support */ + + /* SuperSpeed device capability */ + 0x0A, /* Descriptor size */ + CY_U3P_DEVICE_CAPB_DESCR, /* Device capability type descriptor */ + CY_U3P_SS_USB_CAPB_TYPE, /* SuperSpeed device capability type */ + 0x00, /* Supported device level features */ + 0x0E,0x00, /* Speeds supported by the device : SS, HS and FS */ + 0x03, /* Functionality support */ + 0x00, /* U1 Device Exit latency */ + 0x00,0x00 /* U2 Device Exit latency */ +}; + + +/* Standard Device Qualifier Descriptor */ +const uint8_t b200_dev_qual_desc[] __attribute__ ((aligned (32))) = +{ + 0x0A, /* Descriptor size */ + CY_U3P_USB_DEVQUAL_DESCR, /* Device qualifier descriptor type */ + 0x00,0x02, /* USB 2.0 */ + 0xFF, /* Device class */ + 0x00, /* Device sub-class */ + 0x00, /* Device protocol */ + 0x40, /* Maxpacket size for EP0 : 64 bytes */ + 0x01, /* Number of configurations */ + 0x00 /* Reserved */ +}; + + +/* Standard Full Speed Configuration Descriptor */ +const uint8_t b200_usb_fs_config_desc[] __attribute__ ((aligned (32))) = +{ + /* Configuration descriptor */ + 0x09, /* Descriptor size */ + CY_U3P_USB_CONFIG_DESCR, /* Configuration descriptor type */ + 0x52,0x00, /* Length of this descriptor and all sub descriptors */ + 0x05, /* Number of interfaces */ + 0x01, /* Configuration number */ + 0x00, /* Configuration string index */ + 0x80, /* Config characteristics - bus powered */ + 0x01, /* Lie about the max power consumption (in 2mA unit) : 2mA */ + + /* Interface descriptor */ + 0x09, /* Descriptor size */ + CY_U3P_USB_INTRFC_DESCR, /* Interface descriptor type */ + 0x00, /* Interface number */ + 0x00, /* Alternate setting number */ + 0x00, /* Number of endpoints */ + 0xFF, /* Interface class */ + 0x00, /* Interface sub class */ + 0x00, /* Interface protocol code */ + 0x02, /* Interface descriptor string index */ + + /* Interface descriptor */ + 0x09, /* Descriptor size */ + CY_U3P_USB_INTRFC_DESCR, /* Interface descriptor type */ + 0x01, /* Interface number */ + 0x00, /* Alternate setting number */ + 0x01, /* Number of endpoints */ + 0xFF, /* Interface class */ + 0x00, /* Interface sub class */ + 0x00, /* Interface protocol code */ + 0x02, /* Interface descriptor string index */ + + /* Endpoint descriptor for producer EP */ + 0x07, /* Descriptor size */ + CY_U3P_USB_ENDPNT_DESCR, /* Endpoint descriptor type */ + DATA_ENDPOINT_PRODUCER, /* Endpoint address and description */ + CY_U3P_USB_EP_BULK, /* Bulk endpoint type */ + 0x40,0x00, /* Max packet size = 64 bytes */ + 0x00, /* Servicing interval for data transfers : 0 for bulk */ + + /* Interface descriptor */ + 0x09, /* Descriptor size */ + CY_U3P_USB_INTRFC_DESCR, /* Interface descriptor type */ + 0x02, /* Interface number */ + 0x00, /* Alternate setting number */ + 0x01, /* Number of endpoints */ + 0xFF, /* Interface class */ + 0x00, /* Interface sub class */ + 0x00, /* Interface protocol code */ + 0x02, /* Interface descriptor string index */ + + /* Endpoint descriptor for consumer EP */ + 0x07, /* Descriptor size */ + CY_U3P_USB_ENDPNT_DESCR, /* Endpoint descriptor type */ + DATA_ENDPOINT_CONSUMER, /* Endpoint address and description */ + CY_U3P_USB_EP_BULK, /* Bulk endpoint type */ + 0x40,0x00, /* Max packet size = 64 bytes */ + 0x00, /* Servicing interval for data transfers : 0 for bulk */ + + /* Interface descriptor */ + 0x09, /* Descriptor size */ + CY_U3P_USB_INTRFC_DESCR, /* Interface descriptor type */ + 0x03, /* Interface number */ + 0x00, /* Alternate setting number */ + 0x01, /* Number of endpoints */ + 0xFF, /* Interface class */ + 0x00, /* Interface sub class */ + 0x00, /* Interface protocol code */ + 0x02, /* Interface descriptor string index */ + + /* Endpoint descriptor for producer EP */ + 0x07, /* Descriptor size */ + CY_U3P_USB_ENDPNT_DESCR, /* Endpoint descriptor type */ + CTRL_ENDPOINT_PRODUCER, /* Endpoint address and description */ + CY_U3P_USB_EP_BULK, /* Bulk endpoint type */ + 0x40,0x00, /* Max packet size = 64 bytes */ + 0x00, /* Servicing interval for data transfers : 0 for bulk */ + + /* Interface descriptor */ + 0x09, /* Descriptor size */ + CY_U3P_USB_INTRFC_DESCR, /* Interface descriptor type */ + 0x04, /* Interface number */ + 0x00, /* Alternate setting number */ + 0x01, /* Number of endpoints */ + 0xFF, /* Interface class */ + 0x00, /* Interface sub class */ + 0x00, /* Interface protocol code */ + 0x02, /* Interface descriptor string index */ + + /* Endpoint descriptor for consumer EP */ + 0x07, /* Descriptor size */ + CY_U3P_USB_ENDPNT_DESCR, /* Endpoint descriptor type */ + CTRL_ENDPOINT_CONSUMER, /* Endpoint address and description */ + CY_U3P_USB_EP_BULK, /* Bulk endpoint type */ + 0x40,0x00, /* Max packet size = 64 bytes */ + 0x00 /* Servicing interval for data transfers : 0 for bulk */ +}; + + +/* Standard High Speed Configuration Descriptor */ +const uint8_t b200_usb_hs_config_desc[] __attribute__ ((aligned (32))) = +{ + /* Configuration descriptor */ + 0x09, /* Descriptor size */ + CY_U3P_USB_CONFIG_DESCR, /* Configuration descriptor type */ + 0x52,0x00, /* Length of this descriptor and all sub descriptors */ + 0x05, /* Number of interfaces */ + 0x01, /* Configuration number */ + 0x00, /* COnfiguration string index */ + 0x80, /* Config characteristics - bus powered */ + 0x01, /* Lie about the max power consumption (in 2mA unit) : 2mA */ + + /* Interface descriptor */ + 0x09, /* Descriptor size */ + CY_U3P_USB_INTRFC_DESCR, /* Interface Descriptor type */ + 0x00, /* Interface number */ + 0x00, /* Alternate setting number */ + 0x00, /* Number of endpoints */ + 0xFF, /* Interface class */ + 0x00, /* Interface sub class */ + 0x00, /* Interface protocol code */ + 0x02, /* Interface descriptor string index */ + + /* Interface descriptor */ + 0x09, /* Descriptor size */ + CY_U3P_USB_INTRFC_DESCR, /* Interface Descriptor type */ + 0x01, /* Interface number */ + 0x00, /* Alternate setting number */ + 0x01, /* Number of endpoints */ + 0xFF, /* Interface class */ + 0x00, /* Interface sub class */ + 0x00, /* Interface protocol code */ + 0x02, /* Interface descriptor string index */ + + /* Endpoint descriptor for producer EP */ + 0x07, /* Descriptor size */ + CY_U3P_USB_ENDPNT_DESCR, /* Endpoint descriptor type */ + DATA_ENDPOINT_PRODUCER, /* Endpoint address and description */ + CY_U3P_USB_EP_BULK, /* Bulk endpoint type */ + 0x00,0x02, /* Max packet size = 512 bytes */ + 0x00, /* Servicing interval for data transfers : 0 for bulk */ + + /* Interface descriptor */ + 0x09, /* Descriptor size */ + CY_U3P_USB_INTRFC_DESCR, /* Interface Descriptor type */ + 0x02, /* Interface number */ + 0x00, /* Alternate setting number */ + 0x01, /* Number of endpoints */ + 0xFF, /* Interface class */ + 0x00, /* Interface sub class */ + 0x00, /* Interface protocol code */ + 0x02, /* Interface descriptor string index */ + + /* Endpoint descriptor for consumer EP */ + 0x07, /* Descriptor size */ + CY_U3P_USB_ENDPNT_DESCR, /* Endpoint descriptor type */ + DATA_ENDPOINT_CONSUMER, /* Endpoint address and description */ + CY_U3P_USB_EP_BULK, /* Bulk endpoint type */ + 0x00,0x02, /* Max packet size = 512 bytes */ + 0x00, /* Servicing interval for data transfers : 0 for bulk */ + + /* Interface descriptor */ + 0x09, /* Descriptor size */ + CY_U3P_USB_INTRFC_DESCR, /* Interface Descriptor type */ + 0x03, /* Interface number */ + 0x00, /* Alternate setting number */ + 0x01, /* Number of endpoints */ + 0xFF, /* Interface class */ + 0x00, /* Interface sub class */ + 0x00, /* Interface protocol code */ + 0x02, /* Interface descriptor string index */ + + /* Endpoint descriptor for producer EP */ + 0x07, /* Descriptor size */ + CY_U3P_USB_ENDPNT_DESCR, /* Endpoint descriptor type */ + CTRL_ENDPOINT_PRODUCER, /* Endpoint address and description */ + CY_U3P_USB_EP_BULK, /* Bulk endpoint type */ + 0x00,0x02, /* Max packet size = 512 bytes */ + 0x00, /* Servicing interval for data transfers : 0 for bulk */ + + /* Interface descriptor */ + 0x09, /* Descriptor size */ + CY_U3P_USB_INTRFC_DESCR, /* Interface Descriptor type */ + 0x04, /* Interface number */ + 0x00, /* Alternate setting number */ + 0x01, /* Number of endpoints */ + 0xFF, /* Interface class */ + 0x00, /* Interface sub class */ + 0x00, /* Interface protocol code */ + 0x02, /* Interface descriptor string index */ + + /* Endpoint descriptor for consumer EP */ + 0x07, /* Descriptor size */ + CY_U3P_USB_ENDPNT_DESCR, /* Endpoint descriptor type */ + CTRL_ENDPOINT_CONSUMER, /* Endpoint address and description */ + CY_U3P_USB_EP_BULK, /* Bulk endpoint type */ + 0x00,0x02, /* Max packet size = 512 bytes */ + 0x00 /* Servicing interval for data transfers : 0 for bulk */ +}; + + +/* Standard Super Speed Configuration Descriptor */ +const uint8_t b200_usb_ss_config_desc[] __attribute__ ((aligned (32))) = +{ + /* Configuration descriptor */ + 0x09, /* Descriptor size */ + CY_U3P_USB_CONFIG_DESCR, /* Configuration descriptor type */ + 0x6A,0x00, /* Length of this descriptor and all sub descriptors */ + 0x05, /* Number of interfaces */ + 0x01, /* Configuration number */ + 0x00, /* COnfiguration string index */ + 0x80, /* Config characteristics - D6: Self power; D5: Remote wakeup */ + 0x01, /* Lie about the max power consumption (in 8mA unit) : 8mA */ + + /* Interface descriptor */ + 0x09, /* Descriptor size */ + CY_U3P_USB_INTRFC_DESCR, /* Interface Descriptor type */ + 0x00, /* Interface number */ + 0x00, /* Alternate setting number */ + 0x00, /* Number of end points */ + 0xFF, /* Interface class */ + 0x00, /* Interface sub class */ + 0x00, /* Interface protocol code */ + 0x02, /* Interface descriptor string index */ + + /* Interface descriptor */ + 0x09, /* Descriptor size */ + CY_U3P_USB_INTRFC_DESCR, /* Interface Descriptor type */ + 0x01, /* Interface number */ + 0x00, /* Alternate setting number */ + 0x01, /* Number of end points */ + 0xFF, /* Interface class */ + 0x00, /* Interface sub class */ + 0x00, /* Interface protocol code */ + 0x02, /* Interface descriptor string index */ + + /* Endpoint descriptor for producer EP */ + 0x07, /* Descriptor size */ + CY_U3P_USB_ENDPNT_DESCR, /* Endpoint descriptor type */ + DATA_ENDPOINT_PRODUCER, /* Endpoint address and description */ + CY_U3P_USB_EP_BULK, /* Bulk endpoint type */ + 0x00,0x04, /* Max packet size = 1024 bytes */ + 0x00, /* Servicing interval for data transfers : 0 for bulk */ + + /* Super speed endpoint companion descriptor for producer EP */ + 0x06, /* Descriptor size */ + CY_U3P_SS_EP_COMPN_DESCR, /* SS endpoint companion descriptor type */ + (USB3_PACKETS_PER_BURST - 1), /* Max no. of packets in a burst : 0: burst 1 packet at a time */ + 0x00, /* Max streams for bulk EP = 0 (No streams) */ + 0x00,0x00, /* Service interval for the EP : 0 for bulk */ + + /* Interface descriptor */ + 0x09, /* Descriptor size */ + CY_U3P_USB_INTRFC_DESCR, /* Interface Descriptor type */ + 0x02, /* Interface number */ + 0x00, /* Alternate setting number */ + 0x01, /* Number of end points */ + 0xFF, /* Interface class */ + 0x00, /* Interface sub class */ + 0x00, /* Interface protocol code */ + 0x02, /* Interface descriptor string index */ + + /* Endpoint descriptor for consumer EP */ + 0x07, /* Descriptor size */ + CY_U3P_USB_ENDPNT_DESCR, /* Endpoint descriptor type */ + DATA_ENDPOINT_CONSUMER, /* Endpoint address and description */ + CY_U3P_USB_EP_BULK, /* Bulk endpoint type */ + 0x00,0x04, /* Max packet size = 1024 bytes */ + 0x00, /* Servicing interval for data transfers : 0 for Bulk */ + + /* Super speed endpoint companion descriptor for consumer EP */ + 0x06, /* Descriptor size */ + CY_U3P_SS_EP_COMPN_DESCR, /* SS endpoint companion descriptor type */ + (USB3_PACKETS_PER_BURST - 1), /* Max no. of packets in a burst : 0: burst 1 packet at a time */ + 0x00, /* Max streams for bulk EP = 0 (No streams) */ + 0x00,0x00, /* Service interval for the EP : 0 for bulk */ + + /* Interface descriptor */ + 0x09, /* Descriptor size */ + CY_U3P_USB_INTRFC_DESCR, /* Interface Descriptor type */ + 0x03, /* Interface number */ + 0x00, /* Alternate setting number */ + 0x01, /* Number of end points */ + 0xFF, /* Interface class */ + 0x00, /* Interface sub class */ + 0x00, /* Interface protocol code */ + 0x02, /* Interface descriptor string index */ + + /* Endpoint descriptor for producer EP */ + 0x07, /* Descriptor size */ + CY_U3P_USB_ENDPNT_DESCR, /* Endpoint descriptor type */ + CTRL_ENDPOINT_PRODUCER, /* Endpoint address and description */ + CY_U3P_USB_EP_BULK, /* Bulk endpoint type */ + 0x00,0x04, /* Max packet size = 1024 bytes */ + 0x00, /* Servicing interval for data transfers : 0 for bulk */ + + /* Super speed endpoint companion descriptor for producer EP */ + 0x06, /* Descriptor size */ + CY_U3P_SS_EP_COMPN_DESCR, /* SS endpoint companion descriptor type */ + (USB3_PACKETS_PER_BURST - 1), /* Max no. of packets in a burst : 0: burst 1 packet at a time */ + 0x00, /* Max streams for bulk EP = 0 (No streams) */ + 0x00,0x00, /* Service interval for the EP : 0 for bulk */ + + /* Interface descriptor */ + 0x09, /* Descriptor size */ + CY_U3P_USB_INTRFC_DESCR, /* Interface Descriptor type */ + 0x04, /* Interface number */ + 0x00, /* Alternate setting number */ + 0x01, /* Number of end points */ + 0xFF, /* Interface class */ + 0x00, /* Interface sub class */ + 0x00, /* Interface protocol code */ + 0x02, /* Interface descriptor string index */ + + /* Endpoint descriptor for consumer EP */ + 0x07, /* Descriptor size */ + CY_U3P_USB_ENDPNT_DESCR, /* Endpoint descriptor type */ + CTRL_ENDPOINT_CONSUMER, /* Endpoint address and description */ + CY_U3P_USB_EP_BULK, /* Bulk endpoint type */ + 0x00,0x04, /* Max packet size = 1024 bytes */ + 0x00, /* Servicing interval for data transfers : 0 for Bulk */ + + /* Super speed endpoint companion descriptor for consumer EP */ + 0x06, /* Descriptor size */ + CY_U3P_SS_EP_COMPN_DESCR, /* SS endpoint companion descriptor type */ + (USB3_PACKETS_PER_BURST - 1), /* Max no. of packets in a burst : 0: burst 1 packet at a time */ + 0x00, /* Max streams for bulk EP = 0 (No streams) */ + 0x00,0x00 /* Service interval for the EP : 0 for bulk */ +}; + + +/* Standard Language ID String Descriptor */ +const uint8_t b200_string_lang_id_desc[] __attribute__ ((aligned (32))) = + { + 0x04, /* Descriptor Size */ + CY_U3P_USB_STRING_DESCR, /* Device Descriptor Type */ + 0x09,0x04 /* Language ID supported */ + }; + + +/* Standard Manufacturer String Descriptor */ +const uint8_t b200_usb_manufacture_desc[] __attribute__ ((aligned (32))) = + { + 0x26, /* Descriptor Size */ + CY_U3P_USB_STRING_DESCR, /* Device Descriptor Type */ + 'E',0x00, + 't',0x00, + 't',0x00, + 'u',0x00, + 's',0x00, + ' ',0x00, + 'R',0x00, + 'e',0x00, + 's',0x00, + 'e',0x00, + 'a',0x00, + 'r',0x00, + 'c',0x00, + 'h',0x00, + ' ',0x00, + 'L',0x00, + 'L',0x00, + 'C',0x00 + }; + + +/* Standard Product String Descriptor */ +const uint8_t b200_usb_product_desc[] __attribute__ ((aligned (32))) = + { + 0x14, /* Descriptor Size */ + CY_U3P_USB_STRING_DESCR, /* Device Descriptor Type */ + 'U',0x00, + 'S',0x00, + 'R',0x00, + 'P',0x00, + ' ',0x00, + 'B',0x00, + '2',0x00, + '0',0x00, + '0',0x00 + }; + +/* Microsoft OS Descriptor. */ +const uint8_t CyFxUsbOSDscr[] __attribute__ ((aligned (32))) = +{ + 0x10, + CY_U3P_USB_STRING_DESCR, + 'O', 0x00, + 'S', 0x00, + ' ', 0x00, + 'D', 0x00, + 'e', 0x00, + 's', 0x00, + 'c', 0x00 +}; + +uint8_t dev_serial[20] __attribute__ ((aligned (32))) = +{ + 0x14, + CY_U3P_USB_STRING_DESCR, + '0', 0x00, + '0', 0x00, + '0', 0x00, + '0', 0x00, + '0', 0x00, + '0', 0x00, + '0', 0x00, + '0', 0x00, + '0', 0x00 +}; + +/* Place this buffer as the last buffer so that no other variable / code shares + * the same cache line. Do not add any other variables / arrays in this file. + * This will lead to variables sharing the same cache line. */ +const uint8_t CyFxUsbDscrAlignBuffer[32] __attribute__ ((aligned (32))); diff --git a/firmware/fx3/b200/b200_vrq.h b/firmware/fx3/b200/b200_vrq.h new file mode 100644 index 000000000..d1f79f0ad --- /dev/null +++ b/firmware/fx3/b200/b200_vrq.h @@ -0,0 +1,21 @@ +// +// Copyright 2013-2014 Ettus Research LLC +// + +/* This file defines b200 vendor requests handlers, version 1 + */ +#ifndef B200_VRQ_H +#define B200_VRQ_H + +uint32_t ad9361_transact_spi(const uint32_t bits); + +// note: for a write instruction bit 7 from byte 0 is set to 1 +#define MAKE_AD9361_WRITE(dest, reg, val) {dest[0] = 0x80 | ((reg >> 8) & 0x3F); \ + dest[1] = reg & 0xFF; \ + dest[2] = val;} +#define MAKE_AD9361_READ(dest, reg) {dest[0] = (reg >> 8) & 0x3F; \ + dest[1] = reg & 0xFF;} + +#endif //B200_VRQ_H + + diff --git a/firmware/fx3/b200/fx3_mem_map.patch b/firmware/fx3/b200/fx3_mem_map.patch new file mode 100644 index 000000000..37d704ace --- /dev/null +++ b/firmware/fx3/b200/fx3_mem_map.patch @@ -0,0 +1,68 @@ +diff -ur 1.2.3-orig/common/cyfxtx.c 1.2.3/common/cyfxtx.c +--- 1.2.3-orig/common/cyfxtx.c 2013-02-07 17:16:54.000000000 -0800 ++++ 1.2.3/common/cyfxtx.c 2014-03-25 16:56:12.484602382 -0700 +@@ -33,7 +33,7 @@ + such as thread stacks and memory for message queues. The Cypress FX3
+ libraries require a Mem heap size of at least 32 KB.
+ */
+-#define CY_U3P_MEM_HEAP_BASE ((uint8_t *)0x40038000)
++#define CY_U3P_MEM_HEAP_BASE ((uint8_t *)0x40044000)
+ #define CY_U3P_MEM_HEAP_SIZE (0x8000)
+
+ /* The last 32 KB of RAM is reserved for 2-stage boot operation. This value can be changed to
+diff -ur 1.2.3-orig/common/fx3.ld 1.2.3/common/fx3.ld +--- 1.2.3-orig/common/fx3.ld 2013-02-07 17:16:54.000000000 -0800 ++++ 1.2.3/common/fx3.ld 2014-03-25 16:59:40.872240377 -0700 +@@ -26,10 +26,11 @@ + The default memory map used for FX3 applications is as follows:
+
+ Descriptor area Base: 0x40000000 Size: 12KB
+- Code area Base: 0x40003000 Size: 180KB
+- Data area Base: 0x40030000 Size: 32KB
+- Driver heap Base: 0x40038000 Size: 32KB (Update cyfxtx.c to change this.)
+- Buffer area Base: 0x40040000 Size: 256KB (Update cyfxtx.c to change this.)
++ Code area Base: 0x40003000 Size: 212KB
++ Data area Base: 0x40038000 Size: 32KB
++ Heap Base: 0x40040000 Size: 16KB
++ Driver heap Base: 0x40044000 Size: 32KB (Update cyfxtx.c to change this.)
++ Buffer area Base: 0x4004C000 Size: 208KB (Update cyfxtx.c to change this.)
+
+ Interrupt handlers to be placed in I-TCM (16KB).
+ The first 256 bytes of ITCM are reserved for Exception Vectors.
+@@ -52,8 +53,8 @@ + MEMORY
+ {
+ I-TCM : ORIGIN = 0x100, LENGTH = 0x3F00
+- SYS_MEM : ORIGIN = 0x40003000 LENGTH = 0x2D000
+- DATA : ORIGIN = 0x40030000 LENGTH = 0x8000
++ SYS_MEM : ORIGIN = 0x40003000 LENGTH = 0x35000
++ DATA : ORIGIN = 0x40038000 LENGTH = 0x8000
+ }
+
+ SECTIONS
+@@ -75,7 +76,7 @@ + _etext = .;
+ } > SYS_MEM
+
+- . = 0x40030000;
++ . = 0x40038000;
+ .data :
+ {
+ _data = .;
+@@ -104,5 +105,16 @@ + } > DATA
+ __exidx_end = .;
+
++ PROVIDE(__exidx_end = __exidx_end);
++
++ . = ALIGN(4);
++ __heap_start = 0x40040000;
++ PROVIDE(__heap_start = __heap_start);
++
++ . = ALIGN(4);
++ __heap_end = 0x40044000;
++ PROVIDE(__heap_end = __heap_end);
++
++ PROVIDE(__heap_size = __heap_end - __heap_start);
+ }
+
diff --git a/firmware/fx3/b200/makefile b/firmware/fx3/b200/makefile new file mode 100644 index 000000000..d693db076 --- /dev/null +++ b/firmware/fx3/b200/makefile @@ -0,0 +1,55 @@ +# +# Copyright 2013-2014 Ettus Research LLC +# + +HEX_OUT = usrp_b200_fw.hex + +all:$(HEX_OUT) + +# Pull in the Cypress SDK files to build the firmware +FX3FWROOT=.. +FX3PFWROOT=../u3p_firmware +include $(FX3FWROOT)/common/fx3_build_config.mak + +ifndef OC + OC = arm-none-eabi-objcopy +endif + +MODULE = b200_main + +SOURCE += $(MODULE).c +SOURCE += b200_usb_descriptors.c +SOURCE += b200_ad9361.c +SOURCE += b200_i2c.c + +INCLUDES = b200_main.h b200_vrq.h b200_gpifconfig.h b200_i2c.h +INCLUDES += ../ad9361/include/ad9361_transaction.h + +INCFLAGS = -I ../ad9361/include + +LDLIBS += \ + "$$ARMGCC_INSTALL_PATH"/arm-none-eabi/lib/libm.a + +C_OBJECT=$(SOURCE:%.c=./%.o) +A_OBJECT=$(SOURCE_ASM:%.S=./%.o) + +EXES = $(MODULE).$(EXEEXT) + +$(MODULE).$(EXEEXT): $(A_OBJECT) $(C_OBJECT) + $(LINK) $(LINKFLAGS) + +$(C_OBJECT) : %.o : %.c $(INCLUDES) + $(COMPILE) $(INCFLAGS) + +$(A_OBJECT) : %.o : %.S + $(ASSEMBLE) + +clean: + rm -f ./$(MODULE).$(EXEEXT) + rm -f ./$(MODULE).map + rm -f ./*.o + +$(HEX_OUT): $(C_OBJECT) $(A_OBJECT) $(EXES) + $(OC) -O ihex $(EXES) $@ + +#[]# diff --git a/firmware/fx3/gpif2_designer/b200_v2.cydsn/b200_v2.cyfx b/firmware/fx3/gpif2_designer/b200_v2.cydsn/b200_v2.cyfx new file mode 100644 index 000000000..3e6eb0719 --- /dev/null +++ b/firmware/fx3/gpif2_designer/b200_v2.cydsn/b200_v2.cyfx @@ -0,0 +1,30 @@ +<?xml version="1.0" encoding="us-ascii"?>
+<CyXmlSerializer>
+<!--This file is machine generated and read. It is not intended to be edited by hand.-->
+<!--Due to this, there is no schema for this file.-->
+<CyGuid_7d237aff-d944-11da-aaba-00164119d63b type_name="CyGpif2Designer.Common.PrjMgmt.Model.CyPrjMgmtGpif2exe" version="2">
+<CyGuid_7d237b00-d944-11da-aaba-00164119d63b type_name="CyGpif2Designer.Common.PrjMgmt.Model.CyPrjMgmtProject" version="1">
+<ProjectDocs>
+<CyGuid_7d237b03-d944-11da-aaba-00164119d63b type_name="CyGpif2Designer.Common.PrjMgmt.Model.CyPrjMgmtItem" name="gpif2model.xml" persistent="./projectfiles/gpif2model.xml" target="7d237b02-d944-11da-aaba-00164119d63b">
+<Hidden v="False" />
+</CyGuid_7d237b03-d944-11da-aaba-00164119d63b>
+<CyGuid_7d237b03-d944-11da-aaba-00164119d63b type_name="CyGpif2Designer.Common.PrjMgmt.Model.CyPrjMgmtItem" name="gpif2view.xml" persistent="./projectfiles/gpif2view.xml" target="7d237b01-d944-11da-aaba-00164119d63b">
+<Hidden v="False" />
+</CyGuid_7d237b03-d944-11da-aaba-00164119d63b>
+<CyGuid_7d237b03-d944-11da-aaba-00164119d63b type_name="CyGpif2Designer.Common.PrjMgmt.Model.CyPrjMgmtItem" name="gpif2timingsimulation.xml" persistent="./projectfiles/gpif2timingsimulation.xml" target="3ad448c6-d155-4f76-a7fb-e760cd8e6feb">
+<Hidden v="False" />
+</CyGuid_7d237b03-d944-11da-aaba-00164119d63b>
+</ProjectDocs>
+<OutputDocs>
+<CyGuid_7d237b03-d944-11da-aaba-00164119d63b type_name="CyGpif2Designer.Common.PrjMgmt.Model.CyPrjMgmtItem" name="cyfxgpif2config.h" persistent="C:\Users\bhilburn\Documents\GPIF II Designer\b200_v2.cydsn\cyfxgpif2config.h" target="7d237afd-d944-11da-aaba-00164119d63b">
+<Hidden v="False" />
+</CyGuid_7d237b03-d944-11da-aaba-00164119d63b>
+</OutputDocs>
+</CyGuid_7d237b00-d944-11da-aaba-00164119d63b>
+<Settings>
+<Setting name="GPIF2_OutputName" value="cyfxgpif2config" />
+<Setting name="GPIF2_OutputLocation" value="C:\Users\bhilburn\Documents\GPIF II Designer\b200_v2.cydsn" />
+<Setting name="GPIF2_Template" value="C:\Program Files\Cypress\GPIFII Designer\inputs\outputtemplates\cygpif2cheadertemplate.tpl" />
+</Settings>
+</CyGuid_7d237aff-d944-11da-aaba-00164119d63b>
+</CyXmlSerializer>
\ No newline at end of file diff --git a/firmware/fx3/gpif2_designer/b200_v2.cydsn/cyfxgpif2config.h b/firmware/fx3/gpif2_designer/b200_v2.cydsn/cyfxgpif2config.h new file mode 100644 index 000000000..d16cdf038 --- /dev/null +++ b/firmware/fx3/gpif2_designer/b200_v2.cydsn/cyfxgpif2config.h @@ -0,0 +1,174 @@ +/*
+ * Project Name: b200_v2.cyfx
+ * Time : 10/23/2013 12:03:48
+ * Device Type: FX3
+ * Project Type: GPIF2
+ *
+ *
+ *
+ *
+ * This is a generated file and should not be modified
+ * This file need to be included only once in the firmware
+ * This file is generated by Gpif2 designer tool version - 1.0.715.0
+ *
+ */
+
+#ifndef _INCLUDED_CYFXGPIF2CONFIG_
+#define _INCLUDED_CYFXGPIF2CONFIG_
+#include "cyu3types.h"
+#include "cyu3gpif.h"
+
+/* Summary
+ Number of states in the state machine
+ */
+#define CY_NUMBER_OF_STATES 6
+
+/* Summary
+ Mapping of user defined state names to state indices
+ */
+#define RESET 0
+#define IDLE 1
+#define READ 2
+#define WRITE 3
+#define SHORT_PKT 4
+#define ZLP 5
+
+
+/* Summary
+ Initial value of early outputs from the state machine.
+ */
+#define ALPHA_RESET 0x8
+
+
+/* Summary
+ Transition function values used in the state machine.
+ */
+uint16_t CyFxGpifTransition[] = {
+ 0x0000, 0x8080, 0x2222, 0x5555, 0x7F7F, 0x1F1F, 0x8888
+};
+
+/* Summary
+ Table containing the transition information for various states.
+ This table has to be stored in the WAVEFORM Registers.
+ This array consists of non-replicated waveform descriptors and acts as a
+ waveform table.
+ */
+CyU3PGpifWaveData CyFxGpifWavedata[] = {
+ {{0x1E086001,0x000100C4,0x80000000},{0x00000000,0x00000000,0x00000000}},
+ {{0x4E080302,0x00000200,0x80000000},{0x00000000,0x00000000,0x00000000}},
+ {{0x1E086001,0x000100C4,0x80000000},{0x4E040704,0x20000200,0xC0100000}},
+ {{0x00000000,0x00000000,0x00000000},{0x00000000,0x00000000,0x00000000}},
+ {{0x00000000,0x00000000,0x00000000},{0x3E738705,0x00000200,0xC0100000}},
+ {{0x00000000,0x00000000,0x00000000},{0x5E002703,0x2001020C,0x80000000}},
+ {{0x00000000,0x00000000,0x00000000},{0x4E040704,0x20000200,0xC0100000}}
+};
+
+/* Summary
+ Table that maps state indices to the descriptor table indices.
+ */
+uint8_t CyFxGpifWavedataPosition[] = {
+ 0,1,0,2,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,
+ 3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,
+ 0,4,0,2,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,
+ 3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,
+ 0,5,0,2,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,
+ 3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,
+ 0,6,0,2,0,0
+};
+
+/* Summary
+ GPIF II configuration register values.
+ */
+uint32_t CyFxGpifRegValue[] = {
+ 0x80000380, /* CY_U3P_PIB_GPIF_CONFIG */
+ 0x000010AC, /* CY_U3P_PIB_GPIF_BUS_CONFIG */
+ 0x01070002, /* CY_U3P_PIB_GPIF_BUS_CONFIG2 */
+ 0x00000044, /* CY_U3P_PIB_GPIF_AD_CONFIG */
+ 0x00000000, /* CY_U3P_PIB_GPIF_STATUS */
+ 0x00000000, /* CY_U3P_PIB_GPIF_INTR */
+ 0x00000000, /* CY_U3P_PIB_GPIF_INTR_MASK */
+ 0x00000082, /* CY_U3P_PIB_GPIF_SERIAL_IN_CONFIG */
+ 0x00000782, /* CY_U3P_PIB_GPIF_SERIAL_OUT_CONFIG */
+ 0x00000500, /* CY_U3P_PIB_GPIF_CTRL_BUS_DIRECTION */
+ 0x0000FFCF, /* CY_U3P_PIB_GPIF_CTRL_BUS_DEFAULT */
+ 0x000000BF, /* CY_U3P_PIB_GPIF_CTRL_BUS_POLARITY */
+ 0x00000000, /* CY_U3P_PIB_GPIF_CTRL_BUS_TOGGLE */
+ 0x00000000, /* CY_U3P_PIB_GPIF_CTRL_BUS_SELECT */
+ 0x00000000, /* CY_U3P_PIB_GPIF_CTRL_BUS_SELECT */
+ 0x00000000, /* CY_U3P_PIB_GPIF_CTRL_BUS_SELECT */
+ 0x00000000, /* CY_U3P_PIB_GPIF_CTRL_BUS_SELECT */
+ 0x00000018, /* CY_U3P_PIB_GPIF_CTRL_BUS_SELECT */
+ 0x00000019, /* CY_U3P_PIB_GPIF_CTRL_BUS_SELECT */
+ 0x00000000, /* CY_U3P_PIB_GPIF_CTRL_BUS_SELECT */
+ 0x00000000, /* CY_U3P_PIB_GPIF_CTRL_BUS_SELECT */
+ 0x00000000, /* CY_U3P_PIB_GPIF_CTRL_BUS_SELECT */
+ 0x00000000, /* CY_U3P_PIB_GPIF_CTRL_BUS_SELECT */
+ 0x00000000, /* CY_U3P_PIB_GPIF_CTRL_BUS_SELECT */
+ 0x00000000, /* CY_U3P_PIB_GPIF_CTRL_BUS_SELECT */
+ 0x00000000, /* CY_U3P_PIB_GPIF_CTRL_BUS_SELECT */
+ 0x00000000, /* CY_U3P_PIB_GPIF_CTRL_BUS_SELECT */
+ 0x00000000, /* CY_U3P_PIB_GPIF_CTRL_BUS_SELECT */
+ 0x00000000, /* CY_U3P_PIB_GPIF_CTRL_BUS_SELECT */
+ 0x00000006, /* CY_U3P_PIB_GPIF_CTRL_COUNT_CONFIG */
+ 0x00000000, /* CY_U3P_PIB_GPIF_CTRL_COUNT_RESET */
+ 0x0000FFFF, /* CY_U3P_PIB_GPIF_CTRL_COUNT_LIMIT */
+ 0x0000010A, /* CY_U3P_PIB_GPIF_ADDR_COUNT_CONFIG */
+ 0x00000000, /* CY_U3P_PIB_GPIF_ADDR_COUNT_RESET */
+ 0x0000FFFF, /* CY_U3P_PIB_GPIF_ADDR_COUNT_LIMIT */
+ 0x00000000, /* CY_U3P_PIB_GPIF_STATE_COUNT_CONFIG */
+ 0x0000FFFF, /* CY_U3P_PIB_GPIF_STATE_COUNT_LIMIT */
+ 0x0000010A, /* CY_U3P_PIB_GPIF_DATA_COUNT_CONFIG */
+ 0x00000000, /* CY_U3P_PIB_GPIF_DATA_COUNT_RESET */
+ 0x0000FFFF, /* CY_U3P_PIB_GPIF_DATA_COUNT_LIMIT */
+ 0x00000000, /* CY_U3P_PIB_GPIF_CTRL_COMP_VALUE */
+ 0x00000000, /* CY_U3P_PIB_GPIF_CTRL_COMP_MASK */
+ 0x00000000, /* CY_U3P_PIB_GPIF_DATA_COMP_VALUE */
+ 0x00000000, /* CY_U3P_PIB_GPIF_DATA_COMP_MASK */
+ 0x00000000, /* CY_U3P_PIB_GPIF_ADDR_COMP_VALUE */
+ 0x00000000, /* CY_U3P_PIB_GPIF_ADDR_COMP_MASK */
+ 0x00000000, /* CY_U3P_PIB_GPIF_DATA_CTRL */
+ 0x00000000, /* CY_U3P_PIB_GPIF_INGRESS_DATA */
+ 0x00000000, /* CY_U3P_PIB_GPIF_INGRESS_DATA */
+ 0x00000000, /* CY_U3P_PIB_GPIF_INGRESS_DATA */
+ 0x00000000, /* CY_U3P_PIB_GPIF_INGRESS_DATA */
+ 0x00000000, /* CY_U3P_PIB_GPIF_EGRESS_DATA */
+ 0x00000000, /* CY_U3P_PIB_GPIF_EGRESS_DATA */
+ 0x00000000, /* CY_U3P_PIB_GPIF_EGRESS_DATA */
+ 0x00000000, /* CY_U3P_PIB_GPIF_EGRESS_DATA */
+ 0x00000000, /* CY_U3P_PIB_GPIF_INGRESS_ADDRESS */
+ 0x00000000, /* CY_U3P_PIB_GPIF_INGRESS_ADDRESS */
+ 0x00000000, /* CY_U3P_PIB_GPIF_INGRESS_ADDRESS */
+ 0x00000000, /* CY_U3P_PIB_GPIF_INGRESS_ADDRESS */
+ 0x00000000, /* CY_U3P_PIB_GPIF_EGRESS_ADDRESS */
+ 0x00000000, /* CY_U3P_PIB_GPIF_EGRESS_ADDRESS */
+ 0x00000000, /* CY_U3P_PIB_GPIF_EGRESS_ADDRESS */
+ 0x00000000, /* CY_U3P_PIB_GPIF_EGRESS_ADDRESS */
+ 0x80010400, /* CY_U3P_PIB_GPIF_THREAD_CONFIG */
+ 0x80010401, /* CY_U3P_PIB_GPIF_THREAD_CONFIG */
+ 0x80010402, /* CY_U3P_PIB_GPIF_THREAD_CONFIG */
+ 0x80010403, /* CY_U3P_PIB_GPIF_THREAD_CONFIG */
+ 0x00000000, /* CY_U3P_PIB_GPIF_LAMBDA_STAT */
+ 0x00000000, /* CY_U3P_PIB_GPIF_ALPHA_STAT */
+ 0x00000000, /* CY_U3P_PIB_GPIF_BETA_STAT */
+ 0x00080000, /* CY_U3P_PIB_GPIF_WAVEFORM_CTRL_STAT */
+ 0x00000000, /* CY_U3P_PIB_GPIF_WAVEFORM_SWITCH */
+ 0x00000000, /* CY_U3P_PIB_GPIF_WAVEFORM_SWITCH_TIMEOUT */
+ 0x00000000, /* CY_U3P_PIB_GPIF_CRC_CONFIG */
+ 0x00000000, /* CY_U3P_PIB_GPIF_CRC_DATA */
+ 0xFFFFFFF1 /* CY_U3P_PIB_GPIF_BETA_DEASSERT */
+};
+
+/* Summary
+ This structure holds all the configuration inputs for the GPIF II.
+ */
+const CyU3PGpifConfig_t CyFxGpifConfig = {
+ (uint16_t)(sizeof(CyFxGpifWavedataPosition)/sizeof(uint8_t)),
+ CyFxGpifWavedata,
+ CyFxGpifWavedataPosition,
+ (uint16_t)(sizeof(CyFxGpifTransition)/sizeof(uint16_t)),
+ CyFxGpifTransition,
+ (uint16_t)(sizeof(CyFxGpifRegValue)/sizeof(uint32_t)),
+ CyFxGpifRegValue
+};
+
+#endif /* _INCLUDED_CYFXGPIF2CONFIG_ */
diff --git a/firmware/fx3/gpif2_designer/b200_v2.cydsn/projectfiles/gpif2model.xml b/firmware/fx3/gpif2_designer/b200_v2.cydsn/projectfiles/gpif2model.xml new file mode 100644 index 000000000..477bad9e7 --- /dev/null +++ b/firmware/fx3/gpif2_designer/b200_v2.cydsn/projectfiles/gpif2model.xml @@ -0,0 +1,140 @@ +<?xml version="1.0" encoding="UTF-8"?>
+<GPIFIIModel version="3">
+ <InterfaceDefination>
+ <InterfaceSetting>
+ <I2SEnabled>False</I2SEnabled>
+ <I2CEnabled>False</I2CEnabled>
+ <SPIEnabled>False</SPIEnabled>
+ <I2SEnabled>False</I2SEnabled>
+ <ADMuxedEnabled>False</ADMuxedEnabled>
+ <InterfaceType>Slave</InterfaceType>
+ <CommunicationType>Synchronous</CommunicationType>
+ <ClockSource>External</ClockSource>
+ <ClockEdge>Positive</ClockEdge>
+ <Endianness>LittleEndian</Endianness>
+ <DataBusWidth>Bit32</DataBusWidth>
+ <AddressBuswidth>2</AddressBuswidth>
+ </InterfaceSetting>
+ </InterfaceDefination>
+ <Signals>
+ <Signal ElementId="INPUT0" SignalType="Input" SpecialFunction="OE">
+ <DisplayName>SLOE</DisplayName>
+ <GPIOPinNumber>GPIO_19</GPIOPinNumber>
+ <Polarity>ActiveLow</Polarity>
+ </Signal>
+ <Signal ElementId="INPUT1" SignalType="Input" SpecialFunction="None">
+ <DisplayName>SLCS</DisplayName>
+ <GPIOPinNumber>GPIO_17</GPIOPinNumber>
+ <Polarity>ActiveLow</Polarity>
+ </Signal>
+ <Signal ElementId="INPUT2" SignalType="Input" SpecialFunction="None">
+ <DisplayName>SLWR</DisplayName>
+ <GPIOPinNumber>GPIO_18</GPIOPinNumber>
+ <Polarity>ActiveLow</Polarity>
+ </Signal>
+ <Signal ElementId="INPUT3" SignalType="Input" SpecialFunction="None">
+ <DisplayName>SLRD</DisplayName>
+ <GPIOPinNumber>GPIO_20</GPIOPinNumber>
+ <Polarity>ActiveLow</Polarity>
+ </Signal>
+ <Signal ElementId="INPUT4" SignalType="Input" SpecialFunction="None">
+ <DisplayName>PKEND</DisplayName>
+ <GPIOPinNumber>GPIO_24</GPIOPinNumber>
+ <Polarity>ActiveLow</Polarity>
+ </Signal>
+ <Signal ElementId="FLAG0" SignalType="Flags" SpecialFunction="None">
+ <DisplayName>FLAG0</DisplayName>
+ <GPIOPinNumber>GPIO_21</GPIOPinNumber>
+ <IntialValue>Low</IntialValue>
+ <Polarity>ActiveLow</Polarity>
+ <Flags>Current_Thread_DMA_Ready</Flags>
+ </Signal>
+ <Signal ElementId="FLAG1" SignalType="Flags" SpecialFunction="None">
+ <DisplayName>FLAG1</DisplayName>
+ <GPIOPinNumber>GPIO_22</GPIOPinNumber>
+ <IntialValue>Low</IntialValue>
+ <Polarity>ActiveLow</Polarity>
+ <Flags>Current_Thread_DMA_WaterMark</Flags>
+ </Signal>
+ </Signals>
+ <StateMachine>
+ <AddressCounter />
+ <DataCounter />
+ <ControlCounter />
+ <AddressComparator />
+ <DataComparator />
+ <ControlComparator />
+ <DRQ />
+ <AddrData />
+ <State ElementId="STARTSTATE1" StateType="StartState">
+ <DisplayName>RESET</DisplayName>
+ <RepeatUntillNextTransition>True</RepeatUntillNextTransition>
+ <RepeatCount>0</RepeatCount>
+ </State>
+ <State ElementId="STATE1" StateType="NormalState">
+ <DisplayName>IDLE</DisplayName>
+ <RepeatUntillNextTransition>True</RepeatUntillNextTransition>
+ <RepeatCount>0</RepeatCount>
+ <Action ElementId="IN_ADDR0" ActionType="IN_ADDR">
+ <SampleAddressType>ThreadSelection</SampleAddressType>
+ <A7Override>DMAAccessAndRegisterAccess</A7Override>
+ </Action>
+ </State>
+ <State ElementId="STATE2" StateType="NormalState">
+ <DisplayName>READ</DisplayName>
+ <RepeatUntillNextTransition>True</RepeatUntillNextTransition>
+ <RepeatCount>0</RepeatCount>
+ <Action ElementId="DR_DATA0" ActionType="DR_DATA">
+ <IsDataCounterConnected>False</IsDataCounterConnected>
+ <DataSourceSink>Socket</DataSourceSink>
+ <ThreadNumber>Thread0</ThreadNumber>
+ <SyncBurstMode>Enable</SyncBurstMode>
+ <DriveNewData>DriveNewData</DriveNewData>
+ <UpdateSource>True</UpdateSource>
+ </Action>
+ </State>
+ <State ElementId="STATE3" StateType="NormalState">
+ <DisplayName>WRITE</DisplayName>
+ <RepeatUntillNextTransition>True</RepeatUntillNextTransition>
+ <RepeatCount>0</RepeatCount>
+ <Action ElementId="IN_DATA0" ActionType="IN_DATA">
+ <DataSourceSink>Socket</DataSourceSink>
+ <ThreadNumber>Thread0</ThreadNumber>
+ <SampleData>True</SampleData>
+ <WriteDataIntoDataSink>True</WriteDataIntoDataSink>
+ </Action>
+ </State>
+ <State ElementId="STATE4" StateType="NormalState">
+ <DisplayName>SHORT_PKT</DisplayName>
+ <RepeatUntillNextTransition>False</RepeatUntillNextTransition>
+ <RepeatCount>0</RepeatCount>
+ <Action ElementId="COMMIT0" ActionType="COMMIT">
+ <ThreadNumber>Thread0</ThreadNumber>
+ </Action>
+ <Action ElementId="IN_DATA0" ActionType="IN_DATA">
+ <DataSourceSink>Socket</DataSourceSink>
+ <ThreadNumber>Thread0</ThreadNumber>
+ <SampleData>True</SampleData>
+ <WriteDataIntoDataSink>True</WriteDataIntoDataSink>
+ </Action>
+ </State>
+ <State ElementId="STATE5" StateType="NormalState">
+ <DisplayName>ZLP</DisplayName>
+ <RepeatUntillNextTransition>False</RepeatUntillNextTransition>
+ <RepeatCount>0</RepeatCount>
+ <Action ElementId="COMMIT0" ActionType="COMMIT">
+ <ThreadNumber>Thread0</ThreadNumber>
+ </Action>
+ </State>
+ <Transition ElementId="TRANSITION1" SourceState="STARTSTATE1" DestinationState="STATE1" Equation="LOGIC_ONE" />
+ <Transition ElementId="TRANSITION2" SourceState="STATE1" DestinationState="STATE2" Equation="SLWR&!SLCS&PKEND&!SLRD&!SLOE" />
+ <Transition ElementId="TRANSITION3" SourceState="STATE1" DestinationState="STATE3" Equation="!SLWR&!SLCS&PKEND&SLRD" />
+ <Transition ElementId="TRANSITION4" SourceState="STATE1" DestinationState="STATE4" Equation="!SLWR&!SLCS&!PKEND&SLRD" />
+ <Transition ElementId="TRANSITION5" SourceState="STATE1" DestinationState="STATE5" Equation="SLWR&!SLCS&!PKEND&SLRD" />
+ <Transition ElementId="TRANSITION6" SourceState="STATE5" DestinationState="STATE1" Equation="PKEND" />
+ <Transition ElementId="TRANSITION7" SourceState="STATE2" DestinationState="STATE1" Equation="SLRD|SLCS|SLOE" />
+ <Transition ElementId="TRANSITION8" SourceState="STATE3" DestinationState="STATE1" Equation="(PKEND&SLWR)|SLCS" />
+ <Transition ElementId="TRANSITION9" SourceState="STATE3" DestinationState="STATE4" Equation="!SLWR&!PKEND" />
+ <Transition ElementId="TRANSITION10" SourceState="STATE4" DestinationState="STATE1" Equation="PKEND|SLCS|SLWR" />
+ </StateMachine>
+</GPIFIIModel>
\ No newline at end of file diff --git a/firmware/fx3/gpif2_designer/b200_v2.cydsn/projectfiles/gpif2timingsimulation.xml b/firmware/fx3/gpif2_designer/b200_v2.cydsn/projectfiles/gpif2timingsimulation.xml new file mode 100644 index 000000000..e6b10027b --- /dev/null +++ b/firmware/fx3/gpif2_designer/b200_v2.cydsn/projectfiles/gpif2timingsimulation.xml @@ -0,0 +1,49 @@ +<?xml version="1.0" encoding="UTF-8"?>
+<GPIFIITimingSimulation version="1">
+ <Clock>100</Clock>
+ <BufferSize>512</BufferSize>
+ <WaterMark>0</WaterMark>
+ <Scenario Name="Read" CurrentThread="Thread0">
+ <State StateId="STARTSTATE1" WaitNumber="0" />
+ <State StateId="STATE1" WaitNumber="0" />
+ <State StateId="STATE2" WaitNumber="0" />
+ <State StateId="STATE1" WaitNumber="0" />
+ </Scenario>
+ <Scenario Name="Write" CurrentThread="Thread0">
+ <State StateId="STARTSTATE1" WaitNumber="0" />
+ <State StateId="STATE1" WaitNumber="0" />
+ <State StateId="STATE3" WaitNumber="0" />
+ <State StateId="STATE1" WaitNumber="0" />
+ </Scenario>
+ <Scenario Name="BurstRead" CurrentThread="Thread0">
+ <State StateId="STARTSTATE1" WaitNumber="0" />
+ <State StateId="STATE1" WaitNumber="0" />
+ <State StateId="STATE2" WaitNumber="0" />
+ <State StateId="STATE2" WaitNumber="0" />
+ <State StateId="STATE2" WaitNumber="0" />
+ <State StateId="STATE2" WaitNumber="0" />
+ <State StateId="STATE1" WaitNumber="0" />
+ </Scenario>
+ <Scenario Name="BurstWrite" CurrentThread="Thread0">
+ <State StateId="STARTSTATE1" WaitNumber="0" />
+ <State StateId="STATE1" WaitNumber="0" />
+ <State StateId="STATE3" WaitNumber="0" />
+ <State StateId="STATE3" WaitNumber="0" />
+ <State StateId="STATE3" WaitNumber="0" />
+ <State StateId="STATE3" WaitNumber="0" />
+ <State StateId="STATE3" WaitNumber="0" />
+ <State StateId="STATE1" WaitNumber="0" />
+ </Scenario>
+ <Scenario Name="ShortPkt" CurrentThread="Thread0">
+ <State StateId="STARTSTATE1" WaitNumber="0" />
+ <State StateId="STATE1" WaitNumber="0" />
+ <State StateId="STATE4" WaitNumber="0" />
+ <State StateId="STATE1" WaitNumber="0" />
+ </Scenario>
+ <Scenario Name="ZLP" CurrentThread="Thread0">
+ <State StateId="STARTSTATE1" WaitNumber="0" />
+ <State StateId="STATE1" WaitNumber="0" />
+ <State StateId="STATE5" WaitNumber="0" />
+ <State StateId="STATE1" WaitNumber="0" />
+ </Scenario>
+</GPIFIITimingSimulation>
\ No newline at end of file diff --git a/firmware/fx3/gpif2_designer/b200_v2.cydsn/projectfiles/gpif2view.xml b/firmware/fx3/gpif2_designer/b200_v2.cydsn/projectfiles/gpif2view.xml new file mode 100644 index 000000000..730be04ab --- /dev/null +++ b/firmware/fx3/gpif2_designer/b200_v2.cydsn/projectfiles/gpif2view.xml @@ -0,0 +1,183 @@ +<?xml version="1.0" encoding="UTF-8"?>
+<Root version="4">
+ <CyStates>
+ <CyNormalState>
+ <Left>363</Left>
+ <Top>96.4466666666667</Top>
+ <Width>83</Width>
+ <Height>70</Height>
+ <Name>STATE1</Name>
+ <DisplayName>IDLE</DisplayName>
+ <zIndex>1</zIndex>
+ <IsGroup>False</IsGroup>
+ <ParentID>00000000-0000-0000-0000-000000000000</ParentID>
+ </CyNormalState>
+ <CyNormalState>
+ <Left>237</Left>
+ <Top>390.446666666667</Top>
+ <Width>83</Width>
+ <Height>70</Height>
+ <Name>STATE2</Name>
+ <DisplayName>READ</DisplayName>
+ <zIndex>1</zIndex>
+ <IsGroup>False</IsGroup>
+ <ParentID>00000000-0000-0000-0000-000000000000</ParentID>
+ </CyNormalState>
+ <CyNormalState>
+ <Left>551</Left>
+ <Top>379.446666666667</Top>
+ <Width>83</Width>
+ <Height>70</Height>
+ <Name>STATE3</Name>
+ <DisplayName>WRITE</DisplayName>
+ <zIndex>1</zIndex>
+ <IsGroup>False</IsGroup>
+ <ParentID>00000000-0000-0000-0000-000000000000</ParentID>
+ </CyNormalState>
+ <CyNormalState>
+ <Left>773</Left>
+ <Top>233.446666666667</Top>
+ <Width>83</Width>
+ <Height>70</Height>
+ <Name>STATE4</Name>
+ <DisplayName>SHORT_PKT</DisplayName>
+ <zIndex>1</zIndex>
+ <IsGroup>False</IsGroup>
+ <ParentID>00000000-0000-0000-0000-000000000000</ParentID>
+ </CyNormalState>
+ <CyNormalState>
+ <Left>11</Left>
+ <Top>196.446666666667</Top>
+ <Width>83</Width>
+ <Height>70</Height>
+ <Name>STATE5</Name>
+ <DisplayName>ZLP</DisplayName>
+ <zIndex>1</zIndex>
+ <IsGroup>False</IsGroup>
+ <ParentID>00000000-0000-0000-0000-000000000000</ParentID>
+ </CyNormalState>
+ <CyStartState>
+ <Left>29</Left>
+ <Top>18.4466666666667</Top>
+ <Width>83</Width>
+ <Height>70</Height>
+ <Name>STARTSTATE1</Name>
+ <DisplayName>RESET</DisplayName>
+ <zIndex>1</zIndex>
+ <IsGroup>False</IsGroup>
+ <ParentID>00000000-0000-0000-0000-000000000000</ParentID>
+ </CyStartState>
+ </CyStates>
+ <CyTransitions>
+ <CyTransition>
+ <Name>TRANSITION1</Name>
+ <TransitionEquation>LOGIC_ONE</TransitionEquation>
+ <SourceName>STARTSTATE1</SourceName>
+ <SinkName>STATE1</SinkName>
+ <SourceConnectorName>Connector</SourceConnectorName>
+ <SinkConnectorName>Connector</SinkConnectorName>
+ <SourceArrowSymbol>None</SourceArrowSymbol>
+ <SinkArrowSymbol>Arrow</SinkArrowSymbol>
+ <zIndex>0</zIndex>
+ </CyTransition>
+ <CyTransition>
+ <Name>TRANSITION2</Name>
+ <TransitionEquation>SLWR&!SLCS&PKEND&!SLRD&!SLOE</TransitionEquation>
+ <SourceName>STATE1</SourceName>
+ <SinkName>STATE2</SinkName>
+ <SourceConnectorName>Connector</SourceConnectorName>
+ <SinkConnectorName>Connector</SinkConnectorName>
+ <SourceArrowSymbol>None</SourceArrowSymbol>
+ <SinkArrowSymbol>Arrow</SinkArrowSymbol>
+ <zIndex>0</zIndex>
+ </CyTransition>
+ <CyTransition>
+ <Name>TRANSITION3</Name>
+ <TransitionEquation>!SLWR&!SLCS&PKEND&SLRD</TransitionEquation>
+ <SourceName>STATE1</SourceName>
+ <SinkName>STATE3</SinkName>
+ <SourceConnectorName>Connector</SourceConnectorName>
+ <SinkConnectorName>Connector</SinkConnectorName>
+ <SourceArrowSymbol>None</SourceArrowSymbol>
+ <SinkArrowSymbol>Arrow</SinkArrowSymbol>
+ <zIndex>0</zIndex>
+ </CyTransition>
+ <CyTransition>
+ <Name>TRANSITION4</Name>
+ <TransitionEquation>!SLWR&!SLCS&!PKEND&SLRD</TransitionEquation>
+ <SourceName>STATE1</SourceName>
+ <SinkName>STATE4</SinkName>
+ <SourceConnectorName>Connector</SourceConnectorName>
+ <SinkConnectorName>Connector</SinkConnectorName>
+ <SourceArrowSymbol>None</SourceArrowSymbol>
+ <SinkArrowSymbol>Arrow</SinkArrowSymbol>
+ <zIndex>0</zIndex>
+ </CyTransition>
+ <CyTransition>
+ <Name>TRANSITION5</Name>
+ <TransitionEquation>SLWR&!SLCS&!PKEND&SLRD</TransitionEquation>
+ <SourceName>STATE1</SourceName>
+ <SinkName>STATE5</SinkName>
+ <SourceConnectorName>Connector</SourceConnectorName>
+ <SinkConnectorName>Connector</SinkConnectorName>
+ <SourceArrowSymbol>None</SourceArrowSymbol>
+ <SinkArrowSymbol>Arrow</SinkArrowSymbol>
+ <zIndex>0</zIndex>
+ </CyTransition>
+ <CyTransition>
+ <Name>TRANSITION6</Name>
+ <TransitionEquation>PKEND</TransitionEquation>
+ <SourceName>STATE5</SourceName>
+ <SinkName>STATE1</SinkName>
+ <SourceConnectorName>Connector</SourceConnectorName>
+ <SinkConnectorName>Connector</SinkConnectorName>
+ <SourceArrowSymbol>None</SourceArrowSymbol>
+ <SinkArrowSymbol>Arrow</SinkArrowSymbol>
+ <zIndex>0</zIndex>
+ </CyTransition>
+ <CyTransition>
+ <Name>TRANSITION7</Name>
+ <TransitionEquation>SLRD|SLCS|SLOE</TransitionEquation>
+ <SourceName>STATE2</SourceName>
+ <SinkName>STATE1</SinkName>
+ <SourceConnectorName>Connector</SourceConnectorName>
+ <SinkConnectorName>Connector</SinkConnectorName>
+ <SourceArrowSymbol>None</SourceArrowSymbol>
+ <SinkArrowSymbol>Arrow</SinkArrowSymbol>
+ <zIndex>0</zIndex>
+ </CyTransition>
+ <CyTransition>
+ <Name>TRANSITION8</Name>
+ <TransitionEquation>(PKEND&SLWR)|SLCS</TransitionEquation>
+ <SourceName>STATE3</SourceName>
+ <SinkName>STATE1</SinkName>
+ <SourceConnectorName>Connector</SourceConnectorName>
+ <SinkConnectorName>Connector</SinkConnectorName>
+ <SourceArrowSymbol>None</SourceArrowSymbol>
+ <SinkArrowSymbol>Arrow</SinkArrowSymbol>
+ <zIndex>0</zIndex>
+ </CyTransition>
+ <CyTransition>
+ <Name>TRANSITION9</Name>
+ <TransitionEquation>!SLWR&!PKEND</TransitionEquation>
+ <SourceName>STATE3</SourceName>
+ <SinkName>STATE4</SinkName>
+ <SourceConnectorName>Connector</SourceConnectorName>
+ <SinkConnectorName>Connector</SinkConnectorName>
+ <SourceArrowSymbol>None</SourceArrowSymbol>
+ <SinkArrowSymbol>Arrow</SinkArrowSymbol>
+ <zIndex>0</zIndex>
+ </CyTransition>
+ <CyTransition>
+ <Name>TRANSITION10</Name>
+ <TransitionEquation>PKEND|SLCS|SLWR</TransitionEquation>
+ <SourceName>STATE4</SourceName>
+ <SinkName>STATE1</SinkName>
+ <SourceConnectorName>Connector</SourceConnectorName>
+ <SinkConnectorName>Connector</SinkConnectorName>
+ <SourceArrowSymbol>None</SourceArrowSymbol>
+ <SinkArrowSymbol>Arrow</SinkArrowSymbol>
+ <zIndex>0</zIndex>
+ </CyTransition>
+ </CyTransitions>
+</Root>
\ No newline at end of file diff --git a/host/examples/test_dboard_coercion.cpp b/host/examples/test_dboard_coercion.cpp index 86c59d9d7..e23390506 100644 --- a/host/examples/test_dboard_coercion.cpp +++ b/host/examples/test_dboard_coercion.cpp @@ -1,5 +1,5 @@ // -// Copyright 2012 Ettus Research LLC +// Copyright 2012,2014 Ettus Research LLC // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by @@ -24,81 +24,95 @@ #include <boost/math/special_functions/round.hpp> #include <iostream> #include <complex> +#include <utility> #include <vector> +#define SAMP_RATE 1e6 + namespace po = boost::program_options; +typedef std::pair<double, double> double_pair; //BOOST_FOREACH doesn't like commas +typedef std::vector<std::pair<double, double> > pair_vector; + /************************************************************************ * Misc functions ************************************************************************/ -std::string return_MHz_string(double freq){ +std::string MHz_str(double freq){ std::string nice_string = std::string(str(boost::format("%5.2f MHz") % (freq / 1e6))); return nice_string; } -std::string return_USRP_config_string(uhd::usrp::multi_usrp::sptr usrp, bool test_tx, bool test_rx){ - uhd::dict<std::string, std::string> tx_info = usrp->get_usrp_tx_info(); - uhd::dict<std::string, std::string> rx_info = usrp->get_usrp_rx_info(); +std::string return_usrp_config_string(uhd::usrp::multi_usrp::sptr usrp, int chan, bool test_tx, bool test_rx, bool is_b2xx){ + uhd::dict<std::string, std::string> tx_info = usrp->get_usrp_tx_info(chan); + uhd::dict<std::string, std::string> rx_info = usrp->get_usrp_rx_info(chan); std::string info_string; std::string mboard_id, mboard_serial; std::string tx_serial, tx_subdev_name, tx_subdev_spec; std::string rx_serial, rx_subdev_name, rx_subdev_spec; mboard_id = tx_info.get("mboard_id"); - if(tx_info.get("mboard_serial") != "") mboard_serial = tx_info.get("mboard_serial"); - else mboard_serial = "no serial"; + if(tx_info.get("mboard_serial") == "") mboard_serial = "no serial"; + else mboard_serial = tx_info.get("mboard_serial"); - info_string = std::string(str(boost::format("Motherboard: %s (%s)\n") % mboard_id % mboard_serial)); + info_string = str(boost::format("Motherboard: %s (%s)\n") % mboard_id % mboard_serial); if(test_tx){ - if(tx_info.get("tx_serial") != "") tx_serial = tx_info.get("tx_serial"); - else tx_serial = "no serial"; + if(tx_info.get("tx_serial") == "") tx_serial = "no serial"; + else tx_serial = tx_info.get("tx_serial"); tx_subdev_name = tx_info.get("tx_subdev_name"); tx_subdev_spec = tx_info.get("tx_subdev_spec"); - info_string += std::string(str(boost::format("TX: %s (%s, %s)") % tx_subdev_name % tx_serial % tx_subdev_spec)); + info_string += is_b2xx ? str(boost::format("TX: %s (%s)") + % tx_subdev_name % tx_subdev_spec) + : str(boost::format("TX: %s (%s, %s)") + % tx_subdev_name % tx_serial % tx_subdev_spec); } if(test_tx and test_rx) info_string += "\n"; if(test_rx){ - if(rx_info.get("rx_serial") != "") rx_serial = rx_info.get("rx_serial"); - else rx_serial = "no serial"; + if(rx_info.get("rx_serial") == "") rx_serial = "no serial"; + else rx_serial = rx_info.get("rx_serial"); rx_subdev_name = rx_info.get("rx_subdev_name"); rx_subdev_spec = rx_info.get("rx_subdev_spec"); - info_string += std::string(str(boost::format("RX: %s (%s, %s)") % rx_subdev_name % rx_serial % rx_subdev_spec)); + info_string += is_b2xx ? str(boost::format("RX: %s (%s)") + % rx_subdev_name % rx_subdev_spec) + : str(boost::format("RX: %s (%s, %s)") + % rx_subdev_name % rx_serial % rx_subdev_spec); } return info_string; } -/************************************************************************ - * TX Frequency/Gain Coercion -************************************************************************/ +std::string coercion_test(uhd::usrp::multi_usrp::sptr usrp, std::string type, int chan, + bool test_gain, double freq_step, double gain_step, bool verbose){ -std::string tx_test(uhd::usrp::multi_usrp::sptr usrp, bool test_gain, bool verbose){ + //Getting USRP info + uhd::dict<std::string, std::string> usrp_info = (type == "TX") ? usrp->get_usrp_tx_info(chan) + : usrp->get_usrp_rx_info(chan); + std::string subdev_name = (type == "TX") ? usrp_info.get("tx_subdev_name") + : usrp_info.get("rx_subdev_name"); + std::string subdev_spec = (type == "TX") ? usrp_info.get("tx_subdev_spec") + : usrp_info.get("rx_subdev_spec"); //Establish frequency range - std::vector<double> freqs; - std::vector<double> xcvr_freqs; + std::vector<double> xcvr_freqs; //XCVR2450 has two ranges + uhd::freq_range_t freq_ranges = (type == "TX") ? usrp->get_fe_tx_freq_range(chan) + : usrp->get_fe_rx_freq_range(chan); + + std::cout << boost::format("\nTesting %s coercion...") % type << std::endl; - BOOST_FOREACH(const uhd::range_t &range, usrp->get_fe_tx_freq_range()){ + BOOST_FOREACH(const uhd::range_t &range, freq_ranges){ double freq_begin = range.start(); double freq_end = range.stop(); - double freq_step; - if(usrp->get_usrp_tx_info().get("tx_subdev_name") == "XCVR2450 TX"){ + if(subdev_name.find("XCVR2450") == 0){ xcvr_freqs.push_back(freq_begin); xcvr_freqs.push_back(freq_end); } - if(freq_end - freq_begin > 1000e6) freq_step = 100e6; - else if(freq_end - freq_begin < 300e6) freq_step = 10e6; - else freq_step = 50e6; - double current_freq = freq_begin; - while(current_freq < freq_end){ freqs.push_back(current_freq); current_freq += freq_step; @@ -109,55 +123,66 @@ std::string tx_test(uhd::usrp::multi_usrp::sptr usrp, bool test_gain, bool verbo std::vector<double> gains; if(test_gain){ - //Establish gain range + uhd::gain_range_t gain_range = (type == "TX") ? usrp->get_tx_gain_range(chan) + : usrp->get_rx_gain_range(chan); - double gain_begin = usrp->get_tx_gain_range().start(); + double gain_begin = gain_range.start(); + //Start gain at 0 if range begins negative if(gain_begin < 0.0) gain_begin = 0.0; - double gain_end = usrp->get_tx_gain_range().stop(); + + double gain_end = gain_range.stop(); double current_gain = gain_begin; while(current_gain < gain_end){ gains.push_back(current_gain); - current_gain++; + current_gain += gain_step; } gains.push_back(gain_end); - } //Establish error-storing variables - std::vector<double> bad_tune_freqs; std::vector<double> no_lock_freqs; - std::vector< std::vector< double > > bad_gain_vals; - std::vector<std::string> dboard_sensor_names = usrp->get_tx_sensor_names(); + pair_vector bad_gain_vals; + + //Sensor names + std::vector<std::string> dboard_sensor_names = (type == "TX") ? usrp->get_tx_sensor_names(chan) + : usrp->get_rx_sensor_names(chan); std::vector<std::string> mboard_sensor_names = usrp->get_mboard_sensor_names(); + bool has_sensor = (std::find(dboard_sensor_names.begin(), dboard_sensor_names.end(), "lo_locked")) != dboard_sensor_names.end(); - for(std::vector<double>::iterator f = freqs.begin(); f != freqs.end(); ++f){ + BOOST_FOREACH(double freq, freqs){ //Testing for successful frequency tune + if(type == "TX") usrp->set_tx_freq(freq,chan); + else usrp->set_rx_freq(freq,chan); - usrp->set_tx_freq(*f); boost::this_thread::sleep(boost::posix_time::microseconds(long(1000))); + double actual_freq = (type == "TX") ? usrp->get_tx_freq(chan) + : usrp->get_rx_freq(chan); - double actual_freq = usrp->get_tx_freq(); - - if(*f == 0.0){ + if(freq == 0.0){ if(floor(actual_freq + 0.5) == 0.0){ - if(verbose) std::cout << boost::format("\nTX frequency successfully tuned to %s.") % return_MHz_string(*f) << std::endl; + if(verbose) std::cout << boost::format("\n%s frequency successfully tuned to %s.") + % type % MHz_str(freq) << std::endl; } else{ - if(verbose) std::cout << boost::format("\nTX frequency tuned to %s instead of %s.") % return_MHz_string(actual_freq) % return_MHz_string(*f) << std::endl; + if(verbose) std::cout << boost::format("\n%s frequency tuned to %s instead of %s.") + % type % MHz_str(actual_freq) % MHz_str(freq) << std::endl; + bad_tune_freqs.push_back(freq); } } else{ - if((*f / actual_freq > 0.9999) and (*f / actual_freq < 1.0001)){ - if(verbose) std::cout << boost::format("\nTX frequency successfully tuned to %s.") % return_MHz_string(*f) << std::endl; + if((freq / actual_freq > 0.9999) and (freq / actual_freq < 1.0001)){ + if(verbose) std::cout << boost::format("\n%s frequency successfully tuned to %s.") + % type % MHz_str(freq) << std::endl; } else{ - if(verbose) std::cout << boost::format("\nTX frequency tuned to %s instead of %s.") % return_MHz_string(actual_freq) % return_MHz_string(*f) << std::endl; - bad_tune_freqs.push_back(*f); + if(verbose) std::cout << boost::format("\n%s frequency tuned to %s instead of %s.") + % type % MHz_str(actual_freq) % MHz_str(freq) << std::endl; + bad_tune_freqs.push_back(freq); } } @@ -173,11 +198,13 @@ std::string tx_test(uhd::usrp::multi_usrp::sptr usrp, bool test_gain, bool verbo } } if(is_locked){ - if(verbose) std::cout << boost::format("LO successfully locked at TX frequency %s.") % return_MHz_string(*f) << std::endl; + if(verbose) std::cout << boost::format("LO successfully locked at %s frequency %s.") + % type % MHz_str(freq) << std::endl; } else{ - if(verbose) std::cout << boost::format("LO did not successfully lock at TX frequency %s.") % return_MHz_string(*f) << std::endl; - no_lock_freqs.push_back(*f); + if(verbose) std::cout << boost::format("LO did not successfully lock at %s frequency %s.") + % type % MHz_str(freq) << std::endl; + no_lock_freqs.push_back(freq); } } @@ -185,275 +212,101 @@ std::string tx_test(uhd::usrp::multi_usrp::sptr usrp, bool test_gain, bool verbo //Testing for successful gain tune - for(std::vector<double>::iterator g = gains.begin(); g != gains.end(); ++g){ - usrp->set_tx_gain(*g); + BOOST_FOREACH(double gain, gains){ + if(type == "TX") usrp->set_tx_gain(gain,chan); + else usrp->set_rx_gain(gain,chan); + boost::this_thread::sleep(boost::posix_time::microseconds(1000)); - double actual_gain = usrp->get_tx_gain(); + double actual_gain = (type == "TX") ? usrp->get_tx_gain(chan) + : usrp->get_rx_gain(chan); - if(*g == 0.0){ + if(gain == 0.0){ if(actual_gain == 0.0){ - if(verbose) std::cout << boost::format("TX gain successfully set to %5.2f at TX frequency %s.") % *g % return_MHz_string(*f) << std::endl; + if(verbose) std::cout << boost::format("Gain successfully set to %5.2f at %s frequency %s.") + % gain % type % MHz_str(freq) << std::endl; } else{ - if(verbose) std::cout << boost::format("TX gain set to %5.2f instead of %5.2f at TX frequency %s.") % actual_gain % *g % return_MHz_string(*f) << std::endl; - std::vector<double> bad_gain_freq; - bad_gain_freq.push_back(*f); - bad_gain_freq.push_back(*g); - bad_gain_vals.push_back(bad_gain_freq); + if(verbose) std::cout << boost::format("Gain set to %5.2f instead of %5.2f at %s frequency %s.") + % actual_gain % gain % type % MHz_str(freq) << std::endl; + bad_gain_vals.push_back(std::make_pair(freq, gain)); } } else{ - if((*g / actual_gain) > 0.9 and (*g / actual_gain) < 1.1){ - if(verbose) std::cout << boost::format("TX gain successfully set to %5.2f at TX frequency %s.") % *g % return_MHz_string(*f) << std::endl; + if((gain / actual_gain) > 0.9999 and (gain / actual_gain) < 1.0001){ + if(verbose) std::cout << boost::format("Gain successfully set to %5.2f at %s frequency %s.") + % gain % type % MHz_str(freq) << std::endl; } else{ - if(verbose) std::cout << boost::format("TX gain set to %5.2f instead of %5.2f at TX frequency %s.") % actual_gain % *g % return_MHz_string(*f) << std::endl; - std::vector<double> bad_gain_freq; - bad_gain_freq.push_back(*f); - bad_gain_freq.push_back(*g); - bad_gain_vals.push_back(bad_gain_freq); + if(verbose) std::cout << boost::format("Gain set to %5.2f instead of %5.2f at %s frequency %s.") + % actual_gain % gain % type % MHz_str(freq) << std::endl; + bad_gain_vals.push_back(std::make_pair(freq, gain)); } } } } } - std::string tx_results = "TX Summary:\n"; - if(usrp->get_usrp_tx_info().get("tx_subdev_name") == "XCVR2450 TX"){ - tx_results += std::string(str(boost::format("Frequency Range: %s - %s, %s - %s\n") % return_MHz_string(xcvr_freqs.at(0)) % return_MHz_string(xcvr_freqs.at(1)) % - return_MHz_string(xcvr_freqs.at(2)) % return_MHz_string(xcvr_freqs.at(3)))); + std::string results = str(boost::format("%s Summary:\n") % type); + if(subdev_name.find("XCVR2450") == 0){ + results += str(boost::format("Frequency Range: %s - %s, %s - %s\n") + % MHz_str(xcvr_freqs[0]) % MHz_str(xcvr_freqs[1]) + % MHz_str(xcvr_freqs[2]) % MHz_str(xcvr_freqs[3])); + } + else results += str(boost::format("Frequency Range: %s - %s (Step: %s)\n") + % MHz_str(freqs.front()) % MHz_str(freqs.back()) % MHz_str(freq_step)); + if(test_gain) results += str(boost::format("Gain Range:%5.2f - %5.2f (Step:%5.2f)\n") + % gains.front() % gains.back() % gain_step); + + if(bad_tune_freqs.empty()) results += "USRP successfully tuned to all frequencies."; + else if(bad_tune_freqs.size() > 10 and not verbose){ + //If tuning fails at many values, don't print them all + results += str(boost::format("USRP did not successfully tune at %d frequencies.") + % bad_tune_freqs.size()); } - else tx_results += std::string(str(boost::format("Frequency Range: %s - %s\n") % return_MHz_string(freqs.front()) % return_MHz_string(freqs.back()))); - if(test_gain) tx_results += std::string(str(boost::format("Gain Range: %5.2f - %5.2f\n") % gains.front() % gains.back())); - - if(bad_tune_freqs.empty()) tx_results += "USRP successfully tuned to all frequencies."; else{ - tx_results += "USRP did not successfully tune to the following frequencies: "; - for(std::vector<double>::iterator i = bad_tune_freqs.begin(); i != bad_tune_freqs.end(); ++i){ - if(i != bad_tune_freqs.begin()) tx_results += ", "; - tx_results += return_MHz_string(*i); + results += "USRP did not successfully tune to the following frequencies: "; + BOOST_FOREACH(double bad_freq, bad_tune_freqs){ + if(bad_freq != *bad_tune_freqs.begin()) results += ", "; + results += MHz_str(bad_freq); } } if(has_sensor){ - tx_results += "\n"; - if(no_lock_freqs.empty()) tx_results += "LO successfully locked at all frequencies."; - else{ - tx_results += "LO did not lock at the following frequencies: "; - for(std::vector<double>::iterator i = no_lock_freqs.begin(); i != no_lock_freqs.end(); ++i){ - if(i != no_lock_freqs.begin()) tx_results += ", "; - tx_results += return_MHz_string(*i); - } + results += "\n"; + if(no_lock_freqs.empty()) results += "LO successfully locked at all frequencies."; + else if(no_lock_freqs.size() > 10 and not verbose){ + //If locking fails at many values, don't print them all + results += str(boost::format("USRP did not successfully lock at %d frequencies.") + % no_lock_freqs.size()); } - } - if(test_gain){ - tx_results += "\n"; - if(bad_gain_vals.empty()) tx_results += "USRP successfully set all specified gain values at all frequencies."; else{ - tx_results += "USRP did not successfully set gain under the following circumstances:"; - for(std::vector< std::vector<double> >::iterator i = bad_gain_vals.begin(); i != bad_gain_vals.end(); ++i){ - std::vector<double> bad_pair = *i; - double bad_freq = bad_pair.front(); - double bad_gain = bad_pair.back(); - tx_results += std::string(str(boost::format("\nFrequency: %s, Gain: %5.2f") % return_MHz_string(bad_freq) % bad_gain)); + results += "LO did not lock at the following frequencies: "; + BOOST_FOREACH(double bad_freq, no_lock_freqs){ + if(bad_freq != *no_lock_freqs.begin()) results += ", "; + results += MHz_str(bad_freq); } } } - - return tx_results; -} - -/************************************************************************ - * RX Frequency/Gain Coercion -************************************************************************/ - -std::string rx_test(uhd::usrp::multi_usrp::sptr usrp, bool test_gain, bool verbose){ - - //Establish frequency range - - std::vector<double> freqs; - std::vector<double> xcvr_freqs; - - BOOST_FOREACH(const uhd::range_t &range, usrp->get_fe_rx_freq_range()){ - double freq_begin = range.start(); - double freq_end = range.stop(); - - if(usrp->get_usrp_rx_info().get("rx_subdev_name") == "XCVR2450 RX"){ - xcvr_freqs.push_back(freq_begin); - xcvr_freqs.push_back(freq_end); - } - - double freq_step; - - if(freq_end - freq_begin > 1000e6) freq_step = 100e6; - else if(freq_end - freq_begin < 300e6) freq_step = 10e6; - else freq_step = 50e6; - - double current_freq = freq_begin; - - while(current_freq < freq_end){ - freqs.push_back(current_freq); - current_freq += freq_step; - } - } - - std::vector<double> gains; - if(test_gain){ - - //Establish gain range - - double gain_begin = usrp->get_rx_gain_range().start(); - if(gain_begin < 0.0) gain_begin = 0.0; - double gain_end = usrp->get_rx_gain_range().stop(); - - double current_gain = gain_begin; - while(current_gain < gain_end){ - gains.push_back(current_gain); - current_gain++; - } - gains.push_back(gain_end); - - } - - //Establish error-storing variables - - std::vector<double> bad_tune_freqs; - std::vector<double> no_lock_freqs; - std::vector< std::vector< double > > bad_gain_vals; - std::vector<std::string> dboard_sensor_names = usrp->get_rx_sensor_names(); - std::vector<std::string> mboard_sensor_names = usrp->get_mboard_sensor_names(); - bool has_sensor = (std::find(dboard_sensor_names.begin(), dboard_sensor_names.end(), "lo_locked")) != dboard_sensor_names.end(); - - for(std::vector<double>::iterator f = freqs.begin(); f != freqs.end(); ++f){ - - //Testing for successful frequency tune - - usrp->set_rx_freq(*f); - boost::this_thread::sleep(boost::posix_time::microseconds(long(1000))); - - double actual_freq = usrp->get_rx_freq(); - - if(*f == 0.0){ - if(floor(actual_freq + 0.5) == 0.0){ - if(verbose) std::cout << boost::format("\nRX frequency successfully tuned to %s.") % return_MHz_string(*f) << std::endl; - } - else{ - if(verbose) std::cout << boost::format("\nRX frequency tuned to %s instead of %s.") % return_MHz_string(actual_freq) % return_MHz_string(*f) << std::endl; - } + results += "\n"; + if(bad_gain_vals.empty()) results += "USRP successfully set all specified gain values at all frequencies."; + else if(bad_gain_vals.size() > 10 and not verbose){ + //If gain fails at many values, don't print them all + results += str(boost::format("USRP did not successfully set gain at %d values.") + % bad_gain_vals.size()); } else{ - if((*f / actual_freq > 0.9999) and (*f / actual_freq < 1.0001)){ - if(verbose) std::cout << boost::format("\nRX frequency successfully tuned to %s.") % return_MHz_string(*f) << std::endl; - } - else{ - if(verbose) std::cout << boost::format("\nRX frequency tuned to %s instead of %s.") % return_MHz_string(actual_freq) % return_MHz_string(*f) << std::endl; - bad_tune_freqs.push_back(*f); - } - } - - //Testing for successful lock - - if(has_sensor){ - bool is_locked = false; - for(int i = 0; i < 1000; i++){ - boost::this_thread::sleep(boost::posix_time::microseconds(1000)); - if(usrp->get_rx_sensor("lo_locked",0).to_bool()){ - is_locked = true; - break; - } - } - if(is_locked){ - if(verbose) std::cout << boost::format("LO successfully locked at RX frequency %s.") % return_MHz_string(*f) << std::endl; - } - else{ - if(verbose) std::cout << boost::format("LO did not successfully lock at RX frequency %s.") % return_MHz_string(*f) << std::endl; - no_lock_freqs.push_back(*f); - } - } - - if(test_gain){ - - //Testing for successful gain tune - - for(std::vector<double>::iterator g = gains.begin(); g != gains.end(); ++g){ - usrp->set_rx_gain(*g); - boost::this_thread::sleep(boost::posix_time::microseconds(1000)); - - double actual_gain = usrp->get_rx_gain(); - - if(*g == 0.0){ - if(actual_gain == 0.0){ - if(verbose) std::cout << boost::format("RX gain successfully set to %5.2f at RX frequency %s.") % *g % return_MHz_string(*f) << std::endl; - } - else{ - if(verbose) std::cout << boost::format("RX gain set to %5.2f instead of %5.2f at RX frequency %s.") % actual_gain % *g % return_MHz_string(*f) << std::endl; - std::vector<double> bad_gain_freq; - bad_gain_freq.push_back(*f); - bad_gain_freq.push_back(*g); - bad_gain_vals.push_back(bad_gain_freq); - } - } - else{ - if((*g / actual_gain) > 0.9 and (*g / actual_gain) < 1.1){ - if(verbose) std::cout << boost::format("RX gain successfully set to %5.2f at RX frequency %s.") % *g % return_MHz_string(*f) << std::endl; - } - else{ - if(verbose) std::cout << boost::format("RX gain set to %5.2f instead of %5.2f at RX frequency %s.") % actual_gain % *g % return_MHz_string(*f) << std::endl; - std::vector<double> bad_gain_freq; - bad_gain_freq.push_back(*f); - bad_gain_freq.push_back(*g); - bad_gain_vals.push_back(bad_gain_freq); - } - } - } - } - } - - std::string rx_results = "RX Summary:\n"; - if(usrp->get_usrp_rx_info().get("rx_subdev_name") == "XCVR2450 RX"){ - rx_results += std::string(str(boost::format("Frequency Range: %s - %s, %s - %s\n") % return_MHz_string(xcvr_freqs.at(0)) % return_MHz_string(xcvr_freqs.at(1)) % - return_MHz_string(xcvr_freqs.at(2)) % return_MHz_string(xcvr_freqs.at(3)))); - } - else rx_results += std::string(str(boost::format("Frequency Range: %s - %s\n") % return_MHz_string(freqs.front()) % return_MHz_string(freqs.back()))); - if(test_gain) rx_results += std::string(str(boost::format("Gain Range: %5.2f - %5.2f\n") % gains.front() % gains.back())); - - if(bad_tune_freqs.empty()) rx_results += "USRP successfully tuned to all frequencies."; - else{ - rx_results += "USRP did not successfully tune to the following frequencies: "; - for(std::vector<double>::iterator i = bad_tune_freqs.begin(); i != bad_tune_freqs.end(); ++i){ - if(i != bad_tune_freqs.begin()) rx_results += ", "; - rx_results += return_MHz_string(*i); - } - } - if(has_sensor){ - - rx_results += "\n"; - if(no_lock_freqs.empty()) rx_results += "LO successfully locked at all frequencies."; - else{ - rx_results += "LO did not successfully lock at the following frequencies: "; - for(std::vector<double>::iterator i = no_lock_freqs.begin(); i != no_lock_freqs.end(); ++i){ - if( i != no_lock_freqs.begin()) rx_results += ", "; - rx_results += return_MHz_string(*i); - } - } - } - if(test_gain){ - rx_results += "\n"; - if(bad_gain_vals.empty()) rx_results += "USRP successfully set all specified gain values at all frequencies."; - else{ - rx_results += "USRP did not successfully set gain under the following circumstances:"; - for(std::vector< std::vector<double> >::iterator i = bad_gain_vals.begin(); i != bad_gain_vals.end(); ++i){ - std::vector<double> bad_pair = *i; - double bad_freq = bad_pair.front(); - double bad_gain = bad_pair.back(); - rx_results += std::string(str(boost::format("\nFrequency: %s, Gain: %5.2f") % return_MHz_string(bad_freq) % bad_gain)); + results += "USRP did not successfully set gain under the following circumstances:"; + BOOST_FOREACH(double_pair bad_pair, bad_gain_vals){ + double bad_freq = bad_pair.first; + double bad_gain = bad_pair.second; + results += str(boost::format("\nFrequency: %s, Gain: %5.2f") % MHz_str(bad_freq) % bad_gain); } } } - return rx_results; + return results; } /************************************************************************ @@ -463,8 +316,9 @@ std::string rx_test(uhd::usrp::multi_usrp::sptr usrp, bool test_gain, bool verbo int UHD_SAFE_MAIN(int argc, char *argv[]){ //Variables + int chan; std::string args; - double gain_step; + double freq_step, gain_step; std::string ref; std::string tx_results; std::string rx_results; @@ -475,34 +329,20 @@ int UHD_SAFE_MAIN(int argc, char *argv[]){ desc.add_options() ("help", "help message") ("args", po::value<std::string>(&args)->default_value(""), "Specify the UHD device") - ("gain_step", po::value<double>(&gain_step)->default_value(1.0), "Specify the delta between gain scans") + ("chan", po::value<int>(&chan)->default_value(0), "Specify multi_usrp channel") + ("freq-step", po::value<double>(&freq_step)->default_value(100e6), "Specify the delta between frequency scans") + ("gain-step", po::value<double>(&gain_step)->default_value(1.0), "Specify the delta between gain scans") ("tx", "Specify to test TX frequency and gain coercion") ("rx", "Specify to test RX frequency and gain coercion") ("ref", po::value<std::string>(&ref)->default_value("internal"), "Waveform type: internal, external, or mimo") - ("no_tx_gain", "Do not test TX gain") - ("no_rx_gain", "Do not test RX gain") + ("no-tx-gain", "Do not test TX gain") + ("no-rx-gain", "Do not test RX gain") ("verbose", "Output every frequency and gain check instead of just final summary") ; po::variables_map vm; po::store(po::parse_command_line(argc, argv, desc), vm); po::notify(vm); - //Create a USRP device - std::cout << std::endl; - uhd::device_addrs_t device_addrs = uhd::device::find(args); - std::cout << boost::format("Creating the USRP device with: %s...") % args << std::endl; - uhd::usrp::multi_usrp::sptr usrp = uhd::usrp::multi_usrp::make(args); - std::cout << std::endl << boost::format("Using Device: %s") % usrp->get_pp_string() << std::endl; - usrp->set_tx_rate(1e6); - usrp->set_rx_rate(1e6); - - //Boolean variables based on command line input - bool test_tx = vm.count("tx") > 0; - bool test_rx = vm.count("rx") > 0; - bool test_tx_gain = !(vm.count("no_tx_gain") > 0) and (usrp->get_tx_gain_range().stop() > 0); - bool test_rx_gain = !(vm.count("no_rx_gain") > 0) and (usrp->get_rx_gain_range().stop() > 0); - bool verbose = vm.count("verbose") > 0; - //Help messages, errors if(vm.count("help") > 0){ std::cout << "UHD Daughterboard Coercion Test\n" @@ -510,42 +350,72 @@ int UHD_SAFE_MAIN(int argc, char *argv[]){ "make sure that they can successfully tune to all\n" "frequencies and gains in their advertised ranges.\n\n"; std::cout << desc << std::endl; - return ~0; - } - - if(ref != "internal" and ref != "external" and ref != "mimo"){ - std::cout << desc << std::endl; - std::cout << "REF must equal internal, external, or mimo." << std::endl; - return ~0; + return EXIT_SUCCESS; } if(vm.count("tx") + vm.count("rx") == 0){ std::cout << desc << std::endl; std::cout << "Specify --tx to test for TX frequency coercion\n" "Specify --rx to test for RX frequency coercion\n"; - return ~0; + return EXIT_FAILURE; } - if(test_rx and usrp->get_usrp_rx_info().get("rx_id") == "Basic RX (0x0001)"){ - std::cout << desc << std::endl; - std::cout << "This test does not work with the Basic RX daughterboard." << std::endl; - return ~0; - } - else if(test_rx and usrp->get_usrp_rx_info().get("rx_id") == "Unknown (0xffff)"){ + //Create a USRP device + std::cout << std::endl; + uhd::device_addrs_t device_addrs = uhd::device::find(args); + std::cout << boost::format("Creating the USRP device with: %s...") % args << std::endl; + uhd::usrp::multi_usrp::sptr usrp = uhd::usrp::multi_usrp::make(args); + std::cout << std::endl << boost::format("Using Device: %s") % usrp->get_pp_string() << std::endl; + usrp->set_tx_rate(SAMP_RATE); + usrp->set_rx_rate(SAMP_RATE); + + //Boolean variables based on command line input + bool test_tx = vm.count("tx") > 0; + bool test_rx = vm.count("rx") > 0; + bool test_tx_gain = !(vm.count("no-tx-gain") > 0) and (usrp->get_tx_gain_range().stop() > 0); + bool test_rx_gain = !(vm.count("no-rx-gain") > 0) and (usrp->get_rx_gain_range().stop() > 0); + bool verbose = vm.count("verbose") > 0; + + if(ref != "internal" and ref != "external" and ref != "mimo"){ std::cout << desc << std::endl; - std::cout << "This daughterboard is unrecognized, or there is no RX daughterboard." << std::endl; - return ~0; + std::cout << "REF must equal internal, external, or mimo." << std::endl; + return EXIT_FAILURE; } - if(test_tx and usrp->get_usrp_tx_info().get("tx_id") == "Basic TX (0x0000)"){ - std::cout << desc << std::endl; - std::cout << "This test does not work with the Basic TX daughterboard." << std::endl; - return ~0; + //Use TX mboard ID to determine if this is a B2xx, will still return value if there is no TX + std::string tx_mboard_id = usrp->get_usrp_tx_info(chan).get("mboard_id"); + bool is_b2xx = (tx_mboard_id == "B200" or tx_mboard_id == "B210"); + + //Don't perform daughterboard validity checks for B200/B210 + if((not is_b2xx) and test_tx){ + std::string tx_dboard_name = usrp->get_usrp_tx_info(chan).get("tx_id"); + if(tx_dboard_name == "Basic TX (0x0000)" or tx_dboard_name == "LF TX (0x000e)"){ + std::cout << desc << std::endl; + std::cout << boost::format("This test does not work with the %s daughterboard.") + % tx_dboard_name << std::endl; + return EXIT_FAILURE; + } + else if(tx_dboard_name == "Unknown (0xffff)"){ + std::cout << desc << std::endl; + std::cout << "This daughterboard is unrecognized, or there is no TX daughterboard." << std::endl; + return EXIT_FAILURE; + } } - else if(test_tx and usrp->get_usrp_tx_info().get("tx_id") == "Unknown (0xffff)"){ - std::cout << desc << std::endl; - std::cout << "This daughterboard is unrecognized, or there is no TX daughterboard." << std::endl; - return ~0; + + //Don't perform daughterboard validity checks for B200/B210 + if((not is_b2xx) and test_rx){ + std::string rx_dboard_name = usrp->get_usrp_rx_info(chan).get("rx_id"); + if(rx_dboard_name == "Basic RX (0x0001)" or rx_dboard_name == "LF RX (0x000f)"){ + std::cout << desc << std::endl; + std::cout << boost::format("This test does not work with the %s daughterboard.") + % rx_dboard_name << std::endl; + return EXIT_FAILURE; + } + else if(rx_dboard_name == "Unknown (0xffff)"){ + std::cout << desc << std::endl; + std::cout << "This daughterboard is unrecognized, or there is no RX daughterboard." << std::endl; + return EXIT_FAILURE; + } } //Setting clock source @@ -563,12 +433,11 @@ int UHD_SAFE_MAIN(int argc, char *argv[]){ std::cout << boost::format("Checking REF lock: %s ...") % ref_locked.to_pp_string() << std::endl; UHD_ASSERT_THROW(ref_locked.to_bool()); } - usrp_config = return_USRP_config_string(usrp, test_tx, test_rx); - if(test_tx) tx_results = tx_test(usrp, test_tx_gain, verbose); - if(test_rx) rx_results = rx_test(usrp, test_rx_gain, verbose); + usrp_config = return_usrp_config_string(usrp, chan, test_tx, test_rx, is_b2xx); + if(test_tx) tx_results = coercion_test(usrp, "TX", chan, test_tx_gain, freq_step, gain_step, verbose); + if(test_rx) rx_results = coercion_test(usrp, "RX", chan, test_rx_gain, freq_step, gain_step, verbose); - if(verbose) std::cout << std::endl; - std::cout << usrp_config << std::endl << std::endl; + std::cout << std::endl << usrp_config << std::endl << std::endl; if(test_tx) std::cout << tx_results << std::endl; if(test_tx and test_rx) std::cout << std::endl; if(test_rx) std::cout << rx_results << std::endl; |