diff options
-rw-r--r-- | host/examples/tx_waveforms.cpp | 53 | ||||
-rw-r--r-- | host/examples/wavetable.hpp | 19 |
2 files changed, 54 insertions, 18 deletions
diff --git a/host/examples/tx_waveforms.cpp b/host/examples/tx_waveforms.cpp index 173f339e2..53de799be 100644 --- a/host/examples/tx_waveforms.cpp +++ b/host/examples/tx_waveforms.cpp @@ -42,7 +42,7 @@ int UHD_SAFE_MAIN(int argc, char* argv[]) std::string args, wave_type, ant, subdev, ref, pps, otw, channel_list; uint64_t total_num_samps; size_t spb; - double rate, freq, gain, wave_freq, bw, lo_offset; + double rate, freq, gain, power, wave_freq, bw, lo_offset; float ampl; // setup the program options @@ -59,6 +59,7 @@ int UHD_SAFE_MAIN(int argc, char* argv[]) "Offset for frontend LO in Hz (optional)") ("ampl", po::value<float>(&l)->default_value(float(0.3)), "amplitude of the waveform [0 to 0.7]") ("gain", po::value<double>(&gain), "gain for the RF chain") + ("power", po::value<double>(&power), "Transmit power (if USRP supports it)") ("ant", po::value<std::string>(&ant), "antenna selection") ("subdev", po::value<std::string>(&subdev), "subdevice specification") ("bw", po::value<double>(&bw), "analog frontend filter bandwidth in Hz") @@ -127,6 +128,22 @@ int UHD_SAFE_MAIN(int argc, char* argv[]) return ~0; } + // for the const wave, set the wave freq for small samples per period + if (wave_freq == 0) { + if (wave_type == "CONST") { + wave_freq = usrp->get_tx_rate() / 2; + } else { + throw std::runtime_error( + "wave freq cannot be 0 with wave type other than CONST"); + } + } + + // pre-compute the waveform values + const wave_table_class wave_table(wave_type, ampl); + const size_t step = + boost::math::iround(wave_freq / usrp->get_tx_rate() * wave_table_len); + size_t index = 0; + for (size_t ch = 0; ch < channel_nums.size(); ch++) { std::cout << boost::format("Setting TX Freq: %f MHz...") % (freq / 1e6) << std::endl; @@ -142,7 +159,23 @@ int UHD_SAFE_MAIN(int argc, char* argv[]) << std::endl; // set the rf gain - if (vm.count("gain")) { + if (vm.count("power")) { + if (!usrp->has_tx_power_reference(ch)) { + std::cout << "ERROR: USRP does not have a reference power API on channel " + << ch << "!" << std::endl; + return EXIT_FAILURE; + } + std::cout << "Setting TX output power: " << power << " dBm..." << std::endl; + usrp->set_tx_power_reference(power - wave_table.get_power(), ch); + std::cout << "Actual TX output power: " + << usrp->get_tx_power_reference(ch) + wave_table.get_power() + << " dBm..." << std::endl; + if (vm.count("gain")) { + std::cout << "WARNING: If you specify both --power and --gain, " + " the latter will be ignored." + << std::endl; + } + } else if (vm.count("gain")) { std::cout << boost::format("Setting TX Gain: %f dB...") % gain << std::endl; usrp->set_tx_gain(gain, channel_nums[ch]); std::cout << boost::format("Actual TX Gain: %f dB...") @@ -169,16 +202,6 @@ int UHD_SAFE_MAIN(int argc, char* argv[]) std::this_thread::sleep_for(std::chrono::seconds(1)); // allow for some setup time - // for the const wave, set the wave freq for small samples per period - if (wave_freq == 0) { - if (wave_type == "CONST") { - wave_freq = usrp->get_tx_rate() / 2; - } else { - throw std::runtime_error( - "wave freq cannot be 0 with wave type other than CONST"); - } - } - // error when the waveform is not possible to generate if (std::abs(wave_freq) > usrp->get_tx_rate() / 2) { throw std::runtime_error("wave freq out of Nyquist zone"); @@ -187,12 +210,6 @@ int UHD_SAFE_MAIN(int argc, char* argv[]) throw std::runtime_error("wave freq too small for table"); } - // pre-compute the waveform values - const wave_table_class wave_table(wave_type, ampl); - const size_t step = - boost::math::iround(wave_freq / usrp->get_tx_rate() * wave_table_len); - size_t index = 0; - // create a transmit streamer // linearly map channels (index0 = channel0, index1 = channel1, ...) uhd::stream_args_t stream_args("fc32", otw); diff --git a/host/examples/wavetable.hpp b/host/examples/wavetable.hpp index dc2a93c36..d18bd1fa5 100644 --- a/host/examples/wavetable.hpp +++ b/host/examples/wavetable.hpp @@ -27,17 +27,28 @@ public: // Fill with I == ampl, Q == 0 std::fill( _wave_table.begin(), _wave_table.end(), std::complex<float>{ampl, 0.0}); + _power_dbfs = static_cast<double>(20 * std::log10(ampl)); } else if (wave_type == "SQUARE") { // Fill the second half of the table with ampl, first half with // zeros std::fill(_wave_table.begin() + wave_table_len / 2, _wave_table.end(), std::complex<float>{ampl, 0.0}); + _power_dbfs = static_cast<double>(20 * std::log10(ampl)) + - static_cast<double>(10 * std::log10(2.0)); } else if (wave_type == "RAMP") { // Fill I values with ramp from -1 to 1, Q with zero + float energy_acc = 0.0f; for (size_t i = 0; i < wave_table_len; i++) { _wave_table[i] = {(2.0f * i / (wave_table_len - 1) - 1.0f) * ampl, 0.0}; + energy_acc += std::norm(_wave_table[i]); } + _power_dbfs = static_cast<double>(energy_acc / wave_table_len); + // Note: The closed-form solution to the average sum of squares of + // the ramp is: + // 1.0 / 3 + 2.0 / (3 * N) + 1.0 / (3 * N) + 4.0 / (6 * N^2)) + // where N == wave_table_len, but it turns out be be less code if we + // just calculate the power on the fly. } else if (wave_type == "SINE") { static const double tau = 2 * std::acos(-1.0); static const std::complex<float> J(0, 1); @@ -49,6 +60,7 @@ public: _wave_table[i] = ampl * std::exp(J * static_cast<float>(tau * i / wave_table_len)); } + _power_dbfs = static_cast<double>(20 * std::log10(ampl)); } else { throw std::runtime_error("unknown waveform type: " + wave_type); } @@ -59,6 +71,13 @@ public: return _wave_table[index % wave_table_len]; } + //! Return the signal power in dBFS + inline double get_power() const + { + return _power_dbfs; + } + private: std::vector<std::complex<float>> _wave_table; + double _power_dbfs; }; |