diff options
-rw-r--r-- | host/include/uhd/utils/soft_register.hpp | 312 | ||||
-rw-r--r-- | host/lib/ic_reg_maps/gen_lmk04816_regs.py | 2 | ||||
-rw-r--r-- | host/lib/usrp/x300/x300_adc_ctrl.cpp | 4 | ||||
-rw-r--r-- | host/lib/usrp/x300/x300_clock_ctrl.cpp | 243 | ||||
-rw-r--r-- | host/lib/usrp/x300/x300_clock_ctrl.hpp | 18 | ||||
-rw-r--r-- | host/lib/usrp/x300/x300_fw_common.h | 2 | ||||
-rw-r--r-- | host/lib/usrp/x300/x300_impl.cpp | 343 | ||||
-rw-r--r-- | host/lib/usrp/x300/x300_impl.hpp | 48 | ||||
-rw-r--r-- | host/lib/usrp/x300/x300_regs.hpp | 1 |
9 files changed, 914 insertions, 59 deletions
diff --git a/host/include/uhd/utils/soft_register.hpp b/host/include/uhd/utils/soft_register.hpp new file mode 100644 index 000000000..d3537a618 --- /dev/null +++ b/host/include/uhd/utils/soft_register.hpp @@ -0,0 +1,312 @@ +// +// Copyright 2014 Ettus Research LLC +// +// This program is free software: you can redistribute it and/or modify +// it under the terms of the GNU General Public License as published by +// the Free Software Foundation, either version 3 of the License, or +// (at your option) any later version. +// +// This program is distributed in the hope that it will be useful, +// but WITHOUT ANY WARRANTY; without even the implied warranty of +// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +// GNU General Public License for more details. +// +// You should have received a copy of the GNU General Public License +// along with this program. If not, see <http://www.gnu.org/licenses/>. +// + +#ifndef INCLUDED_UHD_UTILS_SOFT_REGISTER_HPP +#define INCLUDED_UHD_UTILS_SOFT_REGISTER_HPP + +#include <boost/cstdint.hpp> +#include <boost/noncopyable.hpp> +#include <uhd/types/wb_iface.hpp> +#include <uhd/exception.hpp> +#include <boost/thread/mutex.hpp> +#include <boost/thread/locks.hpp> + +#define UHD_DEFINE_SOFT_REG_FIELD(name, width, shift) \ + static const uhd::soft_reg_field_t name = (((shift & 0xFF) << 8) | (width & 0xFF)) + +namespace uhd { + +/* A register field is defined as a tuple of the mask and the shift. + * It can be used to make read-modify-write operations more convenient + * For efficiency reasons, it is recommended to always use a constant + * of this type because it will get optimized out by the compiler and + * will result in zero memory overhead + */ +typedef boost::uint32_t soft_reg_field_t; + +namespace soft_reg_field { + inline size_t width(const soft_reg_field_t field) { + return (field & 0xFF); + } + + inline size_t shift(const soft_reg_field_t field) { + return ((field >> 8) & 0xFF); + } + + template<typename data_t> + inline size_t mask(const soft_reg_field_t field) { + return ((static_cast<data_t>(1)<<width(field))-1)<<shift(field); + } +} + +/*! + * Soft register object that holds offset, soft-copy and the control iface. + * Methods give convenient field-level access to soft-copy and the ability + * to do read-modify-write operations. + */ +template<typename reg_data_t, bool readable, bool writeable> +class UHD_API soft_register_t : public boost::noncopyable { +public: + typedef boost::shared_ptr< soft_register_t<reg_data_t, readable, writeable> > sptr; + + /*! + * Generic constructor for all soft_register types + */ + soft_register_t(wb_iface::wb_addr_type wr_addr, wb_iface::wb_addr_type rd_addr): + _iface(NULL), _wr_addr(wr_addr), _rd_addr(rd_addr), _soft_copy(0) + {} + + /*! + * Constructor for read-only, write-only registers and read-write registers + * with rd_addr == wr_addr + */ + soft_register_t(wb_iface::wb_addr_type addr): + _iface(NULL), _wr_addr(addr), _rd_addr(addr), _soft_copy(0) + {} + + /*! + * Initialize the register when the underlying bus is usable. + * Can be optionally synced with hardware. + * NOTE: Memory management of the iface is up to the caller + */ + inline void initialize(wb_iface& iface, bool sync = false) + { + _iface = &iface; + + //Synchronize with hardware. For RW register, flush THEN refresh. + if (sync && writeable) flush(); + if (sync && readable) refresh(); + } + + /*! + * Update specified field in the soft-copy with the arg value. + * Performs a read-modify-write operation so all other field are preserved. + * NOTE: This does not write the value to hardware. + */ + inline void set(const soft_reg_field_t field, const reg_data_t value) + { + _soft_copy = (_soft_copy & ~soft_reg_field::mask<reg_data_t>(field)) | + ((value << soft_reg_field::shift(field)) & soft_reg_field::mask<reg_data_t>(field)); + } + + /*! + * Get the value of the specified field from the soft-copy. + * NOTE: This does not read anything from hardware. + */ + inline reg_data_t get(const soft_reg_field_t field) + { + return (_soft_copy & soft_reg_field::mask<reg_data_t>(field)) >> soft_reg_field::shift(field); + } + + /*! + * Write the contents of the soft-copy to hardware. + */ + inline void flush() + { + if (writeable && _iface) { + if (sizeof(reg_data_t) <= 2) { + _iface->poke16(_wr_addr, static_cast<boost::uint16_t>(_soft_copy)); + } else if (sizeof(reg_data_t) <= 4) { + _iface->poke32(_wr_addr, static_cast<boost::uint32_t>(_soft_copy)); + } else if (sizeof(reg_data_t) <= 8) { + _iface->poke64(_wr_addr, static_cast<boost::uint64_t>(_soft_copy)); + } else { + throw uhd::not_implemented_error("soft_register only supports up to 64 bits."); + } + } else { + throw uhd::not_implemented_error("soft_register is not writable."); + } + } + + /*! + * Read the contents of the register from hardware and update the soft copy. + */ + inline void refresh() + { + if (readable && _iface) { + if (sizeof(reg_data_t) <= 2) { + _soft_copy = static_cast<reg_data_t>(_iface->peek16(_rd_addr)); + } else if (sizeof(reg_data_t) <= 4) { + _soft_copy = static_cast<reg_data_t>(_iface->peek32(_rd_addr)); + } else if (sizeof(reg_data_t) <= 8) { + _soft_copy = static_cast<reg_data_t>(_iface->peek64(_rd_addr)); + } else { + throw uhd::not_implemented_error("soft_register only supports up to 64 bits."); + } + } else { + throw uhd::not_implemented_error("soft_register is not readable."); + } + } + + /*! + * Shortcut for a set and a flush. + */ + inline void write(const soft_reg_field_t field, const reg_data_t value) + { + set(field, value); + flush(); + } + + /*! + * Shortcut for refresh and get + */ + inline reg_data_t read(const soft_reg_field_t field) + { + refresh(); + return get(field); + } + +private: + wb_iface* _iface; + const wb_iface::wb_addr_type _wr_addr; + const wb_iface::wb_addr_type _rd_addr; + reg_data_t _soft_copy; +}; + +/*! + * A synchronized soft register object. + * All operations in the synchronized register are serialized. + */ +template<typename reg_data_t, bool readable, bool writeable> +class UHD_API soft_register_sync_t : public soft_register_t<reg_data_t, readable, writeable> { +public: + typedef boost::shared_ptr< soft_register_sync_t<reg_data_t, readable, writeable> > sptr; + + soft_register_sync_t(wb_iface::wb_addr_type wr_addr, wb_iface::wb_addr_type rd_addr): + soft_register_t<reg_data_t, readable, writeable>(wr_addr, rd_addr), _mutex() + {} + + soft_register_sync_t(wb_iface::wb_addr_type addr): + soft_register_t<reg_data_t, readable, writeable>(addr), _mutex() + {} + + inline void initialize(wb_iface& iface, bool sync = false) + { + boost::lock_guard<boost::mutex> lock(_mutex); + soft_register_t<reg_data_t, readable, writeable>::initialize(iface, sync); + } + + inline void set(const soft_reg_field_t field, const reg_data_t value) + { + boost::lock_guard<boost::mutex> lock(_mutex); + soft_register_t<reg_data_t, readable, writeable>::set(field, value); + } + + inline reg_data_t get(const soft_reg_field_t field) + { + boost::lock_guard<boost::mutex> lock(_mutex); + return soft_register_t<reg_data_t, readable, writeable>::get(field); + } + + inline void flush() + { + boost::lock_guard<boost::mutex> lock(_mutex); + soft_register_t<reg_data_t, readable, writeable>::flush(); + } + + inline void refresh() + { + boost::lock_guard<boost::mutex> lock(_mutex); + soft_register_t<reg_data_t, readable, writeable>::refresh(); + } + + inline void write(const soft_reg_field_t field, const reg_data_t value) + { + boost::lock_guard<boost::mutex> lock(_mutex); + soft_register_t<reg_data_t, readable, writeable>::write(field, value); + } + + inline reg_data_t read(const soft_reg_field_t field) + { + boost::lock_guard<boost::mutex> lock(_mutex); + return soft_register_t<reg_data_t, readable, writeable>::read(field); + } + +private: + boost::mutex _mutex; +}; + +/* + * Register Shortcut Formats: + * - soft_reg<bits>_<mode>_t: Soft register object with an unsynchronized soft-copy. + * Thread unsafe but lightweight. Mostly const propagated. + * - soft_reg<bits>_<mode>_sync_t: Soft register object with a synchronized soft-copy. + * Thread safe but with memory/speed overhead. + * where: + * - <bits> = {16, 32 or 64} + * - <mode> = {wo(write-only), rw(read-write) or ro(read-only)} + * + */ + +//16-bit shortcuts +typedef soft_register_t<boost::uint16_t, false, true> soft_reg16_wo_t; +typedef soft_register_t<boost::uint16_t, true, false> soft_reg16_ro_t; +typedef soft_register_t<boost::uint16_t, true, true> soft_reg16_rw_t; +typedef soft_register_sync_t<boost::uint16_t, false, true> soft_reg16_wo_sync_t; +typedef soft_register_sync_t<boost::uint16_t, true, false> soft_reg16_ro_sync_t; +typedef soft_register_sync_t<boost::uint16_t, true, true> soft_reg16_rw_sync_t; +//32-bit shortcuts +typedef soft_register_t<boost::uint32_t, false, true> soft_reg32_wo_t; +typedef soft_register_t<boost::uint32_t, true, false> soft_reg32_ro_t; +typedef soft_register_t<boost::uint32_t, true, true> soft_reg32_rw_t; +typedef soft_register_sync_t<boost::uint32_t, false, true> soft_reg32_wo_sync_t; +typedef soft_register_sync_t<boost::uint32_t, true, false> soft_reg32_ro_sync_t; +typedef soft_register_sync_t<boost::uint32_t, true, true> soft_reg32_rw_sync_t; +//64-bit shortcuts +typedef soft_register_t<boost::uint64_t, false, true> soft_reg64_wo_t; +typedef soft_register_t<boost::uint64_t, true, false> soft_reg64_ro_t; +typedef soft_register_t<boost::uint64_t, true, true> soft_reg64_rw_t; +typedef soft_register_sync_t<boost::uint64_t, false, true> soft_reg64_wo_sync_t; +typedef soft_register_sync_t<boost::uint64_t, true, false> soft_reg64_ro_sync_t; +typedef soft_register_sync_t<boost::uint64_t, true, true> soft_reg64_rw_sync_t; + + +/* + * Usage example + * + //===Define bit width, RW mode, and synchronization using base class=== + class example_reg_t : public soft_reg32_wo_sync_t (or soft_reg32_wo_t) { + public: + //===Define all the fields=== + UHD_DEFINE_SOFT_REG_FIELD(FIELD0, 1, 0); //[0] + UHD_DEFINE_SOFT_REG_FIELD(FIELD1, 15, 1); //[15:1] + UHD_DEFINE_SOFT_REG_FIELD(FIELD2, 16, 16); //[31:16] + + example_reg_t(): //ctor with no args + soft_reg32_wo_t(SR_CORE_EXAMPLE_REG_OFFSET)) //===Bind to offset=== + { + //===Set Initial values=== + set(FIELD0, 0); + set(FIELD1, 1); + set(FIELD2, 0xFFFF); + } + }; //===Full register definition encapsulated in one class=== + + void main() { + example_reg_t reg_obj; + reg_obj.initialize(iface); + reg_obj.write(example_reg_t::FIELD2, 0x1234); + + example_reg_t::sptr reg_sptr = boost::make_shared<example_reg_t>(); + reg_obj->initialize(iface); + reg_obj->write(example_reg_t::FIELD2, 0x1234); + } +*/ + +} //namespace uhd + +#endif /* INCLUDED_UHD_UTILS_SOFT_REGISTER_HPP */ diff --git a/host/lib/ic_reg_maps/gen_lmk04816_regs.py b/host/lib/ic_reg_maps/gen_lmk04816_regs.py index e89a82671..d1f0633a4 100644 --- a/host/lib/ic_reg_maps/gen_lmk04816_regs.py +++ b/host/lib/ic_reg_maps/gen_lmk04816_regs.py @@ -26,7 +26,7 @@ address0 0[0:4] 0 CLKout0_1_DIV 0[5:15] 25 CLKout0_1_HS 0[16] 0 RESET 0[17] 0 no_reset, reset -CLKout0_1_DDLY 0[18:27] 0 five +CLKout0_1_DDLY 0[18:27] 0 CLKout0_ADLY_SEL 0[28] 0 d_pd, d_ev_x, d_odd_y, d_both CLKout1_ADLY_SEL 0[29] 0 d_pd, d_ev_x, d_odd_y, d_both Required_0 0[30] 0 diff --git a/host/lib/usrp/x300/x300_adc_ctrl.cpp b/host/lib/usrp/x300/x300_adc_ctrl.cpp index b0e4e4b95..edb4ce885 100644 --- a/host/lib/usrp/x300/x300_adc_ctrl.cpp +++ b/host/lib/usrp/x300/x300_adc_ctrl.cpp @@ -55,8 +55,8 @@ public: _ads62p48_regs.lvds_cmos = ads62p48_regs_t::LVDS_CMOS_DDR_LVDS; _ads62p48_regs.channel_control = ads62p48_regs_t::CHANNEL_CONTROL_INDEPENDENT; _ads62p48_regs.data_format = ads62p48_regs_t::DATA_FORMAT_2S_COMPLIMENT; - _ads62p48_regs.clk_out_pos_edge = ads62p48_regs_t::CLK_OUT_POS_EDGE_MINUS7_26; - _ads62p48_regs.clk_out_neg_edge = ads62p48_regs_t::CLK_OUT_NEG_EDGE_MINUS7_26; + _ads62p48_regs.clk_out_pos_edge = ads62p48_regs_t::CLK_OUT_POS_EDGE_NORMAL; + _ads62p48_regs.clk_out_neg_edge = ads62p48_regs_t::CLK_OUT_NEG_EDGE_NORMAL; this->send_ads62p48_reg(0); diff --git a/host/lib/usrp/x300/x300_clock_ctrl.cpp b/host/lib/usrp/x300/x300_clock_ctrl.cpp index e182f649b..350e9e9bc 100644 --- a/host/lib/usrp/x300/x300_clock_ctrl.cpp +++ b/host/lib/usrp/x300/x300_clock_ctrl.cpp @@ -29,6 +29,31 @@ static const double X300_REF_CLK_OUT_RATE = 10e6; static const boost::uint16_t X300_MAX_CLKOUT_DIV = 1045; static const double X300_DEFAULT_DBOARD_CLK_RATE = 50e6; +struct x300_clk_delays { + x300_clk_delays() : + fpga_dly_ns(0.0),adc_dly_ns(0.0),dac_dly_ns(0.0),db_rx_dly_ns(0.0),db_tx_dly_ns(0.0) + {} + x300_clk_delays(double fpga, double adc, double dac, double db_rx, double db_tx) : + fpga_dly_ns(fpga),adc_dly_ns(adc),dac_dly_ns(dac),db_rx_dly_ns(db_rx),db_tx_dly_ns(db_tx) + {} + + double fpga_dly_ns; + double adc_dly_ns; + double dac_dly_ns; + double db_rx_dly_ns; + double db_tx_dly_ns; +}; + +// Delay the FPGA_CLK by 900ps to ensure a safe ADC_SSCLK -> RADIO_CLK crossing. +// If the FPGA_CLK is delayed, we also need to delay the reference clocks going to the DAC +// because the data interface clock is generated from FPGA_CLK. +// NOTE: This delay value was verified at room temperature only. +static const x300_clk_delays X300_REV0_6_CLK_DELAYS = x300_clk_delays( + /*fpga=*/0.900, /*adc=*/0.000, /*dac=*/0.900, /*db_rx=*/0.000, /*db_tx=*/0.000); + +static const x300_clk_delays X300_REV7_CLK_DELAYS = x300_clk_delays( + /*fpga=*/0.000, /*adc=*/4.400, /*dac=*/0.000, /*db_rx=*/0.000, /*db_tx=*/0.000); + using namespace uhd; x300_clock_ctrl::~x300_clock_ctrl(void){ @@ -213,6 +238,187 @@ public: _spiface->write_spi(_slaveno, spi_config_t::EDGE_RISE, data,32); } + double set_clock_delay(const x300_clock_which_t which, const double delay_ns, const bool resync = true) { + //All dividers have are delayed by 5 taps by default. The delay + //set by this function is relative to the 5 tap delay + static const boost::uint16_t DDLY_MIN_TAPS = 5; + static const boost::uint16_t DDLY_MAX_TAPS = 522; //Extended mode + + //The resolution and range of the analog delay is fixed + static const double ADLY_RES_NS = 0.025; + static const double ADLY_MIN_NS = 0.500; + static const double ADLY_MAX_NS = 0.975; + + //Each digital tap delays the clock by one VCO period + double vco_period_ns = 1.0e9/_vco_freq; + double half_vco_period_ns = vco_period_ns/2.0; + + //Implement as much of the requested delay using digital taps. Whatever is leftover + //will be made up using the analog delay element and the half-cycle digital tap. + //A caveat here is that the analog delay starts at ADLY_MIN_NS, so we need to back off + //by that much when coming up with the digital taps so that the difference can be made + //up using the analog delay. + boost::uint16_t ddly_taps = 0; + if (delay_ns < ADLY_MIN_NS) { + ddly_taps = static_cast<boost::uint16_t>(std::floor((delay_ns)/vco_period_ns)); + } else { + ddly_taps = static_cast<boost::uint16_t>(std::floor((delay_ns-ADLY_MIN_NS)/vco_period_ns)); + } + double leftover_delay = delay_ns - (vco_period_ns * ddly_taps); + + //Compute settings + boost::uint16_t ddly_value = ddly_taps + DDLY_MIN_TAPS; + bool adly_en = false; + boost::uint8_t adly_value = 0; + boost::uint8_t half_shift_en = 0; + + if (ddly_value > DDLY_MAX_TAPS) { + throw uhd::value_error("set_clock_delay: Requested delay is out of range."); + } + + double coerced_delay = (vco_period_ns * ddly_taps); + if (leftover_delay > ADLY_MAX_NS) { + //The VCO is running too slowly for us to compensate the digital delay difference using + //analog delay. Do the best we can. + adly_en = true; + adly_value = static_cast<boost::uint8_t>(round((ADLY_MAX_NS-ADLY_MIN_NS)/ADLY_RES_NS)); + coerced_delay += ADLY_MAX_NS; + } else if (leftover_delay >= ADLY_MIN_NS && leftover_delay <= ADLY_MAX_NS) { + //The leftover delay can be compensated by the analog delay up to the analog delay resolution + adly_en = true; + adly_value = static_cast<boost::uint8_t>(round((leftover_delay-ADLY_MIN_NS)/ADLY_RES_NS)); + coerced_delay += ADLY_MIN_NS+(ADLY_RES_NS*adly_value); + } else if (leftover_delay >= (ADLY_MIN_NS - half_vco_period_ns) && leftover_delay < ADLY_MIN_NS) { + //The leftover delay if less than the minimum supported analog delay but if we move the digital + //delay back by half a VCO cycle then it will be in the range of the analog delay. So do that! + adly_en = true; + adly_value = static_cast<boost::uint8_t>(round((leftover_delay+half_vco_period_ns-ADLY_MIN_NS)/ADLY_RES_NS)); + half_shift_en = 1; + coerced_delay += ADLY_MIN_NS+(ADLY_RES_NS*adly_value)-half_vco_period_ns; + } else { + //Even after moving the digital delay back by half a cycle, we cannot make up the difference + //so give up on compensating for the difference from the digital delay tap. + //If control reaches here then the value of leftover_delay is possible very small and will still + //be close to what the client requested. + } + + UHD_LOGV(often) + << boost::format("x300_clock_ctrl::set_clock_delay: Which=%d, Requested=%f, Digital Taps=%d, Half Shift=%d, Analog Delay=%d (%s), Coerced Delay=%fns" + ) % which % delay_ns % ddly_value % (half_shift_en?"ON":"OFF") % ((int)adly_value) % (adly_en?"ON":"OFF") % coerced_delay << std::endl; + + //Apply settings + switch (which) + { + case X300_CLOCK_WHICH_FPGA: + _lmk04816_regs.CLKout0_1_DDLY = ddly_value; + _lmk04816_regs.CLKout0_1_HS = half_shift_en; + if (adly_en) { + _lmk04816_regs.CLKout0_ADLY_SEL = lmk04816_regs_t::CLKOUT0_ADLY_SEL_D_BOTH; + _lmk04816_regs.CLKout1_ADLY_SEL = lmk04816_regs_t::CLKOUT1_ADLY_SEL_D_BOTH; + _lmk04816_regs.CLKout0_1_ADLY = adly_value; + } else { + _lmk04816_regs.CLKout0_ADLY_SEL = lmk04816_regs_t::CLKOUT0_ADLY_SEL_D_PD; + _lmk04816_regs.CLKout1_ADLY_SEL = lmk04816_regs_t::CLKOUT1_ADLY_SEL_D_PD; + } + write_regs(0); + write_regs(6); + _delays.fpga_dly_ns = coerced_delay; + break; + case X300_CLOCK_WHICH_DB0_RX: + case X300_CLOCK_WHICH_DB1_RX: + _lmk04816_regs.CLKout2_3_DDLY = ddly_value; + _lmk04816_regs.CLKout2_3_HS = half_shift_en; + if (adly_en) { + _lmk04816_regs.CLKout2_ADLY_SEL = lmk04816_regs_t::CLKOUT2_ADLY_SEL_D_BOTH; + _lmk04816_regs.CLKout3_ADLY_SEL = lmk04816_regs_t::CLKOUT3_ADLY_SEL_D_BOTH; + _lmk04816_regs.CLKout2_3_ADLY = adly_value; + } else { + _lmk04816_regs.CLKout2_ADLY_SEL = lmk04816_regs_t::CLKOUT2_ADLY_SEL_D_PD; + _lmk04816_regs.CLKout3_ADLY_SEL = lmk04816_regs_t::CLKOUT3_ADLY_SEL_D_PD; + } + write_regs(1); + write_regs(6); + _delays.db_rx_dly_ns = coerced_delay; + break; + case X300_CLOCK_WHICH_DB0_TX: + case X300_CLOCK_WHICH_DB1_TX: + _lmk04816_regs.CLKout4_5_DDLY = ddly_value; + _lmk04816_regs.CLKout4_5_HS = half_shift_en; + if (adly_en) { + _lmk04816_regs.CLKout4_ADLY_SEL = lmk04816_regs_t::CLKOUT4_ADLY_SEL_D_BOTH; + _lmk04816_regs.CLKout5_ADLY_SEL = lmk04816_regs_t::CLKOUT5_ADLY_SEL_D_BOTH; + _lmk04816_regs.CLKout4_5_ADLY = adly_value; + } else { + _lmk04816_regs.CLKout4_ADLY_SEL = lmk04816_regs_t::CLKOUT4_ADLY_SEL_D_PD; + _lmk04816_regs.CLKout5_ADLY_SEL = lmk04816_regs_t::CLKOUT5_ADLY_SEL_D_PD; + } + write_regs(2); + write_regs(7); + _delays.db_tx_dly_ns = coerced_delay; + break; + case X300_CLOCK_WHICH_DAC0: + case X300_CLOCK_WHICH_DAC1: + _lmk04816_regs.CLKout6_7_DDLY = ddly_value; + _lmk04816_regs.CLKout6_7_HS = half_shift_en; + if (adly_en) { + _lmk04816_regs.CLKout6_ADLY_SEL = lmk04816_regs_t::CLKOUT6_ADLY_SEL_D_BOTH; + _lmk04816_regs.CLKout7_ADLY_SEL = lmk04816_regs_t::CLKOUT7_ADLY_SEL_D_BOTH; + _lmk04816_regs.CLKout6_7_ADLY = adly_value; + } else { + _lmk04816_regs.CLKout6_ADLY_SEL = lmk04816_regs_t::CLKOUT6_ADLY_SEL_D_PD; + _lmk04816_regs.CLKout7_ADLY_SEL = lmk04816_regs_t::CLKOUT7_ADLY_SEL_D_PD; + } + write_regs(3); + write_regs(7); + _delays.dac_dly_ns = coerced_delay; + break; + case X300_CLOCK_WHICH_ADC0: + case X300_CLOCK_WHICH_ADC1: + _lmk04816_regs.CLKout8_9_DDLY = ddly_value; + _lmk04816_regs.CLKout8_9_HS = half_shift_en; + if (adly_en) { + _lmk04816_regs.CLKout8_ADLY_SEL = lmk04816_regs_t::CLKOUT8_ADLY_SEL_D_BOTH; + _lmk04816_regs.CLKout9_ADLY_SEL = lmk04816_regs_t::CLKOUT9_ADLY_SEL_D_BOTH; + _lmk04816_regs.CLKout8_9_ADLY = adly_value; + } else { + _lmk04816_regs.CLKout8_ADLY_SEL = lmk04816_regs_t::CLKOUT8_ADLY_SEL_D_PD; + _lmk04816_regs.CLKout9_ADLY_SEL = lmk04816_regs_t::CLKOUT9_ADLY_SEL_D_PD; + } + write_regs(4); + write_regs(8); + _delays.adc_dly_ns = coerced_delay; + break; + default: + throw uhd::value_error("set_clock_delay: Requested source is invalid."); + } + + //Delays are applied only on a sync event + if (resync) sync_clocks(); + + return coerced_delay; + } + + double get_clock_delay(const x300_clock_which_t which) { + switch (which) + { + case X300_CLOCK_WHICH_FPGA: + return _delays.fpga_dly_ns; + case X300_CLOCK_WHICH_DB0_RX: + case X300_CLOCK_WHICH_DB1_RX: + return _delays.db_rx_dly_ns; + case X300_CLOCK_WHICH_DB0_TX: + case X300_CLOCK_WHICH_DB1_TX: + return _delays.db_tx_dly_ns; + case X300_CLOCK_WHICH_DAC0: + case X300_CLOCK_WHICH_DAC1: + return _delays.dac_dly_ns; + case X300_CLOCK_WHICH_ADC0: + case X300_CLOCK_WHICH_ADC1: + return _delays.adc_dly_ns; + default: + throw uhd::value_error("get_clock_delay: Requested source is invalid."); + } + } private: @@ -409,9 +615,6 @@ private: _lmk04816_regs.CLKout0_1_PD = lmk04816_regs_t::CLKOUT0_1_PD_POWER_UP; this->write_regs(0); _lmk04816_regs.CLKout0_1_DIV = master_clock_div; - _lmk04816_regs.CLKout0_ADLY_SEL = lmk04816_regs_t::CLKOUT0_ADLY_SEL_D_EV_X; - _lmk04816_regs.CLKout6_ADLY_SEL = lmk04816_regs_t::CLKOUT6_ADLY_SEL_D_BOTH; - _lmk04816_regs.CLKout7_ADLY_SEL = lmk04816_regs_t::CLKOUT7_ADLY_SEL_D_BOTH; this->write_regs(0); // Register 1 @@ -435,11 +638,6 @@ private: _lmk04816_regs.CLKout1_TYPE = lmk04816_regs_t::CLKOUT1_TYPE_P_DOWN; //CPRI feedback clock, use LVDS _lmk04816_regs.CLKout2_TYPE = lmk04816_regs_t::CLKOUT2_TYPE_LVPECL_700MVPP; //DB_0_RX _lmk04816_regs.CLKout3_TYPE = lmk04816_regs_t::CLKOUT3_TYPE_LVPECL_700MVPP; //DB_1_RX - // Delay the FPGA_CLK by 900ps to ensure a safe ADC_SSCLK -> RADIO_CLK crossing. - // If the FPGA_CLK is delayed, we also need to delay the reference clocks going to the DAC - // because the data interface clock is generated from FPGA_CLK. - // NOTE: This delay value was verified at room temperature only. - _lmk04816_regs.CLKout0_1_ADLY = 0x10; // Register 7 _lmk04816_regs.CLKout4_TYPE = lmk04816_regs_t::CLKOUT4_TYPE_LVPECL_700MVPP; //DB_1_TX @@ -447,7 +645,6 @@ private: _lmk04816_regs.CLKout6_TYPE = lmk04816_regs_t::CLKOUT6_TYPE_LVPECL_700MVPP; //DB0_DAC _lmk04816_regs.CLKout7_TYPE = lmk04816_regs_t::CLKOUT7_TYPE_LVPECL_700MVPP; //DB1_DAC _lmk04816_regs.CLKout8_TYPE = lmk04816_regs_t::CLKOUT8_TYPE_LVPECL_700MVPP; //DB0_ADC - _lmk04816_regs.CLKout6_7_ADLY = _lmk04816_regs.CLKout0_1_ADLY; // Register 8 _lmk04816_regs.CLKout9_TYPE = lmk04816_regs_t::CLKOUT9_TYPE_LVPECL_700MVPP; //DB1_ADC @@ -506,6 +703,19 @@ private: // PLL2_P_30 set in individual cases above // PLL2_N_30 set in individual cases above + if (_hw_rev >= 7) { + _delays = X300_REV7_CLK_DELAYS; + } else { + _delays = X300_REV0_6_CLK_DELAYS; + } + + //Apply delay values + set_clock_delay(X300_CLOCK_WHICH_FPGA, _delays.fpga_dly_ns, false); + set_clock_delay(X300_CLOCK_WHICH_DB0_RX, _delays.db_rx_dly_ns, false); //Sets both Ch0 and Ch1 + set_clock_delay(X300_CLOCK_WHICH_DB0_TX, _delays.db_tx_dly_ns, false); //Sets both Ch0 and Ch1 + set_clock_delay(X300_CLOCK_WHICH_ADC0, _delays.adc_dly_ns, false); //Sets both Ch0 and Ch1 + set_clock_delay(X300_CLOCK_WHICH_DAC0, _delays.dac_dly_ns, false); //Sets both Ch0 and Ch1 + /* Write the configuration values into the LMK */ for (size_t i = 1; i <= 16; ++i) { this->write_regs(i); @@ -517,13 +727,14 @@ private: this->sync_clocks(); } - const spi_iface::sptr _spiface; - const size_t _slaveno; - const size_t _hw_rev; - const double _master_clock_rate; - const double _system_ref_rate; - lmk04816_regs_t _lmk04816_regs; - double _vco_freq; + const spi_iface::sptr _spiface; + const size_t _slaveno; + const size_t _hw_rev; + const double _master_clock_rate; + const double _system_ref_rate; + lmk04816_regs_t _lmk04816_regs; + double _vco_freq; + x300_clk_delays _delays; }; x300_clock_ctrl::sptr x300_clock_ctrl::make(uhd::spi_iface::sptr spiface, diff --git a/host/lib/usrp/x300/x300_clock_ctrl.hpp b/host/lib/usrp/x300/x300_clock_ctrl.hpp index 9c08aa356..160a14e6d 100644 --- a/host/lib/usrp/x300/x300_clock_ctrl.hpp +++ b/host/lib/usrp/x300/x300_clock_ctrl.hpp @@ -33,7 +33,7 @@ enum x300_clock_which_t X300_CLOCK_WHICH_DB0_TX, X300_CLOCK_WHICH_DB1_RX, X300_CLOCK_WHICH_DB1_TX, - X300_CLOCK_WHICH_TEST, + X300_CLOCK_WHICH_FPGA, }; class x300_clock_ctrl : boost::noncopyable @@ -94,6 +94,22 @@ public: */ virtual void set_ref_out(const bool) = 0; + /*! Set the clock delay for the given clock divider. + * \param which which clock + * \param rate the delay in nanoseconds + * \param resync resync clocks to apply delays + * \return the actual delay value set + * \throw exception when which invalid or delay_ns out of range + */ + virtual double set_clock_delay(const x300_clock_which_t which, const double delay_ns, const bool resync = true) = 0; + + /*! Get the clock delay for the given clock divider. + * \param which which clock + * \return the actual delay value set + * \throw exception when which invalid + */ + virtual double get_clock_delay(const x300_clock_which_t which) = 0; + /*! Reset the clocks. * Should be called if the reference clock changes * to reduce the time required to achieve a lock. diff --git a/host/lib/usrp/x300/x300_fw_common.h b/host/lib/usrp/x300/x300_fw_common.h index a526cabe5..00eafe091 100644 --- a/host/lib/usrp/x300/x300_fw_common.h +++ b/host/lib/usrp/x300/x300_fw_common.h @@ -31,7 +31,7 @@ extern "C" { #define X300_FW_COMPAT_MAJOR 4 #define X300_FW_COMPAT_MINOR 0 -#define X300_FPGA_COMPAT_MAJOR 10 +#define X300_FPGA_COMPAT_MAJOR 11 //shared memory sections - in between the stack and the program space #define X300_FW_SHMEM_BASE 0x6000 diff --git a/host/lib/usrp/x300/x300_impl.cpp b/host/lib/usrp/x300/x300_impl.cpp index b2b9e5c6a..a2b2c9f9e 100644 --- a/host/lib/usrp/x300/x300_impl.cpp +++ b/host/lib/usrp/x300/x300_impl.cpp @@ -16,7 +16,6 @@ // #include "x300_impl.hpp" -#include "x300_regs.hpp" #include "x300_lvbitx.hpp" #include "x310_lvbitx.hpp" #include <boost/algorithm/string.hpp> @@ -688,9 +687,16 @@ void x300_impl::setup_mb(const size_t mb_i, const uhd::device_addr_t &dev_addr) //////////////////////////////////////////////////////////////////// // setup radios //////////////////////////////////////////////////////////////////// - UHD_MSG(status) << "Initialize Radio control..." << std::endl; - this->setup_radio(mb_i, "A"); - this->setup_radio(mb_i, "B"); + this->setup_radio(mb_i, "A", dev_addr); + this->setup_radio(mb_i, "B", dev_addr); + + //////////////////////////////////////////////////////////////////// + // ADC test and cal + //////////////////////////////////////////////////////////////////// + if (dev_addr.has_key("self_cal_adc_delay")) { + self_cal_adc_xfer_delay(mb, true /* Apply ADC delay */); + } + self_test_adcs(mb); //////////////////////////////////////////////////////////////////// // front panel gpio @@ -820,8 +826,15 @@ x300_impl::~x300_impl(void) { BOOST_FOREACH(mboard_members_t &mb, _mb) { - mb.radio_perifs[0].ctrl->poke32(TOREG(SR_MISC_OUTS), (1 << 2)); //disable/reset ADC/DAC - mb.radio_perifs[1].ctrl->poke32(TOREG(SR_MISC_OUTS), (1 << 2)); //disable/reset ADC/DAC + //disable/reset ADC/DAC + mb.radio_perifs[0].misc_outs->set(radio_misc_outs_reg::ADC_RESET, 1); + mb.radio_perifs[0].misc_outs->set(radio_misc_outs_reg::DAC_RESET_N, 0); + mb.radio_perifs[0].misc_outs->set(radio_misc_outs_reg::DAC_ENABLED, 0); + mb.radio_perifs[0].misc_outs->flush(); + mb.radio_perifs[1].misc_outs->set(radio_misc_outs_reg::ADC_RESET, 1); + mb.radio_perifs[1].misc_outs->set(radio_misc_outs_reg::DAC_RESET_N, 0); + mb.radio_perifs[1].misc_outs->set(radio_misc_outs_reg::DAC_ENABLED, 0); + mb.radio_perifs[1].misc_outs->flush(); //kill the claimer task and unclaim the device mb.claimer_task.reset(); @@ -841,15 +854,7 @@ x300_impl::~x300_impl(void) } } -static void check_adc(wb_iface::sptr iface, const boost::uint32_t val) -{ - boost::uint32_t adc_rb = iface->peek32(RB32_RX); - adc_rb ^= 0xfffc0000; //adapt for I inversion in FPGA - //UHD_MSG(status) << "adc_rb " << std::hex << adc_rb << " val " << std::hex << val << std::endl; - UHD_ASSERT_THROW(adc_rb == val); -} - -void x300_impl::setup_radio(const size_t mb_i, const std::string &slot_name) +void x300_impl::setup_radio(const size_t mb_i, const std::string &slot_name, const uhd::device_addr_t &dev_addr) { const fs_path mb_path = "/mboards/"+boost::lexical_cast<std::string>(mb_i); UHD_ASSERT_THROW(mb_i < _mb.size()); @@ -857,6 +862,8 @@ void x300_impl::setup_radio(const size_t mb_i, const std::string &slot_name) const size_t radio_index = mb.get_radio_index(slot_name); radio_perifs_t &perif = mb.radio_perifs[radio_index]; + UHD_MSG(status) << boost::format("Initialize Radio%d control...") % radio_index << std::endl; + //////////////////////////////////////////////////////////////////// // radio control //////////////////////////////////////////////////////////////////// @@ -864,8 +871,20 @@ void x300_impl::setup_radio(const size_t mb_i, const std::string &slot_name) boost::uint32_t ctrl_sid; both_xports_t xport = this->make_transport(mb_i, dest, X300_RADIO_DEST_PREFIX_CTRL, device_addr_t(), ctrl_sid); perif.ctrl = radio_ctrl_core_3000::make(mb.if_pkt_is_big_endian, xport.recv, xport.send, ctrl_sid, slot_name); - perif.ctrl->poke32(TOREG(SR_MISC_OUTS), (1 << 2)); //reset adc + dac - perif.ctrl->poke32(TOREG(SR_MISC_OUTS), (1 << 1) | (1 << 0)); //out of reset + dac enable + + perif.misc_outs = boost::make_shared<radio_misc_outs_reg>(); + perif.misc_ins = boost::make_shared<radio_misc_ins_reg>(); + perif.misc_outs->initialize(*perif.ctrl, true); + perif.misc_ins->initialize(*perif.ctrl); + + //reset adc + dac + perif.misc_outs->set(radio_misc_outs_reg::ADC_RESET, 1); + perif.misc_outs->set(radio_misc_outs_reg::DAC_RESET_N, 0); + perif.misc_outs->flush(); + perif.misc_outs->set(radio_misc_outs_reg::ADC_RESET, 0); + perif.misc_outs->set(radio_misc_outs_reg::DAC_RESET_N, 1); + perif.misc_outs->set(radio_misc_outs_reg::DAC_ENABLED, 1); + perif.misc_outs->flush(); this->register_loopback_self_test(perif.ctrl); @@ -874,31 +893,16 @@ void x300_impl::setup_radio(const size_t mb_i, const std::string &slot_name) perif.dac = x300_dac_ctrl::make(perif.spi, DB_DAC_SEN, mb.clock->get_master_clock_rate()); perif.leds = gpio_core_200_32wo::make(perif.ctrl, TOREG(SR_LEDS)); + //Capture delays are calibrated every time. The status is only printed is the user + //asks to run the xfer self cal using "self_cal_adc_delay" + self_cal_adc_capture_delay(mb, radio_index, dev_addr.has_key("self_cal_adc_delay")); + _tree->access<time_spec_t>(mb_path / "time" / "cmd") .subscribe(boost::bind(&radio_ctrl_core_3000::set_time, perif.ctrl, _1)); _tree->access<double>(mb_path / "tick_rate") .subscribe(boost::bind(&radio_ctrl_core_3000::set_tick_rate, perif.ctrl, _1)); //////////////////////////////////////////////////////////////// - // ADC self test - //////////////////////////////////////////////////////////////// - perif.adc->set_test_word("ones", "ones"); check_adc(perif.ctrl, 0xfffcfffc); - perif.adc->set_test_word("zeros", "zeros"); check_adc(perif.ctrl, 0x00000000); - perif.adc->set_test_word("ones", "zeros"); check_adc(perif.ctrl, 0xfffc0000); - perif.adc->set_test_word("zeros", "ones"); check_adc(perif.ctrl, 0x0000fffc); - for (size_t k = 0; k < 14; k++) - { - perif.adc->set_test_word("zeros", "custom", 1 << k); - check_adc(perif.ctrl, 1 << (k+2)); - } - for (size_t k = 0; k < 14; k++) - { - perif.adc->set_test_word("custom", "zeros", 1 << k); - check_adc(perif.ctrl, 1 << (k+18)); - } - perif.adc->set_test_word("normal", "normal"); - - //////////////////////////////////////////////////////////////// // create codec control objects //////////////////////////////////////////////////////////////// _tree->create<int>(mb_path / "rx_codecs" / slot_name / "gains"); //phony property so this dir exists @@ -1789,3 +1793,270 @@ x300_impl::x300_mboard_t x300_impl::get_mb_type_from_eeprom(const uhd::usrp::mbo return mb_type; } +void x300_impl::self_cal_adc_capture_delay(mboard_members_t& mb, const size_t radio_i, bool print_status) +{ + radio_perifs_t& perif = mb.radio_perifs[radio_i]; + if (print_status) UHD_MSG(status) << "Running ADC capture delay self-cal..." << std::flush; + + static const boost::uint32_t NUM_DELAY_STEPS = 32; //The IDELAYE2 element has 32 steps + int win_start = -1, win_stop = -1; + + for (boost::uint32_t dly_tap = 0; dly_tap < NUM_DELAY_STEPS; dly_tap++) { + //Apply delay + perif.misc_outs->write(radio_misc_outs_reg::ADC_DATA_DLY_VAL, dly_tap); + perif.misc_outs->write(radio_misc_outs_reg::ADC_DATA_DLY_STB, 1); + perif.misc_outs->write(radio_misc_outs_reg::ADC_DATA_DLY_STB, 0); + + boost::uint32_t err_code = 0; + + // -- Test I Channel -- + //Put ADC in ramp test mode. Tie the other channel to all ones. + perif.adc->set_test_word("ramp", "ones"); + //Turn on the pattern checker in the FPGA. It will lock when it sees a zero + //and count deviations from the expected value + perif.misc_outs->write(radio_misc_outs_reg::ADC_CHECKER_ENABLED, 0); + perif.misc_outs->write(radio_misc_outs_reg::ADC_CHECKER_ENABLED, 1); + //10ms @ 200MHz = 2 million samples + boost::this_thread::sleep(boost::posix_time::milliseconds(10)); + if (perif.misc_ins->read(radio_misc_ins_reg::ADC_CHECKER0_I_LOCKED)) { + err_code += perif.misc_ins->get(radio_misc_ins_reg::ADC_CHECKER0_I_ERROR); + } else { + err_code += 100; //Increment error code by 100 to indicate no lock + } + + // -- Test Q Channel -- + //Put ADC in ramp test mode. Tie the other channel to all ones. + perif.adc->set_test_word("ones", "ramp"); + //Turn on the pattern checker in the FPGA. It will lock when it sees a zero + //and count deviations from the expected value + perif.misc_outs->write(radio_misc_outs_reg::ADC_CHECKER_ENABLED, 0); + perif.misc_outs->write(radio_misc_outs_reg::ADC_CHECKER_ENABLED, 1); + //10ms @ 200MHz = 2 million samples + boost::this_thread::sleep(boost::posix_time::milliseconds(10)); + if (perif.misc_ins->read(radio_misc_ins_reg::ADC_CHECKER0_Q_LOCKED)) { + err_code += perif.misc_ins->get(radio_misc_ins_reg::ADC_CHECKER0_Q_ERROR); + } else { + err_code += 100; //Increment error code by 100 to indicate no lock + } + + if (err_code == 0) { + if (win_start == -1) { //This is the first window + win_start = dly_tap; + win_stop = dly_tap; + } else { //We are extending the window + win_stop = dly_tap; + } + } else { + if (win_start != -1) { //A valid window turned invalid + if (win_stop - win_start >= 4) break; + } + } + //UHD_MSG(status) << (boost::format("CapTap=%d, Error=%d\n") % dly_tap % err_code); + } + perif.adc->set_test_word("normal", "normal"); + perif.misc_outs->write(radio_misc_outs_reg::ADC_CHECKER_ENABLED, 0); + + if (win_start == -1) { + throw uhd::runtime_error("self_cal_adc_capture_delay: Self calibration failed. Convergence error."); + } + + if (win_stop-win_start < 4) { + throw uhd::runtime_error("self_cal_adc_capture_delay: Self calibration failed. Valid window too narrow."); + } + + boost::uint32_t ideal_tap = (win_stop + win_start) / 2; + perif.misc_outs->write(radio_misc_outs_reg::ADC_DATA_DLY_VAL, ideal_tap); + perif.misc_outs->write(radio_misc_outs_reg::ADC_DATA_DLY_STB, 1); + perif.misc_outs->write(radio_misc_outs_reg::ADC_DATA_DLY_STB, 0); + + if (print_status) { + double tap_delay = (1.0e12 / mb.clock->get_master_clock_rate()) / (2*32); //in ps + UHD_MSG(status) << boost::format(" done (Tap=%d, Window=%d, TapDelay=%.3fps)\n") % ideal_tap % (win_stop-win_start) % tap_delay; + } +} + +double x300_impl::self_cal_adc_xfer_delay(mboard_members_t& mb, bool apply_delay) +{ + UHD_MSG(status) << "Running ADC transfer delay self-cal: " << std::flush; + + //Effective resolution of the self-cal. + static const size_t NUM_DELAY_STEPS = 100; + + double master_clk_period = (1.0e9 / mb.clock->get_master_clock_rate()); //in ns + double delay_start = 0.0; + double delay_range = 2 * master_clk_period; + double delay_incr = delay_range / NUM_DELAY_STEPS; + + UHD_MSG(status) << "Measuring..." << std::flush; + double cached_clk_delay = mb.clock->get_clock_delay(X300_CLOCK_WHICH_ADC0); + double fpga_clk_delay = mb.clock->get_clock_delay(X300_CLOCK_WHICH_FPGA); + + //Iterate through several values of delays and measure ADC data integrity + std::vector< std::pair<double,bool> > results; + for (size_t i = 0; i < NUM_DELAY_STEPS; i++) { + //Delay the ADC clock (will set both Ch0 and Ch1 delays) + double delay = mb.clock->set_clock_delay(X300_CLOCK_WHICH_ADC0, delay_incr*i + delay_start); + wait_for_ref_locked(mb.zpu_ctrl, 0.1); + + boost::uint32_t err_code = 0; + for (size_t r = 0; r < mboard_members_t::NUM_RADIOS; r++) { + //Test each channel (I and Q) individually so as to not accidentally trigger + //on the data from the other channel if there is a swap + + // -- Test I Channel -- + //Put ADC in ramp test mode. Tie the other channel to all ones. + mb.radio_perifs[r].adc->set_test_word("ramp", "ones"); + //Turn on the pattern checker in the FPGA. It will lock when it sees a zero + //and count deviations from the expected value + mb.radio_perifs[r].misc_outs->write(radio_misc_outs_reg::ADC_CHECKER_ENABLED, 0); + mb.radio_perifs[r].misc_outs->write(radio_misc_outs_reg::ADC_CHECKER_ENABLED, 1); + //50ms @ 200MHz = 10 million samples + boost::this_thread::sleep(boost::posix_time::milliseconds(50)); + if (mb.radio_perifs[r].misc_ins->read(radio_misc_ins_reg::ADC_CHECKER1_I_LOCKED)) { + err_code += mb.radio_perifs[r].misc_ins->get(radio_misc_ins_reg::ADC_CHECKER1_I_ERROR); + } else { + err_code += 100; //Increment error code by 100 to indicate no lock + } + + // -- Test Q Channel -- + //Put ADC in ramp test mode. Tie the other channel to all ones. + mb.radio_perifs[r].adc->set_test_word("ones", "ramp"); + //Turn on the pattern checker in the FPGA. It will lock when it sees a zero + //and count deviations from the expected value + mb.radio_perifs[r].misc_outs->write(radio_misc_outs_reg::ADC_CHECKER_ENABLED, 0); + mb.radio_perifs[r].misc_outs->write(radio_misc_outs_reg::ADC_CHECKER_ENABLED, 1); + //50ms @ 200MHz = 10 million samples + boost::this_thread::sleep(boost::posix_time::milliseconds(50)); + if (mb.radio_perifs[r].misc_ins->read(radio_misc_ins_reg::ADC_CHECKER1_Q_LOCKED)) { + err_code += mb.radio_perifs[r].misc_ins->get(radio_misc_ins_reg::ADC_CHECKER1_Q_ERROR); + } else { + err_code += 100; //Increment error code by 100 to indicate no lock + } + } + //UHD_MSG(status) << (boost::format("XferDelay=%fns, Error=%d\n") % delay % err_code); + results.push_back(std::pair<double,bool>(delay, err_code==0)); + } + + //Calculate the valid window + int win_start_idx = -1, win_stop_idx = -1, cur_start_idx = -1, cur_stop_idx = -1; + for (size_t i = 0; i < results.size(); i++) { + std::pair<double,bool>& item = results[i]; + if (item.second) { //If data is stable + if (cur_start_idx == -1) { //This is the first window + cur_start_idx = i; + cur_stop_idx = i; + } else { //We are extending the window + cur_stop_idx = i; + } + } else { + if (cur_start_idx == -1) { //We haven't yet seen valid data + //Do nothing + } else if (win_start_idx == -1) { //We passed the first valid window + win_start_idx = cur_start_idx; + win_stop_idx = cur_stop_idx; + } else { //Update cached window if current window is larger + double cur_win_len = results[cur_stop_idx].first - results[cur_start_idx].first; + double cached_win_len = results[win_stop_idx].first - results[win_start_idx].first; + if (cur_win_len > cached_win_len) { + win_start_idx = cur_start_idx; + win_stop_idx = cur_stop_idx; + } + } + //Reset current window + cur_start_idx = -1; + cur_stop_idx = -1; + } + } + if (win_start_idx == -1) { + throw uhd::runtime_error("self_cal_adc_xfer_delay: Self calibration failed. Convergence error."); + } + + double win_center = (results[win_stop_idx].first + results[win_start_idx].first) / 2.0; + double win_length = results[win_stop_idx].first - results[win_start_idx].first; + if (win_length < master_clk_period/4) { + throw uhd::runtime_error("self_cal_adc_xfer_delay: Self calibration failed. Valid window too narrow."); + } + + //Cycle slip the relative delay by a clock cycle to prevent sample misalignment + //fpga_clk_delay > 0 and 0 < win_center < 2*(1/MCR) so one cycle slip is all we need + bool cycle_slip = (win_center-fpga_clk_delay >= master_clk_period); + if (cycle_slip) { + win_center -= master_clk_period; + } + + if (apply_delay) { + UHD_MSG(status) << "Validating..." << std::flush; + //Apply delay + win_center = mb.clock->set_clock_delay(X300_CLOCK_WHICH_ADC0, win_center); //Sets ADC0 and ADC1 + wait_for_ref_locked(mb.zpu_ctrl, 0.1); + //Validate + self_test_adcs(mb, 2000); + } else { + //Restore delay + mb.clock->set_clock_delay(X300_CLOCK_WHICH_ADC0, cached_clk_delay); //Sets ADC0 and ADC1 + } + + //Teardown + for (size_t r = 0; r < mboard_members_t::NUM_RADIOS; r++) { + mb.radio_perifs[r].adc->set_test_word("normal", "normal"); + mb.radio_perifs[r].misc_outs->write(radio_misc_outs_reg::ADC_CHECKER_ENABLED, 0); + } + UHD_MSG(status) << (boost::format(" done (FPGA->ADC=%.3fns%s, Window=%.3fns)\n") % + (win_center-fpga_clk_delay) % (cycle_slip?" +cyc":"") % win_length); + + return win_center; +} + +static void check_adc(wb_iface::sptr iface, const boost::uint32_t val, const boost::uint32_t i) +{ + boost::uint32_t adc_rb = iface->peek32(RB32_RX); + adc_rb ^= 0xfffc0000; //adapt for I inversion in FPGA + if (val != adc_rb) { + throw uhd::runtime_error( + (boost::format("ADC self-test failed for Radio%d. (Exp=0x%x, Got=0x%x)")%i%val%adc_rb).str()); + } +} + +void x300_impl::self_test_adcs(mboard_members_t& mb, boost::uint32_t ramp_time_ms) { + for (size_t r = 0; r < mboard_members_t::NUM_RADIOS; r++) { + radio_perifs_t &perif = mb.radio_perifs[r]; + + //First test basic patterns + perif.adc->set_test_word("ones", "ones"); check_adc(perif.ctrl, 0xfffcfffc,r); + perif.adc->set_test_word("zeros", "zeros"); check_adc(perif.ctrl, 0x00000000,r); + perif.adc->set_test_word("ones", "zeros"); check_adc(perif.ctrl, 0xfffc0000,r); + perif.adc->set_test_word("zeros", "ones"); check_adc(perif.ctrl, 0x0000fffc,r); + for (size_t k = 0; k < 14; k++) + { + perif.adc->set_test_word("zeros", "custom", 1 << k); + check_adc(perif.ctrl, 1 << (k+2),r); + } + for (size_t k = 0; k < 14; k++) + { + perif.adc->set_test_word("custom", "zeros", 1 << k); + check_adc(perif.ctrl, 1 << (k+18),r); + } + + //Turn on ramp pattern test + perif.adc->set_test_word("ramp", "ramp"); + perif.misc_outs->write(radio_misc_outs_reg::ADC_CHECKER_ENABLED, 0); + perif.misc_outs->write(radio_misc_outs_reg::ADC_CHECKER_ENABLED, 1); + } + boost::this_thread::sleep(boost::posix_time::milliseconds(ramp_time_ms)); + for (size_t r = 0; r < mboard_members_t::NUM_RADIOS; r++) { + radio_perifs_t &perif = mb.radio_perifs[r]; + + if (!perif.misc_ins->read(radio_misc_ins_reg::ADC_CHECKER1_I_LOCKED) || + perif.misc_ins->read(radio_misc_ins_reg::ADC_CHECKER1_I_ERROR) || + !perif.misc_ins->read(radio_misc_ins_reg::ADC_CHECKER1_Q_LOCKED) || + perif.misc_ins->read(radio_misc_ins_reg::ADC_CHECKER1_Q_ERROR)) + { + throw uhd::runtime_error( + (boost::format("ADC self-test failed for Radio%d. (Ramp checker failure)")%r).str()); + } + + //Return to normal mode + perif.adc->set_test_word("normal", "normal"); + } +} + diff --git a/host/lib/usrp/x300/x300_impl.hpp b/host/lib/usrp/x300/x300_impl.hpp index c27133745..dca6360b8 100644 --- a/host/lib/usrp/x300/x300_impl.hpp +++ b/host/lib/usrp/x300/x300_impl.hpp @@ -49,6 +49,8 @@ #include <uhd/transport/nirio/niusrprio_session.h> #include <uhd/transport/vrt_if_packet.hpp> #include "recv_packet_demuxer_3000.hpp" +#include <uhd/utils/soft_register.hpp> +#include "x300_regs.hpp" static const std::string X300_FW_FILE_NAME = "usrp_x300_fw.bin"; @@ -169,9 +171,43 @@ public: private: boost::shared_ptr<async_md_type> _async_md; + class radio_misc_outs_reg : public uhd::soft_reg32_wo_t { + public: + UHD_DEFINE_SOFT_REG_FIELD(DAC_ENABLED, /*width*/ 1, /*shift*/ 0); //[0] + UHD_DEFINE_SOFT_REG_FIELD(DAC_RESET_N, /*width*/ 1, /*shift*/ 1); //[1] + UHD_DEFINE_SOFT_REG_FIELD(ADC_RESET, /*width*/ 1, /*shift*/ 2); //[2] + UHD_DEFINE_SOFT_REG_FIELD(ADC_DATA_DLY_STB, /*width*/ 1, /*shift*/ 3); //[3] + UHD_DEFINE_SOFT_REG_FIELD(ADC_DATA_DLY_VAL, /*width*/ 5, /*shift*/ 4); //[8:4] + UHD_DEFINE_SOFT_REG_FIELD(ADC_CHECKER_ENABLED, /*width*/ 1, /*shift*/ 9); //[9] + + radio_misc_outs_reg(): uhd::soft_reg32_wo_t(TOREG(SR_MISC_OUTS)) { + //Initial values + set(DAC_ENABLED, 0); + set(DAC_RESET_N, 0); + set(ADC_RESET, 0); + set(ADC_DATA_DLY_STB, 0); + set(ADC_DATA_DLY_VAL, 16); + set(ADC_CHECKER_ENABLED, 0); + } + }; + class radio_misc_ins_reg : public uhd::soft_reg32_ro_t { + public: + UHD_DEFINE_SOFT_REG_FIELD(ADC_CHECKER0_Q_LOCKED, /*width*/ 1, /*shift*/ 0); //[0] + UHD_DEFINE_SOFT_REG_FIELD(ADC_CHECKER0_I_LOCKED, /*width*/ 1, /*shift*/ 1); //[1] + UHD_DEFINE_SOFT_REG_FIELD(ADC_CHECKER1_Q_LOCKED, /*width*/ 1, /*shift*/ 2); //[2] + UHD_DEFINE_SOFT_REG_FIELD(ADC_CHECKER1_I_LOCKED, /*width*/ 1, /*shift*/ 3); //[3] + UHD_DEFINE_SOFT_REG_FIELD(ADC_CHECKER0_Q_ERROR, /*width*/ 1, /*shift*/ 4); //[4] + UHD_DEFINE_SOFT_REG_FIELD(ADC_CHECKER0_I_ERROR, /*width*/ 1, /*shift*/ 5); //[5] + UHD_DEFINE_SOFT_REG_FIELD(ADC_CHECKER1_Q_ERROR, /*width*/ 1, /*shift*/ 6); //[6] + UHD_DEFINE_SOFT_REG_FIELD(ADC_CHECKER1_I_ERROR, /*width*/ 1, /*shift*/ 7); //[7] + + radio_misc_ins_reg(): uhd::soft_reg32_ro_t(RB32_MISC_INS) { } + }; + //perifs in the radio core struct radio_perifs_t { + //Interfaces radio_ctrl_core_3000::sptr ctrl; spi_core_3000::sptr spi; x300_adc_ctrl::sptr adc; @@ -184,6 +220,9 @@ private: gpio_core_200_32wo::sptr leds; rx_frontend_core_200::sptr rx_fe; tx_frontend_core_200::sptr tx_fe; + //Registers + radio_misc_outs_reg::sptr misc_outs; + radio_misc_ins_reg::sptr misc_ins; }; //overflow recovery impl @@ -211,7 +250,8 @@ private: i2c_core_100_wb32::sptr zpu_i2c; //perifs in each radio - radio_perifs_t radio_perifs[2]; //!< This is hardcoded s.t. radio_perifs[0] points to slot A and [1] to B + static const size_t NUM_RADIOS = 2; + radio_perifs_t radio_perifs[NUM_RADIOS]; //!< This is hardcoded s.t. radio_perifs[0] points to slot A and [1] to B uhd::usrp::dboard_eeprom_t db_eeproms[8]; //! Return the index of a radio component, given a slot name. This means DSPs, radio_perifs size_t get_radio_index(const std::string &slot_name) { @@ -259,7 +299,7 @@ private: * \param mb_i Motherboard index * \param slot_name Slot name (A or B). */ - void setup_radio(const size_t, const std::string &slot_name); + void setup_radio(const size_t, const std::string &slot_name, const uhd::device_addr_t &dev_addr); size_t _sid_framer; struct sid_config_t @@ -364,6 +404,10 @@ private: boost::uint32_t get_fp_gpio(gpio_core_200::sptr); void set_fp_gpio(gpio_core_200::sptr, const gpio_attr_t, const boost::uint32_t); + void self_cal_adc_capture_delay(mboard_members_t& mb, const size_t radio_i, bool print_status = false); + double self_cal_adc_xfer_delay(mboard_members_t& mb, bool apply_delay = false); + void self_test_adcs(mboard_members_t& mb, boost::uint32_t ramp_time_ms = 100); + //**PRECONDITION** //This function assumes that all the VITA times in "radios" are synchronized //to a common reference. Currently, this function is called in get_tx_stream diff --git a/host/lib/usrp/x300/x300_regs.hpp b/host/lib/usrp/x300/x300_regs.hpp index 4c5729efe..e984eb908 100644 --- a/host/lib/usrp/x300/x300_regs.hpp +++ b/host/lib/usrp/x300/x300_regs.hpp @@ -49,6 +49,7 @@ localparam RB64_TIME_PPS = 16; localparam RB32_TEST = 24; localparam RB32_RX = 28; localparam RB32_FP_GPIO = 32; +localparam RB32_MISC_INS = 36; localparam BL_ADDRESS = 0; localparam BL_DATA = 1; |