aboutsummaryrefslogtreecommitdiffstats
path: root/host
diff options
context:
space:
mode:
authorAshish Chaudhari <ashish@ettus.com>2013-11-13 16:51:26 -0800
committerAshish Chaudhari <ashish@ettus.com>2013-11-13 16:51:26 -0800
commitc0bf255bcdaa5e2b2f0220c0eea20344792de650 (patch)
tree92e2ab474206da0ef4f7c3b58efa375b09ff6171 /host
parent6b484a59a40d8a576e71886b88414803c493a322 (diff)
downloaduhd-c0bf255bcdaa5e2b2f0220c0eea20344792de650.tar.gz
uhd-c0bf255bcdaa5e2b2f0220c0eea20344792de650.tar.bz2
uhd-c0bf255bcdaa5e2b2f0220c0eea20344792de650.zip
sbx: bugfix#55 and refactored ADF435X tuning code in the SBX driver.
Diffstat (limited to 'host')
-rw-r--r--host/lib/usrp/dboard/db_sbx_common.cpp132
-rw-r--r--host/lib/usrp/dboard/db_sbx_common.hpp28
-rw-r--r--host/lib/usrp/dboard/db_sbx_version3.cpp118
-rw-r--r--host/lib/usrp/dboard/db_sbx_version4.cpp120
4 files changed, 220 insertions, 178 deletions
diff --git a/host/lib/usrp/dboard/db_sbx_common.cpp b/host/lib/usrp/dboard/db_sbx_common.cpp
index 9db29e65a..5b713c6d7 100644
--- a/host/lib/usrp/dboard/db_sbx_common.cpp
+++ b/host/lib/usrp/dboard/db_sbx_common.cpp
@@ -21,6 +21,137 @@ using namespace uhd;
using namespace uhd::usrp;
using namespace boost::assign;
+/***********************************************************************
+ * ADF 4350/4351 Tuning Utility
+ **********************************************************************/
+sbx_xcvr::sbx_versionx::adf435x_tuning_settings sbx_xcvr::sbx_versionx::_tune_adf435x_synth(
+ double target_freq,
+ double ref_freq,
+ const adf435x_tuning_constraints& constraints,
+ double& actual_freq)
+{
+ //Default invalid value for actual_freq
+ actual_freq = 0;
+
+ double pfd_freq = 0;
+ boost::uint16_t R = 0, BS = 0, N = 0, FRAC = 0, MOD = 0;
+ boost::uint16_t RFdiv = static_cast<boost::uint16_t>(constraints.rf_divider_range.start());
+ bool D = false, T = false;
+
+ //Reference doubler for 50% duty cycle
+ //If ref_freq < 12.5MHz enable the reference doubler
+ D = (ref_freq <= constraints.ref_doubler_threshold);
+
+ static const double MIN_VCO_FREQ = 2.2e9;
+ static const double MAX_VCO_FREQ = 4.4e9;
+
+ //increase RF divider until acceptable VCO frequency
+ double vco_freq = target_freq;
+ while (vco_freq < MIN_VCO_FREQ && RFdiv < static_cast<boost::uint16_t>(constraints.rf_divider_range.stop())) {
+ vco_freq *= 2;
+ RFdiv *= 2;
+ }
+
+ /*
+ * The goal here is to loop though possible R dividers,
+ * band select clock dividers, N (int) dividers, and FRAC
+ * (frac) dividers.
+ *
+ * Calculate the N and F dividers for each set of values.
+ * The loop exits when it meets all of the constraints.
+ * The resulting loop values are loaded into the registers.
+ *
+ * from pg.21
+ *
+ * f_pfd = f_ref*(1+D)/(R*(1+T))
+ * f_vco = (N + (FRAC/MOD))*f_pfd
+ * N = f_vco/f_pfd - FRAC/MOD = f_vco*((R*(T+1))/(f_ref*(1+D))) - FRAC/MOD
+ * f_rf = f_vco/RFdiv)
+ * f_actual = f_rf/2
+ */
+ for(R = 1; R <= 1023; R+=1){
+ //PFD input frequency = f_ref/R ... ignoring Reference doubler/divide-by-2 (D & T)
+ pfd_freq = ref_freq*(D?2:1)/(R*(T?2:1));
+
+ //keep the PFD frequency at or below 25MHz (Loop Filter Bandwidth)
+ if (pfd_freq > constraints.pfd_freq_max) continue;
+
+ //ignore fractional part of tuning
+ //N is computed from target_freq and not vco_freq because the feedback
+ //mode is set to FEEDBACK_SELECT_DIVIDED
+ N = boost::uint16_t(std::floor(target_freq/pfd_freq));
+
+ //keep N > minimum int divider requirement
+ if (N < static_cast<boost::uint16_t>(constraints.int_range.start())) continue;
+
+ for(BS=1; BS <= 255; BS+=1){
+ //keep the band select frequency at or below band_sel_freq_max
+ //constraint on band select clock
+ if (pfd_freq/BS > constraints.band_sel_freq_max) continue;
+ goto done_loop;
+ }
+ } done_loop:
+
+ //Fractional-N calculation
+ MOD = 4095; //max fractional accuracy
+ //N is computed from target_freq and not vco_freq because the feedback
+ //mode is set to FEEDBACK_SELECT_DIVIDED
+ FRAC = static_cast<boost::uint16_t>((target_freq/pfd_freq - N)*MOD);
+ if (constraints.force_frac0) {
+ if (FRAC > (MOD / 2)) { //Round integer such that actual freq is closest to target
+ N++;
+ }
+ FRAC = 0;
+ }
+
+ //Reference divide-by-2 for 50% duty cycle
+ // if R even, move one divide by 2 to to regs.reference_divide_by_2
+ if(R % 2 == 0) {
+ T = true;
+ R /= 2;
+ }
+
+ //Typical phase resync time documented in data sheet pg.24
+ static const double PHASE_RESYNC_TIME = 400e-6;
+
+ //actual frequency calculation
+ actual_freq = double((N + (double(FRAC)/double(MOD)))*ref_freq*(D?2:1)/(R*(T?2:1)));
+
+ //load the settings
+ adf435x_tuning_settings settings;
+ settings.frac_12_bit = FRAC;
+ settings.int_16_bit = N;
+ settings.mod_12_bit = MOD;
+ settings.clock_divider_12_bit = std::max<boost::uint16_t>(1, std::ceil(PHASE_RESYNC_TIME*pfd_freq/MOD));
+ settings.r_counter_10_bit = R;
+ settings.r_divide_by_2_en = T;
+ settings.r_doubler_en = D;
+ settings.band_select_clock_div = BS;
+ settings.rf_divider = RFdiv;
+ settings.feedback_after_divider = true;
+
+ UHD_LOGV(often)
+ << boost::format("ADF 435X Frequencies (MHz): REQUESTED=%0.9f, ACTUAL=%0.9f"
+ ) % (target_freq/1e6) % (actual_freq/1e6) << std::endl
+ << boost::format("ADF 435X Intermediates (MHz): VCO=%0.2f, PFD=%0.2f, BAND=%0.2f, REF=%0.2f"
+ ) % (vco_freq/1e6) % (pfd_freq/1e6) % (pfd_freq/BS/1e6) % (ref_freq/1e6) << std::endl
+ << boost::format("ADF 435X Settings: R=%d, BS=%d, N=%d, FRAC=%d, MOD=%d, T=%d, D=%d, RFdiv=%d"
+ ) % R % BS % N % FRAC % MOD % T % D % RFdiv << std::endl;
+
+ UHD_ASSERT_THROW((settings.frac_12_bit & ((boost::uint16_t)~0xFFF)) == 0);
+ UHD_ASSERT_THROW((settings.mod_12_bit & ((boost::uint16_t)~0xFFF)) == 0);
+ UHD_ASSERT_THROW((settings.clock_divider_12_bit & ((boost::uint16_t)~0xFFF)) == 0);
+ UHD_ASSERT_THROW((settings.r_counter_10_bit & ((boost::uint16_t)~0x3FF)) == 0);
+
+ UHD_ASSERT_THROW(vco_freq >= MIN_VCO_FREQ and vco_freq <= MAX_VCO_FREQ);
+ UHD_ASSERT_THROW(settings.rf_divider >= static_cast<boost::uint16_t>(constraints.rf_divider_range.start()));
+ UHD_ASSERT_THROW(settings.rf_divider <= static_cast<boost::uint16_t>(constraints.rf_divider_range.stop()));
+ UHD_ASSERT_THROW(settings.int_16_bit >= static_cast<boost::uint16_t>(constraints.int_range.start()));
+ UHD_ASSERT_THROW(settings.int_16_bit <= static_cast<boost::uint16_t>(constraints.int_range.stop()));
+
+ return settings;
+}
+
/***********************************************************************
* Register the SBX dboard (min freq, max freq, rx div2, tx div2)
@@ -362,4 +493,3 @@ void sbx_xcvr::flash_leds(void) {
this->get_iface()->set_gpio_ddr(dboard_iface::UNIT_TX, (TXIO_MASK|TX_LED_IO));
this->get_iface()->set_gpio_ddr(dboard_iface::UNIT_RX, (RXIO_MASK|RX_LED_IO));
}
-
diff --git a/host/lib/usrp/dboard/db_sbx_common.hpp b/host/lib/usrp/dboard/db_sbx_common.hpp
index 4f3a2eeaa..e9bb2434c 100644
--- a/host/lib/usrp/dboard/db_sbx_common.hpp
+++ b/host/lib/usrp/dboard/db_sbx_common.hpp
@@ -181,6 +181,34 @@ protected:
~sbx_versionx(void) {}
virtual double set_lo_freq(dboard_iface::unit_t unit, double target_freq) = 0;
+ protected:
+ struct adf435x_tuning_constraints {
+ bool force_frac0;
+ double ref_doubler_threshold;
+ double pfd_freq_max;
+ double band_sel_freq_max;
+ uhd::range_t rf_divider_range;
+ uhd::range_t int_range;
+ };
+
+ struct adf435x_tuning_settings {
+ boost::uint16_t frac_12_bit;
+ boost::uint16_t int_16_bit;
+ boost::uint16_t mod_12_bit;
+ boost::uint16_t r_counter_10_bit;
+ bool r_doubler_en;
+ bool r_divide_by_2_en;
+ boost::uint16_t clock_divider_12_bit;
+ boost::uint8_t band_select_clock_div;
+ boost::uint16_t rf_divider;
+ bool feedback_after_divider;
+ };
+
+ adf435x_tuning_settings _tune_adf435x_synth(
+ double target_freq,
+ double ref_freq,
+ const adf435x_tuning_constraints& constraints,
+ double& actual_freq);
};
/*!
diff --git a/host/lib/usrp/dboard/db_sbx_version3.cpp b/host/lib/usrp/dboard/db_sbx_version3.cpp
index 2765d530c..b0c9cd18f 100644
--- a/host/lib/usrp/dboard/db_sbx_version3.cpp
+++ b/host/lib/usrp/dboard/db_sbx_version3.cpp
@@ -63,85 +63,21 @@ double sbx_xcvr::sbx_version3::set_lo_freq(dboard_iface::unit_t unit, double tar
(16, adf4350_regs_t::RF_DIVIDER_SELECT_DIV16)
;
- double actual_freq, pfd_freq;
- double ref_freq = self_base->get_iface()->get_clock_rate(unit);
- int R=0, BS=0, N=0, FRAC=0, MOD=0;
- int RFdiv = 1;
- adf4350_regs_t::reference_divide_by_2_t T = adf4350_regs_t::REFERENCE_DIVIDE_BY_2_DISABLED;
- adf4350_regs_t::reference_doubler_t D = adf4350_regs_t::REFERENCE_DOUBLER_DISABLED;
-
- //Reference doubler for 50% duty cycle
- // if ref_freq < 12.5MHz enable regs.reference_divide_by_2
- if(ref_freq <= 12.5e6) D = adf4350_regs_t::REFERENCE_DOUBLER_ENABLED;
-
- //increase RF divider until acceptable VCO frequency
- double vco_freq = target_freq;
- while (vco_freq < 2.2e9) {
- vco_freq *= 2;
- RFdiv *= 2;
- }
-
//use 8/9 prescaler for vco_freq > 3 GHz (pg.18 prescaler)
adf4350_regs_t::prescaler_t prescaler = target_freq > 3e9 ? adf4350_regs_t::PRESCALER_8_9 : adf4350_regs_t::PRESCALER_4_5;
- /*
- * The goal here is to loop though possible R dividers,
- * band select clock dividers, N (int) dividers, and FRAC
- * (frac) dividers.
- *
- * Calculate the N and F dividers for each set of values.
- * The loop exits when it meets all of the constraints.
- * The resulting loop values are loaded into the registers.
- *
- * from pg.21
- *
- * f_pfd = f_ref*(1+D)/(R*(1+T))
- * f_vco = (N + (FRAC/MOD))*f_pfd
- * N = f_vco/f_pfd - FRAC/MOD = f_vco*((R*(T+1))/(f_ref*(1+D))) - FRAC/MOD
- * f_rf = f_vco/RFdiv)
- * f_actual = f_rf/2
- */
- for(R = 1; R <= 1023; R+=1){
- //PFD input frequency = f_ref/R ... ignoring Reference doubler/divide-by-2 (D & T)
- pfd_freq = ref_freq*(1+D)/(R*(1+T));
-
- //keep the PFD frequency at or below 25MHz (Loop Filter Bandwidth)
- if (pfd_freq > 25e6) continue;
-
- //ignore fractional part of tuning
- N = int(std::floor(target_freq/pfd_freq));
-
- //keep N > minimum int divider requirement
- if (N < prescaler_to_min_int_div[prescaler]) continue;
-
- for(BS=1; BS <= 255; BS+=1){
- //keep the band select frequency at or below 100KHz
- //constraint on band select clock
- if (pfd_freq/BS > 100e3) continue;
- goto done_loop;
- }
- } done_loop:
-
- //Fractional-N calculation
- MOD = 4095; //max fractional accuracy
- FRAC = int((target_freq/pfd_freq - N)*MOD);
-
- //Reference divide-by-2 for 50% duty cycle
- // if R even, move one divide by 2 to to regs.reference_divide_by_2
- if(R % 2 == 0){
- T = adf4350_regs_t::REFERENCE_DIVIDE_BY_2_ENABLED;
- R /= 2;
- }
-
- //actual frequency calculation
- actual_freq = double((N + (double(FRAC)/double(MOD)))*ref_freq*(1+int(D))/(R*(1+int(T))));
+ adf435x_tuning_constraints tuning_constraints;
+ tuning_constraints.force_frac0 = false;
+ tuning_constraints.band_sel_freq_max = 100e3;
+ tuning_constraints.ref_doubler_threshold = 12.5e6;
+ tuning_constraints.int_range = uhd::range_t(prescaler_to_min_int_div[prescaler], 4095); //INT is a 12-bit field
+ tuning_constraints.pfd_freq_max = 25e6;
+ tuning_constraints.rf_divider_range = uhd::range_t(1, 16);
- UHD_LOGV(often)
- << boost::format("SBX Intermediates: ref=%0.2f, outdiv=%f, fbdiv=%f") % (ref_freq*(1+int(D))/(R*(1+int(T)))) % double(RFdiv*2) % double(N + double(FRAC)/double(MOD)) << std::endl
- << boost::format("SBX tune: R=%d, BS=%d, N=%d, FRAC=%d, MOD=%d, T=%d, D=%d, RFdiv=%d"
- ) % R % BS % N % FRAC % MOD % T % D % RFdiv << std::endl
- << boost::format("SBX Frequencies (MHz): REQ=%0.2f, ACT=%0.2f, VCO=%0.2f, PFD=%0.2f, BAND=%0.2f"
- ) % (target_freq/1e6) % (actual_freq/1e6) % (vco_freq/1e6) % (pfd_freq/1e6) % (pfd_freq/BS/1e6) << std::endl;
+ double actual_freq;
+ adf435x_tuning_settings tuning_settings = _tune_adf435x_synth(
+ target_freq, self_base->get_iface()->get_clock_rate(unit),
+ tuning_constraints, actual_freq);
//load the register values
adf4350_regs_t regs;
@@ -151,19 +87,25 @@ double sbx_xcvr::sbx_version3::set_lo_freq(dboard_iface::unit_t unit, double tar
else
regs.output_power = adf4350_regs_t::OUTPUT_POWER_5DBM;
- regs.frac_12_bit = FRAC;
- regs.int_16_bit = N;
- regs.mod_12_bit = MOD;
- regs.clock_divider_12_bit = std::max(1, int(std::ceil(400e-6*pfd_freq/MOD)));
- regs.feedback_select = adf4350_regs_t::FEEDBACK_SELECT_DIVIDED;
- regs.clock_div_mode = adf4350_regs_t::CLOCK_DIV_MODE_RESYNC_ENABLE;
- regs.prescaler = prescaler;
- regs.r_counter_10_bit = R;
- regs.reference_divide_by_2 = T;
- regs.reference_doubler = D;
- regs.band_select_clock_div = BS;
- UHD_ASSERT_THROW(rfdivsel_to_enum.has_key(RFdiv));
- regs.rf_divider_select = rfdivsel_to_enum[RFdiv];
+ regs.frac_12_bit = tuning_settings.frac_12_bit;
+ regs.int_16_bit = tuning_settings.int_16_bit;
+ regs.mod_12_bit = tuning_settings.mod_12_bit;
+ regs.clock_divider_12_bit = tuning_settings.clock_divider_12_bit;
+ regs.feedback_select = tuning_settings.feedback_after_divider ?
+ adf4350_regs_t::FEEDBACK_SELECT_DIVIDED :
+ adf4350_regs_t::FEEDBACK_SELECT_FUNDAMENTAL;
+ regs.clock_div_mode = adf4350_regs_t::CLOCK_DIV_MODE_RESYNC_ENABLE;
+ regs.prescaler = prescaler;
+ regs.r_counter_10_bit = tuning_settings.r_counter_10_bit;
+ regs.reference_divide_by_2 = tuning_settings.r_divide_by_2_en ?
+ adf4350_regs_t::REFERENCE_DIVIDE_BY_2_ENABLED :
+ adf4350_regs_t::REFERENCE_DIVIDE_BY_2_DISABLED;
+ regs.reference_doubler = tuning_settings.r_doubler_en ?
+ adf4350_regs_t::REFERENCE_DOUBLER_ENABLED :
+ adf4350_regs_t::REFERENCE_DOUBLER_DISABLED;
+ regs.band_select_clock_div = tuning_settings.band_select_clock_div;
+ UHD_ASSERT_THROW(rfdivsel_to_enum.has_key(tuning_settings.rf_divider));
+ regs.rf_divider_select = rfdivsel_to_enum[tuning_settings.rf_divider];
//reset the N and R counter
regs.counter_reset = adf4350_regs_t::COUNTER_RESET_ENABLED;
diff --git a/host/lib/usrp/dboard/db_sbx_version4.cpp b/host/lib/usrp/dboard/db_sbx_version4.cpp
index 27fd68b05..8d95b0655 100644
--- a/host/lib/usrp/dboard/db_sbx_version4.cpp
+++ b/host/lib/usrp/dboard/db_sbx_version4.cpp
@@ -66,85 +66,21 @@ double sbx_xcvr::sbx_version4::set_lo_freq(dboard_iface::unit_t unit, double tar
(64, adf4351_regs_t::RF_DIVIDER_SELECT_DIV64)
;
- double actual_freq, pfd_freq;
- double ref_freq = self_base->get_iface()->get_clock_rate(unit);
- int R=0, BS=0, N=0, FRAC=0, MOD=0;
- int RFdiv = 1;
- adf4351_regs_t::reference_divide_by_2_t T = adf4351_regs_t::REFERENCE_DIVIDE_BY_2_DISABLED;
- adf4351_regs_t::reference_doubler_t D = adf4351_regs_t::REFERENCE_DOUBLER_DISABLED;
-
- //Reference doubler for 50% duty cycle
- // if ref_freq < 12.5MHz enable regs.reference_divide_by_2
- if(ref_freq <= 12.5e6) D = adf4351_regs_t::REFERENCE_DOUBLER_ENABLED;
-
- //increase RF divider until acceptable VCO frequency
- double vco_freq = target_freq;
- while (vco_freq < 2.2e9) {
- vco_freq *= 2;
- RFdiv *= 2;
- }
-
//use 8/9 prescaler for vco_freq > 3 GHz (pg.18 prescaler)
- adf4351_regs_t::prescaler_t prescaler = target_freq > 3e9 ? adf4351_regs_t::PRESCALER_8_9 : adf4351_regs_t::PRESCALER_4_5;
-
- /*
- * The goal here is to loop though possible R dividers,
- * band select clock dividers, N (int) dividers, and FRAC
- * (frac) dividers.
- *
- * Calculate the N and F dividers for each set of values.
- * The loop exits when it meets all of the constraints.
- * The resulting loop values are loaded into the registers.
- *
- * from pg.21
- *
- * f_pfd = f_ref*(1+D)/(R*(1+T))
- * f_vco = (N + (FRAC/MOD))*f_pfd
- * N = f_vco/f_pfd - FRAC/MOD = f_vco*((R*(T+1))/(f_ref*(1+D))) - FRAC/MOD
- * f_rf = f_vco/RFdiv)
- * f_actual = f_rf/2
- */
- for(R = 1; R <= 1023; R+=1){
- //PFD input frequency = f_ref/R ... ignoring Reference doubler/divide-by-2 (D & T)
- pfd_freq = ref_freq*(1+D)/(R*(1+T));
-
- //keep the PFD frequency at or below 25MHz (Loop Filter Bandwidth)
- if (pfd_freq > 25e6) continue;
-
- //ignore fractional part of tuning
- N = int(std::floor(vco_freq/pfd_freq));
-
- //keep N > minimum int divider requirement
- if (N < prescaler_to_min_int_div[prescaler]) continue;
-
- for(BS=1; BS <= 255; BS+=1){
- //keep the band select frequency at or below 100KHz
- //constraint on band select clock
- if (pfd_freq/BS > 100e3) continue;
- goto done_loop;
- }
- } done_loop:
-
- //Fractional-N calculation
- MOD = 4095; //max fractional accuracy
- FRAC = int((target_freq/pfd_freq - N)*MOD);
-
- //Reference divide-by-2 for 50% duty cycle
- // if R even, move one divide by 2 to to regs.reference_divide_by_2
- if(R % 2 == 0){
- T = adf4351_regs_t::REFERENCE_DIVIDE_BY_2_ENABLED;
- R /= 2;
- }
+ adf4351_regs_t::prescaler_t prescaler = target_freq > 3.6e9 ? adf4351_regs_t::PRESCALER_8_9 : adf4351_regs_t::PRESCALER_4_5;
- //actual frequency calculation
- actual_freq = double((N + (double(FRAC)/double(MOD)))*ref_freq*(1+int(D))/(R*(1+int(T))));
+ adf435x_tuning_constraints tuning_constraints;
+ tuning_constraints.force_frac0 = false;
+ tuning_constraints.band_sel_freq_max = 100e3;
+ tuning_constraints.ref_doubler_threshold = 12.5e6;
+ tuning_constraints.int_range = uhd::range_t(prescaler_to_min_int_div[prescaler], 4095); //INT is a 12-bit field
+ tuning_constraints.pfd_freq_max = 25e6;
+ tuning_constraints.rf_divider_range = uhd::range_t(1, 64);
- UHD_LOGV(often)
- << boost::format("SBX Intermediates: ref=%0.2f, outdiv=%f, fbdiv=%f") % (ref_freq*(1+int(D))/(R*(1+int(T)))) % double(RFdiv*2) % double(N + double(FRAC)/double(MOD)) << std::endl
- << boost::format("SBX tune: R=%d, BS=%d, N=%d, FRAC=%d, MOD=%d, T=%d, D=%d, RFdiv=%d"
- ) % R % BS % N % FRAC % MOD % T % D % RFdiv << std::endl
- << boost::format("SBX Frequencies (MHz): REQ=%0.2f, ACT=%0.2f, VCO=%0.2f, PFD=%0.2f, BAND=%0.2f"
- ) % (target_freq/1e6) % (actual_freq/1e6) % (vco_freq/1e6) % (pfd_freq/1e6) % (pfd_freq/BS/1e6) << std::endl;
+ double actual_freq;
+ adf435x_tuning_settings tuning_settings = _tune_adf435x_synth(
+ target_freq, self_base->get_iface()->get_clock_rate(unit),
+ tuning_constraints, actual_freq);
//load the register values
adf4351_regs_t regs;
@@ -154,19 +90,25 @@ double sbx_xcvr::sbx_version4::set_lo_freq(dboard_iface::unit_t unit, double tar
else
regs.output_power = adf4351_regs_t::OUTPUT_POWER_5DBM;
- regs.frac_12_bit = FRAC;
- regs.int_16_bit = N;
- regs.mod_12_bit = MOD;
- regs.clock_divider_12_bit = std::max(1, int(std::ceil(400e-6*pfd_freq/MOD)));
- regs.feedback_select = adf4351_regs_t::FEEDBACK_SELECT_DIVIDED;
- regs.clock_div_mode = adf4351_regs_t::CLOCK_DIV_MODE_RESYNC_ENABLE;
- regs.prescaler = prescaler;
- regs.r_counter_10_bit = R;
- regs.reference_divide_by_2 = T;
- regs.reference_doubler = D;
- regs.band_select_clock_div = BS;
- UHD_ASSERT_THROW(rfdivsel_to_enum.has_key(RFdiv));
- regs.rf_divider_select = rfdivsel_to_enum[RFdiv];
+ regs.frac_12_bit = tuning_settings.frac_12_bit;
+ regs.int_16_bit = tuning_settings.int_16_bit;
+ regs.mod_12_bit = tuning_settings.mod_12_bit;
+ regs.clock_divider_12_bit = tuning_settings.clock_divider_12_bit;
+ regs.feedback_select = tuning_settings.feedback_after_divider ?
+ adf4351_regs_t::FEEDBACK_SELECT_DIVIDED :
+ adf4351_regs_t::FEEDBACK_SELECT_FUNDAMENTAL;
+ regs.clock_div_mode = adf4351_regs_t::CLOCK_DIV_MODE_RESYNC_ENABLE;
+ regs.prescaler = prescaler;
+ regs.r_counter_10_bit = tuning_settings.r_counter_10_bit;
+ regs.reference_divide_by_2 = tuning_settings.r_divide_by_2_en ?
+ adf4351_regs_t::REFERENCE_DIVIDE_BY_2_ENABLED :
+ adf4351_regs_t::REFERENCE_DIVIDE_BY_2_DISABLED;
+ regs.reference_doubler = tuning_settings.r_doubler_en ?
+ adf4351_regs_t::REFERENCE_DOUBLER_ENABLED :
+ adf4351_regs_t::REFERENCE_DOUBLER_DISABLED;
+ regs.band_select_clock_div = tuning_settings.band_select_clock_div;
+ UHD_ASSERT_THROW(rfdivsel_to_enum.has_key(tuning_settings.rf_divider));
+ regs.rf_divider_select = rfdivsel_to_enum[tuning_settings.rf_divider];
//reset the N and R counter
regs.counter_reset = adf4351_regs_t::COUNTER_RESET_ENABLED;