diff options
author | Martin Braun <martin.braun@ettus.com> | 2019-07-29 14:06:39 -0700 |
---|---|---|
committer | Martin Braun <martin.braun@ettus.com> | 2019-11-26 11:49:34 -0800 |
commit | bf986d32632199917dc811f00465ecf409c64a76 (patch) | |
tree | 161ba1b536fac92ff2d82722cb24fbbbf3ce86d1 /host/lib/rfnoc | |
parent | c19b80a5d7fac51c0efcb265b1be81e9982dd153 (diff) | |
download | uhd-bf986d32632199917dc811f00465ecf409c64a76.tar.gz uhd-bf986d32632199917dc811f00465ecf409c64a76.tar.bz2 uhd-bf986d32632199917dc811f00465ecf409c64a76.zip |
rfnoc: Add DUC block controller
Diffstat (limited to 'host/lib/rfnoc')
-rw-r--r-- | host/lib/rfnoc/CMakeLists.txt | 1 | ||||
-rw-r--r-- | host/lib/rfnoc/duc_block_control.cpp | 524 |
2 files changed, 525 insertions, 0 deletions
diff --git a/host/lib/rfnoc/CMakeLists.txt b/host/lib/rfnoc/CMakeLists.txt index 963458fe6..a88507dcd 100644 --- a/host/lib/rfnoc/CMakeLists.txt +++ b/host/lib/rfnoc/CMakeLists.txt @@ -58,6 +58,7 @@ LIBUHD_APPEND_SOURCES( # Default block control classes: ${CMAKE_CURRENT_SOURCE_DIR}/block_control.cpp ${CMAKE_CURRENT_SOURCE_DIR}/ddc_block_control.cpp + ${CMAKE_CURRENT_SOURCE_DIR}/duc_block_control.cpp ${CMAKE_CURRENT_SOURCE_DIR}/ddc_block_ctrl_impl.cpp ${CMAKE_CURRENT_SOURCE_DIR}/duc_block_ctrl_impl.cpp ${CMAKE_CURRENT_SOURCE_DIR}/fir_block_ctrl_impl.cpp diff --git a/host/lib/rfnoc/duc_block_control.cpp b/host/lib/rfnoc/duc_block_control.cpp new file mode 100644 index 000000000..0d10aee69 --- /dev/null +++ b/host/lib/rfnoc/duc_block_control.cpp @@ -0,0 +1,524 @@ +// +// Copyright 2019 Ettus Research, a National Instruments Brand +// +// SPDX-License-Identifier: GPL-3.0-or-later +// + +#include <uhd/exception.hpp> +#include <uhd/rfnoc/defaults.hpp> +#include <uhd/rfnoc/duc_block_control.hpp> +#include <uhd/rfnoc/property.hpp> +#include <uhd/rfnoc/registry.hpp> +#include <uhd/types/ranges.hpp> +#include <uhd/utils/log.hpp> +#include <uhd/utils/math.hpp> +#include <uhdlib/usrp/cores/dsp_core_utils.hpp> +#include <uhdlib/utils/compat_check.hpp> +#include <uhdlib/utils/math.hpp> +#include <boost/math/special_functions/round.hpp> +#include <set> +#include <string> + +namespace { + +constexpr double DEFAULT_SCALING = 1.0; +constexpr int DEFAULT_INTERP = 1; +constexpr double DEFAULT_FREQ = 0.0; +const uhd::rfnoc::io_type_t DEFAULT_TYPE = uhd::rfnoc::IO_TYPE_SC16; + +//! Space (in bytes) between register banks per channel +constexpr uint32_t REG_CHAN_OFFSET = 2048; + +} // namespace + +using namespace uhd::rfnoc; + +const uint16_t duc_block_control::MINOR_COMPAT = 0; +const uint16_t duc_block_control::MAJOR_COMPAT = 0; + +const uint32_t duc_block_control::RB_COMPAT_NUM = 0; // read this first +const uint32_t duc_block_control::RB_NUM_HB = 8; +const uint32_t duc_block_control::RB_CIC_MAX_INTERP = 16; + +const uint32_t duc_block_control::SR_N_ADDR = 128 * 8; +const uint32_t duc_block_control::SR_M_ADDR = 129 * 8; +const uint32_t duc_block_control::SR_CONFIG_ADDR = 130 * 8; +const uint32_t duc_block_control::SR_INTERP_ADDR = 131 * 8; +const uint32_t duc_block_control::SR_FREQ_ADDR = 132 * 8; +const uint32_t duc_block_control::SR_SCALE_IQ_ADDR = 133 * 8; + +class duc_block_control_impl : public duc_block_control +{ +public: + RFNOC_BLOCK_CONSTRUCTOR(duc_block_control) + , _fpga_compat(regs().peek32(RB_COMPAT_NUM)), + _num_halfbands(regs().peek32(RB_NUM_HB)), + _cic_max_interp(regs().peek32(RB_CIC_MAX_INTERP)), + _residual_scaling(get_num_input_ports(), DEFAULT_SCALING) + { + UHD_ASSERT_THROW(get_num_input_ports() == get_num_output_ports()); + UHD_ASSERT_THROW(_cic_max_interp > 0 && _cic_max_interp <= 0xFF); + uhd::assert_fpga_compat(MAJOR_COMPAT, + MINOR_COMPAT, + _fpga_compat, + get_unique_id(), + get_unique_id(), + false /* Let it slide if minors mismatch */ + ); + RFNOC_LOG_DEBUG("Loading DUC with " << _num_halfbands + << " halfbands and " + "max CIC interpolation " + << _cic_max_interp); + // Load list of valid interpolation values + std::set<size_t> interps{1}; // 1 is always a valid interpolation + for (size_t hb = 0; hb < _num_halfbands; hb++) { + for (size_t cic_interp = 1; cic_interp <= _cic_max_interp; cic_interp++) { + interps.insert((1 << hb) * cic_interp); + } + } + for (size_t interp : interps) { + _valid_interps.push_back(uhd::range_t(double(interp))); + } + + // Initialize properties. It is very important to first reserve the + // space, because we use push_back() further down, and properties must + // not change their base address after registration and resolver + // creation. + _samp_rate_in.reserve(get_num_ports()); + _samp_rate_out.reserve(get_num_ports()); + _scaling_in.reserve(get_num_ports()); + _scaling_out.reserve(get_num_ports()); + _interp.reserve(get_num_ports()); + _freq.reserve(get_num_ports()); + _type_in.reserve(get_num_ports()); + _type_out.reserve(get_num_ports()); + for (size_t chan = 0; chan < get_num_ports(); chan++) { + _register_props(chan); + } + register_issue_stream_cmd(); + } + + double set_freq(const double freq, + const size_t chan, + const boost::optional<uhd::time_spec_t> time) + { + // Store the current command time so we can restore it later + auto prev_cmd_time = get_command_time(chan); + if (time) { + set_command_time(time.get(), chan); + } + // This will trigger property propagation: + set_property<double>("freq", freq, chan); + set_command_time(prev_cmd_time, chan); + return get_freq(chan); + } + + double get_freq(const size_t chan) const + { + return _freq.at(chan).get(); + } + + uhd::freq_range_t get_frequency_range(const size_t chan) const + { + const double input_rate = + _samp_rate_in.at(chan).is_valid() ? _samp_rate_in.at(chan).get() : 1.0; + // TODO add steps + return uhd::freq_range_t(-input_rate / 2, input_rate / 2); + } + + double get_input_rate(const size_t chan) const + { + return _samp_rate_in.at(chan).is_valid() ? _samp_rate_in.at(chan).get() : 1.0; + } + + double get_output_rate(const size_t chan) const + { + return _samp_rate_out.at(chan).is_valid() ? _samp_rate_out.at(chan).get() : 1.0; + } + + uhd::meta_range_t get_input_rates(const size_t chan) const + { + uhd::meta_range_t result; + if (!_samp_rate_out.at(chan).is_valid()) { + result.push_back(uhd::range_t(1.0)); + return result; + } + const double output_rate = _samp_rate_out.at(chan).get(); + // The interpolations are stored in order (from smallest to biggest), so + // iterate in reverse order so we can add rates from smallest to biggest + for (auto it = _valid_interps.rbegin(); it != _valid_interps.rend(); ++it) { + result.push_back(uhd::range_t(output_rate / it->start())); + } + return result; + } + + double set_input_rate(const double rate, const size_t chan) + { + if (_samp_rate_out.at(chan).is_valid()) { + const int coerced_interp = coerce_interp(get_output_rate(chan) / rate); + set_property<int>("interp", coerced_interp, chan); + } else { + RFNOC_LOG_DEBUG( + "Property samp_rate@" + << chan + << " is not valid, attempting to set input rate via the edge property."); + set_property<double>("samp_rate", rate, {res_source_info::INPUT_EDGE, chan}); + } + return _samp_rate_in.at(chan).get(); + } + +private: + //! Shorthand for num ports, since num input ports always equals num output ports + inline size_t get_num_ports() + { + return get_num_input_ports(); + } + + inline uint32_t get_addr(const uint32_t base_addr, const size_t chan) + { + return base_addr + REG_CHAN_OFFSET * chan; + } + + /************************************************************************** + * Initialization + *************************************************************************/ + void _register_props(const size_t chan) + { + // Create actual properties and store them + _samp_rate_in.push_back( + property_t<double>(PROP_KEY_SAMP_RATE, {res_source_info::INPUT_EDGE, chan})); + _samp_rate_out.push_back( + property_t<double>(PROP_KEY_SAMP_RATE, {res_source_info::OUTPUT_EDGE, chan})); + _scaling_in.push_back( + property_t<double>(PROP_KEY_SCALING, {res_source_info::INPUT_EDGE, chan})); + _scaling_out.push_back( + property_t<double>(PROP_KEY_SCALING, {res_source_info::OUTPUT_EDGE, chan})); + _interp.push_back(property_t<int>( + PROP_KEY_INTERP, DEFAULT_INTERP, {res_source_info::USER, chan})); + _freq.push_back(property_t<double>( + PROP_KEY_FREQ, DEFAULT_FREQ, {res_source_info::USER, chan})); + _type_in.emplace_back(property_t<std::string>( + PROP_KEY_TYPE, IO_TYPE_SC16, {res_source_info::INPUT_EDGE, chan})); + _type_out.emplace_back(property_t<std::string>( + PROP_KEY_TYPE, IO_TYPE_SC16, {res_source_info::OUTPUT_EDGE, chan})); + UHD_ASSERT_THROW(_samp_rate_in.size() == chan + 1); + UHD_ASSERT_THROW(_samp_rate_out.size() == chan + 1); + UHD_ASSERT_THROW(_scaling_in.size() == chan + 1); + UHD_ASSERT_THROW(_scaling_out.size() == chan + 1); + UHD_ASSERT_THROW(_interp.size() == chan + 1); + UHD_ASSERT_THROW(_freq.size() == chan + 1); + UHD_ASSERT_THROW(_type_in.size() == chan + 1); + UHD_ASSERT_THROW(_type_out.size() == chan + 1); + + // give us some shorthands for the rest of this function + property_t<double>* samp_rate_in = &_samp_rate_in.back(); + property_t<double>* samp_rate_out = &_samp_rate_out.back(); + property_t<double>* scaling_in = &_scaling_in.back(); + property_t<double>* scaling_out = &_scaling_out.back(); + property_t<int>* interp = &_interp.back(); + property_t<double>* freq = &_freq.back(); + property_t<std::string>* type_in = &_type_in.back(); + property_t<std::string>* type_out = &_type_out.back(); + + // register them + register_property(samp_rate_in); + register_property(samp_rate_out); + register_property(scaling_in); + register_property(scaling_out); + register_property(interp); + register_property(freq); + register_property(type_in); + register_property(type_out); + + /********************************************************************** + * Add resolvers + *********************************************************************/ + // Resolver for _interp: this gets executed when the user directly + // modifies interp. the desired behaviour is to coerce it first, then + // keep the output rate constant, and re-calculate the input rate. + add_property_resolver({interp, scaling_in}, + {interp, samp_rate_out, samp_rate_in, scaling_in}, + [this, + chan, + &interp = *interp, + &samp_rate_out = *samp_rate_out, + &samp_rate_in = *samp_rate_in, + &scaling_in = *scaling_in, + &scaling_out = *scaling_out]() { + RFNOC_LOG_TRACE("Calling resolver for `interp'@" << chan); + interp = coerce_interp(double(interp.get())); + // The following function will also update _residual_scaling + if (interp.is_dirty()) { + set_interp(interp.get(), chan); + } + if (samp_rate_out.is_valid()) { + samp_rate_in = samp_rate_out.get() / interp.get(); + } else if (samp_rate_in.is_valid()) { + samp_rate_out = samp_rate_in.get() * interp.get(); + } + // The scaling is independent of the actual rates + if (scaling_out.is_valid()) { + scaling_in = scaling_out.get() * _residual_scaling.at(chan); + } + }); + // Resolver for _freq: this gets executed when the user directly + // modifies _freq. + add_property_resolver({freq}, + {freq}, + [this, chan, &samp_rate_out = *samp_rate_out, &freq = *freq]() { + RFNOC_LOG_TRACE("Calling resolver for `freq'@" << chan); + if (samp_rate_out.is_valid()) { + const double new_freq = + _set_freq(freq.get(), samp_rate_out.get(), chan); + // If the frequency we just set is sufficiently close to the old + // frequency, don't bother updating the property in software + if (!uhd::math::frequencies_are_equal(new_freq, freq.get())) { + freq = new_freq; + } + } else { + RFNOC_LOG_DEBUG("Not setting frequency until sampling rate is set."); + } + }); + // Resolver for the input rate: we try and match interp so that the + // output rate is not modified. if interp needs to be coerced, only then + // the output rate is modified. + // Note this might also affect the frequency (if the output rate is + // modified). + add_property_resolver({samp_rate_in}, + {interp, samp_rate_out}, + [this, + chan, + &interp = *interp, + &samp_rate_out = *samp_rate_out, + &samp_rate_in = *samp_rate_in]() { + RFNOC_LOG_TRACE("Calling resolver for `samp_rate_in'@" << chan); + if (samp_rate_in.is_valid()) { + RFNOC_LOG_TRACE("New samp_rate_in is " << samp_rate_in.get()); + // If interp is changed, that will take care of scaling + if (samp_rate_out.is_valid()) { + interp = coerce_interp(samp_rate_out.get() / samp_rate_in.get()); + } + samp_rate_out = samp_rate_in.get() * interp.get(); + RFNOC_LOG_TRACE("New samp_rate_out is " << samp_rate_out.get()); + } + }); + // Resolver for the output rate: like the previous one, but flipped. + add_property_resolver({samp_rate_out}, + {interp, samp_rate_in, freq}, + [this, + chan, + &interp = *interp, + &freq = *freq, + &samp_rate_out = *samp_rate_out, + &samp_rate_in = *samp_rate_in]() { + RFNOC_LOG_TRACE("Calling resolver for `samp_rate_out'@" << chan); + if (samp_rate_out.is_valid()) { + // If interp is changed, that will take care of scaling + if (samp_rate_in.is_valid()) { + interp = + coerce_interp(int(samp_rate_out.get() / samp_rate_in.get())); + } + samp_rate_in = samp_rate_out.get() / interp.get(); + // We now need to force the resolver for freq to run so it can + // update its phase increment + freq.force_dirty(); + } + }); + // Resolver for the output rate: like the previous one, but flipped. + add_property_resolver({scaling_out}, + {scaling_in}, + [this, + chan, + &interp = *interp, + &samp_rate_out = *samp_rate_out, + &samp_rate_in = *samp_rate_in, + &scaling_in = *scaling_in, + &scaling_out = *scaling_out]() { + RFNOC_LOG_TRACE("Calling resolver for `scaling_out'@" << chan); + // If any of these are dirty, the interp resolver will kick in + // and calculate the scaling itself, so we don't do it here to + // avoid conflict. + if (!interp.is_dirty() && !samp_rate_in.is_dirty() + && !samp_rate_out.is_dirty() && scaling_out.is_valid()) { + scaling_in = scaling_out.get() * _residual_scaling.at(chan); + } + }); + // Resolvers for type: These are constants + add_property_resolver({type_in}, {type_in}, [& type_in = *type_in]() { + type_in.set(IO_TYPE_SC16); + }); + add_property_resolver({type_out}, {type_out}, [& type_out = *type_out]() { + type_out.set(IO_TYPE_SC16); + }); + } + + void register_issue_stream_cmd() + { + register_action_handler(ACTION_KEY_STREAM_CMD, + [this](const res_source_info& src, action_info::sptr action) { + stream_cmd_action_info::sptr stream_cmd_action = + std::dynamic_pointer_cast<stream_cmd_action_info>(action); + if (!stream_cmd_action) { + throw uhd::runtime_error( + "Received stream_cmd of invalid action type!"); + } + issue_stream_cmd_action_handler(src, stream_cmd_action); + }); + } + + void issue_stream_cmd_action_handler( + const res_source_info& src, stream_cmd_action_info::sptr stream_cmd_action) + { + res_source_info dst_edge{res_source_info::invert_edge(src.type), src.instance}; + const size_t chan = src.instance; + uhd::stream_cmd_t::stream_mode_t stream_mode = + stream_cmd_action->stream_cmd.stream_mode; + RFNOC_LOG_TRACE("Received stream command: " << char(stream_mode) << " to " + << src.to_string() + << ", id==" << stream_cmd_action->id); + auto new_action = stream_cmd_action_info::make(stream_mode); + new_action->stream_cmd = stream_cmd_action->stream_cmd; + if (stream_mode == uhd::stream_cmd_t::STREAM_MODE_NUM_SAMPS_AND_DONE + || stream_mode == uhd::stream_cmd_t::STREAM_MODE_NUM_SAMPS_AND_MORE) { + if (src.type == res_source_info::INPUT_EDGE) { + new_action->stream_cmd.num_samps *= _interp.at(chan).get(); + } else { + new_action->stream_cmd.num_samps /= _interp.at(chan).get(); + } + RFNOC_LOG_TRACE("Forwarding num_samps stream command, new value is " + << new_action->stream_cmd.num_samps); + } else { + RFNOC_LOG_TRACE("Forwarding continuous stream command...") + } + + post_action(dst_edge, new_action); + } + + /************************************************************************** + * FPGA communication (register IO) + *************************************************************************/ + /*! Update the interpolation value + * + * \param interp The new interpolation value. + * \throws uhd::assertion_error if interp is not valid. + */ + void set_interp(int interp, const size_t chan) + { + RFNOC_LOG_TRACE("Set interp to " << interp); + // Step 1: Calculate number of halfbands + uint32_t hb_enable = 0; + uint32_t cic_interp = interp; + while ((cic_interp % 2 == 0) and hb_enable < _num_halfbands) { + hb_enable++; + cic_interp /= 2; + } + // Step 2: Make sure we can handle the rest with the CIC + UHD_ASSERT_THROW(hb_enable <= _num_halfbands); + UHD_ASSERT_THROW(cic_interp > 0 and cic_interp <= _cic_max_interp); + const uint32_t interp_word = (hb_enable << 8) | cic_interp; + regs().poke32(get_addr(SR_INTERP_ADDR, chan), interp_word); + + // Rate change = M/N, where N = 1 + regs().poke32(get_addr(SR_M_ADDR, chan), interp); + // FIXME: + // - TwinRX had some issues with N == 1 + regs().poke32(get_addr(SR_N_ADDR, chan), 1); + + if (cic_interp > 1 and hb_enable == 0) { + RFNOC_LOG_WARNING( + "The requested interpolation is odd; the user should expect passband " + "CIC rolloff.\n" + "Select an even interpolation to ensure that a halfband filter is " + "enabled.\n"); + } + + // DDS gain: + constexpr double DDS_GAIN = 2.0; + // Calculate algorithmic gain of CIC for a given interpolation. + // For Ettus CIC R=interp, M=1, N=4. Gain = (R * M) ^ (N - 1) + const double cic_gain = std::pow(double(cic_interp * 1), /*N*/ 4 - 1); + // The Ettus CIC also tries its best to compensate for the gain by + // shifting the CIC output. This reduces the gain by a factor of + // 2**ceil(log2(cic_gain)) + const double total_gain = + DDS_GAIN * cic_gain / std::pow(2, uhd::math::ceil_log2(cic_gain)); + update_scaling(total_gain, chan); + } + + //! Update scaling based on the current gain + // + // Calculates the closest fixpoint value that this block can correct for in + // hardware (fixpoint). The residual gain is written to _residual_scaling. + void update_scaling(const double dsp_gain, const size_t chan) + { + constexpr double FIXPOINT_SCALING = 1 << 15; + const double compensation_factor = 1. / dsp_gain; + // Convert to fixpoint + const double target_factor = FIXPOINT_SCALING * compensation_factor; + const int32_t actual_factor = boost::math::iround(target_factor); + // Write DUC with scaling correction for CIC and DDS that maximizes + // dynamic range + regs().poke32(get_addr(SR_SCALE_IQ_ADDR, chan), actual_factor); + + // Calculate the error introduced by using fixedpoint representation for + // the scaler, can be corrected in host later. + _residual_scaling[chan] = dsp_gain * double(actual_factor) / FIXPOINT_SCALING; + } + + /*! Return the closest possible interpolation value to the one requested + */ + int coerce_interp(const double requested_interp) const + { + UHD_ASSERT_THROW(requested_interp >= 0); + return static_cast<int>(_valid_interps.clip(requested_interp, true)); + } + + //! Set the DDS frequency shift the signal to \p requested_freq + double _set_freq( + const double requested_freq, const double input_rate, const size_t chan) + { + double actual_freq; + int32_t freq_word; + std::tie(actual_freq, freq_word) = + get_freq_and_freq_word(requested_freq, input_rate); + regs().poke32( + get_addr(SR_FREQ_ADDR, chan), uint32_t(freq_word), get_command_time(chan)); + return actual_freq; + } + + /************************************************************************** + * Attributes + *************************************************************************/ + //! Block compat number + const uint32_t _fpga_compat; + //! Number of halfbands + const size_t _num_halfbands; + //! Max CIC interpolation + const size_t _cic_max_interp; + + //! List of valid interpolation values + uhd::meta_range_t _valid_interps; + + //! Cache the current residual scaling + std::vector<double> _residual_scaling; + + //! Properties for type_in (one per port) + std::vector<property_t<std::string>> _type_in; + //! Properties for type_out (one per port) + std::vector<property_t<std::string>> _type_out; + //! Properties for samp_rate_in (one per port) + std::vector<property_t<double>> _samp_rate_in; + //! Properties for samp_rate_out (one per port) + std::vector<property_t<double>> _samp_rate_out; + //! Properties for scaling_in (one per port) + std::vector<property_t<double>> _scaling_in; + //! Properties for scaling_out (one per port) + std::vector<property_t<double>> _scaling_out; + //! Properties for interp (one per port) + std::vector<property_t<int>> _interp; + //! Properties for freq (one per port) + std::vector<property_t<double>> _freq; +}; + +UHD_RFNOC_BLOCK_REGISTER_DIRECT( + duc_block_control, 0xD0C00000, "DUC", CLOCK_KEY_GRAPH, "bus_clk") |