diff options
author | Nicholas Corgan <nick.corgan@ettus.com> | 2012-03-29 09:00:31 -0700 |
---|---|---|
committer | Nicholas Corgan <nick.corgan@ettus.com> | 2012-03-29 09:00:31 -0700 |
commit | a67486fff0b75a08072fe66b2c6c314cb4b3a16a (patch) | |
tree | 843f0652956b5c08a77f3d68a8700f8f61c583e5 /host/docs/usrp2.rst | |
parent | 097f20df1653c33035b6dcfefbbef22572426c65 (diff) | |
download | uhd-a67486fff0b75a08072fe66b2c6c314cb4b3a16a.tar.gz uhd-a67486fff0b75a08072fe66b2c6c314cb4b3a16a.tar.bz2 uhd-a67486fff0b75a08072fe66b2c6c314cb4b3a16a.zip |
docs: Adding links to specific installation instructions for Windows and Linux, as well as general formatting consistency/clean-up
Diffstat (limited to 'host/docs/usrp2.rst')
-rw-r--r-- | host/docs/usrp2.rst | 86 |
1 files changed, 43 insertions, 43 deletions
diff --git a/host/docs/usrp2.rst b/host/docs/usrp2.rst index d81440b07..452d4f9af 100644 --- a/host/docs/usrp2.rst +++ b/host/docs/usrp2.rst @@ -21,7 +21,7 @@ However, certain types of SD cards will not interface with the CPLD: For these reasons, we recommend that you use the SD card that was supplied with the USRP2. ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ -Use the card burner tool (unix) +Use the card burner tool (UNIX) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ :: @@ -38,7 +38,7 @@ The list result will filter out disk partitions and devices too large to be the The list option has been implemented on Linux, Mac OS X, and Windows. ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ -Use the card burner tool (windows) +Use the card burner tool (Windows) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ :: @@ -58,7 +58,7 @@ Determine the revision number from the sticker on the rear of the chassis. Use this number to select the correct FPGA image for your device. ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ -Use the net burner tool (unix) +Use the net burner tool (UNIX) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ :: @@ -88,22 +88,22 @@ The safe-mode button is a pushbutton switch (S2) located inside the enclosure. To boot into the safe image, hold-down the safe-mode button while power-cycling the device. Continue to hold-down the button until the front-panel LEDs blink and remain solid. -When in safe-mode, the USRP-N device will always have the IP address 192.168.10.2 +When in safe-mode, the USRP-N device will always have the IP address **192.168.10.2**. ------------------------------------------------------------------------ Setup networking ------------------------------------------------------------------------ -The USRP2 only supports gigabit ethernet, +The USRP2 only supports Gigabit Ethernet and will not work with a 10/100 Mbps interface. However, a 10/100 Mbps interface can be connected indirectly -to a USRP2 through a gigabit ethernet switch. +to a USRP2 through a Gigabit Ethernet switch. ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ Setup the host interface ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ The USRP2 communicates at the IP/UDP layer over the gigabit ethernet. The default IP address of the USRP2 is **192.168.10.2** -You will need to configure the host's ethernet interface with a static IP +You will need to configure the host's Ethernet interface with a static IP address to enable communication. An address of **192.168.10.1** and a subnet mask of **255.255.255.0** is recommended. @@ -129,23 +129,23 @@ It is recommended that you change or disable your firewall settings. ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ Multiple devices per host ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ -For maximum throughput, one ethernet interface per USRP2 is recommended, -although multiple devices may be connected via a gigabit ethernet switch. -In any case, each ethernet interface should have its own subnet, +For maximum throughput, one Ethernet interface per USRP2 is recommended, +although multiple devices may be connected via a Gigabit Ethernet switch. +In any case, each Ethernet interface should have its own subnet, and the corresponding USRP2 device should be assigned an address in that subnet. Example: **Configuration for USRP2 device 0:** -* Ethernet interface IPv4 address: 192.168.10.1 -* Ethernet interface subnet mask: 255.255.255.0 -* USRP2 device IPv4 address: 192.168.10.2 +* Ethernet interface IPv4 address: **192.168.10.1** +* Ethernet interface subnet mask: **255.255.255.0** +* USRP2 device IPv4 address: **192.168.10.2** **Configuration for USRP2 device 1:** -* Ethernet interface IPv4 address: 192.168.20.1 -* Ethernet interface subnet mask: 255.255.255.0 -* USRP2 device IPv4 address: 192.168.20.2 +* Ethernet interface IPv4 address: **192.168.20.1** +* Ethernet interface subnet mask: **255.255.255.0** +* USRP2 device IPv4 address: **192.168.20.2** ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ Change the USRP2's IP address @@ -157,7 +157,7 @@ You may need to change the USRP2's IP address for several reasons: * to set a known IP address into USRP2 (in case you forgot) **Method 1:** -To change the USRP2's IP address +To change the USRP2's IP address, you must know the current address of the USRP2, and the network must be setup properly as described above. Run the following commands: @@ -180,7 +180,7 @@ Communication problems ------------------------------------------------------------------------ When setting up a development machine for the first time, you may have various difficulties communicating with the USRP device. -The following tips are designed to help narrow-down and diagnose the problem. +The following tips are designed to help narrow down and diagnose the problem. ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ RuntimeError: no control response @@ -188,11 +188,11 @@ RuntimeError: no control response This is a common error that occurs when you have set the subnet of your network interface to a different subnet than the network interface of the USRP. For example, if your network interface is set to 192.168.20.1, and the USRP is -192.168.10.2 (note the difference in the third numbers of the IP addresses), you +**192.168.10.2** (note the difference in the third numbers of the IP addresses), you will likely see a 'no control response' error message. Fixing this is simple - just set the your host PC's IP address to the same -subnet as your USRP. Instructions for setting your IP address are in the +subnet as that of your USRP. Instructions for setting your IP address are in the previous section of this documentation. @@ -200,19 +200,19 @@ previous section of this documentation. Firewall issues ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ When the IP address is not specified, -the device discovery sends broadcast UDP packets from each ethernet interface. +the device discovery broadcasts UDP packets from each ethernet interface. Many firewalls will block the replies to these broadcast packets. -If disabling your system's firewall, -or specifying the IP address yeilds a discovered device, +If disabling your system's firewall +or specifying the IP address yields a discovered device, then your firewall may be blocking replies to UDP broadcast packets. -If this is the case, we recommend that you disable the firewall, +If this is the case, we recommend that you disable the firewall or create a rule to allow all incoming packets with UDP source port 49152. ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ Ping the device ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ -The USRP will reply to icmp echo requests. -A successful ping response means that the device has booted properly, +The USRP will reply to ICMP echo requests. +A successful ping response means that the device has booted properly and that it is using the expected IP address. :: @@ -222,7 +222,7 @@ and that it is using the expected IP address. ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ Monitor the serial output ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ -Read the serial port to get debug verbose from the embedded microcontroller. +Read the serial port to get debug verbose output from the embedded microcontroller. The microcontroller prints useful information about IP addresses, MAC addresses, control packets, fast-path settings, and bootloading. Use a standard USB to 3.3v-level serial converter at 230400 baud. @@ -235,7 +235,7 @@ The RXD pin can be left unconnected as this is only a one-way communication. ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ Monitor the host network traffic ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ -Use wireshark to monitor packets sent to and received from the device. +Use Wireshark to monitor packets sent to and received from the device. ------------------------------------------------------------------------ Addressing the device @@ -250,7 +250,7 @@ The USRP can be identified through its IPv4 address, resolvable hostname, or by See the application notes on `device identification <./identification.html>`_. Use this addressing scheme with the *single_usrp* interface. -Example device address string representation for a USRP2 with IPv4 address 192.168.10.2 +Example device address string representation for a USRP2 with IPv4 address **192.168.10.2**: :: @@ -268,7 +268,7 @@ Use this addressing scheme with the *multi_usrp* interface. * The order in which devices are indexed corresponds to the indexing of the transmit and receive channels. * The key indexing provides the same granularity of device identification as in the single device case. -Example device address string representation for 2 USRP2s with IPv4 addresses 192.168.10.2 and 192.168.20.2 +Example device address string representation for 2 USRP2s with IPv4 addresses **192.168.10.2** and **192.168.20.2**: :: addr0=192.168.10.2, addr1=192.168.20.2 @@ -277,31 +277,31 @@ Example device address string representation for 2 USRP2s with IPv4 addresses 19 Using the MIMO Cable ------------------------------------------------------------------------ The MIMO cable allows two USRP devices to share reference clocks, -time synchronization, and the ethernet interface. -One of the devices will sink its clock and time references to the MIMO cable. +time synchronization, and the Ethernet interface. +One of the devices will sync its clock and time references to the MIMO cable. This device will be referred to as the slave, and the other device, the master. * The slave device acquires the clock and time references from the master device. * The master and slave may be used individually or in a multi-device configuration. -* External clocking is optional, and should only be supplied to the master device. +* External clocking is optional and should only be supplied to the master device. ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ Shared ethernet mode ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ -In shared ethernet mode, -only one device in the configuration can be attached to the ethernet. +In shared Ethernet mode, +only one device in the configuration can be attached to the Tthernet. * Clock reference, time reference, and data are communicated over the MIMO cable. -* Both master and slave must have different IPv4 addresses in the same subnet. +* Master and slave must have different IPv4 addresses in the same subnet. ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ Dual ethernet mode ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ -In dual ethernet mode, -both devices in the configuration must be attached to the ethernet. +In dual Ethernet mode, +both devices in the configuration must be attached to the Ethernet. * Only clock reference and time reference are communicated over the MIMO cable. -* Both master and slave must have different IPv4 addresses in different subnets. +* The master and slave must have different IPv4 addresses in different subnets. ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ Configuring the slave @@ -336,8 +336,8 @@ The LEDs reveal the following about the state of the device: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ Ref Clock - 10MHz ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ -Using an external 10MHz reference clock, square wave will offer the best phase -noise performance, but sinusoid is acceptable. The reference clock requires the following power level: +Using an external 10MHz reference clock, a square wave will offer the best phase +noise performance, but a sinusoid is acceptable. The reference clock requires the following power level: * **USRP2** 5 to 15dBm * **N2XX** 0 to 15dBm @@ -376,8 +376,8 @@ Available Sensors The following sensors are available for the USRP2/N-Series motherboards; they can be queried through the API. -* mimo_locked - clock reference locked over the MIMO cable -* ref_locked - clock reference locked (internal/external) +* **mimo_locked** - clock reference locked over the MIMO cable +* **ref_locked** - clock reference locked (internal/external) * other sensors are added when the GPSDO is enabled ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ |