aboutsummaryrefslogtreecommitdiffstats
path: root/fpga/usrp3/sim/packages
diff options
context:
space:
mode:
authorWade Fife <wade.fife@ettus.com>2021-07-06 18:53:14 -0500
committerWade Fife <wade.fife@ettus.com>2021-08-08 14:59:26 -0500
commitda4202e6f74796603072aa14544581604e81df02 (patch)
treeb5f568ed1959915d85c312188fd5546cd4b17b80 /fpga/usrp3/sim/packages
parent8edd13e6eba61ef2bfd96c7dc88b2642decbaa7a (diff)
downloaduhd-da4202e6f74796603072aa14544581604e81df02.tar.gz
uhd-da4202e6f74796603072aa14544581604e81df02.tar.bz2
uhd-da4202e6f74796603072aa14544581604e81df02.zip
fpga: sim: Add PkgComplex, PkgMath, and PkgRandom
PkgComplex adds functions for doing complex arithmetic in SystemVerilog simulation. PkgMath provides mathematical operations and constants that aren't built into SystemVerilog, such as a constant for pi and the function round(). PkgRandom adds randomization functions beyond what standard Verilog supports but that don't require any special licenses or simulators.
Diffstat (limited to 'fpga/usrp3/sim/packages')
-rw-r--r--fpga/usrp3/sim/packages/Makefile.srcs11
-rw-r--r--fpga/usrp3/sim/packages/PkgComplex.sv230
-rw-r--r--fpga/usrp3/sim/packages/PkgMath.sv157
-rw-r--r--fpga/usrp3/sim/packages/PkgRandom.sv146
4 files changed, 544 insertions, 0 deletions
diff --git a/fpga/usrp3/sim/packages/Makefile.srcs b/fpga/usrp3/sim/packages/Makefile.srcs
new file mode 100644
index 000000000..4f87f3615
--- /dev/null
+++ b/fpga/usrp3/sim/packages/Makefile.srcs
@@ -0,0 +1,11 @@
+#
+# Copyright 2021 Ettus Research, A National Instruments Brand
+#
+# SPDX-License-Identifier: LGPL-3.0-or-later
+#
+
+SIM_PACKAGES_SRCS = $(abspath $(addprefix $(BASE_DIR)/../sim/packages/, \
+PkgMath.sv \
+PkgComplex.sv \
+PkgRandom.sv \
+))
diff --git a/fpga/usrp3/sim/packages/PkgComplex.sv b/fpga/usrp3/sim/packages/PkgComplex.sv
new file mode 100644
index 000000000..9fc957b97
--- /dev/null
+++ b/fpga/usrp3/sim/packages/PkgComplex.sv
@@ -0,0 +1,230 @@
+//
+// Copyright 2021 Ettus Research, A National Instruments Brand
+//
+// SPDX-License-Identifier: LGPL-3.0-or-later
+//
+// Package: PkgComplex
+//
+// Description:
+//
+// A package for doing complex arithmetic in SystemVerilog simulations.
+// Fixed-point operations are implemented such that results clip to the range
+// [-1.0, 1.0) and are rounded to the nearest ULP (half ULP is rounded away
+// from zero, following SystemVerilog rounding behavior).
+//
+
+
+package PkgComplex;
+
+ //---------------------------------------------------------------------------
+ // Type Definitions
+ //---------------------------------------------------------------------------
+
+ // Define a signed 16-bit fixed-point type with 15 fractional bits (Q0.15).
+ typedef bit signed [15:0] s16_t;
+
+ // Signed complex 16-bit data type, the standard type used by UHD and RFNoC.
+ typedef struct packed {
+ s16_t re;
+ s16_t im;
+ } sc16_t;
+
+ // Complex floating point data type.
+ typedef struct {
+ real re;
+ real im;
+ } complex_t;
+
+ // Maximum and minimum allowed by the s16 type.
+ localparam s16_t MAX_S16 = 16'h7FFF;
+ localparam s16_t MIN_S16 = 16'h8000;
+
+
+ //---------------------------------------------------------------------------
+ // Conversion Functions
+ //---------------------------------------------------------------------------
+
+ // Create an sc16 value from two s16 values.
+ function sc16_t build_sc16(s16_t x = 0, s16_t y = 0);
+ sc16_t val;
+ val.re = x;
+ val.im = y;
+ return val;
+ endfunction : build_sc16
+
+ // Create a complex value from two real values.
+ function complex_t build_complex(real x = 0.0, real y = 0.0);
+ complex_t val;
+ val.re = x;
+ val.im = y;
+ return val;
+ endfunction : build_complex
+
+ // Convert s16 to real.
+ function real s16_to_real(s16_t x);
+ return real'(x) / (2.0**15);
+ endfunction : s16_to_real
+
+ // Convert real to s16.
+ function s16_t real_to_s16(real x);
+ real val;
+ val = x * (2.0**15);
+ val = (val > MAX_S16) ? MAX_S16 : val;
+ val = (val < MIN_S16) ? MIN_S16 : val;
+ return s16_t'(val);
+ endfunction : real_to_s16
+
+ // Convert complex to sc16.
+ function sc16_t complex_to_sc16(complex_t x);
+ sc16_t val;
+ val.re = real_to_s16(x.re);
+ val.im = real_to_s16(x.im);
+ return val;
+ endfunction : complex_to_sc16
+
+ // Convert sc16 to complex.
+ function complex_t sc16_to_complex(sc16_t x);
+ complex_t val;
+ val.re = s16_to_real(x.re);
+ val.im = s16_to_real(x.im);
+ return val;
+ endfunction : sc16_to_complex
+
+ // Convert polar coordinates to a complex number. The phase should be in
+ // radians.
+ function complex_t polar_to_complex(real mag, real phase);
+ complex_t val;
+ val.re = mag * $cos(phase);
+ val.im = mag * $sin(phase);
+ return val;
+ endfunction : polar_to_complex
+
+ // Convert polar coordinates to an sc16 complex number. The phase should be
+ // in radians.
+ function sc16_t polar_to_sc16(real mag, real phase);
+ return complex_to_sc16(polar_to_complex(mag, phase));
+ endfunction : polar_to_sc16
+
+
+ //---------------------------------------------------------------------------
+ // Floating Point Complex Arithmetic
+ //---------------------------------------------------------------------------
+
+ // Add two complex numbers: x + y
+ function complex_t add(complex_t x, complex_t y);
+ complex_t val;
+ val.re = x.re + y.re;
+ val.im = x.im + y.im;
+ return val;
+ endfunction : add
+
+ // Subtract two complex numbers: x - y
+ function complex_t sub(complex_t x, complex_t y);
+ complex_t val;
+ val.re = x.re - y.re;
+ val.im = x.im - y.im;
+ return val;
+ endfunction : sub
+
+ // Multiply two complex numbers: x * y
+ function complex_t mul(complex_t x, complex_t y);
+ complex_t val;
+ val.re = x.re*y.re - x.im*y.im;
+ val.im = x.re*y.im + x.im*y.re;
+ return val;
+ endfunction : mul
+
+ // Divide two complex numbers: x / y
+ function complex_t div(complex_t x, complex_t y);
+ complex_t z;
+ z.re = (x.re*y.re + x.im*y.im) / (y.re*y.re + y.im*y.im);
+ z.im = (x.im*y.re + x.re*y.im) / (y.re*y.re + y.im*y.im);
+ return z;
+ endfunction : div
+
+ // Compute the exponential: e^x
+ function complex_t exp(complex_t x);
+ complex_t val;
+ // exp(a+jb) = exp(a)*exp(jb) = exp(a)*(cos(b) + j*sin(b))
+ val.re = $exp(x.re)*$cos(x.im);
+ val.im = $exp(x.re)*$sin(x.im);
+ return val;
+ endfunction : exp
+
+ // Compute the sine: sin(x)
+ function complex_t sin(complex_t x);
+ complex_t val;
+ val.re = $sin(x.re)*$cosh(x.im);
+ val.im = $cos(x.re)*$sinh(x.im);
+ return val;
+ endfunction : sin
+
+ // Compute the cosine: cos(x)
+ function complex_t cos(complex_t x);
+ complex_t val;
+ val.re = $cos(x.re)*$cosh(x.im);
+ val.im = -1.0*$sin(x.re)*$sinh(x.im);
+ return val;
+ endfunction : cos
+
+ // Compute the magnitude/modulus/absolute value: |x|
+ function real mag(complex_t x);
+ return $sqrt(x.re*x.re + x.im*x.im);
+ endfunction : mag
+
+ // Compute the phase/argument: arg(x)
+ function real arg(complex_t x);
+ return $atan2(x.im, x.re);
+ endfunction : arg
+
+
+ //---------------------------------------------------------------------------
+ // Fixed-Point Complex Arithmetic
+ //---------------------------------------------------------------------------
+
+ // Add two complex numbers: x + y
+ function sc16_t add_sc16(sc16_t x, sc16_t y);
+ return complex_to_sc16(add(sc16_to_complex(x), sc16_to_complex(y)));
+ endfunction : add_sc16
+
+ // Subtract two complex numbers: x - y
+ function sc16_t sub_sc16(sc16_t x, sc16_t y);
+ return complex_to_sc16(sub(sc16_to_complex(x), sc16_to_complex(y)));
+ endfunction : sub_sc16
+
+ // Multiply two complex numbers: x * y
+ function sc16_t mul_sc16(sc16_t x, sc16_t y);
+ return complex_to_sc16(mul(sc16_to_complex(x), sc16_to_complex(y)));
+ endfunction : mul_sc16
+
+ // Divide two complex numbers: x / y
+ function sc16_t div_sc16(sc16_t x, sc16_t y);
+ return complex_to_sc16(div(sc16_to_complex(x), sc16_to_complex(y)));
+ endfunction : div_sc16
+
+ // Compute the exponential: e^x
+ function sc16_t exp_sc16(sc16_t x);
+ return complex_to_sc16(exp(sc16_to_complex(x)));
+ endfunction : exp_sc16
+
+ // Compute the sine: sin(x)
+ function sc16_t sin_sc16(sc16_t x);
+ return complex_to_sc16(sin(sc16_to_complex(x)));
+ endfunction : sin_sc16
+
+ // compute the cosine: cos(x)
+ function sc16_t cos_sc16(sc16_t x);
+ return complex_to_sc16(cos(sc16_to_complex(x)));
+ endfunction : cos_sc16
+
+ // Compute the magnitude/modulus/absolute value: |x|
+ function s16_t mag_sc16(sc16_t x);
+ return real_to_s16(mag(sc16_to_complex(x)));
+ endfunction : mag_sc16
+
+ // Compute the phase/argument: arg(x)
+ function s16_t arg_sc16(sc16_t x);
+ return real_to_s16(arg(sc16_to_complex(x)));
+ endfunction : arg_sc16
+
+endpackage : PkgComplex
diff --git a/fpga/usrp3/sim/packages/PkgMath.sv b/fpga/usrp3/sim/packages/PkgMath.sv
new file mode 100644
index 000000000..db5c15840
--- /dev/null
+++ b/fpga/usrp3/sim/packages/PkgMath.sv
@@ -0,0 +1,157 @@
+//
+// Copyright 2021 Ettus Research, A National Instruments Brand
+//
+// SPDX-License-Identifier: LGPL-3.0-or-later
+//
+// Package: PkgMath
+//
+// Description:
+//
+// SystemVerilog supports many Math functions. This adds a few that it
+// doesn't have built in, as well as useful mathematical constants.
+//
+// SystemVerilog has built-in support for the following:
+//
+// $clog2 $asin
+// $ln $acos
+// $log10 $atan
+// $exp $atan2
+// $sqrt $hypot
+// $pow $sinh
+// $floor $cosh
+// $ceil $tanh
+// $sin $asinh
+// $cos $acosh
+// $tan $atanh
+//
+
+package PkgMath;
+
+ //---------------------------------------------------------------------------
+ // Constants
+ //---------------------------------------------------------------------------
+
+ localparam real PI = 2*$acos(0.0);
+ localparam real TAU = 4*$acos(0.0);
+
+ localparam real PHI = (1 + $sqrt(5.0)) / 2.0;
+ localparam real E = $exp(1);
+
+ localparam byte BYTE_MAX = 8'sh7F;
+ localparam byte BYTE_MIN = 8'sh80;
+ localparam shortint SHORT_MAX = 16'sh7FFF;
+ localparam shortint SHORT_MIN = 16'sh8000;
+ localparam int INT_MAX = 32'sh7FFFFFFF;
+ localparam int INT_MIN = 32'sh80000000;
+ localparam longint LONG_MAX = 64'sh7FFFFFFFFFFFFFFF;
+ localparam longint LONG_MIN = 64'sh8000000000000000;
+
+ localparam byte unsigned UBYTE_MAX = 8'hFF;
+ localparam byte unsigned UBYTE_MIN = 8'h00;
+ localparam shortint unsigned USHORT_MAX = 16'hFFFF;
+ localparam shortint unsigned USHORT_MIN = 16'h0000;
+ localparam int unsigned UINT_MAX = 32'hFFFFFFFF;
+ localparam int unsigned UINT_MIN = 32'h00000000;
+ localparam longint unsigned ULONG_MAX = 64'hFFFFFFFFFFFFFFFF;
+ localparam longint unsigned ULONG_MIN = 64'h0000000000000000;
+
+
+ //---------------------------------------------------------------------------
+ // Functions (For real data types)
+ //---------------------------------------------------------------------------
+
+ // Return the absolute value
+ function automatic real abs(real num);
+ if (num < 0) return -1.0*num;
+ return num;
+ endfunction : abs
+
+ // Round a float to the nearest whole number, rounding away from zero for 0.5
+ // (same as C++ and default SystemVerilog behavior).
+ function automatic real round(real num);
+ if (num >= 0) begin
+ // Round toward +inf
+ if (num - $floor(num) < 0.5) return $floor(num);
+ return $ceil(num);
+ end else begin
+ // Round toward -inf
+ if (num - $floor(num) <= 0.5) return $floor(num);
+ return $ceil(num);
+ end
+
+ endfunction : round
+
+ // Round a float to the nearest value having bits to the right of the binary
+ // point. For example:
+ //
+ // 1.2265625 (0b1.0011101) --> 3 bits --> 1.25000 (0b1.0100000)
+ // 1.2265625 (0b1.0011101) --> 5 bits --> 1.21875 (0b1.0011100)
+ //
+ function automatic real round_bits(real num, int unsigned bits);
+ return round(num * 2.0**bits) / (2.0**bits);
+ endfunction : round_bits
+
+ // Return the sign of num as +1.0 or -1.0;
+ function automatic real sign(real num);
+ if (num < 0.0) return -1.0;
+ return 1.0;
+ endfunction : sign;
+
+ // Return the modulus (remainder) of a / b, with the sign of the numerator.
+ // This should match the C++ standard library std::fmod() behavior, as well
+ // as SystemVerilog % operator with integer values.
+ function automatic real fmod(real a, real b);
+ a = abs(a);
+ b = abs(b);
+ return sign(b) * (a - ($floor(a / b) * b));
+ endfunction : fmod
+
+ // Return the (remainder) of a / b, where the quotient is rounded to the
+ // nearest integer. This should approximate the C++ standard library
+ // std::remainder() behavior.
+ function automatic real remainder(real a, real b);
+ return a - round(a/b)*b;
+ endfunction : remainder
+
+ // Return the maximum of a and b.
+ function automatic real fmax(real a, real b);
+ if (a > b) return a;
+ return b;
+ endfunction : fmax
+
+ // Return the minimum of a and b.
+ function automatic real fmin(real a, real b);
+ if (a < b) return a;
+ return b;
+ endfunction : fmin
+
+
+ //---------------------------------------------------------------------------
+ // Template Functions (For any data type)
+ //---------------------------------------------------------------------------
+
+ class Math #(type T);
+
+ static function T abs(T num);
+ if (num < 0) return -num;
+ return num;
+ endfunction : abs
+
+ static function T sign(T num);
+ if (num < 0) return -1;
+ return 1;
+ endfunction : sign
+
+ static function T max(T a, T b);
+ if (a > b) return a;
+ else return b;
+ endfunction : max
+
+ static function T min(T a, T b);
+ if (a < b) return a;
+ else return b;
+ endfunction : min
+
+ endclass : Math
+
+endpackage : PkgMath
diff --git a/fpga/usrp3/sim/packages/PkgRandom.sv b/fpga/usrp3/sim/packages/PkgRandom.sv
new file mode 100644
index 000000000..94e08d447
--- /dev/null
+++ b/fpga/usrp3/sim/packages/PkgRandom.sv
@@ -0,0 +1,146 @@
+//
+// Copyright 2021 Ettus Research, A National Instruments Brand
+//
+// SPDX-License-Identifier: LGPL-3.0-or-later
+//
+// Package: PkgRandom
+//
+// Description:
+//
+// SystemVerilog has great randomization support, but some features require a
+// more expensive license or aren't supported by all tools. This package
+// tries to fill that gap by providing some useful randomization functions
+// beyond what's supported by standard Verilog.
+//
+
+package PkgRandom;
+
+ import PkgMath::*;
+
+ //---------------------------------------------------------------------------
+ // Functions
+ //---------------------------------------------------------------------------
+
+ // Return a real value in the range [0,max), where max is 1.0 by default.
+ function automatic real frand(real max = 1.0);
+ bit [63:0] real_bits;
+ real num;
+
+ // Build a double-precision floating point value per IEEE-754 standard,
+ // which SystemVerilog follows.
+
+ // Positive, with exponent 0
+ real_bits[63:52] = 12'h3FF;
+
+ // Mantissa in the range [1.0, 2.0). The leading 1 in the mantissa is
+ // implied by the floating point format.
+ real_bits[31: 0] = $urandom();
+ real_bits[51:32] = $urandom();
+
+ // Compensate for the implied leading 1 in the mantissa by subtracting 1.
+ num = $bitstoreal(real_bits) - 1.0;
+
+ // Scale the result to return a value in the desired range.
+ return num * max;
+ endfunction : frand
+
+
+ // Return a real value in the range [a,b), [b,a), or [0,a) depending on
+ // whether a or b is larger and whether b is provided. This matches the
+ // behavior of $urandom_range().
+ //
+ // frand_range(1.0, 2.0) -> Random value in the range [1,2)
+ // frand_range(2.0, 1.0) -> Random value in the range [1,2)
+ // frand_range(1.0) -> Random value in the range [0,1)
+ //
+ function automatic real frand_range(real a = 1.0, real b = 0.0);
+ if (a > b) return b + frand(a - b);
+ if (b > a) return a + frand(b - a);
+ return a;
+ endfunction : frand_range
+
+
+ // Return a real value with a normal distribution, having the mean value mu
+ // and standard deviation sigma.
+ function automatic real frandn(real sigma = 1.0, real mu = 0.0);
+ // Use the Box-Muller transform to convert uniform random variables to a
+ // Gaussian one.
+ return sigma*$sqrt(-2.0*$ln(frand())) * $cos(TAU*frand()) + mu;
+ endfunction : frandn
+
+
+ //---------------------------------------------------------------------------
+ // Template Functions
+ //---------------------------------------------------------------------------
+
+ class Rand #(WIDTH = 64);
+
+ // These are static class functions. They can be called directly, as in:
+ //
+ // Rand#(N)::rand_bit()
+ //
+ // Or, you can declare an object reference, as in:
+ //
+ // Rand #(N) rand;
+ // rand.rand_bit();
+
+ typedef bit [WIDTH-1:0] unsigned_t;
+ typedef bit signed [WIDTH-1:0] signed_t;
+
+
+ // Returns a WIDTH-bit random bit packed array.
+ static function unsigned_t rand_bit();
+ unsigned_t result;
+ int num_rand32 = (WIDTH + 31) / 32;
+ for (int i = 0; i < num_rand32; i++) begin
+ result = {result, $urandom()};
+ end
+ return result;
+ endfunction : rand_bit
+
+
+ // Returns a WIDTH-bit random number in the UNSIGNED range [a,b], [b,a], or
+ // [0,a] depending on whether a or b is greater and if b is provided. This
+ // is equivalent to $urandom_range() but works with any length.
+ static function bit [WIDTH-1:0] rand_bit_range(
+ unsigned_t a = {WIDTH{1'b1}},
+ unsigned_t b = 0
+ );
+ unsigned_t num;
+ int num_bits;
+ if (a > b) begin
+ // Swap a and b
+ unsigned_t temp;
+ temp = a;
+ a = b;
+ b = temp;
+ end
+ num_bits = $clog2(b - a + unsigned_t'{1});
+ do begin
+ num = a + (rand_bit() & ((unsigned_t'{1} << num_bits) - 1));
+ end while (num > b);
+ return num;
+ endfunction : rand_bit_range
+
+
+ // Returns a random number in the given SIGNED range. Behavior is the same
+ // as rand_bit_range(), bunsigned_t treats the range values as SIGNED numbers.
+ static function signed_t rand_sbit_range(
+ signed_t a = {1'b0, {WIDTH{1'b1}}},
+ signed_t b = 0
+ );
+ if (a > b) return b + $signed(rand_bit_range(0, a-b));
+ if (b > a) return a + $signed(rand_bit_range(0, b-a));
+ return a;
+ endfunction : rand_sbit_range
+
+
+ // Rand#(WIDTH)::rand_logic() returns a WIDTH-bit random logic packed
+ // array. Each bit will be 0 or 1 with equal probability (not X or Z).
+ static function logic [WIDTH-1:0] rand_logic();
+ return rand_bit();
+ endfunction : rand_logic
+
+ endclass : Rand
+
+endpackage : PkgRandom