diff options
author | Josh Blum <josh@joshknows.com> | 2010-02-10 11:57:58 -0800 |
---|---|---|
committer | Josh Blum <josh@joshknows.com> | 2010-02-10 11:57:58 -0800 |
commit | d088a11bf7c257ba45bf0c37a41e5038b302bc44 (patch) | |
tree | 8bbb4d90285a181c603c117de4504e73066afe48 /firmware/microblaze/lib/db_init.c | |
parent | e2044e13ec4ad94e9739402257134abd92cf1521 (diff) | |
download | uhd-d088a11bf7c257ba45bf0c37a41e5038b302bc44.tar.gz uhd-d088a11bf7c257ba45bf0c37a41e5038b302bc44.tar.bz2 uhd-d088a11bf7c257ba45bf0c37a41e5038b302bc44.zip |
Copied a snapshot of the usrp2 firmware into the microblaze firmware directory in the uhd repo.
Added erllc copyrights to the files created and modified at erllc.
Diffstat (limited to 'firmware/microblaze/lib/db_init.c')
-rw-r--r-- | firmware/microblaze/lib/db_init.c | 428 |
1 files changed, 428 insertions, 0 deletions
diff --git a/firmware/microblaze/lib/db_init.c b/firmware/microblaze/lib/db_init.c new file mode 100644 index 000000000..a0bfc5cfb --- /dev/null +++ b/firmware/microblaze/lib/db_init.c @@ -0,0 +1,428 @@ +/* -*- c++ -*- */ +/* + * Copyright 2008,2009 Free Software Foundation, Inc. + * + * This program is free software: you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation, either version 3 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program. If not, see <http://www.gnu.org/licenses/>. + */ + + +#include <memory_map.h> +#include <i2c.h> +#include <usrp2_i2c_addr.h> +#include <string.h> +#include <stdio.h> +#include <db.h> +#include <db_base.h> +#include <hal_io.h> +#include <nonstdio.h> + + +struct db_base *tx_dboard; // the tx daughterboard that's installed +struct db_base *rx_dboard; // the rx daughterboard that's installed + +extern struct db_base db_basic_tx; +extern struct db_base db_basic_rx; +extern struct db_base db_lf_tx; +extern struct db_base db_lf_rx; +extern struct db_base db_rfx_400_tx; +extern struct db_base db_rfx_400_rx; +extern struct db_base db_rfx_900_tx; +extern struct db_base db_rfx_900_rx; +extern struct db_base db_rfx_1200_tx; +extern struct db_base db_rfx_1200_rx; +extern struct db_base db_rfx_1800_tx; +extern struct db_base db_rfx_1800_rx; +extern struct db_base db_rfx_2400_tx; +extern struct db_base db_rfx_2400_rx; +extern struct db_base db_tvrx1; +extern struct db_base db_tvrx2; +extern struct db_base db_tvrx3; +extern struct db_base db_dbsrx; + +extern struct db_base db_xcvr2450_tx; +extern struct db_base db_xcvr2450_rx; + +struct db_base *all_dboards[] = { + &db_basic_tx, + &db_basic_rx, + &db_lf_tx, + &db_lf_rx, + &db_rfx_400_tx, + &db_rfx_400_rx, + &db_rfx_900_tx, + &db_rfx_900_rx, + &db_rfx_1200_tx, + &db_rfx_1200_rx, + &db_rfx_1800_tx, + &db_rfx_1800_rx, + &db_rfx_2400_tx, + &db_rfx_2400_rx, + &db_tvrx1, +#if 0 + &db_tvrx2, +#endif + &db_tvrx3, + &db_dbsrx, + &db_xcvr2450_tx, + &db_xcvr2450_rx, + 0 +}; + + +typedef enum { UDBE_OK, UDBE_NO_EEPROM, UDBE_INVALID_EEPROM } usrp_dbeeprom_status_t; + +static usrp_dbeeprom_status_t +read_raw_dboard_eeprom (unsigned char *buf, int i2c_addr) +{ + if (!eeprom_read (i2c_addr, 0, buf, DB_EEPROM_CLEN)) + return UDBE_NO_EEPROM; + + if (buf[DB_EEPROM_MAGIC] != DB_EEPROM_MAGIC_VALUE) + return UDBE_INVALID_EEPROM; + + int sum = 0; + unsigned int i; + for (i = 0; i < DB_EEPROM_CLEN; i++) + sum += buf[i]; + + if ((sum & 0xff) != 0) + return UDBE_INVALID_EEPROM; + + return UDBE_OK; +} + + +/* + * Return DBID, -1 <none> or -2 <invalid eeprom contents> + */ +int +read_dboard_eeprom(int i2c_addr) +{ + unsigned char buf[DB_EEPROM_CLEN]; + + usrp_dbeeprom_status_t s = read_raw_dboard_eeprom (buf, i2c_addr); + + //printf("\nread_raw_dboard_eeprom: %d\n", s); + + switch (s){ + case UDBE_OK: + return (buf[DB_EEPROM_ID_MSB] << 8) | buf[DB_EEPROM_ID_LSB]; + + case UDBE_NO_EEPROM: + default: + return -1; + + case UDBE_INVALID_EEPROM: + return -2; + } +} + + +static struct db_base * +lookup_dbid(int dbid) +{ + if (dbid < 0) + return 0; + + int i; + for (i = 0; all_dboards[i]; i++) + if (all_dboards[i]->dbid == dbid) + return all_dboards[i]; + + return 0; +} + +static struct db_base * +lookup_dboard(int i2c_addr, struct db_base *default_db, char *msg) +{ + struct db_base *db; + int dbid = read_dboard_eeprom(i2c_addr); + + // FIXME removing this printf has the system hang if there are two d'boards + // installed. (I think the problem is in i2c_read/write or the way + // I kludge the zero-byte write to set the read address in eeprom_read.) + printf("%s dbid: 0x%x\n", msg, dbid); + + if (dbid < 0){ // there was some kind of problem. Treat as Basic Tx + return default_db; + } + else if ((db = lookup_dbid(dbid)) == 0){ + printf("No daugherboard code for dbid = 0x%x\n", dbid); + return default_db; + } + return db; +} + +void +set_atr_regs(int bank, struct db_base *db) +{ + uint32_t val[4]; + int shift; + int mask; + int i; + + val[ATR_IDLE] = db->atr_rxval; + val[ATR_RX] = db->atr_rxval; + val[ATR_TX] = db->atr_txval; + val[ATR_FULL] = db->atr_txval; + + if (bank == GPIO_TX_BANK){ + mask = 0xffff0000; + shift = 16; + } + else { + mask = 0x0000ffff; + shift = 0; + } + + for (i = 0; i < 4; i++){ + int t = (atr_regs->v[i] & ~mask) | ((val[i] << shift) & mask); + //printf("atr_regs[%d] = 0x%x\n", i, t); + atr_regs->v[i] = t; + } +} + +static void +set_gpio_mode(int bank, struct db_base *db) +{ + int i; + + hal_gpio_set_ddr(bank, db->output_enables, 0xffff); + set_atr_regs(bank, db); + + for (i = 0; i < 16; i++){ + if (db->used_pins & (1 << i)){ + // set to either GPIO_SEL_SW or GPIO_SEL_ATR + hal_gpio_set_sel(bank, i, (db->atr_mask & (1 << i)) ? 'a' : 's'); + } + } +} + +static int __attribute__((unused)) +determine_tx_mux_value(struct db_base *db) +{ + if (db->i_and_q_swapped) + return 0x01; + else + return 0x10; +} + +static int +determine_rx_mux_value(struct db_base *db) +{ +#define ADC0 0x0 +#define ADC1 0x1 +#define ZERO 0x2 + + static int truth_table[8] = { + /* swap_iq, uses */ + /* 0, 0x0 */ (ZERO << 2) | ZERO, // N/A + /* 0, 0x1 */ (ZERO << 2) | ADC0, + /* 0, 0x2 */ (ZERO << 2) | ADC1, + /* 0, 0x3 */ (ADC1 << 2) | ADC0, + /* 1, 0x0 */ (ZERO << 2) | ZERO, // N/A + /* 1, 0x1 */ (ZERO << 2) | ADC0, + /* 1, 0x2 */ (ZERO << 2) | ADC1, + /* 1, 0x3 */ (ADC0 << 2) | ADC1, + }; + + int subdev0_uses; + int subdev1_uses; + int uses; + + if (db->is_quadrature) + subdev0_uses = 0x3; // uses A/D 0 and 1 + else + subdev0_uses = 0x1; // uses A/D 0 only + + // FIXME second subdev on Basic Rx, LF RX + // if subdev2 exists + // subdev1_uses = 0x2; + subdev1_uses = 0; + + uses = subdev0_uses; + + int swap_iq = db->i_and_q_swapped & 0x1; + int index = (swap_iq << 2) | uses; + + return truth_table[index]; +} + + +void +db_init(void) +{ + int m; + + tx_dboard = lookup_dboard(I2C_ADDR_TX_A, &db_basic_tx, "Tx"); + //printf("db_init: tx dbid = 0x%x\n", tx_dboard->dbid); + set_gpio_mode(GPIO_TX_BANK, tx_dboard); + tx_dboard->init(tx_dboard); + m = determine_tx_mux_value(tx_dboard); + dsp_tx_regs->tx_mux = m; + //printf("tx_mux = 0x%x\n", m); + tx_dboard->current_lo_offset = tx_dboard->default_lo_offset; + + rx_dboard = lookup_dboard(I2C_ADDR_RX_A, &db_basic_rx, "Rx"); + //printf("db_init: rx dbid = 0x%x\n", rx_dboard->dbid); + set_gpio_mode(GPIO_RX_BANK, rx_dboard); + rx_dboard->init(rx_dboard); + m = determine_rx_mux_value(rx_dboard); + dsp_rx_regs->rx_mux = m; + //printf("rx_mux = 0x%x\n", m); + rx_dboard->current_lo_offset = rx_dboard->default_lo_offset; +} + +/*! + * Calculate the frequency to use for setting the digital down converter. + * + * \param[in] target_freq desired RF frequency (Hz) + * \param[in] baseband_freq the RF frequency that corresponds to DC in the IF. + * + * \param[out] dxc_freq is the value for the ddc + * \param[out] inverted is true if we're operating in an inverted Nyquist zone. +*/ +void +calc_dxc_freq(u2_fxpt_freq_t target_freq, u2_fxpt_freq_t baseband_freq, + u2_fxpt_freq_t *dxc_freq, bool *inverted) +{ + u2_fxpt_freq_t fs = U2_DOUBLE_TO_FXPT_FREQ(100e6); // converter sample rate + u2_fxpt_freq_t delta = target_freq - baseband_freq; + +#if 0 + printf("calc_dxc_freq\n"); + printf(" fs = "); print_fxpt_freq(fs); newline(); + printf(" target = "); print_fxpt_freq(target_freq); newline(); + printf(" baseband = "); print_fxpt_freq(baseband_freq); newline(); + printf(" delta = "); print_fxpt_freq(delta); newline(); +#endif + + if (delta >= 0){ + while (delta > fs) + delta -= fs; + if (delta <= fs/2){ // non-inverted region + *dxc_freq = -delta; + *inverted = false; + } + else { // inverted region + *dxc_freq = delta - fs; + *inverted = true; + } + } + else { + while (delta < -fs) + delta += fs; + if (delta >= -fs/2){ // non-inverted region + *dxc_freq = -delta; + *inverted = false; + } + else { // inverted region + *dxc_freq = delta + fs; + *inverted = true; + } + } +} + +bool +db_set_lo_offset(struct db_base *db, u2_fxpt_freq_t offset) +{ + db->current_lo_offset = offset; + return true; +} + +bool +db_tune(struct db_base *db, u2_fxpt_freq_t target_freq, struct tune_result *result) +{ + memset(result, 0, sizeof(*result)); + bool inverted = false; + u2_fxpt_freq_t dxc_freq; + u2_fxpt_freq_t actual_dxc_freq; + + // Ask the d'board to tune as closely as it can to target_freq+lo_offset + bool ok = db->set_freq(db, target_freq+db->current_lo_offset, &result->baseband_freq); + + // Calculate the DDC setting that will downconvert the baseband from the + // daughterboard to our target frequency. + calc_dxc_freq(target_freq, result->baseband_freq, &dxc_freq, &inverted); + + // If the spectrum is inverted, and the daughterboard doesn't do + // quadrature downconversion, we can fix the inversion by flipping the + // sign of the dxc_freq... (This only happens using the basic_rx board) + + if (db->spectrum_inverted) + inverted = !inverted; + + if (inverted && !db->is_quadrature){ + dxc_freq = -dxc_freq; + inverted = !inverted; + } + + if (db->is_tx){ + dxc_freq = -dxc_freq; // down conversion versus up conversion + ok &= db_set_duc_freq(dxc_freq, &actual_dxc_freq); + } + else { + ok &= db_set_ddc_freq(dxc_freq, &actual_dxc_freq); + } + + result->dxc_freq = dxc_freq; + result->residual_freq = dxc_freq - actual_dxc_freq; + result->inverted = inverted; + return ok; +} + +static int32_t +compute_freq_control_word(u2_fxpt_freq_t target_freq, u2_fxpt_freq_t *actual_freq) +{ + // If we were using floating point, we'd calculate + // master = 100e6; + // v = (int) rint(target_freq / master_freq) * pow(2.0, 32.0); + + //printf("compute_freq_control_word\n"); + //printf(" target_freq = "); print_fxpt_freq(target_freq); newline(); + + int32_t master_freq = 100000000; // 100M + + int32_t v = ((target_freq << 12)) / master_freq; + //printf(" fcw = %d\n", v); + + *actual_freq = (v * (int64_t) master_freq) >> 12; + + //printf(" actual = "); print_fxpt_freq(*actual_freq); newline(); + + return v; +} + + +bool +db_set_ddc_freq(u2_fxpt_freq_t dxc_freq, u2_fxpt_freq_t *actual_dxc_freq) +{ + int32_t v = compute_freq_control_word(dxc_freq, actual_dxc_freq); + dsp_rx_regs->freq = v; + return true; +} + +bool +db_set_duc_freq(u2_fxpt_freq_t dxc_freq, u2_fxpt_freq_t *actual_dxc_freq) +{ + int32_t v = compute_freq_control_word(dxc_freq, actual_dxc_freq); + dsp_tx_regs->freq = v; + return true; +} + +bool +db_set_gain(struct db_base *db, u2_fxpt_gain_t gain) +{ + return db->set_gain(db, gain); +} |