aboutsummaryrefslogtreecommitdiffstats
path: root/firmware/fx3/ad9361
diff options
context:
space:
mode:
authorAshish Chaudhari <ashish@ettus.com>2014-08-12 11:19:22 -0700
committerAshish Chaudhari <ashish@ettus.com>2014-08-12 11:19:22 -0700
commit145f1d7cf7aa94f67c7ba349e29daff9a7d85d54 (patch)
tree64a7a89acd187519bcb285c677b492aa1fc7c55e /firmware/fx3/ad9361
parent96d1d586735dd47ce9af0d309c3f1c5abf008497 (diff)
downloaduhd-145f1d7cf7aa94f67c7ba349e29daff9a7d85d54.tar.gz
uhd-145f1d7cf7aa94f67c7ba349e29daff9a7d85d54.tar.bz2
uhd-145f1d7cf7aa94f67c7ba349e29daff9a7d85d54.zip
b200: Removed all AD9361 related firmware
- FX3 does not respond to AD9361 firmware transaction VREQs - FX3 does not respond to AD9361 SPI transaction VREQs - Deleted all AD9361 firmware files - Bumped FW compat to 6
Diffstat (limited to 'firmware/fx3/ad9361')
-rw-r--r--firmware/fx3/ad9361/include/ad9361_dispatch.h16
-rw-r--r--firmware/fx3/ad9361/include/ad9361_transaction.h93
-rw-r--r--firmware/fx3/ad9361/lib/ad9361_filter_taps.h47
-rw-r--r--firmware/fx3/ad9361/lib/ad9361_gain_tables.h95
-rw-r--r--firmware/fx3/ad9361/lib/ad9361_impl.c1937
-rw-r--r--firmware/fx3/ad9361/lib/ad9361_synth_lut.h135
6 files changed, 0 insertions, 2323 deletions
diff --git a/firmware/fx3/ad9361/include/ad9361_dispatch.h b/firmware/fx3/ad9361/include/ad9361_dispatch.h
deleted file mode 100644
index e89a4e0b0..000000000
--- a/firmware/fx3/ad9361/include/ad9361_dispatch.h
+++ /dev/null
@@ -1,16 +0,0 @@
-//
-// Copyright 2013-2014 Ettus Research LLC
-//
-
-#ifndef INCLUDED_AD9361_DISPATCH_H
-#define INCLUDED_AD9361_DISPATCH_H
-
-#include <ad9361_transaction.h>
-
-extern void ad9361_dispatch(const char* request, char* response);
-
-typedef void (*msgfn)(const char*, ...);
-
-extern void ad9361_set_msgfn(msgfn pfn);
-
-#endif /* INCLUDED_AD9361_DISPATCH_H */
diff --git a/firmware/fx3/ad9361/include/ad9361_transaction.h b/firmware/fx3/ad9361/include/ad9361_transaction.h
deleted file mode 100644
index 819d230c7..000000000
--- a/firmware/fx3/ad9361/include/ad9361_transaction.h
+++ /dev/null
@@ -1,93 +0,0 @@
-//
-// Copyright 2013-2014 Ettus Research LLC
-//
-
-#ifndef INCLUDED_AD9361_TRANSACTION_H
-#define INCLUDED_AD9361_TRANSACTION_H
-
-#include <stdint.h>
-
-#ifdef __cplusplus
-extern "C" {
-#endif
-
-//various constants
-#define AD9361_TRANSACTION_VERSION 0x5
-#define AD9361_DISPATCH_PACKET_SIZE 64
-
-//action types
-#define AD9361_ACTION_ECHO 0
-#define AD9361_ACTION_INIT 1
-#define AD9361_ACTION_SET_RX1_GAIN 2
-#define AD9361_ACTION_SET_TX1_GAIN 3
-#define AD9361_ACTION_SET_RX2_GAIN 4
-#define AD9361_ACTION_SET_TX2_GAIN 5
-#define AD9361_ACTION_SET_RX_FREQ 6
-#define AD9361_ACTION_SET_TX_FREQ 7
-#define AD9361_ACTION_SET_CODEC_LOOP 8
-#define AD9361_ACTION_SET_CLOCK_RATE 9
-#define AD9361_ACTION_SET_ACTIVE_CHAINS 10
-
-static inline void ad9361_double_pack(const double input, uint32_t output[2])
-{
- const uint32_t *p = (const uint32_t *)&input;
- output[0] = p[0];
- output[1] = p[1];
-}
-
-static inline double ad9361_double_unpack(const uint32_t input[2])
-{
- double output = 0.0;
- uint32_t *p = (uint32_t *)&output;
- p[0] = input[0];
- p[1] = input[1];
- return output;
-}
-
-typedef struct
-{
- //version is expected to be AD9361_TRANSACTION_VERSION
- //check otherwise for compatibility
- uint32_t version;
-
- //sequence number - increment every call for sanity
- uint32_t sequence;
-
- //location info for the ad9361 chip class
- uint64_t handle;
-
- //action tells us what to do, see AD9361_ACTION_*
- uint32_t action;
-
- union
- {
- //enable mask for chains
- uint32_t enable_mask;
-
- //true to enable codec internal loopback
- uint32_t codec_loop;
-
- //freq holds request LO freq and result from tune
- uint32_t freq[2];
-
- //gain holds request gain and result from action
- uint32_t gain[2];
-
- //rate holds request clock rate and result from action
- uint32_t rate[2];
-
- } value;
-
- //error message comes back as a reply -
- //set to null string for no error \0
- char error_msg[];
-
-} ad9361_transaction_t;
-
-#define AD9361_TRANSACTION_MAX_ERROR_MSG (AD9361_DISPATCH_PACKET_SIZE - (sizeof(ad9361_transaction_t)-4)-1) // -4 for 'error_msg' alignment padding, -1 for terminating \0
-
-#ifdef __cplusplus
-}
-#endif
-
-#endif /* INCLUDED_AD9361_TRANSACTION_H */
diff --git a/firmware/fx3/ad9361/lib/ad9361_filter_taps.h b/firmware/fx3/ad9361/lib/ad9361_filter_taps.h
deleted file mode 100644
index afbe27630..000000000
--- a/firmware/fx3/ad9361/lib/ad9361_filter_taps.h
+++ /dev/null
@@ -1,47 +0,0 @@
-//
-// Copyright 2013-2014 Ettus Research LLC
-//
-
-#ifndef INCLUDED_AD9361_FILTER_TAPS_HPP
-#define INCLUDED_AD9361_FILTER_TAPS_HPP
-
-/* A default 128-tap filter that can be used for generic circumstances. */
-static uint16_t default_128tap_coeffs[] = {
- 0x0001,0xfff1,0xffcf,0xffc0,0xffe8,0x0020,0x001a,0xffe3,
- 0xffe1,0x001f,0x0028,0xffdf,0xffcc,0x0024,0x0043,0xffdb,
- 0xffac,0x0026,0x0068,0xffdb,0xff80,0x0022,0x009a,0xffe2,
- 0xff47,0x0017,0x00db,0xfff3,0xfeff,0xffff,0x012b,0x0013,
- 0xfea5,0xffd7,0x0190,0x0046,0xfe35,0xff97,0x020e,0x0095,
- 0xfda7,0xff36,0x02ae,0x010d,0xfcf0,0xfea1,0x0383,0x01c6,
- 0xfbf3,0xfdb6,0x04b7,0x02f8,0xfa6d,0xfc1a,0x06be,0x0541,
- 0xf787,0xf898,0x0b60,0x0b6d,0xee88,0xea40,0x2786,0x7209
-};
-
-
-/* The below pair of filters is optimized for a 10MHz LTE application. */
-/*
-static uint16_t lte10mhz_rx_coeffs[] = {
- 0xffe2,0x0042,0x0024,0x0095,0x0056,0x004d,0xffcf,0xffb7,
- 0xffb1,0x0019,0x0059,0x006a,0x0004,0xff9d,0xff72,0xffd4,
- 0x0063,0x00b7,0x0062,0xffac,0xff21,0xff59,0x0032,0x0101,
- 0x00f8,0x0008,0xfeea,0xfeac,0xffa3,0x0117,0x01b5,0x00d0,
- 0xff05,0xfdea,0xfe9e,0x00ba,0x026f,0x0215,0xffb5,0xfd4a,
- 0xfd18,0xffa0,0x02de,0x03dc,0x0155,0xfd2a,0xfb0d,0xfd54,
- 0x0287,0x062f,0x048a,0xfe37,0xf862,0xf8c1,0x004d,0x0963,
- 0x0b88,0x02a4,0xf3e7,0xebdd,0xf5f8,0x1366,0x3830,0x518b
-};
-
-static uint16_t lte10mhz_tx_coeffs[] = {
- 0xfffb,0x0000,0x0004,0x0017,0x0024,0x0028,0x0013,0xfff3,
- 0xffdc,0xffe5,0x000b,0x0030,0x002e,0xfffe,0xffc4,0xffb8,
- 0xfff0,0x0045,0x0068,0x002b,0xffb6,0xff72,0xffad,0x0047,
- 0x00b8,0x0088,0xffc8,0xff1c,0xff33,0x001a,0x0110,0x0124,
- 0x0019,0xfec8,0xfe74,0xff9a,0x0156,0x0208,0x00d3,0xfe9b,
- 0xfd68,0xfe96,0x015d,0x033f,0x0236,0xfecd,0xfc00,0xfcb5,
- 0x00d7,0x04e5,0x04cc,0xffd5,0xf9fe,0xf8fb,0xfef2,0x078c,
- 0x0aae,0x036d,0xf5c0,0xed89,0xf685,0x12af,0x36a4,0x4faa
-};
-*/
-
-
-#endif // INCLUDED_AD9361_FILTER_TAPS_HPP
diff --git a/firmware/fx3/ad9361/lib/ad9361_gain_tables.h b/firmware/fx3/ad9361/lib/ad9361_gain_tables.h
deleted file mode 100644
index 58dcbeb65..000000000
--- a/firmware/fx3/ad9361/lib/ad9361_gain_tables.h
+++ /dev/null
@@ -1,95 +0,0 @@
-//
-// Copyright 2013-2014 Ettus Research LLC
-//
-
-#ifndef INCLUDED_AD9361_GAIN_TABLES_HPP
-#define INCLUDED_AD9361_GAIN_TABLES_HPP
-
-uint8_t gain_table_sub_1300mhz[77][5] = { {0,0x00,0x00,0x20,1},
- {1,0x00,0x00,0x00,0}, {2,0x00,0x00,0x00,0}, {3,0x00,0x01,0x00,0},
- {4,0x00,0x02,0x00,0}, {5,0x00,0x03,0x00,0}, {6,0x00,0x04,0x00,0},
- {7,0x00,0x05,0x00,0}, {8,0x01,0x03,0x20,1}, {9,0x01,0x04,0x00,0},
- {10,0x01,0x05,0x00,0}, {11,0x01,0x06,0x00,0}, {12,0x01,0x07,0x00,0},
- {13,0x01,0x08,0x00,0}, {14,0x01,0x09,0x00,0}, {15,0x01,0x0A,0x00,0},
- {16,0x01,0x0B,0x00,0}, {17,0x01,0x0C,0x00,0}, {18,0x01,0x0D,0x00,0},
- {19,0x01,0x0E,0x00,0}, {20,0x02,0x09,0x20,1}, {21,0x02,0x0A,0x00,0},
- {22,0x02,0x0B,0x00,0}, {23,0x02,0x0C,0x00,0}, {24,0x02,0x0D,0x00,0},
- {25,0x02,0x0E,0x00,0}, {26,0x02,0x0F,0x00,0}, {27,0x02,0x10,0x00,0},
- {28,0x02,0x2B,0x20,1}, {29,0x02,0x2C,0x00,0}, {30,0x04,0x27,0x20,1},
- {31,0x04,0x28,0x00,0}, {32,0x04,0x29,0x00,0}, {33,0x04,0x2A,0x00,0},
- {34,0x04,0x2B,0x00,1}, {35,0x24,0x21,0x20,0}, {36,0x24,0x22,0x00,1},
- {37,0x44,0x20,0x20,0}, {38,0x44,0x21,0x00,0}, {39,0x44,0x22,0x00,0},
- {40,0x44,0x23,0x00,0}, {41,0x44,0x24,0x00,0}, {42,0x44,0x25,0x00,0},
- {43,0x44,0x26,0x00,0}, {44,0x44,0x27,0x00,0}, {45,0x44,0x28,0x00,0},
- {46,0x44,0x29,0x00,0}, {47,0x44,0x2A,0x00,0}, {48,0x44,0x2B,0x00,0},
- {49,0x44,0x2C,0x00,0}, {50,0x44,0x2D,0x00,0}, {51,0x44,0x2E,0x00,0},
- {52,0x44,0x2F,0x00,0}, {53,0x44,0x30,0x00,0}, {54,0x44,0x31,0x00,0},
- {55,0x64,0x2E,0x20,1}, {56,0x64,0x2F,0x00,0}, {57,0x64,0x30,0x00,0},
- {58,0x64,0x31,0x00,0}, {59,0x64,0x32,0x00,0}, {60,0x64,0x33,0x00,0},
- {61,0x64,0x34,0x00,0}, {62,0x64,0x35,0x00,0}, {63,0x64,0x36,0x00,0},
- {64,0x64,0x37,0x00,0}, {65,0x64,0x38,0x00,0}, {66,0x65,0x38,0x20,1},
- {67,0x66,0x38,0x20,1}, {68,0x67,0x38,0x20,1}, {69,0x68,0x38,0x20,1},
- {70,0x69,0x38,0x20,1}, {71,0x6A,0x38,0x20,1}, {72,0x6B,0x38,0x20,1},
- {73,0x6C,0x38,0x20,1}, {74,0x6D,0x38,0x20,1}, {75,0x6E,0x38,0x20,1},
- {76,0x6F,0x38,0x20,1}};
-
-
-uint8_t gain_table_1300mhz_to_4000mhz[77][5] = { {0,0x00,0x00,0x20,1},
- {1,0x00,0x00,0x00,0}, {2,0x00,0x00,0x00,0}, {3,0x00,0x01,0x00,0},
- {4,0x00,0x02,0x00,0}, {5,0x00,0x03,0x00,0}, {6,0x00,0x04,0x00,0},
- {7,0x00,0x05,0x00,0}, {8,0x01,0x03,0x20,1}, {9,0x01,0x04,0x00,0},
- {10,0x01,0x05,0x00,0}, {11,0x01,0x06,0x00,0}, {12,0x01,0x07,0x00,0},
- {13,0x01,0x08,0x00,0}, {14,0x01,0x09,0x00,0}, {15,0x01,0x0A,0x00,0},
- {16,0x01,0x0B,0x00,0}, {17,0x01,0x0C,0x00,0}, {18,0x01,0x0D,0x00,0},
- {19,0x01,0x0E,0x00,0}, {20,0x02,0x09,0x20,1}, {21,0x02,0x0A,0x00,0},
- {22,0x02,0x0B,0x00,0}, {23,0x02,0x0C,0x00,0}, {24,0x02,0x0D,0x00,0},
- {25,0x02,0x0E,0x00,0}, {26,0x02,0x0F,0x00,0}, {27,0x02,0x10,0x00,0},
- {28,0x02,0x2B,0x20,1}, {29,0x02,0x2C,0x00,0}, {30,0x04,0x28,0x20,1},
- {31,0x04,0x29,0x00,0}, {32,0x04,0x2A,0x00,0}, {33,0x04,0x2B,0x00,0},
- {34,0x24,0x20,0x20,0}, {35,0x24,0x21,0x00,1}, {36,0x44,0x20,0x20,0},
- {37,0x44,0x21,0x00,1}, {38,0x44,0x22,0x00,0}, {39,0x44,0x23,0x00,0},
- {40,0x44,0x24,0x00,0}, {41,0x44,0x25,0x00,0}, {42,0x44,0x26,0x00,0},
- {43,0x44,0x27,0x00,0}, {44,0x44,0x28,0x00,0}, {45,0x44,0x29,0x00,0},
- {46,0x44,0x2A,0x00,0}, {47,0x44,0x2B,0x00,0}, {48,0x44,0x2C,0x00,0},
- {49,0x44,0x2D,0x00,0}, {50,0x44,0x2E,0x00,0}, {51,0x44,0x2F,0x00,0},
- {52,0x44,0x30,0x00,0}, {53,0x44,0x31,0x00,0}, {54,0x44,0x32,0x00,0},
- {55,0x64,0x2E,0x20,1}, {56,0x64,0x2F,0x00,0}, {57,0x64,0x30,0x00,0},
- {58,0x64,0x31,0x00,0}, {59,0x64,0x32,0x00,0}, {60,0x64,0x33,0x00,0},
- {61,0x64,0x34,0x00,0}, {62,0x64,0x35,0x00,0}, {63,0x64,0x36,0x00,0},
- {64,0x64,0x37,0x00,0}, {65,0x64,0x38,0x00,0}, {66,0x65,0x38,0x20,1},
- {67,0x66,0x38,0x20,1}, {68,0x67,0x38,0x20,1}, {69,0x68,0x38,0x20,1},
- {70,0x69,0x38,0x20,1}, {71,0x6A,0x38,0x20,1}, {72,0x6B,0x38,0x20,1},
- {73,0x6C,0x38,0x20,1}, {74,0x6D,0x38,0x20,1}, {75,0x6E,0x38,0x20,1},
- {76,0x6F,0x38,0x20,1}};
-
-
-uint8_t gain_table_4000mhz_to_6000mhz[77][5] = { {0,0x00,0x00,0x20,1},
- {1,0x00,0x00,0x00,0}, {2,0x00,0x00,0x00,0}, {3,0x00,0x00,0x00,0},
- {4,0x00,0x00,0x00,0}, {5,0x00,0x01,0x00,0}, {6,0x00,0x02,0x00,0},
- {7,0x00,0x03,0x00,0}, {8,0x01,0x01,0x20,1}, {9,0x01,0x02,0x00,0},
- {10,0x01,0x03,0x00,0}, {11,0x01,0x04,0x20,1}, {12,0x01,0x05,0x00,0},
- {13,0x01,0x06,0x00,0}, {14,0x01,0x07,0x00,0}, {15,0x01,0x08,0x00,0},
- {16,0x01,0x09,0x00,0}, {17,0x01,0x0A,0x00,0}, {18,0x01,0x0B,0x00,0},
- {19,0x01,0x0C,0x00,0}, {20,0x02,0x08,0x20,1}, {21,0x02,0x09,0x00,0},
- {22,0x02,0x0A,0x00,0}, {23,0x02,0x0B,0x20,1}, {24,0x02,0x0C,0x00,0},
- {25,0x02,0x0D,0x00,0}, {26,0x02,0x0E,0x00,0}, {27,0x02,0x0F,0x00,0},
- {28,0x02,0x2A,0x20,1}, {29,0x02,0x2B,0x00,0}, {30,0x04,0x27,0x20,1},
- {31,0x04,0x28,0x00,0}, {32,0x04,0x29,0x00,0}, {33,0x04,0x2A,0x00,0},
- {34,0x04,0x2B,0x00,0}, {35,0x04,0x2C,0x00,0}, {36,0x04,0x2D,0x00,0},
- {37,0x24,0x20,0x20,1}, {38,0x24,0x21,0x00,0}, {39,0x24,0x22,0x00,0},
- {40,0x44,0x20,0x20,1}, {41,0x44,0x21,0x00,0}, {42,0x44,0x22,0x00,0},
- {43,0x44,0x23,0x00,0}, {44,0x44,0x24,0x00,0}, {45,0x44,0x25,0x00,0},
- {46,0x44,0x26,0x00,0}, {47,0x44,0x27,0x00,0}, {48,0x44,0x28,0x00,0},
- {49,0x44,0x29,0x00,0}, {50,0x44,0x2A,0x00,0}, {51,0x44,0x2B,0x00,0},
- {52,0x44,0x2C,0x00,0}, {53,0x44,0x2D,0x00,0}, {54,0x44,0x2E,0x00,0},
- {55,0x64,0x2E,0x20,1}, {56,0x64,0x2F,0x00,0}, {57,0x64,0x30,0x00,0},
- {58,0x64,0x31,0x00,0}, {59,0x64,0x32,0x00,0}, {60,0x64,0x33,0x00,0},
- {61,0x64,0x34,0x00,0}, {62,0x64,0x35,0x00,0}, {63,0x64,0x36,0x00,0},
- {64,0x64,0x37,0x00,0}, {65,0x64,0x38,0x00,0}, {66,0x65,0x38,0x20,1},
- {67,0x66,0x38,0x20,1}, {68,0x67,0x38,0x20,1}, {69,0x68,0x38,0x20,1},
- {70,0x69,0x38,0x20,1}, {71,0x6A,0x38,0x20,1}, {72,0x6B,0x38,0x20,1},
- {73,0x6C,0x38,0x20,1}, {74,0x6D,0x38,0x20,1}, {75,0x6E,0x38,0x20,1},
- {76,0x6F,0x38,0x20,1}};
-
-
-#endif /* INCLUDED_AD9361_GAIN_TABLES_HPP */
diff --git a/firmware/fx3/ad9361/lib/ad9361_impl.c b/firmware/fx3/ad9361/lib/ad9361_impl.c
deleted file mode 100644
index 42d38b0f9..000000000
--- a/firmware/fx3/ad9361/lib/ad9361_impl.c
+++ /dev/null
@@ -1,1937 +0,0 @@
-//
-// Copyright 2013-2014 Ettus Research LLC
-//
-
-/* This file implements b200 vendor requests handler
- * It handles ad9361 setup and configuration
- */
-
-#include <stdarg.h>
-#include <stdio.h>
-#include <math.h>
-
-#include <ad9361_transaction.h>
-#include "ad9361_filter_taps.h"
-#include "ad9361_gain_tables.h"
-#include "ad9361_synth_lut.h"
-#include "ad9361_dispatch.h"
-
-////////////////////////////////////////////////////////////
-
-static void fake_msg(const char* str, ...)
-{
-}
-
-static msgfn _msgfn = fake_msg;
-
-//extern void msg(const char* str, ...); External object must provide this symbol
-#define msg (_msgfn)
-
-void ad9361_set_msgfn(msgfn pfn)
-{
- _msgfn = pfn;
-}
-
-////////////////////////////////////////////////////////////
-#define AD9361_MAX_GAIN 89.75
-
-#define DOUBLE_PI 3.14159265359
-#define DOUBLE_LN_2 0.693147181
-
-#define RX_TYPE 0
-#define TX_TYPE 1
-
-#ifndef AD9361_CLOCKING_MODE
-#error define a AD9361_CLOCKING_MODE
-#endif
-
-#ifndef AD9361_RX_BAND_EDGE0
-#error define a AD9361_RX_BAND_EDGE0
-#endif
-
-#ifndef AD9361_RX_BAND_EDGE1
-#error define a AD9361_RX_BAND_EDGE1
-#endif
-
-#ifndef AD9361_TX_BAND_EDGE
-#error define a AD9361_TX_BAND_EDGE
-#endif
-
-////////////////////////////////////////////////////////////
-// the following macros evaluate to a compile time constant
-// macros By Tom Torfs - donated to the public domain
-
-/* turn a numeric literal into a hex constant
-(avoids problems with leading zeroes)
-8-bit constants max value 0x11111111, always fits in unsigned long
-*/
-#define HEX__(n) 0x##n##LU
-
-/* 8-bit conversion function */
-#define B8__(x) ((x&0x0000000FLU)?1:0) \
-+((x&0x000000F0LU)?2:0) \
-+((x&0x00000F00LU)?4:0) \
-+((x&0x0000F000LU)?8:0) \
-+((x&0x000F0000LU)?16:0) \
-+((x&0x00F00000LU)?32:0) \
-+((x&0x0F000000LU)?64:0) \
-+((x&0xF0000000LU)?128:0)
-
-/* *** user macros *** */
-
-/* for upto 8-bit binary constants */
-#define B8(d) ((unsigned char)B8__(HEX__(d)))
-
-////////////////////////////////////////////////////////////
-// shadow registers
-static uint8_t reg_vcodivs;
-static uint8_t reg_inputsel;
-static uint8_t reg_rxfilt;
-static uint8_t reg_txfilt;
-static uint8_t reg_bbpll;
-static uint8_t reg_bbftune_config;
-static uint8_t reg_bbftune_mode;
-
-////////////////////////////////////////////////////////////
-// other private data fields for VRQ handler
-static double _rx_freq, _tx_freq, _req_rx_freq, _req_tx_freq;
-static double _baseband_bw, _bbpll_freq, _adcclock_freq;
-static double _req_clock_rate, _req_coreclk;
-static uint16_t _rx_bbf_tunediv;
-static uint8_t _curr_gain_table;
-static uint32_t _rx1_gain, _rx2_gain, _tx1_gain, _tx2_gain;
-static int _tfir_factor;
-
-double set_gain(int which, int n, const double value);
-void set_active_chains(bool tx1, bool tx2, bool rx1, bool rx2);
-/***********************************************************************
- * Placeholders, unused, or test functions
- **********************************************************************/
-static char *tmp_req_buffer;
-
-void post_err_msg(const char* error)
-{
- msg("[AD9361 error] %s", error);
-
- if (!tmp_req_buffer)
- return;
-
- ad9361_transaction_t *request = (ad9361_transaction_t *)tmp_req_buffer;
- strncpy(request->error_msg, error, (AD9361_TRANSACTION_MAX_ERROR_MSG + 1)); // '+ 1' as length excludes terminating NUL
- request->error_msg[AD9361_TRANSACTION_MAX_ERROR_MSG] = '\0'; // If string was too long, NUL will not be copied, so force one just in case
-}
-
-void write_ad9361_reg(uint32_t reg, uint8_t val)
-{
- ad9361_transact_spi((reg << 8) | val | (1 << 23));
-}
-
-uint8_t read_ad9361_reg(uint32_t reg)
-{
- return ad9361_transact_spi((reg << 8)) & 0xff;
-}
-
-//shortcuts for double packer/unpacker function
-#define double_pack ad9361_double_pack
-#define double_unpack ad9361_double_unpack
-
-/* Make Catalina output its test tone. */
-void output_test_tone(void) {
- /* Output a 480 kHz tone at 800 MHz */
- write_ad9361_reg(0x3F4, 0x0B);
- write_ad9361_reg(0x3FC, 0xFF);
- write_ad9361_reg(0x3FD, 0xFF);
- write_ad9361_reg(0x3FE, 0x3F);
-}
-
-/* Turn on/off Catalina's TX port --> RX port loopback. */
-void data_port_loopback(const int on) {
- msg("[data_port_loopback] Enabled: %d", on);
- write_ad9361_reg(0x3F5, (on ? 0x01 : 0x00));
-}
-
-/* This is a simple comparison for very large double-precision floating
- * point numbers. It is used to prevent re-tunes for frequencies that are
- * the same but not 'exactly' because of data precision issues. */
-// TODO: see if we can avoid the need for this function
-int freq_is_nearly_equal(double a, double b) {
- return AD9361_MAX(a,b) - AD9361_MIN(a,b) < 1;
-}
-
-/***********************************************************************
- * Filter functions
- **********************************************************************/
-
-/* This function takes in the calculated maximum number of FIR taps, and
- * returns a number of taps that makes Catalina happy. */
-int get_num_taps(int max_num_taps) {
-
- int num_taps = 0;
- int num_taps_list[] = {16, 32, 48, 64, 80, 96, 112, 128};
- int i;
- for(i = 1; i < 8; i++) {
- if(max_num_taps >= num_taps_list[i]) {
- continue;
- } else {
- num_taps = num_taps_list[i - 1];
- break;
- }
- } if(num_taps == 0) { num_taps = 128; }
-
- return num_taps;
-}
-
-/* Program either the RX or TX FIR filter.
- *
- * The process is the same for both filters, but the function must be told
- * how many taps are in the filter, and given a vector of the taps
- * themselves. Note that the filters are symmetric, so value of 'num_taps'
- * should actually be twice the length of the tap vector. */
-void program_fir_filter(int which, int num_taps, \
- uint16_t *coeffs) {
-
- uint16_t base;
- if(which == RX_TYPE) {
- base = 0x0f0;
- write_ad9361_reg(base+6, 0x02); //filter gain
- } else {
- base = 0x060;
- }
-
- /* Write the filter configuration. */
- uint8_t reg_numtaps = (((num_taps / 16) - 1) & 0x07) << 5;
-
- /* Turn on the filter clock. */
- write_ad9361_reg(base+5, reg_numtaps | 0x1a);
- ad9361_msleep(1);
-
- int num_unique_coeffs = (num_taps / 2);
-
- /* The filters are symmetric, so iterate over the tap vector,
- * programming each index, and then iterate backwards, repeating the
- * process. */
- int addr;
- for(addr=0; addr < num_unique_coeffs; addr++) {
- write_ad9361_reg(base+0, addr);
- write_ad9361_reg(base+1, (coeffs[addr]) & 0xff);
- write_ad9361_reg(base+2, (coeffs[addr] >> 8) & 0xff);
- write_ad9361_reg(base+5, 0xfe);
- write_ad9361_reg(base+4, 0x00);
- write_ad9361_reg(base+4, 0x00);
- }
-
- for(addr=0; addr < num_unique_coeffs; addr++) {
- write_ad9361_reg(base+0, addr+num_unique_coeffs);
- write_ad9361_reg(base+1, (coeffs[num_unique_coeffs-1-addr]) & 0xff);
- write_ad9361_reg(base+2, (coeffs[num_unique_coeffs-1-addr] >> 8) & 0xff);
- write_ad9361_reg(base+5, 0xfe);
- write_ad9361_reg(base+4, 0x00);
- write_ad9361_reg(base+4, 0x00);
- }
-
- /* Disable the filter clock. */
- write_ad9361_reg(base+5, 0xf8);
-}
-
-/* Program the RX FIR Filter. */
-void setup_rx_fir(int total_num_taps) {
- int num_taps = total_num_taps / 2;
- uint16_t coeffs[num_taps];
- int i;
- for(i = 0; i < num_taps; i++) {
- coeffs[num_taps - 1 - i] = default_128tap_coeffs[63 - i];
- }
-
- program_fir_filter(RX_TYPE, total_num_taps, coeffs);
-}
-
-/* Program the TX FIR Filter. */
-void setup_tx_fir(int total_num_taps) {
- int num_taps = total_num_taps / 2;
- uint16_t coeffs[num_taps];
- int i;
- for(i = 0; i < num_taps; i++) {
- coeffs[num_taps - 1 - i] = default_128tap_coeffs[63 - i];
- }
-
- program_fir_filter(TX_TYPE, total_num_taps, coeffs);
-}
-
-/***********************************************************************
- * Calibration functions
- ***********************************************************************/
-
-/* Calibrate and lock the BBPLL.
- *
- * This function should be called anytime the BBPLL is tuned. */
-void calibrate_lock_bbpll() {
- write_ad9361_reg(0x03F, 0x05); // Start the BBPLL calibration
- write_ad9361_reg(0x03F, 0x01); // Clear the 'start' bit
-
- /* Increase BBPLL KV and phase margin. */
- write_ad9361_reg(0x04c, 0x86);
- write_ad9361_reg(0x04d, 0x01);
- write_ad9361_reg(0x04d, 0x05);
-
- /* Wait for BBPLL lock. */
- int count = 0;
- while(!(read_ad9361_reg(0x05e) & 0x80)) {
- if(count > 1000) {
- post_err_msg("BBPLL not locked");
- break;
- }
-
- count++;
- ad9361_msleep(2);
- }
-}
-
-/* Calibrate the synthesizer charge pumps.
- *
- * Technically, this calibration only needs to be done once, at device
- * initialization. */
-void calibrate_synth_charge_pumps() {
- /* If this function ever gets called, and the ENSM isn't already in the
- * ALERT state, then something has gone horribly wrong. */
- if((read_ad9361_reg(0x017) & 0x0F) != 5) {
- post_err_msg("Catalina not in ALERT during cal");
- }
-
- /* Calibrate the RX synthesizer charge pump. */
- int count = 0;
- write_ad9361_reg(0x23d, 0x04);
- while(!(read_ad9361_reg(0x244) & 0x80)) {
- if(count > 5) {
- post_err_msg("RX charge pump cal failure");
- break;
- }
-
- count++;
- ad9361_msleep(1);
- }
- write_ad9361_reg(0x23d, 0x00);
-
- /* Calibrate the TX synthesizer charge pump. */
- count = 0;
- write_ad9361_reg(0x27d, 0x04);
- while(!(read_ad9361_reg(0x284) & 0x80)) {
- if(count > 5) {
- post_err_msg("TX charge pump cal failure");
- break;
- }
-
- count++;
- ad9361_msleep(1);
- }
- write_ad9361_reg(0x27d, 0x00);
-}
-
-/* Calibrate the analog BB RX filter.
- *
- * Note that the filter calibration depends heavily on the baseband
- * bandwidth, so this must be re-done after any change to the RX sample
- * rate. */
-double calibrate_baseband_rx_analog_filter() {
- /* For filter tuning, baseband BW is half the complex BW, and must be
- * between 28e6 and 0.2e6. */
- double bbbw = _baseband_bw / 2.0;
- if(bbbw > 28e6) {
- bbbw = 28e6;
- } else if (bbbw < 0.20e6) {
- bbbw = 0.20e6;
- }
-
- double rxtune_clk = ((1.4 * bbbw * 2 *
- DOUBLE_PI) / DOUBLE_LN_2);
-
- _rx_bbf_tunediv = AD9361_MIN(511, AD9361_CEIL_INT(_bbpll_freq / rxtune_clk));
-
- reg_bbftune_config = (reg_bbftune_config & 0xFE) \
- | ((_rx_bbf_tunediv >> 8) & 0x0001);
-
- double bbbw_mhz = bbbw / 1e6;
-
- double temp = ((bbbw_mhz - AD9361_FLOOR_INT(bbbw_mhz)) * 1000) / 7.8125;
- uint8_t bbbw_khz = (uint8_t) AD9361_MIN(127, (AD9361_FLOOR_INT(temp + 0.5)));
-
- /* Set corner frequencies and dividers. */
- write_ad9361_reg(0x1fb, (uint8_t)(bbbw_mhz));
- write_ad9361_reg(0x1fc, bbbw_khz);
- write_ad9361_reg(0x1f8, (_rx_bbf_tunediv & 0x00FF));
- write_ad9361_reg(0x1f9, reg_bbftune_config);
-
- /* RX Mix Voltage settings - only change with apps engineer help. */
- write_ad9361_reg(0x1d5, 0x3f);
- write_ad9361_reg(0x1c0, 0x03);
-
- /* Enable RX1 & RX2 filter tuners. */
- write_ad9361_reg(0x1e2, 0x02);
- write_ad9361_reg(0x1e3, 0x02);
-
- /* Run the calibration! */
- int count = 0;
- write_ad9361_reg(0x016, 0x80);
- while(read_ad9361_reg(0x016) & 0x80) {
- if(count > 100) {
- post_err_msg("RX baseband filter cal FAILURE");
- break;
- }
-
- count++;
- ad9361_msleep(1);
- }
-
- /* Disable RX1 & RX2 filter tuners. */
- write_ad9361_reg(0x1e2, 0x03);
- write_ad9361_reg(0x1e3, 0x03);
-
- return bbbw;
-}
-
-/* Calibrate the analog BB TX filter.
- *
- * Note that the filter calibration depends heavily on the baseband
- * bandwidth, so this must be re-done after any change to the TX sample
- * rate. */
-double calibrate_baseband_tx_analog_filter() {
- /* For filter tuning, baseband BW is half the complex BW, and must be
- * between 28e6 and 0.2e6. */
- double bbbw = _baseband_bw / 2.0;
- if(bbbw > 20e6) {
- bbbw = 20e6;
- } else if (bbbw < 0.625e6) {
- bbbw = 0.625e6;
- }
-
- double txtune_clk = ((1.6 * bbbw * 2 *
- DOUBLE_PI) / DOUBLE_LN_2);
-
- uint16_t txbbfdiv = AD9361_MIN(511, (AD9361_CEIL_INT(_bbpll_freq / txtune_clk)));
-
- reg_bbftune_mode = (reg_bbftune_mode & 0xFE) \
- | ((txbbfdiv >> 8) & 0x0001);
-
- /* Program the divider values. */
- write_ad9361_reg(0x0d6, (txbbfdiv & 0x00FF));
- write_ad9361_reg(0x0d7, reg_bbftune_mode);
-
- /* Enable the filter tuner. */
- write_ad9361_reg(0x0ca, 0x22);
-
- /* Calibrate! */
- int count = 0;
- write_ad9361_reg(0x016, 0x40);
- while(read_ad9361_reg(0x016) & 0x40) {
- if(count > 100) {
- post_err_msg("TX baseband filter cal FAILURE");
- break;
- }
-
- count++;
- ad9361_msleep(1);
- }
-
- /* Disable the filter tuner. */
- write_ad9361_reg(0x0ca, 0x26);
-
- return bbbw;
-}
-
-/* Calibrate the secondary TX filter.
- *
- * This filter also depends on the TX sample rate, so if a rate change is
- * made, the previous calibration will no longer be valid. */
-void calibrate_secondary_tx_filter() {
- /* For filter tuning, baseband BW is half the complex BW, and must be
- * between 20e6 and 0.53e6. */
- double bbbw = _baseband_bw / 2.0;
- if(bbbw > 20e6) {
- bbbw = 20e6;
- } else if (bbbw < 0.53e6) {
- bbbw = 0.53e6;
- }
-
- double bbbw_mhz = bbbw / 1e6;
-
- /* Start with a resistor value of 100 Ohms. */
- int res = 100;
-
- /* Calculate target corner frequency. */
- double corner_freq = 5 * bbbw_mhz * 2 * DOUBLE_PI;
-
- /* Iterate through RC values to determine correct combination. */
- int cap = 0;
- int i;
- for(i = 0; i <= 3; i++) {
- cap = (AD9361_FLOOR_INT(0.5 + (( 1 / ((corner_freq * res) * 1e6)) * 1e12))) - 12;
-
- if(cap <= 63) {
- break;
- }
-
- res = res * 2;
- }
- if(cap > 63) {
- cap = 63;
- }
-
- uint8_t reg0d0, reg0d1, reg0d2;
-
- /* Translate baseband bandwidths to register settings. */
- if((bbbw_mhz * 2) <= 9) {
- reg0d0 = 0x59;
- } else if(((bbbw_mhz * 2) > 9) && ((bbbw_mhz * 2) <= 24)) {
- reg0d0 = 0x56;
- } else if((bbbw_mhz * 2) > 24) {
- reg0d0 = 0x57;
- } else {
- post_err_msg("Cal2ndTxFil: bad bbbw_mhz INV_PATH");
- reg0d0 = 0x00;
- }
-
- /* Translate resistor values to register settings. */
- if(res == 100) {
- reg0d1 = 0x0c;
- } else if(res == 200) {
- reg0d1 = 0x04;
- } else if(res == 400) {
- reg0d1 = 0x03;
- } else if(res == 800) {
- reg0d1 = 0x01;
- } else {
- reg0d1 = 0x0c;
- }
-
- reg0d2 = cap;
-
- /* Program the above-calculated values. Sweet. */
- write_ad9361_reg(0x0d2, reg0d2);
- write_ad9361_reg(0x0d1, reg0d1);
- write_ad9361_reg(0x0d0, reg0d0);
-}
-
-/* Calibrate the RX TIAs.
- *
- * Note that the values in the TIA register, after calibration, vary with
- * the RX gain settings. */
-void calibrate_rx_TIAs() {
-
- uint8_t reg1eb = read_ad9361_reg(0x1eb) & 0x3F;
- uint8_t reg1ec = read_ad9361_reg(0x1ec) & 0x7F;
- uint8_t reg1e6 = read_ad9361_reg(0x1e6) & 0x07;
- uint8_t reg1db = 0x00;
- uint8_t reg1dc = 0x00;
- uint8_t reg1dd = 0x00;
- uint8_t reg1de = 0x00;
- uint8_t reg1df = 0x00;
-
- /* For calibration, baseband BW is half the complex BW, and must be
- * between 28e6 and 0.2e6. */
- double bbbw = _baseband_bw / 2.0;
- if(bbbw > 20e6) {
- bbbw = 20e6;
- } else if (bbbw < 0.20e6) {
- bbbw = 0.20e6;
- }
- double ceil_bbbw_mhz = AD9361_CEIL_INT(bbbw / 1e6);
-
- /* Do some crazy resistor and capacitor math. */
- int Cbbf = (reg1eb * 160) + (reg1ec * 10) + 140;
- int R2346 = 18300 * (reg1e6 & 0x07);
- double CTIA_fF = (Cbbf * R2346 * 0.56) / 3500;
-
- /* Translate baseband BW to register settings. */
- if(ceil_bbbw_mhz <= 3) {
- reg1db = 0xe0;
- } else if((ceil_bbbw_mhz > 3) && (ceil_bbbw_mhz <= 10)) {
- reg1db = 0x60;
- } else if(ceil_bbbw_mhz > 10) {
- reg1db = 0x20;
- } else {
- post_err_msg("CalRxTias: bad bbbw_mhz INV_PATH");
- }
-
- if(CTIA_fF > 2920) {
- reg1dc = 0x40;
- reg1de = 0x40;
-
- uint8_t temp = (uint8_t) AD9361_MIN(127, (AD9361_FLOOR_INT(0.5 + ((CTIA_fF - 400.0) / 320.0))));
- reg1dd = temp;
- reg1df = temp;
- } else {
- uint8_t temp = (uint8_t) AD9361_FLOOR_INT(0.5 + ((CTIA_fF - 400.0) / 40.0)) + 0x40;
- reg1dc = temp;
- reg1de = temp;
- reg1dd = 0;
- reg1df = 0;
- }
-
- /* w00t. Settings calculated. Program them and roll out. */
- write_ad9361_reg(0x1db, reg1db);
- write_ad9361_reg(0x1dd, reg1dd);
- write_ad9361_reg(0x1df, reg1df);
- write_ad9361_reg(0x1dc, reg1dc);
- write_ad9361_reg(0x1de, reg1de);
-}
-
-/* Setup the Catalina ADC.
- *
- * There are 40 registers that control the ADC's operation, most of the
- * values of which must be derived mathematically, dependent on the current
- * setting of the BBPLL. Note that the order of calculation is critical, as
- * some of the 40 registers depend on the values in others. */
-void setup_adc() {
- double bbbw_mhz = (((_bbpll_freq / 1e6) / _rx_bbf_tunediv) * DOUBLE_LN_2) \
- / (1.4 * 2 * DOUBLE_PI);
-
- /* For calibration, baseband BW is half the complex BW, and must be
- * between 28e6 and 0.2e6. */
- if(bbbw_mhz > 28) {
- bbbw_mhz = 28;
- } else if (bbbw_mhz < 0.20) {
- bbbw_mhz = 0.20;
- }
-
- uint8_t rxbbf_c3_msb = read_ad9361_reg(0x1eb) & 0x3F;
- uint8_t rxbbf_c3_lsb = read_ad9361_reg(0x1ec) & 0x7F;
- uint8_t rxbbf_r2346 = read_ad9361_reg(0x1e6) & 0x07;
-
- double fsadc = _adcclock_freq / 1e6;
-
- /* Sort out the RC time constant for our baseband bandwidth... */
- double rc_timeconst = 0.0;
- if(bbbw_mhz < 18) {
- rc_timeconst = (1 / ((1.4 * 2 * DOUBLE_PI) \
- * (18300 * rxbbf_r2346)
- * ((160e-15 * rxbbf_c3_msb)
- + (10e-15 * rxbbf_c3_lsb) + 140e-15)
- * (bbbw_mhz * 1e6)));
- } else {
- rc_timeconst = (1 / ((1.4 * 2 * DOUBLE_PI) \
- * (18300 * rxbbf_r2346)
- * ((160e-15 * rxbbf_c3_msb)
- + (10e-15 * rxbbf_c3_lsb) + 140e-15)
- * (bbbw_mhz * 1e6) * (1 + (0.01 * (bbbw_mhz - 18)))));
- }
-
- double scale_res = ad9361_sqrt(1 / rc_timeconst);
- double scale_cap = ad9361_sqrt(1 / rc_timeconst);
-
- double scale_snr = (_adcclock_freq < 80e6) ? 1.0 : 1.584893192;
- double maxsnr = 640 / 160;
-
- /* Calculate the values for all 40 settings registers.
- *
- * DO NOT TOUCH THIS UNLESS YOU KNOW EXACTLY WHAT YOU ARE DOING. kthx.*/
- uint8_t data[40];
- data[0] = 0; data[1] = 0; data[2] = 0; data[3] = 0x24;
- data[4] = 0x24; data[5] = 0; data[6] = 0;
- data[7] = (uint8_t) AD9361_MIN(124, (AD9361_FLOOR_INT(-0.5
- + (80.0 * scale_snr * scale_res
- * AD9361_MIN(1.0, ad9361_sqrt(maxsnr * fsadc / 640.0))))));
- double data007 = data[7];
- data[8] = (uint8_t) AD9361_MIN(255, (AD9361_FLOOR_INT(0.5
- + ((20.0 * (640.0 / fsadc) * ((data007 / 80.0))
- / (scale_res * scale_cap))))));
- data[10] = (uint8_t) AD9361_MIN(127, (AD9361_FLOOR_INT(-0.5 + (77.0 * scale_res
- * AD9361_MIN(1.0, ad9361_sqrt(maxsnr * fsadc / 640.0))))));
- double data010 = data[10];
- data[9] = (uint8_t) AD9361_MIN(127, (AD9361_FLOOR_INT(0.8 * data010)));
- data[11] = (uint8_t) AD9361_MIN(255, (AD9361_FLOOR_INT(0.5
- + (20.0 * (640.0 / fsadc) * ((data010 / 77.0)
- / (scale_res * scale_cap))))));
- data[12] = (uint8_t) AD9361_MIN(127, (AD9361_FLOOR_INT(-0.5
- + (80.0 * scale_res * AD9361_MIN(1.0,
- ad9361_sqrt(maxsnr * fsadc / 640.0))))));
- double data012 = data[12];
- data[13] = (uint8_t) AD9361_MIN(255, (AD9361_FLOOR_INT(-1.5
- + (20.0 * (640.0 / fsadc) * ((data012 / 80.0)
- / (scale_res * scale_cap))))));
- data[14] = 21 * (uint8_t)(AD9361_FLOOR_INT(0.1 * 640.0 / fsadc));
- data[15] = (uint8_t) AD9361_MIN(127, (1.025 * data007));
- double data015 = data[15];
- data[16] = (uint8_t) AD9361_MIN(127, (AD9361_FLOOR_INT((data015
- * (0.98 + (0.02 * AD9361_MAX(1.0,
- (640.0 / fsadc) / maxsnr)))))));
- data[17] = data[15];
- data[18] = (uint8_t) AD9361_MIN(127, (0.975 * (data010)));
- double data018 = data[18];
- data[19] = (uint8_t) AD9361_MIN(127, (AD9361_FLOOR_INT((data018
- * (0.98 + (0.02 * AD9361_MAX(1.0,
- (640.0 / fsadc) / maxsnr)))))));
- data[20] = data[18];
- data[21] = (uint8_t) AD9361_MIN(127, (0.975 * data012));
- double data021 = data[21];
- data[22] = (uint8_t) AD9361_MIN(127, (AD9361_FLOOR_INT((data021
- * (0.98 + (0.02 * AD9361_MAX(1.0,
- (640.0 / fsadc) / maxsnr)))))));
- data[23] = data[21];
- data[24] = 0x2e;
- data[25] = (uint8_t)(AD9361_FLOOR_INT(128.0 + AD9361_MIN(63.0,
- 63.0 * (fsadc / 640.0))));
- data[26] = (uint8_t)(AD9361_FLOOR_INT(AD9361_MIN(63.0, 63.0 * (fsadc / 640.0)
- * (0.92 + (0.08 * (640.0 / fsadc))))));
- data[27] = (uint8_t)(AD9361_FLOOR_INT(AD9361_MIN(63.0,
- 32.0 * ad9361_sqrt(fsadc / 640.0))));
- data[28] = (uint8_t)(AD9361_FLOOR_INT(128.0 + AD9361_MIN(63.0,
- 63.0 * (fsadc / 640.0))));
- data[29] = (uint8_t)(AD9361_FLOOR_INT(AD9361_MIN(63.0,
- 63.0 * (fsadc / 640.0)
- * (0.92 + (0.08 * (640.0 / fsadc))))));
- data[30] = (uint8_t)(AD9361_FLOOR_INT(AD9361_MIN(63.0,
- 32.0 * ad9361_sqrt(fsadc / 640.0))));
- data[31] = (uint8_t)(AD9361_FLOOR_INT(128.0 + AD9361_MIN(63.0,
- 63.0 * (fsadc / 640.0))));
- data[32] = (uint8_t)(AD9361_FLOOR_INT(AD9361_MIN(63.0,
- 63.0 * (fsadc / 640.0) * (0.92
- + (0.08 * (640.0 / fsadc))))));
- data[33] = (uint8_t)(AD9361_FLOOR_INT(AD9361_MIN(63.0,
- 63.0 * ad9361_sqrt(fsadc / 640.0))));
- data[34] = (uint8_t) AD9361_MIN(127, (AD9361_FLOOR_INT(64.0
- * ad9361_sqrt(fsadc / 640.0))));
- data[35] = 0x40;
- data[36] = 0x40;
- data[37] = 0x2c;
- data[38] = 0x00;
- data[39] = 0x00;
-
- /* Program the registers! */
- int i;
- for(i=0; i<40; i++) {
- write_ad9361_reg(0x200+i, data[i]);
- }
-
-}
-
-/* Calibrate the baseband DC offset.
- *
- * Note that this function is called from within the TX quadrature
- * calibration function! */
-void calibrate_baseband_dc_offset() {
- write_ad9361_reg(0x193, 0x3f); // Calibration settings
- write_ad9361_reg(0x190, 0x0f); // Set tracking coefficient
- //write_ad9361_reg(0x190, /*0x0f*//*0xDF*/0x80*1 | 0x40*1 | (16+8/*+4*/)); // Set tracking coefficient: don't *4 counter, do decim /4, increased gain shift
- write_ad9361_reg(0x194, 0x01); // More calibration settings
-
- /* Start that calibration, baby. */
- int count = 0;
- write_ad9361_reg(0x016, 0x01);
- while(read_ad9361_reg(0x016) & 0x01) {
- if(count > 100) {
- post_err_msg("Baseband DC Offset Cal Failure");
- break;
- }
-
- count++;
- ad9361_msleep(5);
- }
-}
-
-/* Calibrate the RF DC offset.
- *
- * Note that this function is called from within the TX quadrature
- * calibration function. */
-void calibrate_rf_dc_offset() {
- /* Some settings are frequency-dependent. */
- if(_rx_freq < 4e9) {
- write_ad9361_reg(0x186, 0x32); // RF DC Offset count
- write_ad9361_reg(0x187, 0x24);
- write_ad9361_reg(0x188, 0x05);
- } else {
- write_ad9361_reg(0x186, 0x28); // RF DC Offset count
- write_ad9361_reg(0x187, 0x34);
- write_ad9361_reg(0x188, 0x06);
- }
-
- write_ad9361_reg(0x185, 0x20); // RF DC Offset wait count
- write_ad9361_reg(0x18b, 0x83);
- write_ad9361_reg(0x189, 0x30);
-
- /* Run the calibration! */
- int count = 0;
- write_ad9361_reg(0x016, 0x02);
- while(read_ad9361_reg(0x016) & 0x02) {
- if(count > 100) {
- post_err_msg("RF DC Offset Cal Failure");
- break;
- }
-
- count++;
- ad9361_msleep(50);
- }
-}
-
-/* Start the RX quadrature calibration.
- *
- * Note that we are using Catalina's 'tracking' feature for RX quadrature
- * calibration, so once it starts it continues to free-run during operation.
- * It should be re-run for large frequency changes. */
-void calibrate_rx_quadrature(void) {
- /* Configure RX Quadrature calibration settings. */
- write_ad9361_reg(0x168, 0x03); // Set tone level for cal
- write_ad9361_reg(0x16e, 0x25); // RX Gain index to use for cal
- write_ad9361_reg(0x16a, 0x75); // Set Kexp phase
- write_ad9361_reg(0x16b, 0x15); // Set Kexp amplitude
- write_ad9361_reg(0x169, 0xcf); // Continuous tracking mode
- write_ad9361_reg(0x18b, 0xad);
-}
-
-/* TX quadtrature calibration routine.
- *
- * The TX quadrature needs to be done twice, once for each TX chain, with
- * only one register change in between. Thus, this function enacts the
- * calibrations, and it is called from calibrate_tx_quadrature. */
-void tx_quadrature_cal_routine(void) {
-
- /* This is a weird process, but here is how it works:
- * 1) Read the calibrated NCO frequency bits out of 0A3.
- * 2) Write the two bits to the RX NCO freq part of 0A0.
- * 3) Re-read 0A3 to get bits [5:0] because maybe they changed?
- * 4) Update only the TX NCO freq bits in 0A3.
- * 5) Profit (I hope). */
- uint8_t reg0a3 = read_ad9361_reg(0x0a3);
- uint8_t nco_freq = (reg0a3 & 0xC0);
- write_ad9361_reg(0x0a0, 0x15 | (nco_freq >> 1));
- reg0a3 = read_ad9361_reg(0x0a3);
- write_ad9361_reg(0x0a3, (reg0a3 & 0x3F) | nco_freq);
-
- /* It is possible to reach a configuration that won't operate correctly,
- * where the two test tones used for quadrature calibration are outside
- * of the RX BBF, and therefore don't make it to the ADC. We will check
- * for that scenario here. */
- double max_cal_freq = (((_baseband_bw * _tfir_factor) * ((nco_freq >> 6) + 1)) / 32) * 2;
- double bbbw = _baseband_bw / 2.0; // bbbw represents the one-sided BW
- if(bbbw > 28e6) {
- bbbw = 28e6;
- } else if (bbbw < 0.20e6) {
- bbbw = 0.20e6;
- }
- if (max_cal_freq > bbbw )
- post_err_msg("max_cal_freq > bbbw");
-
- write_ad9361_reg(0x0a1, 0x7B); // Set tracking coefficient
- write_ad9361_reg(0x0a9, 0xff); // Cal count
- write_ad9361_reg(0x0a2, 0x7f); // Cal Kexp
- write_ad9361_reg(0x0a5, 0x01); // Cal magnitude threshold VVVV
- write_ad9361_reg(0x0a6, 0x01);
-
- /* The gain table index used for calibration must be adjusted for the
- * mid-table to get a TIA index = 1 and LPF index = 0. */
- if((_rx_freq >= 1300e6) && (_rx_freq < 4000e6)) {
- write_ad9361_reg(0x0aa, 0x22); // Cal gain table index
- } else {
- write_ad9361_reg(0x0aa, 0x25); // Cal gain table index
- }
-
- write_ad9361_reg(0x0a4, 0xf0); // Cal setting conut
- write_ad9361_reg(0x0ae, 0x00); // Cal LPF gain index (split mode)
-
- /* First, calibrate the baseband DC offset. */
- calibrate_baseband_dc_offset();
-
- /* Second, calibrate the RF DC offset. */
- calibrate_rf_dc_offset();
-
- /* Now, calibrate the TX quadrature! */
- int count = 0;
- write_ad9361_reg(0x016, 0x10);
- while(read_ad9361_reg(0x016) & 0x10) {
- if(count > 100) {
- post_err_msg("TX Quadrature Cal Failure");
- break;
- }
-
- count++;
- ad9361_msleep(10);
- }
-}
-
-/* Run the TX quadrature calibration.
- *
- * Note that from within this function we are also triggering the baseband
- * and RF DC calibrations. */
-void calibrate_tx_quadrature(void) {
- /* Make sure we are, in fact, in the ALERT state. If not, something is
- * terribly wrong in the driver execution flow. */
- if((read_ad9361_reg(0x017) & 0x0F) != 5) {
- post_err_msg("TXQuadCal started,but not in ALERT");
- }
-
- /* Turn off free-running and continuous calibrations. Note that this
- * will get turned back on at the end of the RX calibration routine. */
- write_ad9361_reg(0x169, 0xc0);
-
- /* This calibration must be done in a certain order, and for both TX_A
- * and TX_B, separately. Store the original setting so that we can
- * restore it later. */
- uint8_t orig_reg_inputsel = reg_inputsel;
-
- /***********************************************************************
- * TX1/2-A Calibration
- **********************************************************************/
- reg_inputsel = reg_inputsel & 0xBF;
- write_ad9361_reg(0x004, reg_inputsel);
-
- tx_quadrature_cal_routine();
-
- /***********************************************************************
- * TX1/2-B Calibration
- **********************************************************************/
- reg_inputsel = reg_inputsel | 0x40;
- write_ad9361_reg(0x004, reg_inputsel);
-
- tx_quadrature_cal_routine();
-
- /***********************************************************************
- * fin
- **********************************************************************/
- reg_inputsel = orig_reg_inputsel;
- write_ad9361_reg(0x004, orig_reg_inputsel);
-}
-
-
-/***********************************************************************
- * Other Misc Setup Functions
- ***********************************************************************/
-
-/* Program the mixer gain table.
- *
- * Note that this table is fixed for all frequency settings. */
-void program_mixer_gm_subtable() {
- uint8_t gain[] = {0x78, 0x74, 0x70, 0x6C, 0x68, 0x64, 0x60, 0x5C, 0x58,
- 0x54, 0x50, 0x4C, 0x48, 0x30, 0x18, 0x00};
- uint8_t gm[] = {0x00, 0x0D, 0x15, 0x1B, 0x21, 0x25, 0x29, 0x2C, 0x2F,
- 0x31, 0x33, 0x34, 0x35, 0x3A, 0x3D, 0x3E};
-
- /* Start the clock. */
- write_ad9361_reg(0x13f, 0x02);
-
- /* Program the GM Sub-table. */
- int i;
- for(i = 15; i >= 0; i--) {
- write_ad9361_reg(0x138, i);
- write_ad9361_reg(0x139, gain[(15 - i)]);
- write_ad9361_reg(0x13A, 0x00);
- write_ad9361_reg(0x13B, gm[(15 - i)]);
- write_ad9361_reg(0x13F, 0x06);
- write_ad9361_reg(0x13C, 0x00);
- write_ad9361_reg(0x13C, 0x00);
- }
-
- /* Clear write bit and stop clock. */
- write_ad9361_reg(0x13f, 0x02);
- write_ad9361_reg(0x13C, 0x00);
- write_ad9361_reg(0x13C, 0x00);
- write_ad9361_reg(0x13f, 0x00);
-}
-
-/* Program the gain table.
- *
- * There are three different gain tables for different frequency ranges! */
-void program_gain_table() {
-
- /* Figure out which gain table we should be using for our current
- * frequency band. */
- uint8_t (*gain_table)[5] = NULL;
- uint8_t new_gain_table;
- if(_rx_freq < 1300e6) {
- gain_table = gain_table_sub_1300mhz;
- new_gain_table = 1;
- } else if(_rx_freq < 4e9) {
- gain_table = gain_table_1300mhz_to_4000mhz;
- new_gain_table = 2;
- } else if(_rx_freq <= 6e9) {
- gain_table = gain_table_4000mhz_to_6000mhz;
- new_gain_table = 3;
- } else {
- post_err_msg("Wrong _rx_freq value");
- new_gain_table = 1;
- }
-
- /* Only re-program the gain table if there has been a band change. */
- if(_curr_gain_table == new_gain_table) {
- return;
- } else {
- _curr_gain_table = new_gain_table;
- }
-
- /* Okay, we have to program a new gain table. Sucks, brah. Start the
- * gain table clock. */
- write_ad9361_reg(0x137, 0x1A);
-
- /* IT'S PROGRAMMING TIME. */
- uint8_t index = 0;
- for(; index < 77; index++) {
- write_ad9361_reg(0x130, index);
- write_ad9361_reg(0x131, gain_table[index][1]);
- write_ad9361_reg(0x132, gain_table[index][2]);
- write_ad9361_reg(0x133, gain_table[index][3]);
- write_ad9361_reg(0x137, 0x1E);
- write_ad9361_reg(0x134, 0x00);
- write_ad9361_reg(0x134, 0x00);
- }
-
- /* Everything above the 77th index is zero. */
- for(; index < 91; index++) {
- write_ad9361_reg(0x130, index);
- write_ad9361_reg(0x131, 0x00);
- write_ad9361_reg(0x132, 0x00);
- write_ad9361_reg(0x133, 0x00);
- write_ad9361_reg(0x137, 0x1E);
- write_ad9361_reg(0x134, 0x00);
- write_ad9361_reg(0x134, 0x00);
- }
-
- /* Clear the write bit and stop the gain clock. */
- write_ad9361_reg(0x137, 0x1A);
- write_ad9361_reg(0x134, 0x00);
- write_ad9361_reg(0x134, 0x00);
- write_ad9361_reg(0x137, 0x00);
-}
-
-/* Setup gain control registers.
- *
- * This really only needs to be done once, at initialization. */
-void setup_gain_control() {
- write_ad9361_reg(0x0FA, 0xE0); // Gain Control Mode Select
- write_ad9361_reg(0x0FB, 0x08); // Table, Digital Gain, Man Gain Ctrl
- write_ad9361_reg(0x0FC, 0x23); // Incr Step Size, ADC Overrange Size
- write_ad9361_reg(0x0FD, 0x4C); // Max Full/LMT Gain Table Index
- write_ad9361_reg(0x0FE, 0x44); // Decr Step Size, Peak Overload Time
- write_ad9361_reg(0x100, 0x6F); // Max Digital Gain
- write_ad9361_reg(0x104, 0x2F); // ADC Small Overload Threshold
- write_ad9361_reg(0x105, 0x3A); // ADC Large Overload Threshold
- write_ad9361_reg(0x107, 0x31); // Large LMT Overload Threshold
- write_ad9361_reg(0x108, 0x39); // Small LMT Overload Threshold
- write_ad9361_reg(0x109, 0x23); // Rx1 Full/LMT Gain Index
- write_ad9361_reg(0x10A, 0x58); // Rx1 LPF Gain Index
- write_ad9361_reg(0x10B, 0x00); // Rx1 Digital Gain Index
- write_ad9361_reg(0x10C, 0x23); // Rx2 Full/LMT Gain Index
- write_ad9361_reg(0x10D, 0x18); // Rx2 LPF Gain Index
- write_ad9361_reg(0x10E, 0x00); // Rx2 Digital Gain Index
- write_ad9361_reg(0x114, 0x30); // Low Power Threshold
- write_ad9361_reg(0x11A, 0x27); // Initial LMT Gain Limit
- write_ad9361_reg(0x081, 0x00); // Tx Symbol Gain Control
-}
-
-/* Setup the RX or TX synthesizers.
- *
- * This setup depends on a fixed look-up table, which is stored in an
- * included header file. The table is indexed based on the passed VCO rate.
- */
-void setup_synth(int which, double vcorate) {
- /* The vcorates in the vco_index array represent lower boundaries for
- * rates. Once we find a match, we use that index to look-up the rest of
- * the register values in the LUT. */
- int vcoindex = 0;
- int i;
- for(i = 0; i < 53; i++) {
- vcoindex = i;
- if(vcorate > vco_index[i]) {
- break;
- }
- }
-
- if (vcoindex > 53)
- post_err_msg("vcoindex > 53");
-
- /* Parse the values out of the LUT based on our calculated index... */
- uint8_t vco_output_level = synth_cal_lut[vcoindex][0];
- uint8_t vco_varactor = synth_cal_lut[vcoindex][1];
- uint8_t vco_bias_ref = synth_cal_lut[vcoindex][2];
- uint8_t vco_bias_tcf = synth_cal_lut[vcoindex][3];
- uint8_t vco_cal_offset = synth_cal_lut[vcoindex][4];
- uint8_t vco_varactor_ref = synth_cal_lut[vcoindex][5];
- uint8_t charge_pump_curr = synth_cal_lut[vcoindex][6];
- uint8_t loop_filter_c2 = synth_cal_lut[vcoindex][7];
- uint8_t loop_filter_c1 = synth_cal_lut[vcoindex][8];
- uint8_t loop_filter_r1 = synth_cal_lut[vcoindex][9];
- uint8_t loop_filter_c3 = synth_cal_lut[vcoindex][10];
- uint8_t loop_filter_r3 = synth_cal_lut[vcoindex][11];
-
- /* ... annnd program! */
- if(which == RX_TYPE) {
- write_ad9361_reg(0x23a, 0x40 | vco_output_level);
- write_ad9361_reg(0x239, 0xC0 | vco_varactor);
- write_ad9361_reg(0x242, vco_bias_ref | (vco_bias_tcf << 3));
- write_ad9361_reg(0x238, (vco_cal_offset << 3));
- write_ad9361_reg(0x245, 0x00);
- write_ad9361_reg(0x251, vco_varactor_ref);
- write_ad9361_reg(0x250, 0x70);
- write_ad9361_reg(0x23b, 0x80 | charge_pump_curr);
- write_ad9361_reg(0x23e, loop_filter_c1 | (loop_filter_c2 << 4));
- write_ad9361_reg(0x23f, loop_filter_c3 | (loop_filter_r1 << 4));
- write_ad9361_reg(0x240, loop_filter_r3);
- } else if(which == TX_TYPE) {
- write_ad9361_reg(0x27a, 0x40 | vco_output_level);
- write_ad9361_reg(0x279, 0xC0 | vco_varactor);
- write_ad9361_reg(0x282, vco_bias_ref | (vco_bias_tcf << 3));
- write_ad9361_reg(0x278, (vco_cal_offset << 3));
- write_ad9361_reg(0x285, 0x00);
- write_ad9361_reg(0x291, vco_varactor_ref);
- write_ad9361_reg(0x290, 0x70);
- write_ad9361_reg(0x27b, 0x80 | charge_pump_curr);
- write_ad9361_reg(0x27e, loop_filter_c1 | (loop_filter_c2 << 4));
- write_ad9361_reg(0x27f, loop_filter_c3 | (loop_filter_r1 << 4));
- write_ad9361_reg(0x280, loop_filter_r3);
- } else {
- post_err_msg("[setup_synth] INVALID_CODE_PATH");
- }
-}
-
-
-/* Tune the baseband VCO.
- *
- * This clock signal is what gets fed to the ADCs and DACs. This function is
- * not exported outside of this file, and is invoked based on the rate
- * fed to the public set_clock_rate function. */
-double tune_bbvco(const double rate) {
- msg("[tune_bbvco] rate=%.10f", rate);
-
- /* Let's not re-tune to the same frequency over and over... */
- if(freq_is_nearly_equal(rate, _req_coreclk)) {
- return _adcclock_freq;
- }
-
- _req_coreclk = rate;
-
- const double fref = 40e6;
- const int modulus = 2088960;
- const double vcomax = 1430e6;
- const double vcomin = 672e6;
- double vcorate;
- int vcodiv;
-
- /* Iterate over VCO dividers until appropriate divider is found. */
- int i = 1;
- for(; i <= 6; i++) {
- vcodiv = 1 << i;
- vcorate = rate * vcodiv;
-
- if(vcorate >= vcomin && vcorate <= vcomax) break;
- }
- if(i == 7)
- post_err_msg("[tune_bbvco] wrong vcorate");
-
- msg("[tune_bbvco] vcodiv=%d vcorate=%.10f", vcodiv, vcorate);
-
- /* Fo = Fref * (Nint + Nfrac / mod) */
- int nint = vcorate / fref;
- msg("[tune_bbvco] (nint)=%.10f", (vcorate / fref));
- int nfrac = lround(((vcorate / fref) - (double)nint) * (double)modulus);
- msg("[tune_bbvco] (nfrac)=%.10f", (((vcorate / fref) - (double)nint) * (double)modulus));
- msg("[tune_bbvco] nint=%d nfrac=%d", nint, nfrac);
- double actual_vcorate = fref * ((double)nint + ((double)nfrac / (double)modulus));
-
- /* Scale CP current according to VCO rate */
- const double icp_baseline = 150e-6;
- const double freq_baseline = 1280e6;
- double icp = icp_baseline * (actual_vcorate / freq_baseline);
- int icp_reg = (icp / 25e-6) - 1;
-
- write_ad9361_reg(0x045, 0x00); // REFCLK / 1 to BBPLL
- write_ad9361_reg(0x046, icp_reg & 0x3F); // CP current
- write_ad9361_reg(0x048, 0xe8); // BBPLL loop filters
- write_ad9361_reg(0x049, 0x5b); // BBPLL loop filters
- write_ad9361_reg(0x04a, 0x35); // BBPLL loop filters
-
- write_ad9361_reg(0x04b, 0xe0);
- write_ad9361_reg(0x04e, 0x10); // Max accuracy
-
- write_ad9361_reg(0x043, nfrac & 0xFF); // Nfrac[7:0]
- write_ad9361_reg(0x042, (nfrac >> 8) & 0xFF); // Nfrac[15:8]
- write_ad9361_reg(0x041, (nfrac >> 16) & 0xFF); // Nfrac[23:16]
- write_ad9361_reg(0x044, nint); // Nint
-
- calibrate_lock_bbpll();
-
- reg_bbpll = (reg_bbpll & 0xF8) | i;
-
- _bbpll_freq = actual_vcorate;
- _adcclock_freq = (actual_vcorate / vcodiv);
-
- return _adcclock_freq;
-}
-
-/* This function re-programs all of the gains in the system.
- *
- * Because the gain values match to different gain indices based on the
- * current operating band, this function can be called to update all gain
- * settings to the appropriate index after a re-tune. */
-void program_gains() {
- set_gain(RX_TYPE,1, _rx1_gain);
- set_gain(RX_TYPE,2, _rx2_gain);
- set_gain(TX_TYPE,1, _tx1_gain);
- set_gain(TX_TYPE,2, _tx2_gain);
-}
-
-/* This is the internal tune function, not available for a host call.
- *
- * Calculate the VCO settings for the requested frquency, and then either
- * tune the RX or TX VCO. */
-double tune_helper(int which, const double value) {
-
- /* The RFPLL runs from 6 GHz - 12 GHz */
- const double fref = 80e6;
- const int modulus = 8388593;
- const double vcomax = 12e9;
- const double vcomin = 6e9;
- double vcorate;
- int vcodiv;
-
- /* Iterate over VCO dividers until appropriate divider is found. */
- int i;
- for(i = 0; i <= 6; i++) {
- vcodiv = 2 << i;
- vcorate = value * vcodiv;
- if(vcorate >= vcomin && vcorate <= vcomax) break;
- }
- if(i == 7)
- post_err_msg("RFVCO can't find valid VCO rate!");
-
- int nint = vcorate / fref;
- int nfrac = ((vcorate / fref) - nint) * modulus;
-
- double actual_vcorate = fref * (nint + (double)(nfrac)/modulus);
- double actual_lo = actual_vcorate / vcodiv;
-
- // UHD_VAR(actual_lo); // TODO:
-
- if(which == RX_TYPE) {
-
- _req_rx_freq = value;
-
- /* Set band-specific settings. */
- if(value < AD9361_RX_BAND_EDGE0) {
- reg_inputsel = (reg_inputsel & 0xC0) | 0x30;
- } else if((value >= AD9361_RX_BAND_EDGE0) && (value < AD9361_RX_BAND_EDGE1)) {
- reg_inputsel = (reg_inputsel & 0xC0) | 0x0C;
- } else if((value >= AD9361_RX_BAND_EDGE1) && (value <= 6e9)) {
- reg_inputsel = (reg_inputsel & 0xC0) | 0x03;
- } else {
- post_err_msg("[tune_helper] INVALID_CODE_PATH");
- }
-
- write_ad9361_reg(0x004, reg_inputsel);
-
- /* Store vcodiv setting. */
- reg_vcodivs = (reg_vcodivs & 0xF0) | (i & 0x0F);
-
- /* Setup the synthesizer. */
- setup_synth(RX_TYPE, actual_vcorate);
-
- /* Tune!!!! */
- write_ad9361_reg(0x233, nfrac & 0xFF);
- write_ad9361_reg(0x234, (nfrac >> 8) & 0xFF);
- write_ad9361_reg(0x235, (nfrac >> 16) & 0xFF);
- write_ad9361_reg(0x232, (nint >> 8) & 0xFF);
- write_ad9361_reg(0x231, nint & 0xFF);
- write_ad9361_reg(0x005, reg_vcodivs);
-
- /* Lock the PLL! */
- ad9361_msleep(2);
- if((read_ad9361_reg(0x247) & 0x02) == 0) {
- post_err_msg("RX PLL NOT LOCKED");
- }
-
- _rx_freq = actual_lo;
-
- return actual_lo;
-
- } else {
-
- _req_tx_freq = value;
-
- /* Set band-specific settings. */
- if(value < AD9361_TX_BAND_EDGE) {
- reg_inputsel = reg_inputsel | 0x40;
- } else if((value >= AD9361_TX_BAND_EDGE) && (value <= 6e9)) {
- reg_inputsel = reg_inputsel & 0xBF;
- } else {
- post_err_msg("[tune_helper] INVALID_CODE_PATH");
- }
-
- write_ad9361_reg(0x004, reg_inputsel);
-
- /* Store vcodiv setting. */
- reg_vcodivs = (reg_vcodivs & 0x0F) | ((i & 0x0F) << 4);
-
- /* Setup the synthesizer. */
- setup_synth(TX_TYPE, actual_vcorate);
-
- /* Tune it, homey. */
- write_ad9361_reg(0x273, nfrac & 0xFF);
- write_ad9361_reg(0x274, (nfrac >> 8) & 0xFF);
- write_ad9361_reg(0x275, (nfrac >> 16) & 0xFF);
- write_ad9361_reg(0x272, (nint >> 8) & 0xFF);
- write_ad9361_reg(0x271, nint & 0xFF);
- write_ad9361_reg(0x005, reg_vcodivs);
-
- /* Lock the PLL! */
- ad9361_msleep(2);
- if((read_ad9361_reg(0x287) & 0x02) == 0) {
- post_err_msg("TX PLL NOT LOCKED");
- }
-
- _tx_freq = actual_lo;
-
- return actual_lo;
- }
-}
-
-/* Configure the various clock / sample rates in the RX and TX chains.
- *
- * Functionally, this function configures Catalina's RX and TX rates. For
- * a requested TX & RX rate, it sets the interpolation & decimation filters,
- * and tunes the VCO that feeds the ADCs and DACs.
- */
-double setup_rates(const double rate) {
-
- /* If we make it into this function, then we are tuning to a new rate.
- * Store the new rate. */
- _req_clock_rate = rate;
-
- /* Set the decimation and interpolation values in the RX and TX chains.
- * This also switches filters in / out. Note that all transmitters and
- * receivers have to be turned on for the calibration portion of
- * bring-up, and then they will be switched out to reflect the actual
- * user-requested antenna selections. */
- int divfactor = 0;
- _tfir_factor = 0;
- if(rate < 0.33e6) {
- // RX1 + RX2 enabled, 3, 2, 2, 4
- reg_rxfilt = B8( 11101111 ) ;
-
- // TX1 + TX2 enabled, 3, 2, 2, 4
- reg_txfilt = B8( 11101111 ) ;
-
- divfactor = 48;
- _tfir_factor = 2;
- } else if(rate < 0.66e6) {
- // RX1 + RX2 enabled, 2, 2, 2, 4
- reg_rxfilt = B8( 11011111 ) ;
-
- // TX1 + TX2 enabled, 2, 2, 2, 4
- reg_txfilt = B8( 11011111 ) ;
-
- divfactor = 32;
- _tfir_factor = 2;
- } else if(rate <= 20e6) {
- // RX1 + RX2 enabled, 2, 2, 2, 2
- reg_rxfilt = B8( 11011110 ) ;
-
- // TX1 + TX2 enabled, 2, 2, 2, 2
- reg_txfilt = B8( 11011110 ) ;
-
- divfactor = 16;
- _tfir_factor = 2;
- } else if((rate > 20e6) && (rate < 23e6)) {
- // RX1 + RX2 enabled, 3, 2, 2, 2
- reg_rxfilt = B8( 11101110 ) ;
-
- // TX1 + TX2 enabled, 3, 1, 2, 2
- reg_txfilt = B8( 11100110 ) ;
-
- divfactor = 24;
- _tfir_factor = 2;
- } else if((rate >= 23e6) && (rate < 41e6)) {
- // RX1 + RX2 enabled, 2, 2, 2, 2
- reg_rxfilt = B8( 11011110 ) ;
-
- // TX1 + TX2 enabled, 1, 2, 2, 2
- reg_txfilt = B8( 11001110 ) ;
-
- divfactor = 16;
- _tfir_factor = 2;
- } else if((rate >= 41e6) && (rate <= 56e6)) {
- // RX1 + RX2 enabled, 3, 1, 2, 2
- reg_rxfilt = B8( 11100110 ) ;
-
- // TX1 + TX2 enabled, 3, 1, 1, 2
- reg_txfilt = B8( 11100010 ) ;
-
- divfactor = 12;
- _tfir_factor = 2;
- } else if((rate > 56e6) && (rate <= 61.44e6)) {
- // RX1 + RX2 enabled, 3, 1, 1, 2
- reg_rxfilt = B8( 11100010 ) ;
-
- // TX1 + TX2 enabled, 3, 1, 1, 1
- reg_txfilt = B8( 11100001 ) ;
-
- divfactor = 6;
- _tfir_factor = 1;
- } else {
- // should never get in here
- post_err_msg("[setup_rates] INVALID_CODE_PATH");
- }
-
- msg("[setup_rates] divfactor=%d", divfactor);
-
- /* Tune the BBPLL to get the ADC and DAC clocks. */
- const double adcclk = tune_bbvco(rate * divfactor);
- double dacclk = adcclk;
-
- /* The DAC clock must be <= 336e6, and is either the ADC clock or 1/2 the
- * ADC clock.*/
- if(adcclk > 336e6) {
- /* Make the DAC clock = ADC/2, and bypass the TXFIR. */
- reg_bbpll = reg_bbpll | 0x08;
- dacclk = adcclk / 2.0;
- } else {
- reg_bbpll = reg_bbpll & 0xF7;
- }
-
- /* Set the dividers / interpolators in Catalina. */
- write_ad9361_reg(0x002, reg_txfilt);
- write_ad9361_reg(0x003, reg_rxfilt);
- write_ad9361_reg(0x004, reg_inputsel);
- write_ad9361_reg(0x00A, reg_bbpll);
-
- msg("[setup_rates] adcclk=%f", adcclk);
- _baseband_bw = (adcclk / divfactor);
-
- /* Setup the RX and TX FIR filters. Scale the number of taps based on
- * the clock speed. */
- const int max_tx_taps = 16 * AD9361_MIN((int)((dacclk / rate) + 0.5), \
- AD9361_MIN(4 * (1 << _tfir_factor), 8));
- const int max_rx_taps = AD9361_MIN((16 * (int)(adcclk / rate)), 128);
-
- const int num_tx_taps = get_num_taps(max_tx_taps);
- const int num_rx_taps = get_num_taps(max_rx_taps);
-
- setup_tx_fir(num_tx_taps);
- setup_rx_fir(num_rx_taps);
-
- return _baseband_bw;
-}
-
-/***********************************************************************
- * Publicly exported functions to host calls
- **********************************************************************/
-void init_ad9361(void) {
-
- /* Initialize shadow registers. */
- reg_vcodivs = 0x00;
- reg_inputsel = 0x30;
- reg_rxfilt = 0x00;
- reg_txfilt = 0x00;
- reg_bbpll = 0x02;
- reg_bbftune_config = 0x1e;
- reg_bbftune_mode = 0x1e;
-
- /* Initialize private VRQ fields. */
- _rx_freq = 0.0;
- _tx_freq = 0.0;
- _req_rx_freq = 0.0;
- _req_tx_freq = 0.0;
- _baseband_bw = 0.0;
- _req_clock_rate = 0.0;
- _req_coreclk = 0.0;
- _bbpll_freq = 0.0;
- _adcclock_freq = 0.0;
- _rx_bbf_tunediv = 0;
- _curr_gain_table = 0;
- _rx1_gain = 0;
- _rx2_gain = 0;
- _tx1_gain = 0;
- _tx2_gain = 0;
-
- /* Reset the device. */
- write_ad9361_reg(0x000,0x01);
- write_ad9361_reg(0x000,0x00);
- ad9361_msleep(20);
-
- /* There is not a WAT big enough for this. */
- write_ad9361_reg(0x3df, 0x01);
-
- write_ad9361_reg(0x2a6, 0x0e); // Enable master bias
- write_ad9361_reg(0x2a8, 0x0e); // Set bandgap trim
-
- /* Set RFPLL ref clock scale to REFCLK * 2 */
- write_ad9361_reg(0x2ab, 0x07);
- write_ad9361_reg(0x2ac, 0xff);
-
- /* Enable clocks. */
- if (AD9361_CLOCKING_MODE == 0)
- {
- write_ad9361_reg(0x009, 0x17);
- }
- if (AD9361_CLOCKING_MODE == 1)
- {
- write_ad9361_reg(0x009, 0x07);
- write_ad9361_reg(0x292, 0x08);
- write_ad9361_reg(0x293, 0x80);
- write_ad9361_reg(0x294, 0x00);
- write_ad9361_reg(0x295, 0x14);
- }
- ad9361_msleep(20);
-
- /* Tune the BBPLL, write TX and RX FIRS. */
- setup_rates(50e6);
-
- /* Setup data ports (FDD dual port DDR CMOS):
- * FDD dual port DDR CMOS no swap.
- * Force TX on one port, RX on the other. */
- write_ad9361_reg(0x010, 0xc8);
- write_ad9361_reg(0x011, 0x00);
- write_ad9361_reg(0x012, 0x02);
-
- /* Data delay for TX and RX data clocks */
- write_ad9361_reg(0x006, 0x0F);
- write_ad9361_reg(0x007, 0x0F);
-
- /* Setup AuxDAC */
- write_ad9361_reg(0x018, 0x00); // AuxDAC1 Word[9:2]
- write_ad9361_reg(0x019, 0x00); // AuxDAC2 Word[9:2]
- write_ad9361_reg(0x01A, 0x00); // AuxDAC1 Config and Word[1:0]
- write_ad9361_reg(0x01B, 0x00); // AuxDAC2 Config and Word[1:0]
- write_ad9361_reg(0x022, 0x4A); // Invert Bypassed LNA
- write_ad9361_reg(0x023, 0xFF); // AuxDAC Manaul/Auto Control
- write_ad9361_reg(0x026, 0x00); // AuxDAC Manual Select Bit/GPO Manual Select
- write_ad9361_reg(0x030, 0x00); // AuxDAC1 Rx Delay
- write_ad9361_reg(0x031, 0x00); // AuxDAC1 Tx Delay
- write_ad9361_reg(0x032, 0x00); // AuxDAC2 Rx Delay
- write_ad9361_reg(0x033, 0x00); // AuxDAC2 Tx Delay
-
- /* Setup AuxADC */
- write_ad9361_reg(0x00B, 0x00); // Temp Sensor Setup (Offset)
- write_ad9361_reg(0x00C, 0x00); // Temp Sensor Setup (Temp Window)
- write_ad9361_reg(0x00D, 0x03); // Temp Sensor Setup (Periodic Measure)
- write_ad9361_reg(0x00F, 0x04); // Temp Sensor Setup (Decimation)
- write_ad9361_reg(0x01C, 0x10); // AuxADC Setup (Clock Div)
- write_ad9361_reg(0x01D, 0x01); // AuxADC Setup (Decimation/Enable)
-
- /* Setup control outputs. */
- write_ad9361_reg(0x035, 0x07);
- write_ad9361_reg(0x036, 0xFF);
-
- /* Setup GPO */
- write_ad9361_reg(0x03a, 0x27); //set delay register
- write_ad9361_reg(0x020, 0x00); // GPO Auto Enable Setup in RX and TX
- write_ad9361_reg(0x027, 0x03); // GPO Manual and GPO auto value in ALERT
- write_ad9361_reg(0x028, 0x00); // GPO_0 RX Delay
- write_ad9361_reg(0x029, 0x00); // GPO_1 RX Delay
- write_ad9361_reg(0x02A, 0x00); // GPO_2 RX Delay
- write_ad9361_reg(0x02B, 0x00); // GPO_3 RX Delay
- write_ad9361_reg(0x02C, 0x00); // GPO_0 TX Delay
- write_ad9361_reg(0x02D, 0x00); // GPO_1 TX Delay
- write_ad9361_reg(0x02E, 0x00); // GPO_2 TX Delay
- write_ad9361_reg(0x02F, 0x00); // GPO_3 TX Delay
-
- write_ad9361_reg(0x261, 0x00); // RX LO power
- write_ad9361_reg(0x2a1, 0x00); // TX LO power
- write_ad9361_reg(0x248, 0x0b); // en RX VCO LDO
- write_ad9361_reg(0x288, 0x0b); // en TX VCO LDO
- write_ad9361_reg(0x246, 0x02); // pd RX cal Tcf
- write_ad9361_reg(0x286, 0x02); // pd TX cal Tcf
- write_ad9361_reg(0x249, 0x8e); // rx vco cal length
- write_ad9361_reg(0x289, 0x8e); // rx vco cal length
- write_ad9361_reg(0x23b, 0x80); // set RX MSB?, FIXME 0x89 magic cp
- write_ad9361_reg(0x27b, 0x80); // "" TX //FIXME 0x88 see above
- write_ad9361_reg(0x243, 0x0d); // set rx prescaler bias
- write_ad9361_reg(0x283, 0x0d); // "" TX
-
- write_ad9361_reg(0x23d, 0x00); // Clear half VCO cal clock setting
- write_ad9361_reg(0x27d, 0x00); // Clear half VCO cal clock setting
-
- /* The order of the following process is EXTREMELY important. If the
- * below functions are modified at all, device initialization and
- * calibration might be broken in the process! */
-
- write_ad9361_reg(0x015, 0x04); // dual synth mode, synth en ctrl en
- write_ad9361_reg(0x014, 0x05); // use SPI for TXNRX ctrl, to ALERT, TX on
- write_ad9361_reg(0x013, 0x01); // enable ENSM
- ad9361_msleep(1);
-
- calibrate_synth_charge_pumps();
-
- tune_helper(RX_TYPE, 800e6);
- tune_helper(TX_TYPE, 850e6);
-
- program_mixer_gm_subtable();
- program_gain_table();
- setup_gain_control();
-
- calibrate_baseband_rx_analog_filter();
- calibrate_baseband_tx_analog_filter();
- calibrate_rx_TIAs();
- calibrate_secondary_tx_filter();
-
- setup_adc();
-
- calibrate_tx_quadrature();
- calibrate_rx_quadrature();
-
- write_ad9361_reg(0x012, 0x02); // cals done, set PPORT config
- write_ad9361_reg(0x013, 0x01); // Set ENSM FDD bit
- write_ad9361_reg(0x015, 0x04); // dual synth mode, synth en ctrl en
-
- /* Default TX attentuation to 10dB on both TX1 and TX2 */
- write_ad9361_reg(0x073, 0x00);
- write_ad9361_reg(0x074, 0x00);
- write_ad9361_reg(0x075, 0x00);
- write_ad9361_reg(0x076, 0x00);
-
- /* Setup RSSI Measurements */
- write_ad9361_reg(0x150, 0x0E); // RSSI Measurement Duration 0, 1
- write_ad9361_reg(0x151, 0x00); // RSSI Measurement Duration 2, 3
- write_ad9361_reg(0x152, 0xFF); // RSSI Weighted Multiplier 0
- write_ad9361_reg(0x153, 0x00); // RSSI Weighted Multiplier 1
- write_ad9361_reg(0x154, 0x00); // RSSI Weighted Multiplier 2
- write_ad9361_reg(0x155, 0x00); // RSSI Weighted Multiplier 3
- write_ad9361_reg(0x156, 0x00); // RSSI Delay
- write_ad9361_reg(0x157, 0x00); // RSSI Wait
- write_ad9361_reg(0x158, 0x0D); // RSSI Mode Select
- write_ad9361_reg(0x15C, 0x67); // Power Measurement Duration
-
- /* Turn on the default RX & TX chains. */
- set_active_chains(true, false, false, false);
-
- /* Set TXers & RXers on (only works in FDD mode) */
- write_ad9361_reg(0x014, 0x21);
-}
-
-
-/* This function sets the RX / TX rate between Catalina and the FPGA, and
- * thus determines the interpolation / decimation required in the FPGA to
- * achieve the user's requested rate.
- *
- * This is the only clock setting function that is exposed to the outside. */
-double set_clock_rate(const double req_rate) {
- if(req_rate > 61.44e6) {
- post_err_msg("Req. master clk rate outside range");
- }
-
- msg("[set_clock_rate] req_rate=%.10f", req_rate);
-
- /* UHD has a habit of requesting the same rate like four times when it
- * starts up. This prevents that, and any bugs in user code that request
- * the same rate over and over. */
- if(freq_is_nearly_equal(req_rate, _req_clock_rate)) {
- return _baseband_bw;
- }
-
- /* We must be in the SLEEP / WAIT state to do this. If we aren't already
- * there, transition the ENSM to State 0. */
- uint8_t current_state = read_ad9361_reg(0x017) & 0x0F;
- switch(current_state) {
- case 0x05:
- /* We are in the ALERT state. */
- write_ad9361_reg(0x014, 0x21);
- ad9361_msleep(5);
- write_ad9361_reg(0x014, 0x00);
- break;
-
- case 0x0A:
- /* We are in the FDD state. */
- write_ad9361_reg(0x014, 0x00);
- break;
-
- default:
- post_err_msg("[set_clock_rate:1] Unknown state");
- break;
- };
-
- /* Store the current chain / antenna selections so that we can restore
- * them at the end of this routine; all chains will be enabled from
- * within setup_rates for calibration purposes. */
- uint8_t orig_tx_chains = reg_txfilt & 0xC0;
- uint8_t orig_rx_chains = reg_rxfilt & 0xC0;
-
- /* Call into the clock configuration / settings function. This is where
- * all the hard work gets done. */
- double rate = setup_rates(req_rate);
-
- msg("[set_clock_rate] rate=%.10f", rate);
-
- /* Transition to the ALERT state and calibrate everything. */
- write_ad9361_reg(0x015, 0x04); //dual synth mode, synth en ctrl en
- write_ad9361_reg(0x014, 0x05); //use SPI for TXNRX ctrl, to ALERT, TX on
- write_ad9361_reg(0x013, 0x01); //enable ENSM
- ad9361_msleep(1);
-
- calibrate_synth_charge_pumps();
-
- tune_helper(RX_TYPE, _rx_freq);
- tune_helper(TX_TYPE, _tx_freq);
-
- program_mixer_gm_subtable();
- program_gain_table();
- setup_gain_control();
- program_gains();
-
- calibrate_baseband_rx_analog_filter();
- calibrate_baseband_tx_analog_filter();
- calibrate_rx_TIAs();
- calibrate_secondary_tx_filter();
-
- setup_adc();
-
- calibrate_tx_quadrature();
- calibrate_rx_quadrature();
-
- write_ad9361_reg(0x012, 0x02); // cals done, set PPORT config
- write_ad9361_reg(0x013, 0x01); // Set ENSM FDD bit
- write_ad9361_reg(0x015, 0x04); // dual synth mode, synth en ctrl en
-
- /* End the function in the same state as the entry state. */
- switch(current_state) {
- case 0x05:
- /* We are already in ALERT. */
- break;
-
- case 0x0A:
- /* Transition back to FDD, and restore the original antenna
- * / chain selections. */
- reg_txfilt = (reg_txfilt & 0x3F) | orig_tx_chains;
- reg_rxfilt = (reg_rxfilt & 0x3F) | orig_rx_chains;
-
- write_ad9361_reg(0x002, reg_txfilt);
- write_ad9361_reg(0x003, reg_rxfilt);
- write_ad9361_reg(0x014, 0x21);
- break;
-
- default:
- post_err_msg("[set_clock_rate:2] Unknown state");
- break;
- };
-
- return rate;
-}
-
-
-/* Set which of the four TX / RX chains provided by Catalina are active.
- *
- * Catalina provides two sets of chains, Side A and Side B. Each side
- * provides one TX antenna, and one RX antenna. The B200 maintains the USRP
- * standard of providing one antenna connection that is both TX & RX, and
- * one that is RX-only - for each chain. Thus, the possible antenna and
- * chain selections are:
- *
- * B200 Antenna Catalina Side Catalina Chain
- * -------------------------------------------------------------------
- * TX / RX1 Side A TX1 (when switched to TX)
- * TX / RX1 Side A RX1 (when switched to RX)
- * RX1 Side A RX1
- *
- * TX / RX2 Side B TX2 (when switched to TX)
- * TX / RX2 Side B RX2 (when switched to RX)
- * RX2 Side B RX2
- */
-void set_active_chains(bool tx1, bool tx2, bool rx1, bool rx2) {
- /* Clear out the current active chain settings. */
- reg_txfilt = reg_txfilt & 0x3F;
- reg_rxfilt = reg_rxfilt & 0x3F;
-
- /* Turn on the different chains based on the passed parameters. */
- if(tx1) { reg_txfilt = reg_txfilt | 0x40; }
- if(tx2) { reg_txfilt = reg_txfilt | 0x80; }
- if(rx1) { reg_rxfilt = reg_rxfilt | 0x40; }
- if(rx2) { reg_rxfilt = reg_rxfilt | 0x80; }
-
- /* Check for FDD state */
- bool set_back_to_fdd = false;
- uint8_t ensm_state = read_ad9361_reg(0x017) & 0x0F;
- if (ensm_state == 0xA) // FDD
- {
- /* Put into ALERT state (via the FDD flush state). */
- write_ad9361_reg(0x014, 0x01);
- set_back_to_fdd = true;
- }
-
- /* Wait for FDD flush state to complete (if necessary) */
- while (ensm_state == 0xA || ensm_state == 0xB)
- ensm_state = read_ad9361_reg(0x017) & 0x0F;
-
- /* Turn on / off the chains. */
- write_ad9361_reg(0x002, reg_txfilt);
- write_ad9361_reg(0x003, reg_rxfilt);
-
- /* Put back into FDD state if necessary */
- if (set_back_to_fdd)
- write_ad9361_reg(0x014, 0x21);
-}
-
-/* Tune the RX or TX frequency.
- *
- * This is the publicly-accessible tune function. It makes sure the tune
- * isn't a redundant request, and if not, passes it on to the class's
- * internal tune function.
- *
- * After tuning, it runs any appropriate calibrations. */
-double tune(int which, const double value) {
-
- if(which == RX_TYPE) {
- if(freq_is_nearly_equal(value, _req_rx_freq)) {
- return _rx_freq;
- }
-
- } else if(which == TX_TYPE) {
- if(freq_is_nearly_equal(value, _req_tx_freq)) {
- return _tx_freq;
- }
-
- } else {
- post_err_msg("[tune] INVALID_CODE_PATH");
- }
-
- /* If we aren't already in the ALERT state, we will need to return to
- * the FDD state after tuning. */
- int not_in_alert = 0;
- if((read_ad9361_reg(0x017) & 0x0F) != 5) {
- /* Force the device into the ALERT state. */
- not_in_alert = 1;
- write_ad9361_reg(0x014, 0x01);
- }
-
- /* Tune the RF VCO! */
- double tune_freq = tune_helper(which, value);
-
- /* Run any necessary calibrations / setups */
- if(which == RX_TYPE) {
- program_gain_table();
- }
-
- /* Update the gain settings. */
- program_gains();
-
- /* Run the calibration algorithms. */
- calibrate_tx_quadrature();
- calibrate_rx_quadrature();
-
- /* If we were in the FDD state, return it now. */
- if(not_in_alert) {
- write_ad9361_reg(0x014, 0x21);
- }
-
- return tune_freq;
-}
-
-/* Set the gain of RX1, RX2, TX1, or TX2.
- *
- * Note that the 'value' passed to this function is the actual gain value,
- * _not_ the gain index. This is the opposite of the eval software's GUI!
- * Also note that the RX chains are done in terms of gain, and the TX chains
- * are done in terms of attenuation. */
-double set_gain(int which, int n, const double value) {
-
- if(which == RX_TYPE) {
- /* Indexing the gain tables requires an offset from the requested
- * amount of total gain in dB:
- * < 1300MHz: dB + 5
- * >= 1300MHz and < 4000MHz: dB + 3
- * >= 4000MHz and <= 6000MHz: dB + 14
- */
- int gain_offset = 0;
- if(_rx_freq < 1300e6) {
- gain_offset = 5;
- } else if(_rx_freq < 4000e6) {
- gain_offset = 3;
- } else {
- gain_offset = 14;
- }
-
- int gain_index = value + gain_offset;
-
- /* Clip the gain values to the proper min/max gain values. */
- if(gain_index > 76) gain_index = 76;
- if(gain_index < 0) gain_index = 0;
-
- if(n == 1) {
- _rx1_gain = value;
- write_ad9361_reg(0x109, gain_index);
- } else {
- _rx2_gain = value;
- write_ad9361_reg(0x10c, gain_index);
- }
-
- return gain_index - gain_offset;
- } else {
- /* Setting the below bits causes a change in the TX attenuation word
- * to immediately take effect. */
- write_ad9361_reg(0x077, 0x40);
- write_ad9361_reg(0x07c, 0x40);
-
- /* Each gain step is -0.25dB. Calculate the attenuation necessary
- * for the requested gain, convert it into gain steps, then write
- * the attenuation word. Max gain (so zero attenuation) is 89.75. */
- double atten = AD9361_MAX_GAIN - value;
- int attenreg = atten * 4;
- if(n == 1) {
- _tx1_gain = value;
- write_ad9361_reg(0x073, attenreg & 0xFF);
- write_ad9361_reg(0x074, (attenreg >> 8) & 0x01);
- } else {
- _tx2_gain = value;
- write_ad9361_reg(0x075, attenreg & 0xFF);
- write_ad9361_reg(0x076, (attenreg >> 8) & 0x01);
- }
- return AD9361_MAX_GAIN - ((double)(attenreg)/ 4);
- }
-}
-
-/* This function is responsible to dispatch the vendor request call
- * to the proper handler
- */
-void ad9361_dispatch(const char* vrb, char* vrb_out) {
- memcpy(vrb_out, vrb, AD9361_DISPATCH_PACKET_SIZE); // Copy request to response memory
- tmp_req_buffer = vrb_out; // Set this to enable 'post_err_msg'
-
- //////////////////////////////////////////////
-
- double ret_val = 0.0;
- int mask = 0;
-
- const ad9361_transaction_t *request = (const ad9361_transaction_t *)vrb;
- ad9361_transaction_t *response = (ad9361_transaction_t *)vrb_out;
- response->error_msg[0] = '\0'; // Ensure error is cleared
-
- //msg("[ad9361_dispatch] action=%d", request->action);
-
- switch (request->action) {
- case AD9361_ACTION_ECHO:
- break; // nothing to do
- case AD9361_ACTION_INIT:
- init_ad9361();
- break;
- case AD9361_ACTION_SET_RX1_GAIN:
- ret_val = set_gain(RX_TYPE,1,double_unpack(request->value.gain));
- double_pack(ret_val, response->value.gain);
- break;
- case AD9361_ACTION_SET_TX1_GAIN:
- ret_val = set_gain(TX_TYPE,1,double_unpack(request->value.gain));
- double_pack(ret_val, response->value.gain);
- break;
- case AD9361_ACTION_SET_RX2_GAIN:
- ret_val = set_gain(RX_TYPE,2,double_unpack(request->value.gain));
- double_pack(ret_val, response->value.gain);
- break;
- case AD9361_ACTION_SET_TX2_GAIN:
- ret_val = set_gain(TX_TYPE,2,double_unpack(request->value.gain));
- double_pack(ret_val, response->value.gain);
- break;
- case AD9361_ACTION_SET_RX_FREQ:
- ret_val = tune(RX_TYPE, double_unpack(request->value.freq));
- double_pack(ret_val, response->value.freq);
- break;
- case AD9361_ACTION_SET_TX_FREQ:
- ret_val = tune(TX_TYPE, double_unpack(request->value.freq));
- double_pack(ret_val, response->value.freq);
- break;
- case AD9361_ACTION_SET_CODEC_LOOP:
- data_port_loopback(request->value.codec_loop != 0);
- break;
- case AD9361_ACTION_SET_CLOCK_RATE:
- ret_val = set_clock_rate(double_unpack(request->value.rate));
- double_pack(ret_val, response->value.rate);
- break;
- case AD9361_ACTION_SET_ACTIVE_CHAINS:
- mask = request->value.enable_mask;
- set_active_chains(mask & 1, mask & 2, mask & 4, mask & 8);
- break;
- default:
- post_err_msg("[ad9361_dispatch] NOT IMPLEMENTED");
- break;
- }
-}
diff --git a/firmware/fx3/ad9361/lib/ad9361_synth_lut.h b/firmware/fx3/ad9361/lib/ad9361_synth_lut.h
deleted file mode 100644
index 79214526d..000000000
--- a/firmware/fx3/ad9361/lib/ad9361_synth_lut.h
+++ /dev/null
@@ -1,135 +0,0 @@
-//
-// Copyright 2013-2014 Ettus Research LLC
-//
-
-#ifndef INCLUDED_AD9361_SYNTH_LUT_HPP
-#define INCLUDED_AD9361_SYNTH_LUT_HPP
-
-
-double vco_index[53] = {12605000000, 12245000000, 11906000000, 11588000000,
- 11288000000, 11007000000, 10742000000, 10492000000,
- 10258000000, 10036000000, 9827800000, 9631100000,
- 9445300000, 9269800000, 9103600000, 8946300000,
- 8797000000, 8655300000, 8520600000, 8392300000,
- 8269900000, 8153100000, 8041400000, 7934400000,
- 7831800000, 7733200000, 7638400000, 7547100000,
- 7459000000, 7374000000, 7291900000, 7212400000,
- 7135500000, 7061000000, 6988700000, 6918600000,
- 6850600000, 6784600000, 6720500000, 6658200000,
- 6597800000, 6539200000, 6482300000, 6427000000,
- 6373400000, 6321400000, 6270900000, 6222000000,
- 6174500000, 6128400000, 6083600000, 6040100000,
- 5997700000};
-
-int synth_cal_lut[53][12] = { {10, 0, 4, 0, 15, 8, 8, 13, 4, 13, 15, 9},
- {10, 0, 4, 0, 15, 8, 9, 13, 4, 13, 15, 9},
- {10, 0, 4, 0, 15, 8, 10, 13, 4, 13, 15, 9},
- {10, 0, 4, 0, 15, 8, 11, 13, 4, 13, 15, 9},
- {10, 0, 4, 0, 15, 8, 11, 13, 4, 13, 15, 9},
- {10, 0, 4, 0, 14, 8, 12, 13, 4, 13, 15, 9},
- {10, 0, 4, 0, 14, 8, 13, 13, 4, 13, 15, 9},
- {10, 0, 5, 1, 14, 9, 13, 13, 4, 13, 15, 9},
- {10, 0, 5, 1, 14, 9, 14, 13, 4, 13, 15, 9},
- {10, 0, 5, 1, 14, 9, 15, 13, 4, 13, 15, 9},
- {10, 0, 5, 1, 14, 9, 15, 13, 4, 13, 15, 9},
- {10, 0, 5, 1, 13, 9, 16, 13, 4, 13, 15, 9},
- {10, 0, 5, 1, 13, 9, 17, 13, 4, 13, 15, 9},
- {10, 0, 5, 1, 13, 9, 18, 13, 4, 13, 15, 9},
- {10, 0, 5, 1, 13, 9, 18, 13, 4, 13, 15, 9},
- {10, 0, 5, 1, 13, 9, 19, 13, 4, 13, 15, 9},
- {10, 1, 6, 1, 15, 11, 14, 13, 4, 13, 15, 9},
- {10, 1, 6, 1, 15, 11, 14, 13, 4, 13, 15, 9},
- {10, 1, 6, 1, 15, 11, 15, 13, 4, 13, 15, 9},
- {10, 1, 6, 1, 15, 11, 15, 13, 4, 13, 15, 9},
- {10, 1, 6, 1, 15, 11, 16, 13, 4, 13, 15, 9},
- {10, 1, 6, 1, 15, 11, 16, 13, 4, 13, 15, 9},
- {10, 1, 6, 1, 15, 11, 17, 13, 4, 13, 15, 9},
- {10, 1, 6, 1, 15, 11, 17, 13, 4, 13, 15, 9},
- {10, 1, 6, 1, 15, 11, 18, 13, 4, 13, 15, 9},
- {10, 1, 6, 1, 15, 11, 18, 13, 4, 13, 15, 9},
- {10, 1, 6, 1, 15, 11, 19, 13, 4, 13, 15, 9},
- {10, 1, 6, 1, 15, 11, 19, 13, 4, 13, 15, 9},
- {10, 1, 6, 1, 15, 11, 20, 13, 4, 13, 15, 9},
- {10, 1, 7, 2, 15, 12, 20, 13, 4, 13, 15, 9},
- {10, 1, 7, 2, 15, 12, 21, 13, 4, 13, 15, 9},
- {10, 1, 7, 2, 15, 12, 21, 13, 4, 13, 15, 9},
- {10, 1, 7, 2, 15, 14, 22, 13, 4, 13, 15, 9},
- {10, 1, 7, 2, 15, 14, 22, 13, 4, 13, 15, 9},
- {10, 1, 7, 2, 15, 14, 23, 13, 4, 13, 15, 9},
- {10, 1, 7, 2, 15, 14, 23, 13, 4, 13, 15, 9},
- {10, 1, 7, 2, 15, 14, 24, 13, 4, 13, 15, 9},
- {10, 1, 7, 2, 15, 14, 24, 13, 4, 13, 15, 9},
- {10, 1, 7, 2, 15, 14, 25, 13, 4, 13, 15, 9},
- {10, 1, 7, 2, 15, 14, 25, 13, 4, 13, 15, 9},
- {10, 1, 7, 2, 15, 14, 26, 13, 4, 13, 15, 9},
- {10, 1, 7, 2, 15, 14, 26, 13, 4, 13, 15, 9},
- {10, 1, 7, 2, 15, 14, 27, 13, 4, 13, 15, 9},
- {10, 1, 7, 2, 15, 14, 27, 13, 4, 13, 15, 9},
- {10, 3, 7, 3, 15, 12, 18, 13, 4, 13, 15, 9},
- {10, 3, 7, 3, 15, 12, 18, 13, 4, 13, 15, 9},
- {10, 3, 7, 3, 15, 12, 18, 13, 4, 13, 15, 9},
- {10, 3, 7, 3, 15, 12, 19, 13, 4, 13, 15, 9},
- {10, 3, 7, 3, 15, 12, 19, 13, 4, 13, 15, 9},
- {10, 3, 7, 3, 15, 12, 19, 13, 4, 13, 15, 9},
- {10, 3, 7, 3, 15, 12, 19, 13, 4, 13, 15, 9},
- {10, 3, 7, 3, 15, 12, 20, 13, 4, 13, 15, 9},
- {10, 3, 7, 3, 15, 12, 20, 13, 4, 13, 15, 9}};
-
-
-#if 0 /* This is the table for a 40MHz RFPLL Reference */
-int synth_cal_lut[53][12] = { {10, 0, 4, 0, 15, 8, 8, 12, 3, 14, 15, 11},
- {10, 0, 4, 0, 15, 8, 9, 12, 3, 14, 15, 11},
- {10, 0, 4, 0, 15, 8, 9, 12, 3, 14, 15, 11},
- {10, 0, 4, 0, 15, 8, 10, 12, 3, 14, 15, 11},
- {10, 0, 4, 0, 15, 8, 11, 12, 3, 14, 15, 11},
- {10, 0, 4, 0, 15, 8, 11, 12, 3, 14, 15, 11},
- {10, 0, 4, 0, 14, 8, 12, 12, 3, 14, 15, 11},
- {10, 0, 5, 1, 14, 9, 13, 12, 3, 14, 15, 11},
- {10, 0, 5, 1, 14, 9, 13, 12, 3, 14, 15, 11},
- {10, 0, 5, 1, 14, 9, 14, 12, 3, 14, 15, 11},
- {10, 0, 5, 1, 14, 9, 15, 12, 3, 14, 15, 11},
- {10, 0, 5, 1, 14, 9, 15, 12, 3, 14, 15, 11},
- {10, 0, 5, 1, 14, 9, 16, 12, 3, 14, 15, 11},
- {10, 0, 5, 1, 14, 9, 17, 12, 3, 14, 15, 11},
- {10, 0, 5, 1, 14, 9, 17, 12, 3, 14, 15, 11},
- {10, 0, 5, 1, 14, 9, 18, 12, 3, 14, 15, 11},
- {10, 1, 6, 1, 15, 11, 13, 12, 3, 14, 15, 11},
- {10, 1, 6, 1, 15, 11, 14, 12, 3, 14, 15, 11},
- {10, 1, 6, 1, 15, 11, 14, 12, 3, 14, 15, 11},
- {10, 1, 6, 1, 15, 11, 15, 12, 3, 14, 15, 11},
- {10, 1, 6, 1, 15, 11, 15, 12, 3, 14, 15, 11},
- {10, 1, 6, 1, 15, 11, 16, 12, 3, 14, 15, 11},
- {10, 1, 6, 1, 15, 11, 16, 12, 3, 14, 15, 11},
- {10, 1, 6, 1, 15, 11, 17, 12, 3, 14, 15, 11},
- {10, 1, 6, 1, 15, 11, 17, 12, 3, 14, 15, 11},
- {10, 1, 6, 1, 15, 11, 17, 12, 3, 14, 15, 11},
- {10, 1, 6, 1, 15, 11, 18, 12, 3, 14, 15, 11},
- {10, 1, 6, 1, 15, 11, 18, 12, 3, 14, 15, 11},
- {10, 1, 6, 1, 15, 11, 19, 12, 3, 14, 15, 11},
- {10, 1, 7, 2, 15, 12, 19, 12, 3, 14, 15, 11},
- {10, 1, 7, 2, 15, 12, 20, 12, 3, 14, 15, 11},
- {10, 1, 7, 2, 15, 12, 20, 12, 3, 14, 15, 11},
- {10, 1, 7, 2, 15, 14, 21, 12, 3, 14, 15, 11},
- {10, 1, 7, 2, 15, 14, 21, 12, 3, 14, 15, 11},
- {10, 1, 7, 2, 15, 14, 22, 12, 3, 14, 15, 11},
- {10, 1, 7, 2, 15, 14, 22, 12, 3, 14, 15, 11},
- {10, 1, 7, 2, 15, 14, 23, 12, 3, 14, 15, 11},
- {10, 1, 7, 2, 15, 14, 23, 12, 3, 14, 15, 11},
- {10, 1, 7, 2, 15, 14, 24, 12, 3, 14, 15, 11},
- {10, 1, 7, 2, 15, 14, 24, 12, 3, 14, 15, 11},
- {10, 1, 7, 2, 15, 14, 25, 12, 3, 14, 15, 11},
- {10, 1, 7, 2, 15, 14, 25, 12, 3, 14, 15, 11},
- {10, 1, 7, 2, 15, 14, 26, 12, 3, 14, 15, 11},
- {10, 1, 7, 2, 15, 14, 26, 12, 3, 14, 15, 11},
- {10, 3, 7, 3, 15, 12, 17, 12, 3, 14, 15, 11},
- {10, 3, 7, 3, 15, 12, 17, 12, 3, 14, 15, 11},
- {10, 3, 7, 3, 15, 12, 17, 12, 3, 14, 15, 11},
- {10, 3, 7, 3, 15, 12, 18, 12, 3, 14, 15, 11},
- {10, 3, 7, 3, 15, 12, 18, 12, 3, 14, 15, 11},
- {10, 3, 7, 3, 15, 12, 18, 12, 3, 14, 15, 11},
- {10, 3, 7, 3, 15, 12, 18, 12, 3, 14, 15, 11},
- {10, 3, 7, 3, 15, 12, 19, 12, 3, 14, 15, 11},
- {10, 3, 7, 3, 15, 12, 19, 12, 3, 14, 15, 11} };
-#endif
-
-#endif /* INCLUDED_AD9361_SYNTH_LUT_HPP */