#include #include #include #include #include "common.h" #include "options.h" #include "encoder.h" #include "mem.h" #include "fft.h" #include "ath.h" #define OLDTHRESHx #include "psycho_3.h" #include "psycho_3priv.h" /* This is a reimplementation of psy model 1 using the ISO11172 standard. I found the original dist10 code (which is full of pointers) to be a horrible thing to try and understand and debug. This implementation is not built for speed, but is rather meant to clearly outline the steps specified by the standard (still, it's only a tiny fraction slower than the dist10 code, and nothing has been optimized) MFC Feb 2003 */ /* Keep a table to fudge the adding of dB */ #define DBTAB 1000 static double dbtable[DBTAB]; #define CRITBANDMAX 32 /* this is much higher than it needs to be. really only about 24 */ int cbands=0; /* How many critical bands there really are */ int cbandindex[CRITBANDMAX]; /* The spectral line index of the start of each critical band */ #define SUBSIZE 136 int freq_subset[SUBSIZE]; FLOAT bark[HBLKSIZE], ath[HBLKSIZE]; int *numlines; FLOAT *cbval; int partition[HBLKSIZE]; static D1408 *fft_buf; frame_header *header; INLINE double psycho_3_add_db (double a, double b) { /* MFC - if the difference between a and b is large (>99), then just return the largest one. (about 10% of the time) - For differences between 0 and 99, return the largest value, but add in a pre-calculated difference value. - the value 99 was chosen arbitarily. - maximum (a-b) i've seen is 572 */ FLOAT fdiff; int idiff; fdiff = (10.0 * (a - b)); if (fdiff > 990.0) { return a; } if (fdiff < -990.0) { return (b); } idiff = (int) fdiff; if (idiff >= 0) { return (a + dbtable[idiff]); } return (b + dbtable[-idiff]); } void psycho_3 (short buffer[2][1152], double scale[2][SBLIMIT], double ltmin[2][SBLIMIT], frame_info * frame, options *glopts) { int nch = frame->nch; int sblimit = frame->sblimit; int k, i; static char init = 0; static int off[2] = { 256, 256 }; FLOAT sample[BLKSIZE]; FLOAT energy[BLKSIZE]; FLOAT power[HBLKSIZE]; FLOAT Xtm[HBLKSIZE], Xnm[HBLKSIZE]; int tonelabel[HBLKSIZE], noiselabel[HBLKSIZE]; FLOAT LTg[HBLKSIZE]; double Lsb[SBLIMIT]; header = frame->header; if (init==0) { psycho_3_init(glopts); init++; } for (k = 0; k < nch; k++) { int ok = off[k] % 1408; for (i = 0; i < 1152; i++) { fft_buf[k][ok++] = (FLOAT) buffer[k][i] / SCALE; if (ok >= 1408) ok = 0; } ok = (off[k] + 1216) % 1408; for (i = 0; i < BLKSIZE; i++) { sample[i] = fft_buf[k][ok++]; if (ok >= 1408) ok = 0; } off[k] += 1152; off[k] %= 1408; psycho_3_fft(sample, energy); psycho_3_powerdensityspectrum(energy, power); psycho_3_spl(Lsb, power, &scale[k][0]); psycho_3_tonal_label (power, tonelabel, Xtm); psycho_3_noise_label (power, energy, tonelabel, noiselabel, Xnm); if (glopts->verbosity > 20) psycho_3_dump(tonelabel, Xtm, noiselabel, Xnm); psycho_3_decimation(ath, tonelabel, Xtm, noiselabel, Xnm, bark); psycho_3_threshold(LTg, tonelabel, Xtm, noiselabel, Xnm, bark, ath, bitrate[header->version][header->bitrate_index] / nch, freq_subset); psycho_3_minimummasking(LTg, <min[k][0], freq_subset); psycho_3_smr(<min[k][0], Lsb); } } /* ISO11172 Sec D.1 Step 1 - Window with HANN and then perform the FFT */ void psycho_3_fft(FLOAT sample[BLKSIZE], FLOAT energy[BLKSIZE]) { FLOAT x_real[BLKSIZE]; int i; static int init = 0; static FLOAT *window; if (!init) { /* calculate window function for the Fourier transform */ window = (FLOAT *) mem_alloc (sizeof (DFFT), "window"); register FLOAT sqrt_8_over_3 = pow (8.0 / 3.0, 0.5); for (i = 0; i < BLKSIZE; i++) { window[i] = sqrt_8_over_3 * 0.5 * (1 - cos (2.0 * PI * i / (BLKSIZE))) / BLKSIZE; } init++; } /* convolve the samples with the hann window */ for (i = 0; i < BLKSIZE; i++) x_real[i] = (FLOAT) (sample[i] * window[i]); /* do the FFT */ psycho_1_fft (x_real, energy, BLKSIZE); } /* Sect D.1 Step 1 - convert the energies into dB */ void psycho_3_powerdensityspectrum(FLOAT energy[BLKSIZE], FLOAT power[HBLKSIZE]) { int i; for (i=1;i>4; if (Xmax[index] < power[i]) Xmax[index] = power[i]; } /* Compare it to the sound pressure based upon the scale for this subband and pick the maximum one */ for (i=0;ipower[i-1] && power[i]>power[i+1]) /* The first criteria for a maximum */ maxima[i]=1; else maxima[i]=0; } { /* Now find the tones as per ISO11172 D.1 Step4.b */ /* The standard is a bit vague (surprise surprise). So I'm going to assume that - a tone must be 7dB greater than *all* the relevant neighbours - once a tone is found, the neighbours are immediately set to -inf dB */ psycho_3_tonal_label_range(power, tonelabel, maxima, Xtm, 2, 63, 2); psycho_3_tonal_label_range(power, tonelabel, maxima, Xtm, 63,127,3); psycho_3_tonal_label_range(power, tonelabel, maxima, Xtm, 127,255,6); psycho_3_tonal_label_range(power, tonelabel, maxima, Xtm, 255,500,12); } } /* Sect D.1 Step4b A tone within the range (start -> end), must be 7.0 dB greater than all it's neighbours within +/- srange. Don't count its immediate neighbours. */ void psycho_3_tonal_label_range(FLOAT *power, int *tonelabel, int *maxima, FLOAT *Xtm, int start, int end, int srange) { int j,k; for (k=start;k 1) /* Don't count the immediate neighbours, or itself */ if ((power[k] - power[k+j]) < 7.0) tonelabel[k] = 0; /* Not greater by 7dB, therefore not a tone */ if (tonelabel[k] == TONE) { /* Calculate the sound pressure level for this tone by summing the adjacent spectral lines Xtm[k] = 10 * log10( pow(10.0, 0.1*power[k-1]) + pow(10.0, 0.1*power[k]) + pow(10.0, 0.1*power[k+1]) ); */ double temp = psycho_3_add_db(power[k-1], power[k]); Xtm[k] = psycho_3_add_db(temp, power[k+1]); /* *ALL* spectral lines within +/- srange are set to -inf dB So that when we do the noise calculate, they are not counted */ for (j=-srange;j<=+srange;j++) power[k+j] = DBMIN; } } } void psycho_3_init_add_db (void) { int i; double x; for (i = 0; i < DBTAB; i++) { x = (double) i / 10.0; dbtable[i] = 10 * log10 (1 + pow (10.0, x / 10.0)) - x; } } /* D.1 Step 4.c Labelling non-tonal (noise) components Sum the energies in each critical band (the tone energies have been removed during the tone labelling). Find the "geometric mean" of these energies - i.e. find the best spot to put the sum of energies within this critical band. */ void psycho_3_noise_label (FLOAT power[HBLKSIZE], FLOAT energy[BLKSIZE], int *tonelabel, int *noiselabel, FLOAT Xnm[HBLKSIZE]) { int i,j; Xnm[0] = DBMIN; for (i=0;i= -3.0 && dz < 8.0) { FLOAT vf; FLOAT av = -1.525 - 0.275 * bark[k] - 4.5 + Xtm[k]; /* masking function for lower & upper slopes */ if (dz < -1) vf = 17 * (dz + 1) - (0.4 * Xtm[k] + 6); else if (dz < 0) vf = (0.4 * Xtm[k] + 6) * dz; else if (dz < 1) vf = (-17 * dz); else vf = -(dz - 1) * (17 - 0.15 * Xtm[k]) - 17; LTtm[j] = psycho_3_add_db (LTtm[j], av + vf); } } } /* find every noise label */ if (noiselabel[k]==NOISE) { for (j=0;j= -3.0 && dz < 8.0) { FLOAT vf; FLOAT av = -1.525 - 0.175 * bark[k] - 0.5 + Xnm[k]; /* masking function for lower & upper slopes */ if (dz < -1) vf = 17 * (dz + 1) - (0.4 * Xnm[k] + 6); else if (dz < 0) vf = (0.4 * Xnm[k] + 6) * dz; else if (dz < 1) vf = (-17 * dz); else vf = -(dz - 1) * (17 - 0.15 * Xnm[k]) - 17; LTnm[j] = psycho_3_add_db (LTnm[j], av + vf); } } } } /* ISO11172 D.1 Step 7 Calculate the global masking threhold */ for (i=0;i>4; if (LTmin[index] > LTg[i]) { LTmin[index] = LTg[i]; } } } /* ISO11172 Sect D.1 Step 9 Calculate the signal-to-mask ratio MFC FIXME Feb 2003 for better calling from toolame, add a "float SMR[]" array and return it */ void psycho_3_smr(double *LTmin, double *Lsb) { int i; for (i=0;iversion][header->sampling_frequency] * 1000; for (i=1;iathlevel); } { /* Work out the critical bands Starting from line 0, all lines within 1 bark of the starting bark are added to the same critical band. When a line is greater by 1.0 of a bark, start a new critical band. */ numlines = (int *)calloc(HBLKSIZE, sizeof(int)); cbval = (float *)calloc(HBLKSIZE, sizeof(float)); cbandindex[0] = 1; for (i=1;i 1.0) { /* 1 critical band? 1 bark? */ /* this frequency line is too different from the starting line, (in terms of the bark distance) so make this spectral line the first member of the next critical band */ cbase = i; /* Start the new critical band from this frequency line */ cbands++; cbandindex[cbands] = cbase; } /* partition[i] tells us which critical band the i'th frequency line is in */ partition[i] = cbands; /* keep a count of how many frequency lines are in each partition */ numlines[cbands]++; } cbands++; cbandindex[cbands] = 513; /* Set the top of the last critical band */ /* For each crtical band calculate the average bark value cbval [central bark value] */ for (i=1;i 32 * 16 = 512 Subband 0-2 : Every line (3 * 16 = 48 lines) Subband 3-5 : Every Second line (3 * 16/2 = 24 lines) Subband 6-11 : Every 4th line (6 * 16/4 = 24 lines) Subband 12-31 : Every 12th line (20 * 16/8 = 40 lines) create this subset of frequencies (freq_subset) */ int freq_index=0; for (i=1;i<(3*16)+1;i++) freq_subset[freq_index++] = i; for (;i<(6*16)+1;i+=2) freq_subset[freq_index++] = i; for (;i<(12*16)+1;i+=4) freq_subset[freq_index++] = i; for (;i<(32*16)+1;i+=8) freq_subset[freq_index++] = i; } if (glopts->verbosity > 4) { fprintf(stdout,"%i critical bands\n",cbands); for (i=0;i