/* The MIT License (MIT) Copyright (c) 2020 Matthias P. Braendli Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ use core::convert::TryInto; use si5351::{Si5351, Si5351Device}; use embedded_hal::blocking::i2c::{WriteRead, Write}; const REF_CLOCK : u32 = 25_000_000; const PLL_A_MULT : u32 = 32; fn gcd(x: u32, y: u32) -> u32 { let mut x = x; let mut y = y; while y != 0 { let t = y; y = x % y; x = t; } x } fn clock_settings_for_pll(freq: u32, pll: u32) -> (u16, u32, u32) { let a = pll / freq; let b = pll - (a * freq); let gcd = gcd(b, freq); let b = b / gcd; let c = freq / gcd; (a.try_into().unwrap(), b, c) } fn clock_settings_with_pll_calculation(freq: u32) -> (u16, u8, u32, u32) { let mut divider : u32 = 900_000_000 / freq; // Calculate the division ratio. 900,000,000 is the maximum internal if (divider % 2) == 1 { divider -= 1 // Ensure an even integer division ratio } let pll_freq = divider * freq; // mult is an integer that must be in the range 15..90 let mult = pll_freq / REF_CLOCK; let l = pll_freq % REF_CLOCK; let denom = 1048575; let num = f64::from(l) * f64::from(denom) / f64::from(REF_CLOCK); (divider.try_into().unwrap(), mult.try_into().unwrap(), num as u32, denom) } fn set_bfo(siclock: &mut dyn Si5351, freq: u32) -> Result<(), si5351::Error> { if freq == 0 { siclock.set_clock_enabled(si5351::ClockOutput::Clk2, false); } else { let (a, b, c) = clock_settings_for_pll(freq, PLL_A_MULT * REF_CLOCK); siclock.setup_multisynth(si5351::Multisynth::MS2, a, b, c, si5351::OutputDivider::Div1)?; siclock.select_clock_pll(si5351::ClockOutput::Clk2, si5351::PLL::A); siclock.set_clock_enabled(si5351::ClockOutput::Clk2, true); } siclock.flush_clock_control(si5351::ClockOutput::Clk2) } fn set_vfo(siclock: &mut dyn Si5351, freq: u32) { if freq == 0 { siclock.set_clock_enabled(si5351::ClockOutput::Clk0, false); } else { let (div, mult, num, denom) = clock_settings_with_pll_calculation(freq); siclock.setup_pll(si5351::PLL::B, mult, num, denom).unwrap(); siclock.setup_multisynth_int(si5351::Multisynth::MS0, div, si5351::OutputDivider::Div1).unwrap(); siclock.select_clock_pll(si5351::ClockOutput::Clk0, si5351::PLL::B); siclock.set_clock_enabled(si5351::ClockOutput::Clk0, true); } siclock.flush_clock_control(si5351::ClockOutput::Clk0).unwrap(); } pub struct SiClock { siclock : Si5351Device, } impl SiClock where I2C: WriteRead + Write, { pub fn new(i2c: I2C, bfo: u32, vfo: u32) -> SiClock { let mut siclock = Si5351Device::new(i2c, false, REF_CLOCK); siclock.init(si5351::CrystalLoad::_10).unwrap(); // See freqplan.py for Si5351 frequency plan // CLK1 unused siclock.setup_pll_int(si5351::PLL::A, 32).unwrap(); set_bfo(&mut siclock, bfo).unwrap(); siclock.reset_pll(si5351::PLL::A).unwrap(); set_vfo(&mut siclock, vfo); siclock.reset_pll(si5351::PLL::B).unwrap(); siclock.flush_output_enabled().unwrap(); SiClock{siclock} } pub fn set_vfo(&mut self, freq: u32) { set_vfo(&mut self.siclock, freq) } pub fn set_bfo(&mut self, freq: u32) -> Result<(), si5351::Error> { set_bfo(&mut self.siclock, freq) } }