/* The MIT License (MIT) Copyright (c) 2023 Matthias P. Braendli Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ #![no_main] #![no_std] use core::mem::MaybeUninit; use cortex_m_rt::ExceptionFrame; use cortex_m_semihosting::hprintln; use panic_semihosting as _; use stm32f1xx_hal::{ prelude::*, adc, pac, pac::interrupt, i2c, gpio, gpio::PinState, timer::{CounterHz, Timer, Event}, qei::QeiOptions, }; use hd44780_driver::{Cursor, CursorBlink, Display, DisplayMode, HD44780}; pub mod ui; pub mod cw; pub mod state; pub mod si_clock; pub mod log10f; use state::*; const TICKS_PER_SECOND: u32 = 100; struct SharedWithISR { state: State, last_sequence_state_change: u32, cw_ptt_timestamp: u32, cw_key_n: gpio::gpioa::PA15>, ui: ui::UI, cw_pwm: cw::CWPWM, cw_keyer: cw::Keyer, cw_paddle_tip: gpio::gpiob::PB8>, cw_paddle_ring: gpio::gpiob::PB9>, en_pa: gpio::gpiob::PB3>, en_rx: gpio::gpiob::PB4>, en_tx: gpio::gpiob::PB5>, mute_spkr: gpio::gpioa::PA2>, mute_micn: gpio::gpioa::PA1>, led: gpio::gpiob::PB14>, } static mut SHARED: MaybeUninit = MaybeUninit::uninit(); static mut CLOCK_TIMER: MaybeUninit> = MaybeUninit::uninit(); static mut TICK_COUNTER: MaybeUninit = MaybeUninit::uninit(); fn ticks_now() -> u32 { cortex_m::interrupt::free(|_cs| unsafe { *TICK_COUNTER.as_ptr() }) } fn get_state_copy() -> State { cortex_m::interrupt::free(|_cs| unsafe { (*SHARED.as_ptr()).state.clone() }) } #[cortex_m_rt::entry] fn main() -> ! { let cp = cortex_m::Peripherals::take().unwrap(); let dp = pac::Peripherals::take().unwrap(); let mut flash = dp.FLASH.constrain(); let rcc = dp.RCC.constrain(); let mut afio = dp.AFIO.constrain(); let clocks = rcc.cfgr .use_hse(16.MHz()) .sysclk(32.MHz()) .pclk1(24.MHz()) .adcclk(2.MHz()) .freeze(&mut flash.acr); let mut delay = cp.SYST.delay(&clocks); delay.delay_ms(200u16); let mut gpioa = dp.GPIOA.split(); let mut gpiob = dp.GPIOB.split(); let mut gpioc = dp.GPIOC.split(); // Buttons as analog inputs (multi-level) let mic_ptt = gpioa.pa3.into_floating_input(&mut gpioa.crl); let vox_ptt_n = gpioa.pa0.into_pull_up_input(&mut gpioa.crl); let btn0 = gpiob.pb1.into_floating_input(&mut gpiob.crl); // BTN0 Button A let btn1 = gpiob.pb0.into_floating_input(&mut gpiob.crl); // BTN1 Button B let btn2 = gpiob.pb12.into_floating_input(&mut gpiob.crh); // BTN2 Button C let btn3 = gpiob.pb13.into_floating_input(&mut gpiob.crh); // BTN3 Button D let pc15 = gpioc.pc15.into_floating_input(&mut gpioc.crh); // ENC BTN let ui = ui::UI::new(mic_ptt, vox_ptt_n, btn0, btn1, btn2, btn3, pc15); let cw_pwm = { let pa8 = gpioa.pa8.into_alternate_push_pull(&mut gpioa.crh); // CW PWM output using TIM1 Ch1 let pwm = dp.TIM1.pwm_hz(pa8, &mut afio.mapr, cw::SIDETONE_FREQ.Hz(), &clocks); let channel = pwm.split(); cw::CWPWM::new(channel) }; let cw_paddle_tip = gpiob.pb8.into_pull_up_input(&mut gpiob.crh); // CW paddle tip let cw_paddle_ring = gpiob.pb9.into_pull_up_input(&mut gpiob.crh); // CW paddle ring let mut s_meter = gpioa.pa5.into_analog(&mut gpioa.crl); let mut adc2 = adc::Adc::adc2(dp.ADC2, clocks); let mut last_s_meter_update_time = 0; // Configure PB14 as output. (LED) let mut led = gpiob.pb14.into_open_drain_output(&mut gpiob.crh); led.set_low(); let (pa15, pb3, pb4) = afio.mapr.disable_jtag(gpioa.pa15, gpiob.pb3, gpiob.pb4); let cw_key_n = pa15.into_open_drain_output_with_state(&mut gpioa.crh, PinState::High); let en_pa = pb3.into_push_pull_output_with_state(&mut gpiob.crl, PinState::Low); let en_rx = pb4.into_push_pull_output_with_state(&mut gpiob.crl, PinState::Low); let en_tx = gpiob.pb5.into_push_pull_output_with_state(&mut gpiob.crl, PinState::Low); let mute_spkr = gpioa.pa2.into_push_pull_output_with_state(&mut gpioa.crl, PinState::Low); let mute_micn = gpioa.pa1.into_push_pull_output_with_state(&mut gpioa.crl, PinState::Low); let c1 = gpioa.pa6; let c2 = gpioa.pa7; let qei = Timer::new(dp.TIM3, &clocks) .qei((c1, c2), &mut afio.mapr, QeiOptions::default()); // Configure I2C2 for display let scl2 = gpiob.pb10.into_alternate_open_drain(&mut gpiob.crh); let sda2 = gpiob.pb11.into_alternate_open_drain(&mut gpiob.crh); let i2c2 = i2c::BlockingI2c::i2c2( dp.I2C2, (scl2, sda2), i2c::Mode::Fast { frequency: 400_000.Hz(), duty_cycle: i2c::DutyCycle::Ratio2to1, }, clocks, /* start_timeout_us */ 1000, /* start_retries */ 10, /* addr_timeout_us */ 1000, /* data_timeout_us */ 1000, ); let i2c2_busmanager = shared_bus::BusManagerSimple::new(i2c2); const I2C_ADDRESS: u8 = 0b010_0000; // MCP23008, depending on solder bridges let mut lcd = match HD44780::new_i2c_mcp23008(i2c2_busmanager.acquire_i2c(), I2C_ADDRESS, &mut delay) { Ok(lcd) => lcd, Err(_) => panic!("HD44780 init fail"), }; lcd.reset(&mut delay).unwrap(); lcd.clear(&mut delay).unwrap(); lcd.set_display_mode( DisplayMode { display: Display::On, cursor_visibility: Cursor::Invisible, cursor_blink: CursorBlink::Off, }, &mut delay).unwrap(); lcd.set_cursor_pos(0, &mut delay).unwrap(); lcd.write_str(" HB9EGM ", &mut delay).unwrap(); lcd.set_cursor_pos(40, &mut delay).unwrap(); lcd.write_str(" DART-70 2023 ", &mut delay).unwrap(); delay.delay_ms(1_500u16); // Configure I2C1 to be used for Si5351 let scl = gpiob.pb6.into_alternate_open_drain(&mut gpiob.crl); let sda = gpiob.pb7.into_alternate_open_drain(&mut gpiob.crl); let i2c = i2c::BlockingI2c::i2c1( dp.I2C1, (scl, sda), &mut afio.mapr, i2c::Mode::Standard { frequency: 100_000.Hz(), }, clocks, /* start_timeout_us */ 1000, /* start_retries */ 10, /* addr_timeout_us */ 1000, /* data_timeout_us */ 1000, ); let i2c_busmanager = shared_bus::BusManagerSimple::new(i2c); let mut siclock = { let shared = unsafe { &mut *SHARED.as_mut_ptr() }; *shared = SharedWithISR { state : State::new(), last_sequence_state_change : 0, cw_ptt_timestamp : 0, cw_key_n, ui, cw_pwm, cw_keyer : cw::Keyer::new(12, TICKS_PER_SECOND), cw_paddle_tip, cw_paddle_ring, en_pa, en_rx, en_tx, mute_spkr, mute_micn, led }; si_clock::SiClock::new(i2c_busmanager.acquire_i2c(), shared.state.bfo(), shared.state.vfo()) }; let mut last_s_meter_value = 0; ui::update_disp(&mut lcd, &get_state_copy(), &mut delay, last_s_meter_value, false); let mut last_encoder_count = qei.count(); { let ticks = unsafe { &mut *TICK_COUNTER.as_mut_ptr() }; *ticks = 0; } { let timer = unsafe { &mut *CLOCK_TIMER.as_mut_ptr() }; *timer = Timer::new(dp.TIM2, &clocks).counter_hz(); timer.start(TICKS_PER_SECOND.Hz()).unwrap(); timer.listen(Event::Update); } unsafe { pac::NVIC::unmask(pac::Interrupt::TIM2); } let mut last_disp_update_counter = 1; let mut previous_vfo = 0; let mut previous_bfo = 0; loop { let mut update_disp_required = false; let mut bfo_tune_fail = false; let state = get_state_copy(); let encoder_count : u16 = qei.count(); if encoder_count != last_encoder_count { let delta = encoder_count.wrapping_sub(last_encoder_count); let delta = if delta > 0x7FFF { delta as i32 - 0x10000 } else { delta as i32 }; let require_bfo_update = cortex_m::interrupt::free(|_cs| { let shared = unsafe { &mut *SHARED.as_mut_ptr() }; let r = shared.ui.update_encoder(&mut shared.state, delta); if let Mode::CW(CWMode::Iambic) = shared.state.mode { shared.cw_keyer.set_speed(shared.state.cw_wpm, TICKS_PER_SECOND) } r }); if require_bfo_update { bfo_tune_fail = !siclock.set_bfo(state.bfo()).is_ok(); } siclock.set_vfo(state.vfo()); update_disp_required = true; } let bfo = state.bfo(); if previous_bfo != bfo { bfo_tune_fail = !siclock.set_bfo(bfo).is_ok(); } previous_bfo = bfo; let vfo = state.vfo(); if previous_vfo != vfo { siclock.set_vfo(vfo); } previous_vfo = vfo; let s_meter_adc_value: u16 = adc2.read(&mut s_meter).unwrap(); let s_meter_value = s_meter_from_adc(s_meter_adc_value); let t_now = ticks_now(); if last_s_meter_update_time + 10 < t_now { update_disp_required |= s_meter_value != last_s_meter_value; last_s_meter_value = s_meter_value; last_s_meter_update_time = t_now; } if last_disp_update_counter != state.update_disp_counter { update_disp_required = true; last_disp_update_counter = state.update_disp_counter; } if update_disp_required { let state = get_state_copy(); ui::update_disp(&mut lcd, &state, &mut delay, s_meter_value, bfo_tune_fail); } last_encoder_count = encoder_count; cortex_m::asm::wfi(); } } fn s_meter_from_adc(adc : u16) -> u8 { // Avoid 0 because of log10 let adc = f32::from(if adc == 0 { 1 } else { adc }); // ADC is 12-bit, convert to dB full-scale let adc_db = 10f32 * log10f::log10f(adc / 4092f32); /* Hand-calibrated lookup table */ if adc_db <= -35f32 { 1 } else if adc_db <= -20f32 { 4 } else if adc_db <= -12f32 { 5 } else if adc_db <= -8f32 { 6 } else if adc_db <= -7f32 { 7 } else { 9 } } #[interrupt] fn TIM2() { let timer = unsafe { &mut *CLOCK_TIMER.as_mut_ptr() }; timer.clear_interrupt(Event::Update); let ticks = unsafe { &mut *TICK_COUNTER.as_mut_ptr() }; *ticks += 1; let mut shared = unsafe { &mut *SHARED.as_mut_ptr() }; let button_result = shared.ui.handle_buttons(&mut shared.state); if button_result.display_update { shared.state.update_disp_counter += 1; } let cw_paddle_tip_low = shared.cw_paddle_tip.is_low(); let cw_paddle_ring_low = shared.cw_paddle_ring.is_low(); if cw_paddle_tip_low || cw_paddle_ring_low { shared.state.send_tone = false; } let cw_ptt_delay : u32 = TICKS_PER_SECOND * 800 / 1000; let cw_ptt = shared.state.send_tone || match shared.state.mode { Mode::CW(_) => { if cw_paddle_tip_low || cw_paddle_ring_low { shared.cw_ptt_timestamp = *ticks; true } else { shared.cw_ptt_timestamp + cw_ptt_delay > *ticks } }, _ => false, }; let cw_beep = shared.state.send_tone || match shared.state.mode { Mode::CW(CWMode::StraightKey) => cw_paddle_tip_low, Mode::CW(CWMode::Iambic) => shared.cw_keyer.tick(*ticks, cw_paddle_tip_low, cw_paddle_ring_low), _ => false, }; let next_state = match shared.state.sequence_state { SequenceState::Rx => { shared.mute_spkr.set_low(); shared.mute_micn.set_low(); shared.en_rx.set_high(); shared.en_tx.set_low(); shared.en_pa.set_low(); if button_result.ptt || cw_ptt { SequenceState::MutingSpkr } else { SequenceState::Rx } }, SequenceState::MutingSpkr => { shared.mute_spkr.set_high(); shared.mute_micn.set_low(); shared.en_rx.set_high(); shared.en_tx.set_low(); shared.en_pa.set_low(); if button_result.ptt { SequenceState::SwitchingSSB } else if cw_ptt { SequenceState::SwitchingCW } else { SequenceState::Rx } }, SequenceState::SwitchingSSB => { shared.mute_spkr.set_high(); shared.en_rx.set_low(); shared.en_tx.set_high(); shared.en_pa.set_low(); shared.mute_micn.set_high(); if button_result.ptt { SequenceState::TxSSB } else { SequenceState::Rx } }, SequenceState::SwitchingCW => { shared.mute_spkr.set_high(); shared.en_rx.set_low(); shared.en_tx.set_high(); shared.en_pa.set_low(); shared.mute_micn.set_low(); if cw_ptt { SequenceState::TxCW } else { SequenceState::Rx } }, SequenceState::TxSSB => { shared.en_rx.set_low(); shared.en_tx.set_high(); shared.en_pa.set_high(); if button_result.ptt { SequenceState::TxSSB } else { SequenceState::SwitchingSSB } }, SequenceState::TxCW => { shared.en_rx.set_low(); shared.en_tx.set_high(); shared.en_pa.set_high(); if cw_ptt { SequenceState::TxCW } else { SequenceState::SwitchingCW } }, }; match shared.state.sequence_state { SequenceState::TxCW => { if cw_beep { shared.led.set_low(); shared.cw_pwm.on(); shared.cw_key_n.set_low(); } else { shared.led.set_high(); shared.cw_pwm.off(); shared.cw_key_n.set_high(); } }, _ => { shared.led.set_high(); shared.cw_pwm.off(); shared.cw_key_n.set_high(); }, } const SWITCHING_DELAY : u32 = TICKS_PER_SECOND * 80 / 1000; if shared.state.sequence_state != next_state && shared.last_sequence_state_change + SWITCHING_DELAY <= *ticks { shared.state.sequence_state = next_state; shared.last_sequence_state_change = *ticks; } } #[allow(non_snake_case)] #[cortex_m_rt::exception] unsafe fn HardFault(ef: &ExceptionFrame) -> ! { let periph = unsafe { cortex_m::Peripherals::steal() }; let hfsr = periph.SCB.hfsr.read(); let cfsr = periph.SCB.cfsr.read(); hprintln!("Hardfault {:x} {:x} at {:x}\n", hfsr, cfsr, ef.pc()); cortex_m::asm::bkpt(); loop { } } #[allow(non_snake_case)] #[cortex_m_rt::exception] unsafe fn DefaultHandler(irqn: i16) { hprintln!("Unhandled exception (IRQn = {})", irqn); cortex_m::asm::bkpt(); loop { } }