diff options
Diffstat (limited to 'align/GenerateExampleTxRxIQ.py')
-rwxr-xr-x | align/GenerateExampleTxRxIQ.py | 152 |
1 files changed, 152 insertions, 0 deletions
diff --git a/align/GenerateExampleTxRxIQ.py b/align/GenerateExampleTxRxIQ.py new file mode 100755 index 0000000..dc8b572 --- /dev/null +++ b/align/GenerateExampleTxRxIQ.py @@ -0,0 +1,152 @@ +#!/usr/bin/env python +# +# Generate an example RX and TX dataset, with a subsample delay and try to resolve it afterwards +# +# +# The MIT License (MIT) +# +# Copyright (c) 2017 Matthias P. Braendli +# +# Permission is hereby granted, free of charge, to any person obtaining a copy +# of this software and associated documentation files (the "Software"), to deal +# in the Software without restriction, including without limitation the rights +# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +# copies of the Software, and to permit persons to whom the Software is +# furnished to do so, subject to the following conditions: +# +# The above copyright notice and this permission notice shall be included in all +# copies or substantial portions of the Software. +# +# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +# SOFTWARE. + +import matplotlib.pyplot as plt +import scipy.signal +import numpy as np + +## Configuration +# whether to correct for delays larger than one sample +# Not necessary unless you have delay larger than oversample/2 +do_integer_compensation = 0 + +# by how much to oversample the signal before applying the delay +oversample = 16 + +# Add a delay of delay/oversample samples to the input signal +delay = 7 + +print("Expecting a delay of {} samples".format(delay/oversample)) + +## Generate signal + +iq_file = "/home/bram/dab/aux/odr-dab-cir/phasereference.2048000.fc64.iq" + +iq_data = np.fromfile(iq_file, np.complex64) + +# oversampling the input signal doesn't make much of a difference +phase_ref_iq = scipy.signal.resample(iq_data, 2 * len(iq_data)) + +# make the signal periodic by duplicating the signal +phase_ref_iq = np.concatenate((phase_ref_iq, phase_ref_iq)) + +noise_iq = np.random.normal(scale = np.max(np.abs(phase_ref_iq)) * 0.02, + size=len(phase_ref_iq)) + +phase_ref_iq = phase_ref_iq + noise_iq + +# exp(-2i pi f) is the Fourier transform of a unity delay. +# exp(2i pi f) is a negative delay. +bin_frequencies = np.concatenate( + (np.linspace(0, 0.5, len(phase_ref_iq)/2, endpoint=False), + np.linspace(-0.5, 0, len(phase_ref_iq)/2, endpoint=False))) + +phase_ref_uc = scipy.signal.resample(phase_ref_iq, oversample * len(phase_ref_iq)) + + +phase_ref_uc_delayed = np.roll(phase_ref_uc, delay) + +phase_ref_delayed = scipy.signal.resample(phase_ref_uc_delayed, len(phase_ref_iq)) + +## Integer delay +corr_begin_ix = -32 +corr_end_ix = 32 + +corr = [np.abs(np.corrcoef(phase_ref_delayed, np.roll(phase_ref_iq, i))[0,1]) + for i in range(corr_begin_ix, corr_end_ix)] +# TODO check for negative real correlation peak +if do_integer_compensation: + delay_in = np.argmax(corr) + corr_begin_ix +else: + delay_in = 0 + +phase_ref_int_delay_removed = np.roll(phase_ref_delayed, -delay_in) + +print("Integer delay corrected: {}".format(delay_in)) + +## Fractional delay +signal_fft = np.fft.fft(phase_ref_int_delay_removed) +reference_fft = np.fft.fft(phase_ref_iq) + +# rotate each bin backwards with the phase of the reference. As we have already resolved the +# integer delay, we should find at most one 2*pi wrapping. +u = signal_fft * np.conj(reference_fft) + + +# the phase signal will still wrap around, and will have values between -pi/4 and pi/4 +phase_wrapping = np.angle(u) + +unwrap_with_deriv_integrate = True +if unwrap_with_deriv_integrate: + # to unwrap, take the derivative, remove peaks, integrate + phase_deriv = phase_wrapping - np.roll(phase_wrapping, 1) + + def filter_phase_deriv(p): + if np.abs(p) < 0.5: + return p + else: + return 0 + + phase_deriv_nopeaks = [filter_phase_deriv(p) for p in phase_deriv] + phase_unwrapped = np.cumsum(phase_deriv_nopeaks) +else: + # doesn't always work, sometimes there are smaller jumps in phase + phase_unwrapped = np.mod(phase_wrapping + np.pi/2, np.ones(len(phase_wrapping)) * np.pi / 2) + + +# Find the slope using a linear regression +slope, intercept, r_value, p_value, std_err = scipy.stats.linregress(phase_unwrapped,range(len(phase_unwrapped))) + +if p_value < 0.05: + frac_delay = slope / len(phase_unwrapped) + frac_rotate = intercept / len(phase_unwrapped) + print("Applying subsample correction: {} {}".format(frac_delay, frac_rotate)) + print(slope, intercept, r_value, p_value, std_err) +else: + print("Skipping subsample correction") + print(slope, intercept, r_value, p_value, std_err) + frac_delay = None + +plt.figure() +plt.plot(phase_wrapping) +plt.plot(phase_unwrapped) + + +if frac_delay: + fine_shift_fft = np.exp((0+2j * np.pi * frac_delay) * bin_frequencies) * np.exp(0+2j * np.pi * frac_rotate) + sig_delay_removed_fft = signal_fft * fine_shift_fft + + sig_delay_removed = np.fft.ifft(sig_delay_removed_fft) + + plt.figure() + plt.plot(np.angle(np.fft.fftshift(fine_shift_fft))) + + plt.figure() + plt.plot(np.abs(np.fft.fftshift(np.fft.fft(phase_ref_iq)))) + plt.plot(np.abs(np.fft.fftshift(np.fft.fft(sig_delay_removed-phase_ref_iq)))) + +plt.show() |