// Licence: MIT #include #include #include #include #include #include "compression.h" // Date Type Codes defined in aprs434.github.io constexpr int DATA_TYPE_CODE_GEOLOCATION = 0; constexpr int DATA_TYPE_CODE_STATUS_REPORT = 1; // TODO: read these settings from the SD Card constexpr char CALLSIGN[] = "HB9EGM"; constexpr int SSID = 12; constexpr int PATH_CODE = 2; // metropolitan mobile constexpr char SYMBOL_TABLE_IDENTIFIER = '/'; constexpr char SYMBOL_CODE_BICYCLE = 'b'; constexpr long REPORT_TX_INTERVAL = 15000; constexpr long TEXT_TX_INTERVAL = 47000; constexpr char TEXT_REPORT[] = "mpb.li/git/lora-aprs-hb9egm"; // Max length=28 #if 0 File myFile; constexpr int SD_CS = 17; #endif // SX1278 has the following connections: // NSS pin: PD14 (Arduino 10) // DIO0 pin: PF3 (Arduino 8) // RESET pin: PF15 (Arduino 9) RFM96 radio = new Module(10, 8, 9); HardwareSerial SerialGNSS(PD6, PD5); SFE_UBLOX_GNSS gnss; long lastGnssPoll = 0; long lastPositionReport = 0; long lastTextReport = 0; constexpr size_t MAX_REPORT_LEN = 32; size_t report_len = 0; uint8_t report[MAX_REPORT_LEN]; static char letterize(int x) { return (char) x + 65; } static char* get_mh(double lat, double lon, int size) { static char locator[11]; double LON_F[]={20,2.0,0.083333,0.008333,0.0003472083333333333}; double LAT_F[]={10,1.0,0.0416665,0.004166,0.0001735833333333333}; int i; lon += 180; lat += 90; if (size <= 0 || size > 10) size = 6; size/=2; size*=2; for (i = 0; i < size/2; i++){ if (i % 2 == 1) { locator[i*2] = (char) (lon/LON_F[i] + '0'); locator[i*2+1] = (char) (lat/LAT_F[i] + '0'); } else { locator[i*2] = letterize((int) (lon/LON_F[i])); locator[i*2+1] = letterize((int) (lat/LAT_F[i])); } lon = fmod(lon, LON_F[i]); lat = fmod(lat, LAT_F[i]); } locator[i*2]=0; return locator; } void setup() { Serial.begin(9600); pinMode(LED_BUILTIN, OUTPUT); #if 0 pinMode(SD_CS, OUTPUT); if (!SD.begin(SD_CS)) { Serial.println("SD init failed!"); return; } #endif Wire.begin(); SerialGNSS.begin(9600); if (!gnss.begin(SerialGNSS)) { while (true) { Serial.println(F("Check GNSS")); delay(4000); } } //gnss.enableDebugging(); // Uncomment this line to enable helpful debug messages on Serial Serial.print(F("Version: ")); byte versionHigh = gnss.getProtocolVersionHigh(); Serial.print(versionHigh); Serial.print("."); byte versionLow = gnss.getProtocolVersionLow(); Serial.println(versionLow); Serial.print(F("[RFM] Init ")); int state = radio.begin(433.900); if (state == RADIOLIB_ERR_NONE) { Serial.println(F("success!")); } else { Serial.print(F("failed, code ")); Serial.println(state); while (true); } if (radio.setBandwidth(125.0) == RADIOLIB_ERR_INVALID_BANDWIDTH) { Serial.println(F("Selected bandwidth is invalid for this module!")); while (true); } if (radio.setSpreadingFactor(12) == RADIOLIB_ERR_INVALID_SPREADING_FACTOR) { Serial.println(F("Selected spreading factor is invalid for this module!")); while (true); } if (radio.setCodingRate(5) == RADIOLIB_ERR_INVALID_CODING_RATE) { Serial.println(F("Selected coding rate is invalid for this module!")); while (true); } // NOTE: value 0x34 is reserved for LoRaWAN networks and should not be used if (radio.setSyncWord(0x14) != RADIOLIB_ERR_NONE) { Serial.println(F("Unable to set sync word!")); while (true); } if (radio.setOutputPower(16) == RADIOLIB_ERR_INVALID_OUTPUT_POWER) { Serial.println(F("Selected output power is invalid for this module!")); while (true); } if (radio.setPreambleLength(8) == RADIOLIB_ERR_INVALID_PREAMBLE_LENGTH) { Serial.println(F("Selected preamble length is invalid for this module!")); while (true); } // radio.setRfSwitchPins(4, 5); } static void handle_radio_error(int state) { if (state == RADIOLIB_ERR_NONE) { Serial.print(F(" RFM OK Datarate: ")); Serial.print(radio.getDataRate()); Serial.println(F(" bps")); } else if (state == RADIOLIB_ERR_PACKET_TOO_LONG) { Serial.println(F(" too long!")); } else if (state == RADIOLIB_ERR_TX_TIMEOUT) { Serial.println(F(" timeout!")); } else { Serial.print(F(" failed, code ")); Serial.println(state); } } void loop() { const auto now = millis(); if (now - lastGnssPoll > 1000) { lastGnssPoll = now; // longitude and latitude are in degrees*1e7 const long latitude = gnss.getLatitude(); Serial.print(F("Lat: ")); Serial.print(latitude); const long longitude = gnss.getLongitude(); Serial.print(F(" Long: ")); Serial.print(longitude); char *locator = get_mh((double)latitude/1e7, (double)longitude/1e7, 10); Serial.print(F(" Loc: ")); Serial.print(locator); const long altitude = gnss.getAltitude(); Serial.print(F(" Alt: ")); Serial.print(altitude); Serial.print(F(" (mm)")); const long speed = gnss.getGroundSpeed(); Serial.print(F(" Speed: ")); Serial.print(speed); Serial.print(F(" (mm/s)")); // 1m/s = 900/463 knots const double speed_kn = speed / 1000.0 * 900.0 / 463.0; const long heading = gnss.getHeading(); Serial.print(F(" Heading: ")); Serial.print(heading); Serial.print(F(" (degrees * 10^-5)")); const byte SIV = gnss.getSIV(); Serial.print(F(" SIV: ")); Serial.print(SIV); Serial.print(F(" TX in: ")); Serial.print(REPORT_TX_INTERVAL - (now - lastPositionReport)); Serial.println(); if (now - lastPositionReport > REPORT_TX_INTERVAL) { lastPositionReport = now; digitalWrite(LED_BUILTIN, HIGH); // Encode Compressed Geolocation Frame according to aprs434.github.io const uint32_t callsign_EEEE = encodeCallsign(CALLSIGN); report_len = 0; // Callsign encoded as CCCC report[report_len++] = (callsign_EEEE >> 24) & 0xFF; report[report_len++] = (callsign_EEEE >> 16) & 0xFF; report[report_len++] = (callsign_EEEE >> 8) & 0xFF; report[report_len++] = callsign_EEEE & 0xFF; // D SSID Path Code and Data Type Code report[report_len++] = SSID * 16 + PATH_CODE * 4 + DATA_TYPE_CODE_GEOLOCATION; // / Symbol Table Identifier report[report_len++] = SYMBOL_TABLE_IDENTIFIER; // XXXX Base91 Longitude // YYYY Base91 Latitude uint32_t aprs_lat = 900000000 - latitude; aprs_lat = aprs_lat / 26 - aprs_lat / 2710 + aprs_lat / 15384615; uint32_t aprs_lon = 900000000 + longitude / 2; aprs_lon = aprs_lon / 26 - aprs_lon / 2710 + aprs_lon / 15384615; char tmp_base91[5]; ax25_base91enc(tmp_base91, 4, aprs_lat); for (int i=0; i<4; i++) { report[report_len++] = tmp_base91[i]; } ax25_base91enc(tmp_base91, 4, aprs_lon); for (int i=0; i<4; i++) { report[report_len++] = tmp_base91[i]; } // $ Symbol Code report[report_len++] = SYMBOL_CODE_BICYCLE; // cs Course and Speed ax25_base91enc(tmp_base91, 1, heading * 10000 / 4); report[report_len++] = tmp_base91[0]; ax25_base91enc(tmp_base91, 1, (uint32_t)(log1p(speed_kn) / 0.07696)); report[report_len++] = tmp_base91[0]; Serial.print(F("TX: ")); // This is the old custom report I used before adopting aprs434.github.io, // it is just callsign SPACE locator sent as ASCII Serial.print(CALLSIGN); Serial.print(F(" ")); Serial.println(locator); // Debug print Serial.println(F("Bytes: ")); for (int i = 0; i < report_len; i++) { Serial.print((uint32_t)report[i]); } Serial.println(F("")); int state = radio.transmit(report, report_len); handle_radio_error(state); digitalWrite(LED_BUILTIN, LOW); } if (now - lastTextReport > TEXT_TX_INTERVAL) { lastTextReport = now; digitalWrite(LED_BUILTIN, HIGH); // Encode Compressed Status Report Frame according to aprs434.github.io const uint32_t callsign_EEEE = encodeCallsign(CALLSIGN); report_len = 0; // Callsign encoded as CCCC report[report_len++] = (callsign_EEEE >> 24) & 0xFF; report[report_len++] = (callsign_EEEE >> 16) & 0xFF; report[report_len++] = (callsign_EEEE >> 8) & 0xFF; report[report_len++] = callsign_EEEE & 0xFF; // D SSID Path Code and Data Type Code report[report_len++] = SSID * 16 + PATH_CODE * 4 + DATA_TYPE_CODE_STATUS_REPORT; // t(t...) text const auto bignum = encodetttt(TEXT_REPORT); for (int i = 0; i <= 512; i += 8) { auto v = static_cast((bignum >> (512-i)) & 0xFF); if (v) { report[report_len++] = v; } } Serial.print(F("TX length ")); Serial.print(report_len); Serial.print(F(" bytes: ")); Serial.println(TEXT_REPORT); int state = radio.transmit(report, report_len); handle_radio_error(state); digitalWrite(LED_BUILTIN, LOW); } } }