// Licence: MIT // This file is a bit of a mess, because first it contained aprs434 compressed // code running on STM32H7, and now it contains traditional APRS-over-LoRa for STM32F1 #include #if defined(SEMIHOSTING) #include #endif #include #include #include #include #include "compression.h" #include "utils.h" // Pin mapping: outputs constexpr int LED_STATUSn = PB8; constexpr int LED_TXn = PB9; constexpr int EN_PA = PB3; constexpr int EN_RX = PB4; constexpr int LORA_RESET = PB11; // Pin mapping: inputs constexpr int BTN1n = PC13; constexpr int BTN2n = PC14; constexpr int BTN3n = PC15; constexpr int ENCODER_SW_1 = PB12; constexpr int ENCODER_SW_2 = PB13; constexpr int ENCODER_SW_4 = PB14; constexpr int ENCODER_SW_8 = PB15; constexpr int BAT_MEAS = PA0; // TODO: read these settings from the SD Card constexpr char CALLSIGN_SSID_PATH[] = "HB9EGM-7>APZEGM"; constexpr char SYMBOL_TABLE_IDENTIFIER = '/'; constexpr char SYMBOL_CODE_BICYCLE = 'b'; constexpr char SYMBOL_CODE_FOOT = '['; constexpr long REPORT_TX_INTERVAL = 181000; constexpr long TEXT_TX_INTERVAL = 47000; constexpr char TEXT_REPORT[] = "mpb.li/git/lora-aprs-hb9egm"; // Max length=28 for compressed #if 0 File myFile; constexpr int SD_CS = 17; #endif // LoRa module has the following connections: // NSS pin: PA4 // DIO0 pin: PB10 // RESET pin: PB11 RFM96 radio = new Module(PA4, PB10, PB11); HardwareSerial serialGNSS(PA10, PA9); TinyGPSPlus gps; long lastGnssPoll = 0; long lastPositionReport = 0; long lastTextReport = 0; constexpr size_t MAX_REPORT_LEN = 48; size_t report_len = 0; uint8_t report[MAX_REPORT_LEN]; #if defined(SEMIHOSTING) SemihostingStream sh; #endif static char letterize(int x) { return (char) x + 65; } void setup() { Wire.begin(); SerialUSB.begin(); pinMode(LED_STATUSn, OUTPUT); pinMode(LED_TXn, OUTPUT); digitalWrite(LED_TXn, HIGH); digitalWrite(EN_PA, LOW); pinMode(EN_PA, OUTPUT); digitalWrite(EN_RX, LOW); pinMode(EN_RX, OUTPUT); pinMode(ENCODER_SW_1, INPUT_PULLUP); pinMode(ENCODER_SW_2, INPUT_PULLUP); pinMode(ENCODER_SW_4, INPUT_PULLUP); pinMode(ENCODER_SW_8, INPUT_PULLUP); pinMode(BTN1n, INPUT); #if 0 pinMode(SD_CS, OUTPUT); if (!SD.begin(SD_CS)) { sh.println("SD init failed!"); return; } #endif serialGNSS.begin(9600); #if defined(SEMIHOSTING) sh.print(F("[RFM] Init ")); #endif int state = radio.begin(433.775); if (state == RADIOLIB_ERR_NONE) { #if defined(SEMIHOSTING) sh.println(F("success!")); #endif } else { #if defined(SEMIHOSTING) sh.print(F("failed, code ")); sh.println(state); #endif while (true); } if (radio.setBandwidth(125.0) == RADIOLIB_ERR_INVALID_BANDWIDTH) { #if defined(SEMIHOSTING) sh.println(F("Selected bandwidth is invalid for this module!")); #endif while (true); } if (radio.setSpreadingFactor(12) == RADIOLIB_ERR_INVALID_SPREADING_FACTOR) { #if defined(SEMIHOSTING) sh.println(F("Selected spreading factor is invalid for this module!")); #endif while (true); } if (radio.setCodingRate(5) == RADIOLIB_ERR_INVALID_CODING_RATE) { #if defined(SEMIHOSTING) sh.println(F("Selected coding rate is invalid for this module!")); #endif while (true); } // NOTE: value 0x34 is reserved for LoRaWAN networks and should not be used if (radio.setSyncWord(0x14) != RADIOLIB_ERR_NONE) { #if defined(SEMIHOSTING) sh.println(F("Unable to set sync word!")); #endif while (true); } if (radio.setOutputPower(20) == RADIOLIB_ERR_INVALID_OUTPUT_POWER) { #if defined(SEMIHOSTING) sh.println(F("Selected output power is invalid for this module!")); #endif while (true); } if (radio.setPreambleLength(8) == RADIOLIB_ERR_INVALID_PREAMBLE_LENGTH) { #if defined(SEMIHOSTING) sh.println(F("Selected preamble length is invalid for this module!")); #endif while (true); } // radio.setRfSwitchPins(4, 5); digitalWrite(LED_STATUSn, HIGH); } static void handle_radio_error(int state) { #if defined(SEMIHOSTING) if (state == RADIOLIB_ERR_NONE) { sh.print(F(" RFM OK Datarate: ")); sh.print(radio.getDataRate()); sh.println(F(" bps")); } else if (state == RADIOLIB_ERR_PACKET_TOO_LONG) { sh.println(F(" too long!")); } else if (state == RADIOLIB_ERR_TX_TIMEOUT) { sh.println(F(" timeout!")); } else { sh.print(F(" failed, code ")); sh.println(state); } #endif } void append_position_report() { float Tlat, Tlon; float Tspeed=0, Tcourse=0; Tlat = gps.location.lat(); Tlon = gps.location.lng(); Tcourse = gps.course.deg(); Tspeed = gps.speed.knots(); uint32_t aprs_lat, aprs_lon; aprs_lat = 900000000 - Tlat * 10000000; aprs_lat = aprs_lat / 26 - aprs_lat / 2710 + aprs_lat / 15384615; aprs_lon = 900000000 + Tlon * 10000000 / 2; aprs_lon = aprs_lon / 26 - aprs_lon / 2710 + aprs_lon / 15384615; char helper_base91[] = {"0000\0"}; int i; ax25_base91enc(helper_base91, 4, aprs_lat); for (i=0; i<4; i++) { report[report_len++] = helper_base91[i]; } ax25_base91enc(helper_base91, 4, aprs_lon); for (i=0; i<4; i++) { report[report_len++] = helper_base91[i]; } report[report_len++] = SYMBOL_CODE_FOOT; // Do not encode altitude, only course and speed ax25_base91enc(helper_base91, 1, (uint32_t)Tcourse/4 ); report[report_len++] = helper_base91[0]; ax25_base91enc(helper_base91, 1, (uint32_t)(log1p(Tspeed)/0.07696)); report[report_len++] = helper_base91[0]; report[report_len++] = 0x47; } static void init_report() { report_len = 0; report[report_len++] = '<'; report[report_len++] = 0xFF; report[report_len++] = 0x01; const char* p = CALLSIGN_SSID_PATH; while (*p) { report[report_len++] = *(p++); } } static int read_encoder() { return 15 - (digitalRead(ENCODER_SW_1) + 2 * digitalRead(ENCODER_SW_2) + 4 * digitalRead(ENCODER_SW_4) + 8 * digitalRead(ENCODER_SW_8)); } void loop() { while (serialGNSS.available() > 0) { gps.encode(serialGNSS.read()); } const auto now = millis(); if (now - lastGnssPoll > 1000) { lastGnssPoll = now; const int encoder_value = read_encoder(); const bool btn1 = digitalRead(BTN1n) == 0; digitalWrite(LED_TXn, not btn1); if (encoder_value == 1) { digitalWrite(EN_RX, HIGH); digitalWrite(EN_PA, LOW); } else if (encoder_value == 2) { digitalWrite(EN_RX, LOW); digitalWrite(EN_PA, HIGH); } else { digitalWrite(EN_RX, LOW); digitalWrite(EN_PA, LOW); } if (SerialUSB) { const long latitude = gps.location.lat(); SerialUSB.print(F("Lat ")); SerialUSB.print(latitude); const long longitude = gps.location.lng(); SerialUSB.print(F(" Lon ")); SerialUSB.print(longitude); const byte SIV = gps.satellites.value(); SerialUSB.print(F(" SIV: ")); SerialUSB.print(SIV); SerialUSB.print(F(" Enc: ")); SerialUSB.print(encoder_value); SerialUSB.print(F(" BTN: ")); SerialUSB.println((int)btn1); } } } void oldloop() { while (serialGNSS.available() > 0) { gps.encode(serialGNSS.read()); } const auto now = millis(); if (now - lastGnssPoll > 1000) { lastGnssPoll = now; #if 0 const long latitude = gps.location.lat(); sh.print(F("Lat ")); sh.print(latitude); const long longitude = gps.location.lng(); sh.print(F(" Lon ")); sh.print(longitude); const byte SIV = gps.satellites.value(); sh.print(F(" SIV: ")); sh.println(SIV); #endif if (now - lastPositionReport > REPORT_TX_INTERVAL) { lastPositionReport = now; digitalWrite(LED_TXn, LOW); init_report(); report[report_len++] = ':'; report[report_len++] = '!'; report[report_len++] = SYMBOL_TABLE_IDENTIFIER; append_position_report(); int state = radio.transmit(report, report_len); handle_radio_error(state); digitalWrite(LED_TXn, HIGH); } } if (now - lastTextReport > TEXT_TX_INTERVAL) { lastTextReport = now; digitalWrite(LED_TXn, LOW); init_report(); report[report_len++] = ':'; report[report_len++] = '>'; const char* p = TEXT_REPORT; while (*p) { report[report_len++] = *(p++); } int state = radio.transmit(report, report_len); handle_radio_error(state); digitalWrite(LED_TXn, HIGH); } } #if 0 // Date Type Codes defined in aprs434.github.io constexpr int DATA_TYPE_CODE_GEOLOCATION = 0; constexpr int DATA_TYPE_CODE_STATUS_REPORT = 1; constexpr char CALLSIGN[] = "HB9EGM"; constexpr int SSID = 7; constexpr int PATH_CODE = 2; // metropolitan mobile void loop() { while (serialGNSS.available() > 0) { gps.encode(serialGNSS.read()); } const auto now = millis(); if (now - lastGnssPoll > 1000) { lastGnssPoll = now; // longitude and latitude are in degrees*1e7 const long latitude = gps.location.lat(); sh.print(F("Lat: ")); sh.print(latitude); const long longitude = gps.location.lng(); sh.print(F(" Long: ")); sh.print(longitude); const long altitude = gps.altitude.feet(); const int speed = gps.speed.kmph(); sh.print(F(" Speed: ")); sh.print(speed); sh.print(F(" (mm/s)")); // 1m/s = 900/463 knots const double speed_kn = gps.speed.knots(); const long heading = gps.course.deg(); sh.print(F(" Heading: ")); sh.print(heading); sh.print(F(" (degrees * 10^-5)")); const byte SIV = gps.satellites.value(); sh.print(F(" SIV: ")); sh.print(SIV); sh.print(F(" TX in: ")); sh.print(REPORT_TX_INTERVAL - (now - lastPositionReport)); sh.println(); if (now - lastPositionReport > REPORT_TX_INTERVAL) { lastPositionReport = now; digitalWrite(LED_STATUSn, HIGH); // Encode Compressed Geolocation Frame according to aprs434.github.io const uint32_t callsign_EEEE = encodeCallsign(CALLSIGN); report_len = 0; // Callsign encoded as CCCC report[report_len++] = (callsign_EEEE >> 24) & 0xFF; report[report_len++] = (callsign_EEEE >> 16) & 0xFF; report[report_len++] = (callsign_EEEE >> 8) & 0xFF; report[report_len++] = callsign_EEEE & 0xFF; // D SSID Path Code and Data Type Code report[report_len++] = SSID * 16 + PATH_CODE * 4 + DATA_TYPE_CODE_GEOLOCATION; // / Symbol Table Identifier report[report_len++] = SYMBOL_TABLE_IDENTIFIER; // XXXX Base91 Longitude // YYYY Base91 Latitude uint32_t aprs_lat = 900000000 - latitude; aprs_lat = aprs_lat / 26 - aprs_lat / 2710 + aprs_lat / 15384615; uint32_t aprs_lon = 900000000 + longitude / 2; aprs_lon = aprs_lon / 26 - aprs_lon / 2710 + aprs_lon / 15384615; char tmp_base91[5]; ax25_base91enc(tmp_base91, 4, aprs_lat); for (int i=0; i<4; i++) { report[report_len++] = tmp_base91[i]; } ax25_base91enc(tmp_base91, 4, aprs_lon); for (int i=0; i<4; i++) { report[report_len++] = tmp_base91[i]; } // $ Symbol Code report[report_len++] = SYMBOL_CODE_FOOT; // cs Course and Speed ax25_base91enc(tmp_base91, 1, heading * 10000 / 4); report[report_len++] = tmp_base91[0]; ax25_base91enc(tmp_base91, 1, (uint32_t)(log1p(speed_kn) / 0.07696)); report[report_len++] = tmp_base91[0]; // Debug print sh.println(F("Bytes: ")); for (int i = 0; i < report_len; i++) { sh.print((uint32_t)report[i]); } sh.println(F("")); int state = radio.transmit(report, report_len); handle_radio_error(state); digitalWrite(LED_STATUSn, LOW); } if (now - lastTextReport > TEXT_TX_INTERVAL) { lastTextReport = now; digitalWrite(LED_STATUSn, HIGH); // Encode Compressed Status Report Frame according to aprs434.github.io const uint32_t callsign_EEEE = encodeCallsign(CALLSIGN); report_len = 0; // Callsign encoded as CCCC report[report_len++] = (callsign_EEEE >> 24) & 0xFF; report[report_len++] = (callsign_EEEE >> 16) & 0xFF; report[report_len++] = (callsign_EEEE >> 8) & 0xFF; report[report_len++] = callsign_EEEE & 0xFF; // D SSID Path Code and Data Type Code report[report_len++] = SSID * 16 + PATH_CODE * 4 + DATA_TYPE_CODE_STATUS_REPORT; // t(t...) text const auto bignum = encodetttt(TEXT_REPORT); for (int i = 0; i <= 512; i += 8) { auto v = static_cast((bignum >> (512-i)) & 0xFF); if (v) { report[report_len++] = v; } } sh.print(F("TX length ")); sh.print(report_len); sh.print(F(" bytes: ")); sh.println(TEXT_REPORT); int state = radio.transmit(report, report_len); handle_radio_error(state); digitalWrite(LED_STATUSn, LOW); } } } #endif