/* * The MIT License (MIT) * * Copyright (c) 2016 Matthias P. Braendli, Maximilien Cuony * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "analog_input.h" #include "stm32f4xx_adc.h" #include void analog_init(void) { // Enable ADC and GPIOA clocks RCC_APB2PeriphClockCmd(RCC_APB2Periph_ADC1, ENABLE); RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOA, ENABLE); // Set Pin PA5 to analog input GPIO_InitTypeDef GPIO_InitStructure; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AN; GPIO_InitStructure.GPIO_Pin = GPIO_Pin_5; GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_100MHz; GPIO_InitStructure.GPIO_OType = GPIO_OType_PP; GPIO_Init(GPIOA, &GPIO_InitStructure); // Init ADC1 for supply measurement ADC_CommonInitTypeDef ADC_CommonInitStruct; ADC_CommonInitStruct.ADC_Mode = ADC_Mode_Independent; ADC_CommonInitStruct.ADC_Prescaler = ADC_Prescaler_Div8; ADC_CommonInitStruct.ADC_DMAAccessMode = ADC_DMAAccessMode_Disabled; ADC_CommonInitStruct.ADC_TwoSamplingDelay = ADC_TwoSamplingDelay_5Cycles; ADC_CommonInit(&ADC_CommonInitStruct); ADC_InitTypeDef ADC_InitStruct; ADC_InitStruct.ADC_Resolution = ADC_Resolution_12b; ADC_InitStruct.ADC_ScanConvMode = DISABLE; ADC_InitStruct.ADC_ContinuousConvMode = ENABLE; ADC_InitStruct.ADC_ExternalTrigConvEdge = ADC_ExternalTrigConvEdge_None; ADC_InitStruct.ADC_ExternalTrigConv = ADC_ExternalTrigConv_T1_CC1; ADC_InitStruct.ADC_DataAlign = ADC_DataAlign_Right; ADC_InitStruct.ADC_NbrOfConversion = 1; ADC_Init(ADC1, &ADC_InitStruct); // Configure ADC1 to use the converted 12V signal (see schematics) const uint8_t rank = 1; ADC_RegularChannelConfig(ADC1, ADC_Channel_5, rank, ADC_SampleTime_480Cycles); // Enable ADC ADC_Cmd(ADC1, ENABLE); } float analog_measure_12v(void) { ADC_SoftwareStartConv(ADC1); //Start the conversion // TODO add timeout while (ADC_GetFlagStatus(ADC1, ADC_FLAG_EOC) == RESET); const uint16_t raw_value = ADC_GetConversionValue(ADC1); const float adc_max_value = (1 << 12); const float v_ref = 2.965f; // Convert ADC measurement to voltage float voltage = ((float)raw_value*v_ref/adc_max_value); // Compensate resistor divider on board (see schematic) return voltage * 202.0f / 22.0f; }