/* * The MIT License (MIT) * * Copyright (c) 2015 Matthias P. Braendli * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "common.h" #include "usart.h" #include "FreeRTOS.h" #include "timers.h" #include #include static uint64_t common_timestamp = 0; // milliseconds since startup static TimerHandle_t common_timer; // The LFSR is used as random number generator static const uint16_t lfsr_start_state = 0x12ABu; static uint16_t lfsr; static void common_increase_timestamp(TimerHandle_t t); void common_init(void) { common_timer = xTimerCreate("Timer", portTICK_PERIOD_MS, pdTRUE, // Auto-reload NULL, // No unique id common_increase_timestamp ); xTimerStart(common_timer, 0); lfsr = lfsr_start_state; } static void common_increase_timestamp(TimerHandle_t t) { common_timestamp++; } uint64_t timestamp_now(void) { return common_timestamp; } int dayofweek(uint8_t day, uint8_t month, uint16_t year) { /* Zeller's congruence for the Gregorian calendar. * With 0=Monday, ... 5=Saturday, 6=Sunday */ if (month < 3) { month += 12; year--; } int k = year % 100; int j = year / 100; int h = day + 13*(month+1)/5 + k + k/4 + j/4 + 5*j; return (h + 5) % 7 + 1; } // Return either 0 or 1, somewhat randomly int random_bool(void) { uint16_t bit; /* taps: 16 14 13 11; feedback polynomial: x^16 + x^14 + x^13 + x^11 + 1 */ bit = ((lfsr >> 0) ^ (lfsr >> 2) ^ (lfsr >> 3) ^ (lfsr >> 5) ) & 1; lfsr = (lfsr >> 1) | (bit << 15); return bit; } // For the debugger static int faultsource = 0; void trigger_fault(int source) { usart_debug("Fatal: %d", source); __disable_irq(); faultsource = source; while (1) {} } void hard_fault_handler_c(uint32_t *hardfault_args) { uint32_t stacked_r0; uint32_t stacked_r1; uint32_t stacked_r2; uint32_t stacked_r3; uint32_t stacked_r12; uint32_t stacked_lr; uint32_t stacked_pc; uint32_t stacked_psr; stacked_r0 = hardfault_args[0]; stacked_r1 = hardfault_args[1]; stacked_r2 = hardfault_args[2]; stacked_r3 = hardfault_args[3]; stacked_r12 = hardfault_args[4]; stacked_lr = hardfault_args[5]; stacked_pc = hardfault_args[6]; stacked_psr = hardfault_args[7]; while (1); usart_debug_puts("\n\n[Hard fault handler - all numbers in hex]\n"); usart_debug("R0 = %x\n", stacked_r0); usart_debug("R1 = %x\n", stacked_r1); usart_debug("R2 = %x\n", stacked_r2); usart_debug("R3 = %x\n", stacked_r3); usart_debug("R12 = %x\n", stacked_r12); usart_debug("LR [R14] = %x subroutine call return address\n", stacked_lr); usart_debug("PC [R15] = %x program counter\n", stacked_pc); usart_debug("PSR = %x\n", stacked_psr); usart_debug("BFAR = %x\n", (*((volatile unsigned long *)(0xE000ED38)))); usart_debug("CFSR = %x\n", (*((volatile unsigned long *)(0xE000ED28)))); usart_debug("HFSR = %x\n", (*((volatile unsigned long *)(0xE000ED2C)))); usart_debug("DFSR = %x\n", (*((volatile unsigned long *)(0xE000ED30)))); usart_debug("AFSR = %x\n", (*((volatile unsigned long *)(0xE000ED3C)))); usart_debug("SCB_SHCSR = %x\n", SCB->SHCSR); while (1); }