/* * The MIT License (MIT) * * Copyright (c) 2016 Matthias P. Braendli * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "common.h" #include "usart.h" #include "FreeRTOS.h" #include "timers.h" #include "gps.h" #include #include static uint64_t common_timestamp = 0; // milliseconds since startup static TimerHandle_t common_timer; // The LFSR is used as random number generator static const uint16_t lfsr_start_state = 0x12ABu; static uint16_t lfsr; static void common_increase_timestamp(TimerHandle_t t); int find_last_sunday(const struct tm* time) { struct tm t = *time; // the last sunday can never be before the 20th t.tm_mday = 20; int last_sunday = 1; while (t.tm_mon == time->tm_mon) { t.tm_mday++; if (mktime(&t) == (time_t)-1) { // TODO error return -1; } const int sunday = 0; if (t.tm_wday == sunday) { last_sunday = t.tm_mday; } } return last_sunday; } /* Calculate if we are in daylight saving time. * return 0 if false * 1 if true * -1 in case of error */ static int is_dst(const struct tm *time) { /* DST from 01:00 UTC on last Sunday in March * to 01:00 UTC on last Sunday in October */ const int march = 2; const int october = 9; if (time->tm_mon < march) { return 0; } else if (time->tm_mon == march) { int last_sunday = find_last_sunday(time); if (last_sunday == -1) return -1; if (time->tm_mday < last_sunday) { return 0; } else if (time->tm_mday == last_sunday) { return (time->tm_hour < 1) ? 0 : 1; } else { return 1; } } else if (time->tm_mon > march && time->tm_mon < october) { return 1; } else if (time->tm_mon == october) { int last_sunday = find_last_sunday(time); if (last_sunday == -1) return -1; if (time->tm_mday < last_sunday) { return 1; } else if (time->tm_mday == last_sunday) { return (time->tm_hour < 1) ? 1 : 0; } else { return 0; } } else { return 0; } } int local_time(struct tm *time) { const int local_time_offset=1; // hours int valid = gps_utctime(time); if (valid) { time->tm_hour += local_time_offset; if (is_dst(time)) { time->tm_hour++; time->tm_isdst = 1; } // Let mktime fix the struct tm *time if (mktime(time) == (time_t)-1) { // TODO inform about failure valid = 0; } } return valid; } void common_init(void) { common_timer = xTimerCreate("Timer", portTICK_PERIOD_MS, pdTRUE, // Auto-reload NULL, // No unique id common_increase_timestamp ); xTimerStart(common_timer, 0); lfsr = lfsr_start_state; } static void common_increase_timestamp(TimerHandle_t t) { common_timestamp++; } uint64_t timestamp_now(void) { return common_timestamp; } // Return either 0 or 1, somewhat randomly int random_bool(void) { uint16_t bit; /* taps: 16 14 13 11; feedback polynomial: x^16 + x^14 + x^13 + x^11 + 1 */ bit = ((lfsr >> 0) ^ (lfsr >> 2) ^ (lfsr >> 3) ^ (lfsr >> 5) ) & 1; lfsr = (lfsr >> 1) | (bit << 15); return bit; } // For the debugger static int faultsource = 0; void trigger_fault(int source) { usart_debug("Fatal: %d", source); __disable_irq(); faultsource = source; while (1) {} } void hard_fault_handler_c(uint32_t *hardfault_args) { uint32_t stacked_r0; uint32_t stacked_r1; uint32_t stacked_r2; uint32_t stacked_r3; uint32_t stacked_r12; uint32_t stacked_lr; uint32_t stacked_pc; uint32_t stacked_psr; stacked_r0 = hardfault_args[0]; stacked_r1 = hardfault_args[1]; stacked_r2 = hardfault_args[2]; stacked_r3 = hardfault_args[3]; stacked_r12 = hardfault_args[4]; stacked_lr = hardfault_args[5]; stacked_pc = hardfault_args[6]; stacked_psr = hardfault_args[7]; usart_debug_puts("\n\n[Hard fault handler - all numbers in hex]\n"); usart_debug("R0 = %x\n", stacked_r0); usart_debug("R1 = %x\n", stacked_r1); usart_debug("R2 = %x\n", stacked_r2); usart_debug("R3 = %x\n", stacked_r3); usart_debug("R12 = %x\n", stacked_r12); usart_debug("LR [R14] = %x subroutine call return address\n", stacked_lr); usart_debug("PC [R15] = %x program counter\n", stacked_pc); usart_debug("PSR = %x\n", stacked_psr); usart_debug("BFAR = %x\n", (*((volatile unsigned long *)(0xE000ED38)))); usart_debug("CFSR = %x\n", (*((volatile unsigned long *)(0xE000ED28)))); usart_debug("HFSR = %x\n", (*((volatile unsigned long *)(0xE000ED2C)))); usart_debug("DFSR = %x\n", (*((volatile unsigned long *)(0xE000ED30)))); usart_debug("AFSR = %x\n", (*((volatile unsigned long *)(0xE000ED3C)))); usart_debug("SCB_SHCSR = %x\n", SCB->SHCSR); while (1); }