/* * The MIT License (MIT) * * Copyright (c) 2016 Matthias P. Braendli * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "Core/common.h" #include "GPIO/usart.h" #include "FreeRTOS.h" #include "timers.h" #include "GPS/gps.h" #include #include static uint64_t common_timestamp = 0; // milliseconds since startup static TimerHandle_t common_timer; // The LFSR is used as random number generator static const uint16_t lfsr_start_state = 0x12ABu; static uint16_t lfsr; static void common_increase_timestamp(TimerHandle_t t); struct tm last_derived_time; static uint64_t last_derived_time_timestamp = 0; int last_derived_time_valid = 0; int last_derived_time_delta_applied = 0; #ifdef SIMULATOR long timestamp_delta = 0; #endif int find_last_sunday(const struct tm* time) { struct tm t = *time; // the last sunday can never be before the 20th t.tm_mday = 20; int last_sunday = 1; while (t.tm_mon == time->tm_mon) { t.tm_mday++; if (mktime(&t) == (time_t)-1) { return -1; } const int sunday = 0; if (t.tm_wday == sunday) { last_sunday = t.tm_mday; } } return last_sunday; } /* Calculate if we are in daylight saving time. * return 0 if false * 1 if true * -1 in case of error */ static int is_dst(const struct tm *time) { /* DST from 01:00 UTC on last Sunday in March * to 01:00 UTC on last Sunday in October */ const int march = 2; const int october = 9; if (time->tm_mon < march) { return 0; } else if (time->tm_mon == march) { int last_sunday = find_last_sunday(time); if (last_sunday == -1) return -1; if (time->tm_mday < last_sunday) { return 0; } else if (time->tm_mday == last_sunday) { return (time->tm_hour < 1) ? 0 : 1; } else { return 1; } } else if (time->tm_mon > march && time->tm_mon < october) { return 1; } else if (time->tm_mon == october) { int last_sunday = find_last_sunday(time); if (last_sunday == -1) return -1; if (time->tm_mday < last_sunday) { return 1; } else if (time->tm_mday == last_sunday) { return (time->tm_hour < 1) ? 1 : 0; } else { return 0; } } else { return 0; } } int local_time(struct tm *time) { const int local_time_offset = 1; // hours int num_sv_used = 0; int valid = gps_utctime(time, &num_sv_used); if (valid) { time->tm_hour += local_time_offset; const int dst = is_dst(time); if (dst == -1) { usart_debug("mktime fail for dst %d-%d-%d %d:%d:%d " "dst %d wday %d yday %d\r\n", time->tm_year + 1900, time->tm_mon + 1, time->tm_mday, time->tm_hour, time->tm_min, time->tm_sec, time->tm_isdst, time->tm_wday, time->tm_yday); } else if (dst == 1) { time->tm_hour++; time->tm_isdst = 1; } // Let mktime fix the struct tm *time if (mktime(time) == (time_t)-1) { usart_debug("mktime fail for local_time %d-%d-%d %d:%d:%d " "dst %d wday %d yday %d\r\n", time->tm_year + 1900, time->tm_mon + 1, time->tm_mday, time->tm_hour, time->tm_min, time->tm_sec, time->tm_isdst, time->tm_wday, time->tm_yday); valid = 0; } if (valid) { last_derived_time = *time; last_derived_time_timestamp = timestamp_now(); last_derived_time_valid = 1; last_derived_time_delta_applied = 0; } } return valid; } int local_derived_time(struct tm *time) { if (last_derived_time_valid == 0) { return 0; } // As there is a GPS timeout, local_time will think he has valid GPS data for GPS_MS_TIMEOUT. We need to remove it for better calculations. if (last_derived_time_delta_applied == 0) { last_derived_time_delta_applied = 1; last_derived_time_timestamp -= GPS_MS_TIMEOUT; } uint64_t new_timestamp = timestamp_now(); while (new_timestamp - last_derived_time_timestamp > 1000) { last_derived_time.tm_sec += 1; last_derived_time_timestamp += 1000; } mktime(&last_derived_time); *time = last_derived_time; return 1; } void common_init(void) { common_timer = xTimerCreate("Timer", pdMS_TO_TICKS(8), pdTRUE, // Auto-reload NULL, // No unique id common_increase_timestamp ); xTimerStart(common_timer, 0); lfsr = lfsr_start_state; } static void common_increase_timestamp(TimerHandle_t __attribute__ ((unused))t) { #ifdef SIMULATOR struct timespec ctime; clock_gettime(CLOCK_REALTIME, &ctime); common_timestamp = ctime.tv_sec * 1000 + ctime.tv_nsec / 1.0e6 - timestamp_delta; if (timestamp_delta == 0) { timestamp_delta = common_timestamp; common_timestamp = 0; } #else common_timestamp += 8; #endif } uint64_t timestamp_now(void) { return common_timestamp; // ms } // Return either 0 or 1, somewhat randomly int random_bool(void) { uint16_t bit; /* taps: 16 14 13 11; feedback polynomial: x^16 + x^14 + x^13 + x^11 + 1 */ bit = ((lfsr >> 0) ^ (lfsr >> 2) ^ (lfsr >> 3) ^ (lfsr >> 5) ) & 1; lfsr = (lfsr >> 1) | (bit << 15); return bit; } // For the debugger static int faultsource = 0; void trigger_fault(int source) { usart_debug("Fatal: %d\r\n\r\n", source); __disable_irq(); faultsource = source; while (1) {} } float round_float_to_half_steps(float value) { return 0.5f * roundf(value * 2.0f); }