diff options
Diffstat (limited to 'src/FreeRTOS/Source/include')
-rw-r--r-- | src/FreeRTOS/Source/include/FreeRTOS.h | 711 | ||||
-rw-r--r-- | src/FreeRTOS/Source/include/StackMacros.h | 96 | ||||
-rw-r--r-- | src/FreeRTOS/Source/include/croutine.h | 92 | ||||
-rw-r--r-- | src/FreeRTOS/Source/include/deprecated_definitions.h | 92 | ||||
-rw-r--r-- | src/FreeRTOS/Source/include/event_groups.h | 193 | ||||
-rw-r--r-- | src/FreeRTOS/Source/include/list.h | 111 | ||||
-rw-r--r-- | src/FreeRTOS/Source/include/message_buffer.h | 798 | ||||
-rw-r--r-- | src/FreeRTOS/Source/include/mpu_prototypes.h | 157 | ||||
-rw-r--r-- | src/FreeRTOS/Source/include/mpu_wrappers.h | 289 | ||||
-rw-r--r-- | src/FreeRTOS/Source/include/portable.h | 106 | ||||
-rw-r--r-- | src/FreeRTOS/Source/include/projdefs.h | 110 | ||||
-rw-r--r-- | src/FreeRTOS/Source/include/queue.h | 388 | ||||
-rw-r--r-- | src/FreeRTOS/Source/include/semphr.h | 600 | ||||
-rw-r--r-- | src/FreeRTOS/Source/include/stack_macros.h | 129 | ||||
-rw-r--r-- | src/FreeRTOS/Source/include/stream_buffer.h | 855 | ||||
-rw-r--r-- | src/FreeRTOS/Source/include/task.h | 580 | ||||
-rw-r--r-- | src/FreeRTOS/Source/include/timers.h | 311 |
17 files changed, 4298 insertions, 1320 deletions
diff --git a/src/FreeRTOS/Source/include/FreeRTOS.h b/src/FreeRTOS/Source/include/FreeRTOS.h index 7d34ec6..3afd3bb 100644 --- a/src/FreeRTOS/Source/include/FreeRTOS.h +++ b/src/FreeRTOS/Source/include/FreeRTOS.h @@ -1,71 +1,29 @@ /*
- FreeRTOS V8.2.3 - Copyright (C) 2015 Real Time Engineers Ltd.
- All rights reserved
-
- VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
-
- This file is part of the FreeRTOS distribution.
-
- FreeRTOS is free software; you can redistribute it and/or modify it under
- the terms of the GNU General Public License (version 2) as published by the
- Free Software Foundation >>>> AND MODIFIED BY <<<< the FreeRTOS exception.
-
- ***************************************************************************
- >>! NOTE: The modification to the GPL is included to allow you to !<<
- >>! distribute a combined work that includes FreeRTOS without being !<<
- >>! obliged to provide the source code for proprietary components !<<
- >>! outside of the FreeRTOS kernel. !<<
- ***************************************************************************
-
- FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
- WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
- FOR A PARTICULAR PURPOSE. Full license text is available on the following
- link: http://www.freertos.org/a00114.html
-
- ***************************************************************************
- * *
- * FreeRTOS provides completely free yet professionally developed, *
- * robust, strictly quality controlled, supported, and cross *
- * platform software that is more than just the market leader, it *
- * is the industry's de facto standard. *
- * *
- * Help yourself get started quickly while simultaneously helping *
- * to support the FreeRTOS project by purchasing a FreeRTOS *
- * tutorial book, reference manual, or both: *
- * http://www.FreeRTOS.org/Documentation *
- * *
- ***************************************************************************
-
- http://www.FreeRTOS.org/FAQHelp.html - Having a problem? Start by reading
- the FAQ page "My application does not run, what could be wrong?". Have you
- defined configASSERT()?
-
- http://www.FreeRTOS.org/support - In return for receiving this top quality
- embedded software for free we request you assist our global community by
- participating in the support forum.
-
- http://www.FreeRTOS.org/training - Investing in training allows your team to
- be as productive as possible as early as possible. Now you can receive
- FreeRTOS training directly from Richard Barry, CEO of Real Time Engineers
- Ltd, and the world's leading authority on the world's leading RTOS.
-
- http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
- including FreeRTOS+Trace - an indispensable productivity tool, a DOS
- compatible FAT file system, and our tiny thread aware UDP/IP stack.
-
- http://www.FreeRTOS.org/labs - Where new FreeRTOS products go to incubate.
- Come and try FreeRTOS+TCP, our new open source TCP/IP stack for FreeRTOS.
-
- http://www.OpenRTOS.com - Real Time Engineers ltd. license FreeRTOS to High
- Integrity Systems ltd. to sell under the OpenRTOS brand. Low cost OpenRTOS
- licenses offer ticketed support, indemnification and commercial middleware.
-
- http://www.SafeRTOS.com - High Integrity Systems also provide a safety
- engineered and independently SIL3 certified version for use in safety and
- mission critical applications that require provable dependability.
-
- 1 tab == 4 spaces!
-*/
+ * FreeRTOS Kernel V10.2.0
+ * Copyright (C) 2019 Amazon.com, Inc. or its affiliates. All Rights Reserved.
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy of
+ * this software and associated documentation files (the "Software"), to deal in
+ * the Software without restriction, including without limitation the rights to
+ * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
+ * the Software, and to permit persons to whom the Software is furnished to do so,
+ * subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
+ * FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
+ * COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
+ * IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
+ * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+ *
+ * http://www.FreeRTOS.org
+ * http://aws.amazon.com/freertos
+ *
+ * 1 tab == 4 spaces!
+ */
#ifndef INC_FREERTOS_H
#define INC_FREERTOS_H
@@ -103,6 +61,15 @@ extern "C" { /* Definitions specific to the port being used. */
#include "portable.h"
+/* Must be defaulted before configUSE_NEWLIB_REENTRANT is used below. */
+#ifndef configUSE_NEWLIB_REENTRANT
+ #define configUSE_NEWLIB_REENTRANT 0
+#endif
+
+/* Required if struct _reent is used. */
+#if ( configUSE_NEWLIB_REENTRANT == 1 )
+ #include <reent.h>
+#endif
/*
* Check all the required application specific macros have been defined.
* These macros are application specific and (as downloaded) are defined
@@ -117,6 +84,10 @@ extern "C" { #error Missing definition: configMAX_PRIORITIES must be defined in FreeRTOSConfig.h. See the Configuration section of the FreeRTOS API documentation for details.
#endif
+#if configMAX_PRIORITIES < 1
+ #error configMAX_PRIORITIES must be defined to be greater than or equal to 1.
+#endif
+
#ifndef configUSE_PREEMPTION
#error Missing definition: configUSE_PREEMPTION must be defined in FreeRTOSConfig.h as either 1 or 0. See the Configuration section of the FreeRTOS API documentation for details.
#endif
@@ -129,82 +100,102 @@ extern "C" { #error Missing definition: configUSE_TICK_HOOK must be defined in FreeRTOSConfig.h as either 1 or 0. See the Configuration section of the FreeRTOS API documentation for details.
#endif
+#ifndef configUSE_16_BIT_TICKS
+ #error Missing definition: configUSE_16_BIT_TICKS must be defined in FreeRTOSConfig.h as either 1 or 0. See the Configuration section of the FreeRTOS API documentation for details.
+#endif
+
+#ifndef configUSE_CO_ROUTINES
+ #define configUSE_CO_ROUTINES 0
+#endif
+
#ifndef INCLUDE_vTaskPrioritySet
- #error Missing definition: INCLUDE_vTaskPrioritySet must be defined in FreeRTOSConfig.h as either 1 or 0. See the Configuration section of the FreeRTOS API documentation for details.
+ #define INCLUDE_vTaskPrioritySet 0
#endif
#ifndef INCLUDE_uxTaskPriorityGet
- #error Missing definition: INCLUDE_uxTaskPriorityGet must be defined in FreeRTOSConfig.h as either 1 or 0. See the Configuration section of the FreeRTOS API documentation for details.
+ #define INCLUDE_uxTaskPriorityGet 0
#endif
#ifndef INCLUDE_vTaskDelete
- #error Missing definition: INCLUDE_vTaskDelete must be defined in FreeRTOSConfig.h as either 1 or 0. See the Configuration section of the FreeRTOS API documentation for details.
+ #define INCLUDE_vTaskDelete 0
#endif
#ifndef INCLUDE_vTaskSuspend
- #error Missing definition: INCLUDE_vTaskSuspend must be defined in FreeRTOSConfig.h as either 1 or 0. See the Configuration section of the FreeRTOS API documentation for details.
+ #define INCLUDE_vTaskSuspend 0
#endif
#ifndef INCLUDE_vTaskDelayUntil
- #error Missing definition: INCLUDE_vTaskDelayUntil must be defined in FreeRTOSConfig.h as either 1 or 0. See the Configuration section of the FreeRTOS API documentation for details.
+ #define INCLUDE_vTaskDelayUntil 0
#endif
#ifndef INCLUDE_vTaskDelay
- #error Missing definition: INCLUDE_vTaskDelay must be defined in FreeRTOSConfig.h as either 1 or 0. See the Configuration section of the FreeRTOS API documentation for details.
+ #define INCLUDE_vTaskDelay 0
#endif
-#ifndef configUSE_16_BIT_TICKS
- #error Missing definition: configUSE_16_BIT_TICKS must be defined in FreeRTOSConfig.h as either 1 or 0. See the Configuration section of the FreeRTOS API documentation for details.
+#ifndef INCLUDE_xTaskGetIdleTaskHandle
+ #define INCLUDE_xTaskGetIdleTaskHandle 0
#endif
-#ifndef configMAX_PRIORITIES
- #error configMAX_PRIORITIES must be defined to be greater than or equal to 1.
+#ifndef INCLUDE_xTaskAbortDelay
+ #define INCLUDE_xTaskAbortDelay 0
#endif
-#ifndef configUSE_CO_ROUTINES
- #define configUSE_CO_ROUTINES 0
+#ifndef INCLUDE_xQueueGetMutexHolder
+ #define INCLUDE_xQueueGetMutexHolder 0
#endif
-#if configUSE_CO_ROUTINES != 0
- #ifndef configMAX_CO_ROUTINE_PRIORITIES
- #error configMAX_CO_ROUTINE_PRIORITIES must be greater than or equal to 1.
- #endif
+#ifndef INCLUDE_xSemaphoreGetMutexHolder
+ #define INCLUDE_xSemaphoreGetMutexHolder INCLUDE_xQueueGetMutexHolder
#endif
-#ifndef INCLUDE_xTaskGetIdleTaskHandle
- #define INCLUDE_xTaskGetIdleTaskHandle 0
+#ifndef INCLUDE_xTaskGetHandle
+ #define INCLUDE_xTaskGetHandle 0
#endif
-#ifndef INCLUDE_xTimerGetTimerDaemonTaskHandle
- #define INCLUDE_xTimerGetTimerDaemonTaskHandle 0
+#ifndef INCLUDE_uxTaskGetStackHighWaterMark
+ #define INCLUDE_uxTaskGetStackHighWaterMark 0
#endif
-#ifndef INCLUDE_xQueueGetMutexHolder
- #define INCLUDE_xQueueGetMutexHolder 0
+#ifndef INCLUDE_uxTaskGetStackHighWaterMark2
+ #define INCLUDE_uxTaskGetStackHighWaterMark2 0
#endif
-#ifndef INCLUDE_xSemaphoreGetMutexHolder
- #define INCLUDE_xSemaphoreGetMutexHolder INCLUDE_xQueueGetMutexHolder
+#ifndef INCLUDE_eTaskGetState
+ #define INCLUDE_eTaskGetState 0
#endif
-#ifndef INCLUDE_pcTaskGetTaskName
- #define INCLUDE_pcTaskGetTaskName 0
+#ifndef INCLUDE_xTaskResumeFromISR
+ #define INCLUDE_xTaskResumeFromISR 1
#endif
-#ifndef configUSE_APPLICATION_TASK_TAG
- #define configUSE_APPLICATION_TASK_TAG 0
+#ifndef INCLUDE_xTimerPendFunctionCall
+ #define INCLUDE_xTimerPendFunctionCall 0
#endif
-#ifndef configNUM_THREAD_LOCAL_STORAGE_POINTERS
- #define configNUM_THREAD_LOCAL_STORAGE_POINTERS 0
+#ifndef INCLUDE_xTaskGetSchedulerState
+ #define INCLUDE_xTaskGetSchedulerState 0
#endif
-#ifndef INCLUDE_uxTaskGetStackHighWaterMark
- #define INCLUDE_uxTaskGetStackHighWaterMark 0
+#ifndef INCLUDE_xTaskGetCurrentTaskHandle
+ #define INCLUDE_xTaskGetCurrentTaskHandle 0
#endif
-#ifndef INCLUDE_eTaskGetState
- #define INCLUDE_eTaskGetState 0
+#if configUSE_CO_ROUTINES != 0
+ #ifndef configMAX_CO_ROUTINE_PRIORITIES
+ #error configMAX_CO_ROUTINE_PRIORITIES must be greater than or equal to 1.
+ #endif
+#endif
+
+#ifndef configUSE_DAEMON_TASK_STARTUP_HOOK
+ #define configUSE_DAEMON_TASK_STARTUP_HOOK 0
+#endif
+
+#ifndef configUSE_APPLICATION_TASK_TAG
+ #define configUSE_APPLICATION_TASK_TAG 0
+#endif
+
+#ifndef configNUM_THREAD_LOCAL_STORAGE_POINTERS
+ #define configNUM_THREAD_LOCAL_STORAGE_POINTERS 0
#endif
#ifndef configUSE_RECURSIVE_MUTEXES
@@ -243,18 +234,6 @@ extern "C" { #error configMAX_TASK_NAME_LEN must be set to a minimum of 1 in FreeRTOSConfig.h
#endif
-#ifndef INCLUDE_xTaskResumeFromISR
- #define INCLUDE_xTaskResumeFromISR 1
-#endif
-
-#ifndef INCLUDE_xEventGroupSetBitFromISR
- #define INCLUDE_xEventGroupSetBitFromISR 0
-#endif
-
-#ifndef INCLUDE_xTimerPendFunctionCall
- #define INCLUDE_xTimerPendFunctionCall 0
-#endif
-
#ifndef configASSERT
#define configASSERT( x )
#define configASSERT_DEFINED 0
@@ -279,15 +258,6 @@ extern "C" { #endif /* configUSE_TIMERS */
-#ifndef INCLUDE_xTaskGetSchedulerState
- #define INCLUDE_xTaskGetSchedulerState 0
-#endif
-
-#ifndef INCLUDE_xTaskGetCurrentTaskHandle
- #define INCLUDE_xTaskGetCurrentTaskHandle 0
-#endif
-
-
#ifndef portSET_INTERRUPT_MASK_FROM_ISR
#define portSET_INTERRUPT_MASK_FROM_ISR() 0
#endif
@@ -315,6 +285,7 @@ extern "C" { #if ( configQUEUE_REGISTRY_SIZE < 1 )
#define vQueueAddToRegistry( xQueue, pcName )
#define vQueueUnregisterQueue( xQueue )
+ #define pcQueueGetName( xQueue )
#endif
#ifndef portPOINTER_SIZE_TYPE
@@ -387,6 +358,14 @@ extern "C" { #define traceBLOCKING_ON_QUEUE_RECEIVE( pxQueue )
#endif
+#ifndef traceBLOCKING_ON_QUEUE_PEEK
+ /* Task is about to block because it cannot read from a
+ queue/mutex/semaphore. pxQueue is a pointer to the queue/mutex/semaphore
+ upon which the read was attempted. pxCurrentTCB points to the TCB of the
+ task that attempted the read. */
+ #define traceBLOCKING_ON_QUEUE_PEEK( pxQueue )
+#endif
+
#ifndef traceBLOCKING_ON_QUEUE_SEND
/* Task is about to block because it cannot write to a
queue/mutex/semaphore. pxQueue is a pointer to the queue/mutex/semaphore
@@ -399,12 +378,24 @@ extern "C" { #define configCHECK_FOR_STACK_OVERFLOW 0
#endif
+#ifndef configRECORD_STACK_HIGH_ADDRESS
+ #define configRECORD_STACK_HIGH_ADDRESS 0
+#endif
+
+#ifndef configINCLUDE_FREERTOS_TASK_C_ADDITIONS_H
+ #define configINCLUDE_FREERTOS_TASK_C_ADDITIONS_H 0
+#endif
+
/* The following event macros are embedded in the kernel API calls. */
#ifndef traceMOVED_TASK_TO_READY_STATE
#define traceMOVED_TASK_TO_READY_STATE( pxTCB )
#endif
+#ifndef tracePOST_MOVED_TASK_TO_READY_STATE
+ #define tracePOST_MOVED_TASK_TO_READY_STATE( pxTCB )
+#endif
+
#ifndef traceQUEUE_CREATE
#define traceQUEUE_CREATE( pxNewQueue )
#endif
@@ -461,6 +452,10 @@ extern "C" { #define traceQUEUE_PEEK( pxQueue )
#endif
+#ifndef traceQUEUE_PEEK_FAILED
+ #define traceQUEUE_PEEK_FAILED( pxQueue )
+#endif
+
#ifndef traceQUEUE_PEEK_FROM_ISR
#define traceQUEUE_PEEK_FROM_ISR( pxQueue )
#endif
@@ -506,7 +501,7 @@ extern "C" { #endif
#ifndef traceTASK_DELAY_UNTIL
- #define traceTASK_DELAY_UNTIL()
+ #define traceTASK_DELAY_UNTIL( x )
#endif
#ifndef traceTASK_DELAY
@@ -645,6 +640,58 @@ extern "C" { #define traceTASK_NOTIFY_GIVE_FROM_ISR()
#endif
+#ifndef traceSTREAM_BUFFER_CREATE_FAILED
+ #define traceSTREAM_BUFFER_CREATE_FAILED( xIsMessageBuffer )
+#endif
+
+#ifndef traceSTREAM_BUFFER_CREATE_STATIC_FAILED
+ #define traceSTREAM_BUFFER_CREATE_STATIC_FAILED( xReturn, xIsMessageBuffer )
+#endif
+
+#ifndef traceSTREAM_BUFFER_CREATE
+ #define traceSTREAM_BUFFER_CREATE( pxStreamBuffer, xIsMessageBuffer )
+#endif
+
+#ifndef traceSTREAM_BUFFER_DELETE
+ #define traceSTREAM_BUFFER_DELETE( xStreamBuffer )
+#endif
+
+#ifndef traceSTREAM_BUFFER_RESET
+ #define traceSTREAM_BUFFER_RESET( xStreamBuffer )
+#endif
+
+#ifndef traceBLOCKING_ON_STREAM_BUFFER_SEND
+ #define traceBLOCKING_ON_STREAM_BUFFER_SEND( xStreamBuffer )
+#endif
+
+#ifndef traceSTREAM_BUFFER_SEND
+ #define traceSTREAM_BUFFER_SEND( xStreamBuffer, xBytesSent )
+#endif
+
+#ifndef traceSTREAM_BUFFER_SEND_FAILED
+ #define traceSTREAM_BUFFER_SEND_FAILED( xStreamBuffer )
+#endif
+
+#ifndef traceSTREAM_BUFFER_SEND_FROM_ISR
+ #define traceSTREAM_BUFFER_SEND_FROM_ISR( xStreamBuffer, xBytesSent )
+#endif
+
+#ifndef traceBLOCKING_ON_STREAM_BUFFER_RECEIVE
+ #define traceBLOCKING_ON_STREAM_BUFFER_RECEIVE( xStreamBuffer )
+#endif
+
+#ifndef traceSTREAM_BUFFER_RECEIVE
+ #define traceSTREAM_BUFFER_RECEIVE( xStreamBuffer, xReceivedLength )
+#endif
+
+#ifndef traceSTREAM_BUFFER_RECEIVE_FAILED
+ #define traceSTREAM_BUFFER_RECEIVE_FAILED( xStreamBuffer )
+#endif
+
+#ifndef traceSTREAM_BUFFER_RECEIVE_FROM_ISR
+ #define traceSTREAM_BUFFER_RECEIVE_FROM_ISR( xStreamBuffer, xReceivedLength )
+#endif
+
#ifndef configGENERATE_RUN_TIME_STATS
#define configGENERATE_RUN_TIME_STATS 0
#endif
@@ -679,14 +726,6 @@ extern "C" { #define portYIELD_WITHIN_API portYIELD
#endif
-#ifndef pvPortMallocAligned
- #define pvPortMallocAligned( x, puxStackBuffer ) ( ( ( puxStackBuffer ) == NULL ) ? ( pvPortMalloc( ( x ) ) ) : ( puxStackBuffer ) )
-#endif
-
-#ifndef vPortFreeAligned
- #define vPortFreeAligned( pvBlockToFree ) vPortFree( pvBlockToFree )
-#endif
-
#ifndef portSUPPRESS_TICKS_AND_SLEEP
#define portSUPPRESS_TICKS_AND_SLEEP( xExpectedIdleTime )
#endif
@@ -703,6 +742,10 @@ extern "C" { #define configUSE_TICKLESS_IDLE 0
#endif
+#ifndef configPRE_SUPPRESS_TICKS_AND_SLEEP_PROCESSING
+ #define configPRE_SUPPRESS_TICKS_AND_SLEEP_PROCESSING( x )
+#endif
+
#ifndef configPRE_SLEEP_PROCESSING
#define configPRE_SLEEP_PROCESSING( x )
#endif
@@ -719,6 +762,14 @@ extern "C" { #define portTASK_USES_FLOATING_POINT()
#endif
+#ifndef portALLOCATE_SECURE_CONTEXT
+ #define portALLOCATE_SECURE_CONTEXT( ulSecureStackSize )
+#endif
+
+#ifndef portHAS_STACK_OVERFLOW_CHECKING
+ #define portHAS_STACK_OVERFLOW_CHECKING 0
+#endif
+
#ifndef configUSE_TIME_SLICING
#define configUSE_TIME_SLICING 1
#endif
@@ -727,10 +778,6 @@ extern "C" { #define configINCLUDE_APPLICATION_DEFINED_PRIVILEGED_FUNCTIONS 0
#endif
-#ifndef configUSE_NEWLIB_REENTRANT
- #define configUSE_NEWLIB_REENTRANT 0
-#endif
-
#ifndef configUSE_STATS_FORMATTING_FUNCTIONS
#define configUSE_STATS_FORMATTING_FUNCTIONS 0
#endif
@@ -767,10 +814,56 @@ extern "C" { #define configUSE_TASK_NOTIFICATIONS 1
#endif
+#ifndef configUSE_POSIX_ERRNO
+ #define configUSE_POSIX_ERRNO 0
+#endif
+
#ifndef portTICK_TYPE_IS_ATOMIC
#define portTICK_TYPE_IS_ATOMIC 0
#endif
+#ifndef configSUPPORT_STATIC_ALLOCATION
+ /* Defaults to 0 for backward compatibility. */
+ #define configSUPPORT_STATIC_ALLOCATION 0
+#endif
+
+#ifndef configSUPPORT_DYNAMIC_ALLOCATION
+ /* Defaults to 1 for backward compatibility. */
+ #define configSUPPORT_DYNAMIC_ALLOCATION 1
+#endif
+
+#ifndef configSTACK_DEPTH_TYPE
+ /* Defaults to uint16_t for backward compatibility, but can be overridden
+ in FreeRTOSConfig.h if uint16_t is too restrictive. */
+ #define configSTACK_DEPTH_TYPE uint16_t
+#endif
+
+#ifndef configMESSAGE_BUFFER_LENGTH_TYPE
+ /* Defaults to size_t for backward compatibility, but can be overridden
+ in FreeRTOSConfig.h if lengths will always be less than the number of bytes
+ in a size_t. */
+ #define configMESSAGE_BUFFER_LENGTH_TYPE size_t
+#endif
+
+/* Sanity check the configuration. */
+#if( configUSE_TICKLESS_IDLE != 0 )
+ #if( INCLUDE_vTaskSuspend != 1 )
+ #error INCLUDE_vTaskSuspend must be set to 1 if configUSE_TICKLESS_IDLE is not set to 0
+ #endif /* INCLUDE_vTaskSuspend */
+#endif /* configUSE_TICKLESS_IDLE */
+
+#if( ( configSUPPORT_STATIC_ALLOCATION == 0 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 0 ) )
+ #error configSUPPORT_STATIC_ALLOCATION and configSUPPORT_DYNAMIC_ALLOCATION cannot both be 0, but can both be 1.
+#endif
+
+#if( ( configUSE_RECURSIVE_MUTEXES == 1 ) && ( configUSE_MUTEXES != 1 ) )
+ #error configUSE_MUTEXES must be set to 1 to use recursive mutexes
+#endif
+
+#ifndef configINITIAL_TICK_COUNT
+ #define configINITIAL_TICK_COUNT 0
+#endif
+
#if( portTICK_TYPE_IS_ATOMIC == 0 )
/* Either variables of tick type cannot be read atomically, or
portTICK_TYPE_IS_ATOMIC was not set - map the critical sections used when
@@ -794,6 +887,32 @@ V8 if desired. */ #define configENABLE_BACKWARD_COMPATIBILITY 1
#endif
+#ifndef configPRINTF
+ /* configPRINTF() was not defined, so define it away to nothing. To use
+ configPRINTF() then define it as follows (where MyPrintFunction() is
+ provided by the application writer):
+
+ void MyPrintFunction(const char *pcFormat, ... );
+ #define configPRINTF( X ) MyPrintFunction X
+
+ Then call like a standard printf() function, but placing brackets around
+ all parameters so they are passed as a single parameter. For example:
+ configPRINTF( ("Value = %d", MyVariable) ); */
+ #define configPRINTF( X )
+#endif
+
+#ifndef configMAX
+ /* The application writer has not provided their own MAX macro, so define
+ the following generic implementation. */
+ #define configMAX( a, b ) ( ( ( a ) > ( b ) ) ? ( a ) : ( b ) )
+#endif
+
+#ifndef configMIN
+ /* The application writer has not provided their own MAX macro, so define
+ the following generic implementation. */
+ #define configMIN( a, b ) ( ( ( a ) < ( b ) ) ? ( a ) : ( b ) )
+#endif
+
#if configENABLE_BACKWARD_COMPATIBILITY == 1
#define eTaskStateGet eTaskGetState
#define portTickType TickType_t
@@ -810,6 +929,10 @@ V8 if desired. */ #define xCoRoutineHandle CoRoutineHandle_t
#define pdTASK_HOOK_CODE TaskHookFunction_t
#define portTICK_RATE_MS portTICK_PERIOD_MS
+ #define pcTaskGetTaskName pcTaskGetName
+ #define pcTimerGetTimerName pcTimerGetName
+ #define pcQueueGetQueueName pcQueueGetName
+ #define vTaskGetTaskInfo vTaskGetInfo
/* Backward compatibility within the scheduler code only - these definitions
are not really required but are included for completeness. */
@@ -817,16 +940,332 @@ V8 if desired. */ #define pdTASK_CODE TaskFunction_t
#define xListItem ListItem_t
#define xList List_t
+
+ /* For libraries that break the list data hiding, and access list structure
+ members directly (which is not supposed to be done). */
+ #define pxContainer pvContainer
#endif /* configENABLE_BACKWARD_COMPATIBILITY */
+#if( configUSE_ALTERNATIVE_API != 0 )
+ #error The alternative API was deprecated some time ago, and was removed in FreeRTOS V9.0 0
+#endif
+
/* Set configUSE_TASK_FPU_SUPPORT to 0 to omit floating point support even
if floating point hardware is otherwise supported by the FreeRTOS port in use.
-This constant is not supported by all FreeRTOS ports that include floating
+This constant is not supported by all FreeRTOS ports that include floating
point support. */
#ifndef configUSE_TASK_FPU_SUPPORT
#define configUSE_TASK_FPU_SUPPORT 1
#endif
+/* Set configENABLE_MPU to 1 to enable MPU support and 0 to disable it. This is
+currently used in ARMv8M ports. */
+#ifndef configENABLE_MPU
+ #define configENABLE_MPU 0
+#endif
+
+/* Set configENABLE_FPU to 1 to enable FPU support and 0 to disable it. This is
+currently used in ARMv8M ports. */
+#ifndef configENABLE_FPU
+ #define configENABLE_FPU 1
+#endif
+
+/* Set configENABLE_TRUSTZONE to 1 enable TrustZone support and 0 to disable it.
+This is currently used in ARMv8M ports. */
+#ifndef configENABLE_TRUSTZONE
+ #define configENABLE_TRUSTZONE 1
+#endif
+
+/* Set configRUN_FREERTOS_SECURE_ONLY to 1 to run the FreeRTOS ARMv8M port on
+the Secure Side only. */
+#ifndef configRUN_FREERTOS_SECURE_ONLY
+ #define configRUN_FREERTOS_SECURE_ONLY 0
+#endif
+
+/* Sometimes the FreeRTOSConfig.h settings only allow a task to be created using
+ * dynamically allocated RAM, in which case when any task is deleted it is known
+ * that both the task's stack and TCB need to be freed. Sometimes the
+ * FreeRTOSConfig.h settings only allow a task to be created using statically
+ * allocated RAM, in which case when any task is deleted it is known that neither
+ * the task's stack or TCB should be freed. Sometimes the FreeRTOSConfig.h
+ * settings allow a task to be created using either statically or dynamically
+ * allocated RAM, in which case a member of the TCB is used to record whether the
+ * stack and/or TCB were allocated statically or dynamically, so when a task is
+ * deleted the RAM that was allocated dynamically is freed again and no attempt is
+ * made to free the RAM that was allocated statically.
+ * tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE is only true if it is possible for a
+ * task to be created using either statically or dynamically allocated RAM. Note
+ * that if portUSING_MPU_WRAPPERS is 1 then a protected task can be created with
+ * a statically allocated stack and a dynamically allocated TCB.
+ *
+ * The following table lists various combinations of portUSING_MPU_WRAPPERS,
+ * configSUPPORT_DYNAMIC_ALLOCATION and configSUPPORT_STATIC_ALLOCATION and
+ * when it is possible to have both static and dynamic allocation:
+ * +-----+---------+--------+-----------------------------+-----------------------------------+------------------+-----------+
+ * | MPU | Dynamic | Static | Available Functions | Possible Allocations | Both Dynamic and | Need Free |
+ * | | | | | | Static Possible | |
+ * +-----+---------+--------+-----------------------------+-----------------------------------+------------------+-----------+
+ * | 0 | 0 | 1 | xTaskCreateStatic | TCB - Static, Stack - Static | No | No |
+ * +-----|---------|--------|-----------------------------|-----------------------------------|------------------|-----------|
+ * | 0 | 1 | 0 | xTaskCreate | TCB - Dynamic, Stack - Dynamic | No | Yes |
+ * +-----|---------|--------|-----------------------------|-----------------------------------|------------------|-----------|
+ * | 0 | 1 | 1 | xTaskCreate, | 1. TCB - Dynamic, Stack - Dynamic | Yes | Yes |
+ * | | | | xTaskCreateStatic | 2. TCB - Static, Stack - Static | | |
+ * +-----|---------|--------|-----------------------------|-----------------------------------|------------------|-----------|
+ * | 1 | 0 | 1 | xTaskCreateStatic, | TCB - Static, Stack - Static | No | No |
+ * | | | | xTaskCreateRestrictedStatic | | | |
+ * +-----|---------|--------|-----------------------------|-----------------------------------|------------------|-----------|
+ * | 1 | 1 | 0 | xTaskCreate, | 1. TCB - Dynamic, Stack - Dynamic | Yes | Yes |
+ * | | | | xTaskCreateRestricted | 2. TCB - Dynamic, Stack - Static | | |
+ * +-----|---------|--------|-----------------------------|-----------------------------------|------------------|-----------|
+ * | 1 | 1 | 1 | xTaskCreate, | 1. TCB - Dynamic, Stack - Dynamic | Yes | Yes |
+ * | | | | xTaskCreateStatic, | 2. TCB - Dynamic, Stack - Static | | |
+ * | | | | xTaskCreateRestricted, | 3. TCB - Static, Stack - Static | | |
+ * | | | | xTaskCreateRestrictedStatic | | | |
+ * +-----+---------+--------+-----------------------------+-----------------------------------+------------------+-----------+
+ */
+#define tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE ( ( ( portUSING_MPU_WRAPPERS == 0 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 1 ) ) || \
+ ( ( portUSING_MPU_WRAPPERS == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) ) )
+
+/*
+ * In line with software engineering best practice, FreeRTOS implements a strict
+ * data hiding policy, so the real structures used by FreeRTOS to maintain the
+ * state of tasks, queues, semaphores, etc. are not accessible to the application
+ * code. However, if the application writer wants to statically allocate such
+ * an object then the size of the object needs to be know. Dummy structures
+ * that are guaranteed to have the same size and alignment requirements of the
+ * real objects are used for this purpose. The dummy list and list item
+ * structures below are used for inclusion in such a dummy structure.
+ */
+struct xSTATIC_LIST_ITEM
+{
+ #if( configUSE_LIST_DATA_INTEGRITY_CHECK_BYTES == 1 )
+ TickType_t xDummy1;
+ #endif
+ TickType_t xDummy2;
+ void *pvDummy3[ 4 ];
+ #if( configUSE_LIST_DATA_INTEGRITY_CHECK_BYTES == 1 )
+ TickType_t xDummy4;
+ #endif
+};
+typedef struct xSTATIC_LIST_ITEM StaticListItem_t;
+
+/* See the comments above the struct xSTATIC_LIST_ITEM definition. */
+struct xSTATIC_MINI_LIST_ITEM
+{
+ #if( configUSE_LIST_DATA_INTEGRITY_CHECK_BYTES == 1 )
+ TickType_t xDummy1;
+ #endif
+ TickType_t xDummy2;
+ void *pvDummy3[ 2 ];
+};
+typedef struct xSTATIC_MINI_LIST_ITEM StaticMiniListItem_t;
+
+/* See the comments above the struct xSTATIC_LIST_ITEM definition. */
+typedef struct xSTATIC_LIST
+{
+ #if( configUSE_LIST_DATA_INTEGRITY_CHECK_BYTES == 1 )
+ TickType_t xDummy1;
+ #endif
+ UBaseType_t uxDummy2;
+ void *pvDummy3;
+ StaticMiniListItem_t xDummy4;
+ #if( configUSE_LIST_DATA_INTEGRITY_CHECK_BYTES == 1 )
+ TickType_t xDummy5;
+ #endif
+} StaticList_t;
+
+/*
+ * In line with software engineering best practice, especially when supplying a
+ * library that is likely to change in future versions, FreeRTOS implements a
+ * strict data hiding policy. This means the Task structure used internally by
+ * FreeRTOS is not accessible to application code. However, if the application
+ * writer wants to statically allocate the memory required to create a task then
+ * the size of the task object needs to be know. The StaticTask_t structure
+ * below is provided for this purpose. Its sizes and alignment requirements are
+ * guaranteed to match those of the genuine structure, no matter which
+ * architecture is being used, and no matter how the values in FreeRTOSConfig.h
+ * are set. Its contents are somewhat obfuscated in the hope users will
+ * recognise that it would be unwise to make direct use of the structure members.
+ */
+typedef struct xSTATIC_TCB
+{
+ void *pxDummy1;
+ #if ( portUSING_MPU_WRAPPERS == 1 )
+ xMPU_SETTINGS xDummy2;
+ #endif
+ StaticListItem_t xDummy3[ 2 ];
+ UBaseType_t uxDummy5;
+ void *pxDummy6;
+ uint8_t ucDummy7[ configMAX_TASK_NAME_LEN ];
+ #if ( ( portSTACK_GROWTH > 0 ) || ( configRECORD_STACK_HIGH_ADDRESS == 1 ) )
+ void *pxDummy8;
+ #endif
+ #if ( portCRITICAL_NESTING_IN_TCB == 1 )
+ UBaseType_t uxDummy9;
+ #endif
+ #if ( configUSE_TRACE_FACILITY == 1 )
+ UBaseType_t uxDummy10[ 2 ];
+ #endif
+ #if ( configUSE_MUTEXES == 1 )
+ UBaseType_t uxDummy12[ 2 ];
+ #endif
+ #if ( configUSE_APPLICATION_TASK_TAG == 1 )
+ void *pxDummy14;
+ #endif
+ #if( configNUM_THREAD_LOCAL_STORAGE_POINTERS > 0 )
+ void *pvDummy15[ configNUM_THREAD_LOCAL_STORAGE_POINTERS ];
+ #endif
+ #if ( configGENERATE_RUN_TIME_STATS == 1 )
+ uint32_t ulDummy16;
+ #endif
+ #if ( configUSE_NEWLIB_REENTRANT == 1 )
+ struct _reent xDummy17;
+ #endif
+ #if ( configUSE_TASK_NOTIFICATIONS == 1 )
+ uint32_t ulDummy18;
+ uint8_t ucDummy19;
+ #endif
+ #if ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 )
+ uint8_t uxDummy20;
+ #endif
+
+ #if( INCLUDE_xTaskAbortDelay == 1 )
+ uint8_t ucDummy21;
+ #endif
+ #if ( configUSE_POSIX_ERRNO == 1 )
+ int iDummy22;
+ #endif
+} StaticTask_t;
+
+/*
+ * In line with software engineering best practice, especially when supplying a
+ * library that is likely to change in future versions, FreeRTOS implements a
+ * strict data hiding policy. This means the Queue structure used internally by
+ * FreeRTOS is not accessible to application code. However, if the application
+ * writer wants to statically allocate the memory required to create a queue
+ * then the size of the queue object needs to be know. The StaticQueue_t
+ * structure below is provided for this purpose. Its sizes and alignment
+ * requirements are guaranteed to match those of the genuine structure, no
+ * matter which architecture is being used, and no matter how the values in
+ * FreeRTOSConfig.h are set. Its contents are somewhat obfuscated in the hope
+ * users will recognise that it would be unwise to make direct use of the
+ * structure members.
+ */
+typedef struct xSTATIC_QUEUE
+{
+ void *pvDummy1[ 3 ];
+
+ union
+ {
+ void *pvDummy2;
+ UBaseType_t uxDummy2;
+ } u;
+
+ StaticList_t xDummy3[ 2 ];
+ UBaseType_t uxDummy4[ 3 ];
+ uint8_t ucDummy5[ 2 ];
+
+ #if( ( configSUPPORT_STATIC_ALLOCATION == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) )
+ uint8_t ucDummy6;
+ #endif
+
+ #if ( configUSE_QUEUE_SETS == 1 )
+ void *pvDummy7;
+ #endif
+
+ #if ( configUSE_TRACE_FACILITY == 1 )
+ UBaseType_t uxDummy8;
+ uint8_t ucDummy9;
+ #endif
+
+} StaticQueue_t;
+typedef StaticQueue_t StaticSemaphore_t;
+
+/*
+ * In line with software engineering best practice, especially when supplying a
+ * library that is likely to change in future versions, FreeRTOS implements a
+ * strict data hiding policy. This means the event group structure used
+ * internally by FreeRTOS is not accessible to application code. However, if
+ * the application writer wants to statically allocate the memory required to
+ * create an event group then the size of the event group object needs to be
+ * know. The StaticEventGroup_t structure below is provided for this purpose.
+ * Its sizes and alignment requirements are guaranteed to match those of the
+ * genuine structure, no matter which architecture is being used, and no matter
+ * how the values in FreeRTOSConfig.h are set. Its contents are somewhat
+ * obfuscated in the hope users will recognise that it would be unwise to make
+ * direct use of the structure members.
+ */
+typedef struct xSTATIC_EVENT_GROUP
+{
+ TickType_t xDummy1;
+ StaticList_t xDummy2;
+
+ #if( configUSE_TRACE_FACILITY == 1 )
+ UBaseType_t uxDummy3;
+ #endif
+
+ #if( ( configSUPPORT_STATIC_ALLOCATION == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) )
+ uint8_t ucDummy4;
+ #endif
+
+} StaticEventGroup_t;
+
+/*
+ * In line with software engineering best practice, especially when supplying a
+ * library that is likely to change in future versions, FreeRTOS implements a
+ * strict data hiding policy. This means the software timer structure used
+ * internally by FreeRTOS is not accessible to application code. However, if
+ * the application writer wants to statically allocate the memory required to
+ * create a software timer then the size of the queue object needs to be know.
+ * The StaticTimer_t structure below is provided for this purpose. Its sizes
+ * and alignment requirements are guaranteed to match those of the genuine
+ * structure, no matter which architecture is being used, and no matter how the
+ * values in FreeRTOSConfig.h are set. Its contents are somewhat obfuscated in
+ * the hope users will recognise that it would be unwise to make direct use of
+ * the structure members.
+ */
+typedef struct xSTATIC_TIMER
+{
+ void *pvDummy1;
+ StaticListItem_t xDummy2;
+ TickType_t xDummy3;
+ void *pvDummy5;
+ TaskFunction_t pvDummy6;
+ #if( configUSE_TRACE_FACILITY == 1 )
+ UBaseType_t uxDummy7;
+ #endif
+ uint8_t ucDummy8;
+
+} StaticTimer_t;
+
+/*
+* In line with software engineering best practice, especially when supplying a
+* library that is likely to change in future versions, FreeRTOS implements a
+* strict data hiding policy. This means the stream buffer structure used
+* internally by FreeRTOS is not accessible to application code. However, if
+* the application writer wants to statically allocate the memory required to
+* create a stream buffer then the size of the stream buffer object needs to be
+* know. The StaticStreamBuffer_t structure below is provided for this purpose.
+* Its size and alignment requirements are guaranteed to match those of the
+* genuine structure, no matter which architecture is being used, and no matter
+* how the values in FreeRTOSConfig.h are set. Its contents are somewhat
+* obfuscated in the hope users will recognise that it would be unwise to make
+* direct use of the structure members.
+*/
+typedef struct xSTATIC_STREAM_BUFFER
+{
+ size_t uxDummy1[ 4 ];
+ void * pvDummy2[ 3 ];
+ uint8_t ucDummy3;
+ #if ( configUSE_TRACE_FACILITY == 1 )
+ UBaseType_t uxDummy4;
+ #endif
+} StaticStreamBuffer_t;
+
+/* Message buffers are built on stream buffers. */
+typedef StaticStreamBuffer_t StaticMessageBuffer_t;
+
#ifdef __cplusplus
}
#endif
diff --git a/src/FreeRTOS/Source/include/StackMacros.h b/src/FreeRTOS/Source/include/StackMacros.h index 1359090..a13143d 100644 --- a/src/FreeRTOS/Source/include/StackMacros.h +++ b/src/FreeRTOS/Source/include/StackMacros.h @@ -1,75 +1,37 @@ /*
- FreeRTOS V8.2.3 - Copyright (C) 2015 Real Time Engineers Ltd.
- All rights reserved
-
- VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
-
- This file is part of the FreeRTOS distribution.
-
- FreeRTOS is free software; you can redistribute it and/or modify it under
- the terms of the GNU General Public License (version 2) as published by the
- Free Software Foundation >>>> AND MODIFIED BY <<<< the FreeRTOS exception.
-
- ***************************************************************************
- >>! NOTE: The modification to the GPL is included to allow you to !<<
- >>! distribute a combined work that includes FreeRTOS without being !<<
- >>! obliged to provide the source code for proprietary components !<<
- >>! outside of the FreeRTOS kernel. !<<
- ***************************************************************************
-
- FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
- WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
- FOR A PARTICULAR PURPOSE. Full license text is available on the following
- link: http://www.freertos.org/a00114.html
-
- ***************************************************************************
- * *
- * FreeRTOS provides completely free yet professionally developed, *
- * robust, strictly quality controlled, supported, and cross *
- * platform software that is more than just the market leader, it *
- * is the industry's de facto standard. *
- * *
- * Help yourself get started quickly while simultaneously helping *
- * to support the FreeRTOS project by purchasing a FreeRTOS *
- * tutorial book, reference manual, or both: *
- * http://www.FreeRTOS.org/Documentation *
- * *
- ***************************************************************************
-
- http://www.FreeRTOS.org/FAQHelp.html - Having a problem? Start by reading
- the FAQ page "My application does not run, what could be wrong?". Have you
- defined configASSERT()?
-
- http://www.FreeRTOS.org/support - In return for receiving this top quality
- embedded software for free we request you assist our global community by
- participating in the support forum.
-
- http://www.FreeRTOS.org/training - Investing in training allows your team to
- be as productive as possible as early as possible. Now you can receive
- FreeRTOS training directly from Richard Barry, CEO of Real Time Engineers
- Ltd, and the world's leading authority on the world's leading RTOS.
-
- http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
- including FreeRTOS+Trace - an indispensable productivity tool, a DOS
- compatible FAT file system, and our tiny thread aware UDP/IP stack.
-
- http://www.FreeRTOS.org/labs - Where new FreeRTOS products go to incubate.
- Come and try FreeRTOS+TCP, our new open source TCP/IP stack for FreeRTOS.
-
- http://www.OpenRTOS.com - Real Time Engineers ltd. license FreeRTOS to High
- Integrity Systems ltd. to sell under the OpenRTOS brand. Low cost OpenRTOS
- licenses offer ticketed support, indemnification and commercial middleware.
-
- http://www.SafeRTOS.com - High Integrity Systems also provide a safety
- engineered and independently SIL3 certified version for use in safety and
- mission critical applications that require provable dependability.
-
- 1 tab == 4 spaces!
-*/
+ * FreeRTOS Kernel V10.2.0
+ * Copyright (C) 2019 Amazon.com, Inc. or its affiliates. All Rights Reserved.
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy of
+ * this software and associated documentation files (the "Software"), to deal in
+ * the Software without restriction, including without limitation the rights to
+ * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
+ * the Software, and to permit persons to whom the Software is furnished to do so,
+ * subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
+ * FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
+ * COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
+ * IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
+ * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+ *
+ * http://www.FreeRTOS.org
+ * http://aws.amazon.com/freertos
+ *
+ * 1 tab == 4 spaces!
+ */
#ifndef STACK_MACROS_H
#define STACK_MACROS_H
+#ifndef _MSC_VER /* Visual Studio doesn't support #warning. */
+ #warning The name of this file has changed to stack_macros.h. Please update your code accordingly. This source file (which has the original name) will be removed in future released.
+#endif
+
/*
* Call the stack overflow hook function if the stack of the task being swapped
* out is currently overflowed, or looks like it might have overflowed in the
diff --git a/src/FreeRTOS/Source/include/croutine.h b/src/FreeRTOS/Source/include/croutine.h index dc655ae..6ec8423 100644 --- a/src/FreeRTOS/Source/include/croutine.h +++ b/src/FreeRTOS/Source/include/croutine.h @@ -1,71 +1,29 @@ /*
- FreeRTOS V8.2.3 - Copyright (C) 2015 Real Time Engineers Ltd.
- All rights reserved
-
- VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
-
- This file is part of the FreeRTOS distribution.
-
- FreeRTOS is free software; you can redistribute it and/or modify it under
- the terms of the GNU General Public License (version 2) as published by the
- Free Software Foundation >>>> AND MODIFIED BY <<<< the FreeRTOS exception.
-
- ***************************************************************************
- >>! NOTE: The modification to the GPL is included to allow you to !<<
- >>! distribute a combined work that includes FreeRTOS without being !<<
- >>! obliged to provide the source code for proprietary components !<<
- >>! outside of the FreeRTOS kernel. !<<
- ***************************************************************************
-
- FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
- WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
- FOR A PARTICULAR PURPOSE. Full license text is available on the following
- link: http://www.freertos.org/a00114.html
-
- ***************************************************************************
- * *
- * FreeRTOS provides completely free yet professionally developed, *
- * robust, strictly quality controlled, supported, and cross *
- * platform software that is more than just the market leader, it *
- * is the industry's de facto standard. *
- * *
- * Help yourself get started quickly while simultaneously helping *
- * to support the FreeRTOS project by purchasing a FreeRTOS *
- * tutorial book, reference manual, or both: *
- * http://www.FreeRTOS.org/Documentation *
- * *
- ***************************************************************************
-
- http://www.FreeRTOS.org/FAQHelp.html - Having a problem? Start by reading
- the FAQ page "My application does not run, what could be wrong?". Have you
- defined configASSERT()?
-
- http://www.FreeRTOS.org/support - In return for receiving this top quality
- embedded software for free we request you assist our global community by
- participating in the support forum.
-
- http://www.FreeRTOS.org/training - Investing in training allows your team to
- be as productive as possible as early as possible. Now you can receive
- FreeRTOS training directly from Richard Barry, CEO of Real Time Engineers
- Ltd, and the world's leading authority on the world's leading RTOS.
-
- http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
- including FreeRTOS+Trace - an indispensable productivity tool, a DOS
- compatible FAT file system, and our tiny thread aware UDP/IP stack.
-
- http://www.FreeRTOS.org/labs - Where new FreeRTOS products go to incubate.
- Come and try FreeRTOS+TCP, our new open source TCP/IP stack for FreeRTOS.
-
- http://www.OpenRTOS.com - Real Time Engineers ltd. license FreeRTOS to High
- Integrity Systems ltd. to sell under the OpenRTOS brand. Low cost OpenRTOS
- licenses offer ticketed support, indemnification and commercial middleware.
-
- http://www.SafeRTOS.com - High Integrity Systems also provide a safety
- engineered and independently SIL3 certified version for use in safety and
- mission critical applications that require provable dependability.
-
- 1 tab == 4 spaces!
-*/
+ * FreeRTOS Kernel V10.2.0
+ * Copyright (C) 2019 Amazon.com, Inc. or its affiliates. All Rights Reserved.
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy of
+ * this software and associated documentation files (the "Software"), to deal in
+ * the Software without restriction, including without limitation the rights to
+ * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
+ * the Software, and to permit persons to whom the Software is furnished to do so,
+ * subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
+ * FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
+ * COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
+ * IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
+ * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+ *
+ * http://www.FreeRTOS.org
+ * http://aws.amazon.com/freertos
+ *
+ * 1 tab == 4 spaces!
+ */
#ifndef CO_ROUTINE_H
#define CO_ROUTINE_H
diff --git a/src/FreeRTOS/Source/include/deprecated_definitions.h b/src/FreeRTOS/Source/include/deprecated_definitions.h index 0fad862..98a593b 100644 --- a/src/FreeRTOS/Source/include/deprecated_definitions.h +++ b/src/FreeRTOS/Source/include/deprecated_definitions.h @@ -1,71 +1,29 @@ /*
- FreeRTOS V8.2.3 - Copyright (C) 2015 Real Time Engineers Ltd.
- All rights reserved
-
- VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
-
- This file is part of the FreeRTOS distribution.
-
- FreeRTOS is free software; you can redistribute it and/or modify it under
- the terms of the GNU General Public License (version 2) as published by the
- Free Software Foundation >>>> AND MODIFIED BY <<<< the FreeRTOS exception.
-
- ***************************************************************************
- >>! NOTE: The modification to the GPL is included to allow you to !<<
- >>! distribute a combined work that includes FreeRTOS without being !<<
- >>! obliged to provide the source code for proprietary components !<<
- >>! outside of the FreeRTOS kernel. !<<
- ***************************************************************************
-
- FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
- WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
- FOR A PARTICULAR PURPOSE. Full license text is available on the following
- link: http://www.freertos.org/a00114.html
-
- ***************************************************************************
- * *
- * FreeRTOS provides completely free yet professionally developed, *
- * robust, strictly quality controlled, supported, and cross *
- * platform software that is more than just the market leader, it *
- * is the industry's de facto standard. *
- * *
- * Help yourself get started quickly while simultaneously helping *
- * to support the FreeRTOS project by purchasing a FreeRTOS *
- * tutorial book, reference manual, or both: *
- * http://www.FreeRTOS.org/Documentation *
- * *
- ***************************************************************************
-
- http://www.FreeRTOS.org/FAQHelp.html - Having a problem? Start by reading
- the FAQ page "My application does not run, what could be wrong?". Have you
- defined configASSERT()?
-
- http://www.FreeRTOS.org/support - In return for receiving this top quality
- embedded software for free we request you assist our global community by
- participating in the support forum.
-
- http://www.FreeRTOS.org/training - Investing in training allows your team to
- be as productive as possible as early as possible. Now you can receive
- FreeRTOS training directly from Richard Barry, CEO of Real Time Engineers
- Ltd, and the world's leading authority on the world's leading RTOS.
-
- http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
- including FreeRTOS+Trace - an indispensable productivity tool, a DOS
- compatible FAT file system, and our tiny thread aware UDP/IP stack.
-
- http://www.FreeRTOS.org/labs - Where new FreeRTOS products go to incubate.
- Come and try FreeRTOS+TCP, our new open source TCP/IP stack for FreeRTOS.
-
- http://www.OpenRTOS.com - Real Time Engineers ltd. license FreeRTOS to High
- Integrity Systems ltd. to sell under the OpenRTOS brand. Low cost OpenRTOS
- licenses offer ticketed support, indemnification and commercial middleware.
-
- http://www.SafeRTOS.com - High Integrity Systems also provide a safety
- engineered and independently SIL3 certified version for use in safety and
- mission critical applications that require provable dependability.
-
- 1 tab == 4 spaces!
-*/
+ * FreeRTOS Kernel V10.2.0
+ * Copyright (C) 2019 Amazon.com, Inc. or its affiliates. All Rights Reserved.
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy of
+ * this software and associated documentation files (the "Software"), to deal in
+ * the Software without restriction, including without limitation the rights to
+ * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
+ * the Software, and to permit persons to whom the Software is furnished to do so,
+ * subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
+ * FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
+ * COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
+ * IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
+ * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+ *
+ * http://www.FreeRTOS.org
+ * http://aws.amazon.com/freertos
+ *
+ * 1 tab == 4 spaces!
+ */
#ifndef DEPRECATED_DEFINITIONS_H
#define DEPRECATED_DEFINITIONS_H
diff --git a/src/FreeRTOS/Source/include/event_groups.h b/src/FreeRTOS/Source/include/event_groups.h index a381ed0..cfb4288 100644 --- a/src/FreeRTOS/Source/include/event_groups.h +++ b/src/FreeRTOS/Source/include/event_groups.h @@ -1,71 +1,29 @@ /*
- FreeRTOS V8.2.3 - Copyright (C) 2015 Real Time Engineers Ltd.
- All rights reserved
-
- VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
-
- This file is part of the FreeRTOS distribution.
-
- FreeRTOS is free software; you can redistribute it and/or modify it under
- the terms of the GNU General Public License (version 2) as published by the
- Free Software Foundation >>>> AND MODIFIED BY <<<< the FreeRTOS exception.
-
- ***************************************************************************
- >>! NOTE: The modification to the GPL is included to allow you to !<<
- >>! distribute a combined work that includes FreeRTOS without being !<<
- >>! obliged to provide the source code for proprietary components !<<
- >>! outside of the FreeRTOS kernel. !<<
- ***************************************************************************
-
- FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
- WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
- FOR A PARTICULAR PURPOSE. Full license text is available on the following
- link: http://www.freertos.org/a00114.html
-
- ***************************************************************************
- * *
- * FreeRTOS provides completely free yet professionally developed, *
- * robust, strictly quality controlled, supported, and cross *
- * platform software that is more than just the market leader, it *
- * is the industry's de facto standard. *
- * *
- * Help yourself get started quickly while simultaneously helping *
- * to support the FreeRTOS project by purchasing a FreeRTOS *
- * tutorial book, reference manual, or both: *
- * http://www.FreeRTOS.org/Documentation *
- * *
- ***************************************************************************
-
- http://www.FreeRTOS.org/FAQHelp.html - Having a problem? Start by reading
- the FAQ page "My application does not run, what could be wrong?". Have you
- defined configASSERT()?
-
- http://www.FreeRTOS.org/support - In return for receiving this top quality
- embedded software for free we request you assist our global community by
- participating in the support forum.
-
- http://www.FreeRTOS.org/training - Investing in training allows your team to
- be as productive as possible as early as possible. Now you can receive
- FreeRTOS training directly from Richard Barry, CEO of Real Time Engineers
- Ltd, and the world's leading authority on the world's leading RTOS.
-
- http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
- including FreeRTOS+Trace - an indispensable productivity tool, a DOS
- compatible FAT file system, and our tiny thread aware UDP/IP stack.
-
- http://www.FreeRTOS.org/labs - Where new FreeRTOS products go to incubate.
- Come and try FreeRTOS+TCP, our new open source TCP/IP stack for FreeRTOS.
-
- http://www.OpenRTOS.com - Real Time Engineers ltd. license FreeRTOS to High
- Integrity Systems ltd. to sell under the OpenRTOS brand. Low cost OpenRTOS
- licenses offer ticketed support, indemnification and commercial middleware.
-
- http://www.SafeRTOS.com - High Integrity Systems also provide a safety
- engineered and independently SIL3 certified version for use in safety and
- mission critical applications that require provable dependability.
-
- 1 tab == 4 spaces!
-*/
+ * FreeRTOS Kernel V10.2.0
+ * Copyright (C) 2019 Amazon.com, Inc. or its affiliates. All Rights Reserved.
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy of
+ * this software and associated documentation files (the "Software"), to deal in
+ * the Software without restriction, including without limitation the rights to
+ * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
+ * the Software, and to permit persons to whom the Software is furnished to do so,
+ * subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
+ * FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
+ * COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
+ * IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
+ * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+ *
+ * http://www.FreeRTOS.org
+ * http://aws.amazon.com/freertos
+ *
+ * 1 tab == 4 spaces!
+ */
#ifndef EVENT_GROUPS_H
#define EVENT_GROUPS_H
@@ -74,6 +32,7 @@ #error "include FreeRTOS.h" must appear in source files before "include event_groups.h"
#endif
+/* FreeRTOS includes. */
#include "timers.h"
#ifdef __cplusplus
@@ -119,12 +78,13 @@ extern "C" { * \defgroup EventGroupHandle_t EventGroupHandle_t
* \ingroup EventGroup
*/
-typedef void * EventGroupHandle_t;
+struct EventGroupDef_t;
+typedef struct EventGroupDef_t * EventGroupHandle_t;
-/*
+/*
* The type that holds event bits always matches TickType_t - therefore the
* number of bits it holds is set by configUSE_16_BIT_TICKS (16 bits if set to 1,
- * 32 bits if set to 0.
+ * 32 bits if set to 0.
*
* \defgroup EventBits_t EventBits_t
* \ingroup EventGroup
@@ -137,7 +97,17 @@ typedef TickType_t EventBits_t; EventGroupHandle_t xEventGroupCreate( void );
</pre>
*
- * Create a new event group. This function cannot be called from an interrupt.
+ * Create a new event group.
+ *
+ * Internally, within the FreeRTOS implementation, event groups use a [small]
+ * block of memory, in which the event group's structure is stored. If an event
+ * groups is created using xEventGropuCreate() then the required memory is
+ * automatically dynamically allocated inside the xEventGroupCreate() function.
+ * (see http://www.freertos.org/a00111.html). If an event group is created
+ * using xEventGropuCreateStatic() then the application writer must instead
+ * provide the memory that will get used by the event group.
+ * xEventGroupCreateStatic() therefore allows an event group to be created
+ * without using any dynamic memory allocation.
*
* Although event groups are not related to ticks, for internal implementation
* reasons the number of bits available for use in an event group is dependent
@@ -173,7 +143,62 @@ typedef TickType_t EventBits_t; * \defgroup xEventGroupCreate xEventGroupCreate
* \ingroup EventGroup
*/
-EventGroupHandle_t xEventGroupCreate( void ) PRIVILEGED_FUNCTION;
+#if( configSUPPORT_DYNAMIC_ALLOCATION == 1 )
+ EventGroupHandle_t xEventGroupCreate( void ) PRIVILEGED_FUNCTION;
+#endif
+
+/**
+ * event_groups.h
+ *<pre>
+ EventGroupHandle_t xEventGroupCreateStatic( EventGroupHandle_t * pxEventGroupBuffer );
+ </pre>
+ *
+ * Create a new event group.
+ *
+ * Internally, within the FreeRTOS implementation, event groups use a [small]
+ * block of memory, in which the event group's structure is stored. If an event
+ * groups is created using xEventGropuCreate() then the required memory is
+ * automatically dynamically allocated inside the xEventGroupCreate() function.
+ * (see http://www.freertos.org/a00111.html). If an event group is created
+ * using xEventGropuCreateStatic() then the application writer must instead
+ * provide the memory that will get used by the event group.
+ * xEventGroupCreateStatic() therefore allows an event group to be created
+ * without using any dynamic memory allocation.
+ *
+ * Although event groups are not related to ticks, for internal implementation
+ * reasons the number of bits available for use in an event group is dependent
+ * on the configUSE_16_BIT_TICKS setting in FreeRTOSConfig.h. If
+ * configUSE_16_BIT_TICKS is 1 then each event group contains 8 usable bits (bit
+ * 0 to bit 7). If configUSE_16_BIT_TICKS is set to 0 then each event group has
+ * 24 usable bits (bit 0 to bit 23). The EventBits_t type is used to store
+ * event bits within an event group.
+ *
+ * @param pxEventGroupBuffer pxEventGroupBuffer must point to a variable of type
+ * StaticEventGroup_t, which will be then be used to hold the event group's data
+ * structures, removing the need for the memory to be allocated dynamically.
+ *
+ * @return If the event group was created then a handle to the event group is
+ * returned. If pxEventGroupBuffer was NULL then NULL is returned.
+ *
+ * Example usage:
+ <pre>
+ // StaticEventGroup_t is a publicly accessible structure that has the same
+ // size and alignment requirements as the real event group structure. It is
+ // provided as a mechanism for applications to know the size of the event
+ // group (which is dependent on the architecture and configuration file
+ // settings) without breaking the strict data hiding policy by exposing the
+ // real event group internals. This StaticEventGroup_t variable is passed
+ // into the xSemaphoreCreateEventGroupStatic() function and is used to store
+ // the event group's data structures
+ StaticEventGroup_t xEventGroupBuffer;
+
+ // Create the event group without dynamically allocating any memory.
+ xEventGroup = xEventGroupCreateStatic( &xEventGroupBuffer );
+ </pre>
+ */
+#if( configSUPPORT_STATIC_ALLOCATION == 1 )
+ EventGroupHandle_t xEventGroupCreateStatic( StaticEventGroup_t *pxEventGroupBuffer ) PRIVILEGED_FUNCTION;
+#endif
/**
* event_groups.h
@@ -340,8 +365,8 @@ EventBits_t xEventGroupClearBits( EventGroupHandle_t xEventGroup, const EventBit * while interrupts are disabled, so protects event groups that are accessed
* from tasks by suspending the scheduler rather than disabling interrupts. As
* a result event groups cannot be accessed directly from an interrupt service
- * routine. Therefore xEventGroupClearBitsFromISR() sends a message to the
- * timer task to have the clear operation performed in the context of the timer
+ * routine. Therefore xEventGroupClearBitsFromISR() sends a message to the
+ * timer task to have the clear operation performed in the context of the timer
* task.
*
* @param xEventGroup The event group in which the bits are to be cleared.
@@ -350,8 +375,8 @@ EventBits_t xEventGroupClearBits( EventGroupHandle_t xEventGroup, const EventBit * For example, to clear bit 3 only, set uxBitsToClear to 0x08. To clear bit 3
* and bit 0 set uxBitsToClear to 0x09.
*
- * @return If the request to execute the function was posted successfully then
- * pdPASS is returned, otherwise pdFALSE is returned. pdFALSE will be returned
+ * @return If the request to execute the function was posted successfully then
+ * pdPASS is returned, otherwise pdFALSE is returned. pdFALSE will be returned
* if the timer service queue was full.
*
* Example usage:
@@ -376,11 +401,11 @@ EventBits_t xEventGroupClearBits( EventGroupHandle_t xEventGroup, const EventBit }
}
</pre>
- * \defgroup xEventGroupSetBitsFromISR xEventGroupSetBitsFromISR
+ * \defgroup xEventGroupClearBitsFromISR xEventGroupClearBitsFromISR
* \ingroup EventGroup
*/
#if( configUSE_TRACE_FACILITY == 1 )
- BaseType_t xEventGroupClearBitsFromISR( EventGroupHandle_t xEventGroup, const EventBits_t uxBitsToSet ) PRIVILEGED_FUNCTION;
+ BaseType_t xEventGroupClearBitsFromISR( EventGroupHandle_t xEventGroup, const EventBits_t uxBitsToClear ) PRIVILEGED_FUNCTION;
#else
#define xEventGroupClearBitsFromISR( xEventGroup, uxBitsToClear ) xTimerPendFunctionCallFromISR( vEventGroupClearBitsCallback, ( void * ) xEventGroup, ( uint32_t ) uxBitsToClear, NULL )
#endif
@@ -470,7 +495,7 @@ EventBits_t xEventGroupSetBits( EventGroupHandle_t xEventGroup, const EventBits_ * Setting bits in an event group is not a deterministic operation because there
* are an unknown number of tasks that may be waiting for the bit or bits being
* set. FreeRTOS does not allow nondeterministic operations to be performed in
- * interrupts or from critical sections. Therefore xEventGroupSetBitFromISR()
+ * interrupts or from critical sections. Therefore xEventGroupSetBitsFromISR()
* sends a message to the timer task to have the set operation performed in the
* context of the timer task - where a scheduler lock is used in place of a
* critical section.
@@ -491,8 +516,8 @@ EventBits_t xEventGroupSetBits( EventGroupHandle_t xEventGroup, const EventBits_ * *pxHigherPriorityTaskWoken must be initialised to pdFALSE. See the
* example code below.
*
- * @return If the request to execute the function was posted successfully then
- * pdPASS is returned, otherwise pdFALSE is returned. pdFALSE will be returned
+ * @return If the request to execute the function was posted successfully then
+ * pdPASS is returned, otherwise pdFALSE is returned. pdFALSE will be returned
* if the timer service queue was full.
*
* Example usage:
@@ -521,8 +546,8 @@ EventBits_t xEventGroupSetBits( EventGroupHandle_t xEventGroup, const EventBits_ if( xResult == pdPASS )
{
// If xHigherPriorityTaskWoken is now set to pdTRUE then a context
- // switch should be requested. The macro used is port specific and
- // will be either portYIELD_FROM_ISR() or portEND_SWITCHING_ISR() -
+ // switch should be requested. The macro used is port specific and
+ // will be either portYIELD_FROM_ISR() or portEND_SWITCHING_ISR() -
// refer to the documentation page for the port being used.
portYIELD_FROM_ISR( xHigherPriorityTaskWoken );
}
@@ -717,8 +742,10 @@ void vEventGroupDelete( EventGroupHandle_t xEventGroup ) PRIVILEGED_FUNCTION; void vEventGroupSetBitsCallback( void *pvEventGroup, const uint32_t ulBitsToSet ) PRIVILEGED_FUNCTION;
void vEventGroupClearBitsCallback( void *pvEventGroup, const uint32_t ulBitsToClear ) PRIVILEGED_FUNCTION;
+
#if (configUSE_TRACE_FACILITY == 1)
UBaseType_t uxEventGroupGetNumber( void* xEventGroup ) PRIVILEGED_FUNCTION;
+ void vEventGroupSetNumber( void* xEventGroup, UBaseType_t uxEventGroupNumber ) PRIVILEGED_FUNCTION;
#endif
#ifdef __cplusplus
diff --git a/src/FreeRTOS/Source/include/list.h b/src/FreeRTOS/Source/include/list.h index 75d391d..ad7d844 100644 --- a/src/FreeRTOS/Source/include/list.h +++ b/src/FreeRTOS/Source/include/list.h @@ -1,71 +1,29 @@ /*
- FreeRTOS V8.2.3 - Copyright (C) 2015 Real Time Engineers Ltd.
- All rights reserved
-
- VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
-
- This file is part of the FreeRTOS distribution.
-
- FreeRTOS is free software; you can redistribute it and/or modify it under
- the terms of the GNU General Public License (version 2) as published by the
- Free Software Foundation >>>> AND MODIFIED BY <<<< the FreeRTOS exception.
-
- ***************************************************************************
- >>! NOTE: The modification to the GPL is included to allow you to !<<
- >>! distribute a combined work that includes FreeRTOS without being !<<
- >>! obliged to provide the source code for proprietary components !<<
- >>! outside of the FreeRTOS kernel. !<<
- ***************************************************************************
-
- FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
- WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
- FOR A PARTICULAR PURPOSE. Full license text is available on the following
- link: http://www.freertos.org/a00114.html
-
- ***************************************************************************
- * *
- * FreeRTOS provides completely free yet professionally developed, *
- * robust, strictly quality controlled, supported, and cross *
- * platform software that is more than just the market leader, it *
- * is the industry's de facto standard. *
- * *
- * Help yourself get started quickly while simultaneously helping *
- * to support the FreeRTOS project by purchasing a FreeRTOS *
- * tutorial book, reference manual, or both: *
- * http://www.FreeRTOS.org/Documentation *
- * *
- ***************************************************************************
-
- http://www.FreeRTOS.org/FAQHelp.html - Having a problem? Start by reading
- the FAQ page "My application does not run, what could be wrong?". Have you
- defined configASSERT()?
-
- http://www.FreeRTOS.org/support - In return for receiving this top quality
- embedded software for free we request you assist our global community by
- participating in the support forum.
-
- http://www.FreeRTOS.org/training - Investing in training allows your team to
- be as productive as possible as early as possible. Now you can receive
- FreeRTOS training directly from Richard Barry, CEO of Real Time Engineers
- Ltd, and the world's leading authority on the world's leading RTOS.
-
- http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
- including FreeRTOS+Trace - an indispensable productivity tool, a DOS
- compatible FAT file system, and our tiny thread aware UDP/IP stack.
-
- http://www.FreeRTOS.org/labs - Where new FreeRTOS products go to incubate.
- Come and try FreeRTOS+TCP, our new open source TCP/IP stack for FreeRTOS.
-
- http://www.OpenRTOS.com - Real Time Engineers ltd. license FreeRTOS to High
- Integrity Systems ltd. to sell under the OpenRTOS brand. Low cost OpenRTOS
- licenses offer ticketed support, indemnification and commercial middleware.
-
- http://www.SafeRTOS.com - High Integrity Systems also provide a safety
- engineered and independently SIL3 certified version for use in safety and
- mission critical applications that require provable dependability.
-
- 1 tab == 4 spaces!
-*/
+ * FreeRTOS Kernel V10.2.0
+ * Copyright (C) 2019 Amazon.com, Inc. or its affiliates. All Rights Reserved.
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy of
+ * this software and associated documentation files (the "Software"), to deal in
+ * the Software without restriction, including without limitation the rights to
+ * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
+ * the Software, and to permit persons to whom the Software is furnished to do so,
+ * subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
+ * FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
+ * COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
+ * IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
+ * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+ *
+ * http://www.FreeRTOS.org
+ * http://aws.amazon.com/freertos
+ *
+ * 1 tab == 4 spaces!
+ */
/*
* This is the list implementation used by the scheduler. While it is tailored
@@ -178,6 +136,7 @@ use of FreeRTOS.*/ /*
* Definition of the only type of object that a list can contain.
*/
+struct xLIST;
struct xLIST_ITEM
{
listFIRST_LIST_ITEM_INTEGRITY_CHECK_VALUE /*< Set to a known value if configUSE_LIST_DATA_INTEGRITY_CHECK_BYTES is set to 1. */
@@ -185,7 +144,7 @@ struct xLIST_ITEM struct xLIST_ITEM * configLIST_VOLATILE pxNext; /*< Pointer to the next ListItem_t in the list. */
struct xLIST_ITEM * configLIST_VOLATILE pxPrevious; /*< Pointer to the previous ListItem_t in the list. */
void * pvOwner; /*< Pointer to the object (normally a TCB) that contains the list item. There is therefore a two way link between the object containing the list item and the list item itself. */
- void * configLIST_VOLATILE pvContainer; /*< Pointer to the list in which this list item is placed (if any). */
+ struct xLIST * configLIST_VOLATILE pxContainer; /*< Pointer to the list in which this list item is placed (if any). */
listSECOND_LIST_ITEM_INTEGRITY_CHECK_VALUE /*< Set to a known value if configUSE_LIST_DATA_INTEGRITY_CHECK_BYTES is set to 1. */
};
typedef struct xLIST_ITEM ListItem_t; /* For some reason lint wants this as two separate definitions. */
@@ -205,7 +164,7 @@ typedef struct xMINI_LIST_ITEM MiniListItem_t; typedef struct xLIST
{
listFIRST_LIST_INTEGRITY_CHECK_VALUE /*< Set to a known value if configUSE_LIST_DATA_INTEGRITY_CHECK_BYTES is set to 1. */
- configLIST_VOLATILE UBaseType_t uxNumberOfItems;
+ volatile UBaseType_t uxNumberOfItems;
ListItem_t * configLIST_VOLATILE pxIndex; /*< Used to walk through the list. Points to the last item returned by a call to listGET_OWNER_OF_NEXT_ENTRY (). */
MiniListItem_t xListEnd; /*< List item that contains the maximum possible item value meaning it is always at the end of the list and is therefore used as a marker. */
listSECOND_LIST_INTEGRITY_CHECK_VALUE /*< Set to a known value if configUSE_LIST_DATA_INTEGRITY_CHECK_BYTES is set to 1. */
@@ -288,7 +247,7 @@ typedef struct xLIST * \page listLIST_IS_EMPTY listLIST_IS_EMPTY
* \ingroup LinkedList
*/
-#define listLIST_IS_EMPTY( pxList ) ( ( BaseType_t ) ( ( pxList )->uxNumberOfItems == ( UBaseType_t ) 0 ) )
+#define listLIST_IS_EMPTY( pxList ) ( ( ( pxList )->uxNumberOfItems == ( UBaseType_t ) 0 ) ? pdTRUE : pdFALSE )
/*
* Access macro to return the number of items in the list.
@@ -356,7 +315,7 @@ List_t * const pxConstList = ( pxList ); \ * @param pxListItem The list item we want to know if is in the list.
* @return pdTRUE if the list item is in the list, otherwise pdFALSE.
*/
-#define listIS_CONTAINED_WITHIN( pxList, pxListItem ) ( ( BaseType_t ) ( ( pxListItem )->pvContainer == ( void * ) ( pxList ) ) )
+#define listIS_CONTAINED_WITHIN( pxList, pxListItem ) ( ( ( pxListItem )->pxContainer == ( pxList ) ) ? ( pdTRUE ) : ( pdFALSE ) )
/*
* Return the list a list item is contained within (referenced from).
@@ -364,7 +323,7 @@ List_t * const pxConstList = ( pxList ); \ * @param pxListItem The list item being queried.
* @return A pointer to the List_t object that references the pxListItem
*/
-#define listLIST_ITEM_CONTAINER( pxListItem ) ( ( pxListItem )->pvContainer )
+#define listLIST_ITEM_CONTAINER( pxListItem ) ( ( pxListItem )->pxContainer )
/*
* This provides a crude means of knowing if a list has been initialised, as
@@ -414,12 +373,12 @@ void vListInsert( List_t * const pxList, ListItem_t * const pxNewListItem ) PRIV * such that it will be the last item within the list returned by multiple
* calls to listGET_OWNER_OF_NEXT_ENTRY.
*
- * The list member pvIndex is used to walk through a list. Calling
- * listGET_OWNER_OF_NEXT_ENTRY increments pvIndex to the next item in the list.
+ * The list member pxIndex is used to walk through a list. Calling
+ * listGET_OWNER_OF_NEXT_ENTRY increments pxIndex to the next item in the list.
* Placing an item in a list using vListInsertEnd effectively places the item
- * in the list position pointed to by pvIndex. This means that every other
+ * in the list position pointed to by pxIndex. This means that every other
* item within the list will be returned by listGET_OWNER_OF_NEXT_ENTRY before
- * the pvIndex parameter again points to the item being inserted.
+ * the pxIndex parameter again points to the item being inserted.
*
* @param pxList The list into which the item is to be inserted.
*
diff --git a/src/FreeRTOS/Source/include/message_buffer.h b/src/FreeRTOS/Source/include/message_buffer.h new file mode 100644 index 0000000..64810c2 --- /dev/null +++ b/src/FreeRTOS/Source/include/message_buffer.h @@ -0,0 +1,798 @@ +/*
+ * FreeRTOS Kernel V10.2.0
+ * Copyright (C) 2019 Amazon.com, Inc. or its affiliates. All Rights Reserved.
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy of
+ * this software and associated documentation files (the "Software"), to deal in
+ * the Software without restriction, including without limitation the rights to
+ * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
+ * the Software, and to permit persons to whom the Software is furnished to do so,
+ * subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
+ * FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
+ * COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
+ * IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
+ * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+ *
+ * http://www.FreeRTOS.org
+ * http://aws.amazon.com/freertos
+ *
+ * 1 tab == 4 spaces!
+ */
+
+
+/*
+ * Message buffers build functionality on top of FreeRTOS stream buffers.
+ * Whereas stream buffers are used to send a continuous stream of data from one
+ * task or interrupt to another, message buffers are used to send variable
+ * length discrete messages from one task or interrupt to another. Their
+ * implementation is light weight, making them particularly suited for interrupt
+ * to task and core to core communication scenarios.
+ *
+ * ***NOTE***: Uniquely among FreeRTOS objects, the stream buffer
+ * implementation (so also the message buffer implementation, as message buffers
+ * are built on top of stream buffers) assumes there is only one task or
+ * interrupt that will write to the buffer (the writer), and only one task or
+ * interrupt that will read from the buffer (the reader). It is safe for the
+ * writer and reader to be different tasks or interrupts, but, unlike other
+ * FreeRTOS objects, it is not safe to have multiple different writers or
+ * multiple different readers. If there are to be multiple different writers
+ * then the application writer must place each call to a writing API function
+ * (such as xMessageBufferSend()) inside a critical section and set the send
+ * block time to 0. Likewise, if there are to be multiple different readers
+ * then the application writer must place each call to a reading API function
+ * (such as xMessageBufferRead()) inside a critical section and set the receive
+ * timeout to 0.
+ *
+ * Message buffers hold variable length messages. To enable that, when a
+ * message is written to the message buffer an additional sizeof( size_t ) bytes
+ * are also written to store the message's length (that happens internally, with
+ * the API function). sizeof( size_t ) is typically 4 bytes on a 32-bit
+ * architecture, so writing a 10 byte message to a message buffer on a 32-bit
+ * architecture will actually reduce the available space in the message buffer
+ * by 14 bytes (10 byte are used by the message, and 4 bytes to hold the length
+ * of the message).
+ */
+
+#ifndef FREERTOS_MESSAGE_BUFFER_H
+#define FREERTOS_MESSAGE_BUFFER_H
+
+/* Message buffers are built onto of stream buffers. */
+#include "stream_buffer.h"
+
+#if defined( __cplusplus )
+extern "C" {
+#endif
+
+/**
+ * Type by which message buffers are referenced. For example, a call to
+ * xMessageBufferCreate() returns an MessageBufferHandle_t variable that can
+ * then be used as a parameter to xMessageBufferSend(), xMessageBufferReceive(),
+ * etc.
+ */
+typedef void * MessageBufferHandle_t;
+
+/*-----------------------------------------------------------*/
+
+/**
+ * message_buffer.h
+ *
+<pre>
+MessageBufferHandle_t xMessageBufferCreate( size_t xBufferSizeBytes );
+</pre>
+ *
+ * Creates a new message buffer using dynamically allocated memory. See
+ * xMessageBufferCreateStatic() for a version that uses statically allocated
+ * memory (memory that is allocated at compile time).
+ *
+ * configSUPPORT_DYNAMIC_ALLOCATION must be set to 1 or left undefined in
+ * FreeRTOSConfig.h for xMessageBufferCreate() to be available.
+ *
+ * @param xBufferSizeBytes The total number of bytes (not messages) the message
+ * buffer will be able to hold at any one time. When a message is written to
+ * the message buffer an additional sizeof( size_t ) bytes are also written to
+ * store the message's length. sizeof( size_t ) is typically 4 bytes on a
+ * 32-bit architecture, so on most 32-bit architectures a 10 byte message will
+ * take up 14 bytes of message buffer space.
+ *
+ * @return If NULL is returned, then the message buffer cannot be created
+ * because there is insufficient heap memory available for FreeRTOS to allocate
+ * the message buffer data structures and storage area. A non-NULL value being
+ * returned indicates that the message buffer has been created successfully -
+ * the returned value should be stored as the handle to the created message
+ * buffer.
+ *
+ * Example use:
+<pre>
+
+void vAFunction( void )
+{
+MessageBufferHandle_t xMessageBuffer;
+const size_t xMessageBufferSizeBytes = 100;
+
+ // Create a message buffer that can hold 100 bytes. The memory used to hold
+ // both the message buffer structure and the messages themselves is allocated
+ // dynamically. Each message added to the buffer consumes an additional 4
+ // bytes which are used to hold the lengh of the message.
+ xMessageBuffer = xMessageBufferCreate( xMessageBufferSizeBytes );
+
+ if( xMessageBuffer == NULL )
+ {
+ // There was not enough heap memory space available to create the
+ // message buffer.
+ }
+ else
+ {
+ // The message buffer was created successfully and can now be used.
+ }
+
+</pre>
+ * \defgroup xMessageBufferCreate xMessageBufferCreate
+ * \ingroup MessageBufferManagement
+ */
+#define xMessageBufferCreate( xBufferSizeBytes ) ( MessageBufferHandle_t ) xStreamBufferGenericCreate( xBufferSizeBytes, ( size_t ) 0, pdTRUE )
+
+/**
+ * message_buffer.h
+ *
+<pre>
+MessageBufferHandle_t xMessageBufferCreateStatic( size_t xBufferSizeBytes,
+ uint8_t *pucMessageBufferStorageArea,
+ StaticMessageBuffer_t *pxStaticMessageBuffer );
+</pre>
+ * Creates a new message buffer using statically allocated memory. See
+ * xMessageBufferCreate() for a version that uses dynamically allocated memory.
+ *
+ * @param xBufferSizeBytes The size, in bytes, of the buffer pointed to by the
+ * pucMessageBufferStorageArea parameter. When a message is written to the
+ * message buffer an additional sizeof( size_t ) bytes are also written to store
+ * the message's length. sizeof( size_t ) is typically 4 bytes on a 32-bit
+ * architecture, so on most 32-bit architecture a 10 byte message will take up
+ * 14 bytes of message buffer space. The maximum number of bytes that can be
+ * stored in the message buffer is actually (xBufferSizeBytes - 1).
+ *
+ * @param pucMessageBufferStorageArea Must point to a uint8_t array that is at
+ * least xBufferSizeBytes + 1 big. This is the array to which messages are
+ * copied when they are written to the message buffer.
+ *
+ * @param pxStaticMessageBuffer Must point to a variable of type
+ * StaticMessageBuffer_t, which will be used to hold the message buffer's data
+ * structure.
+ *
+ * @return If the message buffer is created successfully then a handle to the
+ * created message buffer is returned. If either pucMessageBufferStorageArea or
+ * pxStaticmessageBuffer are NULL then NULL is returned.
+ *
+ * Example use:
+<pre>
+
+// Used to dimension the array used to hold the messages. The available space
+// will actually be one less than this, so 999.
+#define STORAGE_SIZE_BYTES 1000
+
+// Defines the memory that will actually hold the messages within the message
+// buffer.
+static uint8_t ucStorageBuffer[ STORAGE_SIZE_BYTES ];
+
+// The variable used to hold the message buffer structure.
+StaticMessageBuffer_t xMessageBufferStruct;
+
+void MyFunction( void )
+{
+MessageBufferHandle_t xMessageBuffer;
+
+ xMessageBuffer = xMessageBufferCreateStatic( sizeof( ucBufferStorage ),
+ ucBufferStorage,
+ &xMessageBufferStruct );
+
+ // As neither the pucMessageBufferStorageArea or pxStaticMessageBuffer
+ // parameters were NULL, xMessageBuffer will not be NULL, and can be used to
+ // reference the created message buffer in other message buffer API calls.
+
+ // Other code that uses the message buffer can go here.
+}
+
+</pre>
+ * \defgroup xMessageBufferCreateStatic xMessageBufferCreateStatic
+ * \ingroup MessageBufferManagement
+ */
+#define xMessageBufferCreateStatic( xBufferSizeBytes, pucMessageBufferStorageArea, pxStaticMessageBuffer ) ( MessageBufferHandle_t ) xStreamBufferGenericCreateStatic( xBufferSizeBytes, 0, pdTRUE, pucMessageBufferStorageArea, pxStaticMessageBuffer )
+
+/**
+ * message_buffer.h
+ *
+<pre>
+size_t xMessageBufferSend( MessageBufferHandle_t xMessageBuffer,
+ const void *pvTxData,
+ size_t xDataLengthBytes,
+ TickType_t xTicksToWait );
+<pre>
+ *
+ * Sends a discrete message to the message buffer. The message can be any
+ * length that fits within the buffer's free space, and is copied into the
+ * buffer.
+ *
+ * ***NOTE***: Uniquely among FreeRTOS objects, the stream buffer
+ * implementation (so also the message buffer implementation, as message buffers
+ * are built on top of stream buffers) assumes there is only one task or
+ * interrupt that will write to the buffer (the writer), and only one task or
+ * interrupt that will read from the buffer (the reader). It is safe for the
+ * writer and reader to be different tasks or interrupts, but, unlike other
+ * FreeRTOS objects, it is not safe to have multiple different writers or
+ * multiple different readers. If there are to be multiple different writers
+ * then the application writer must place each call to a writing API function
+ * (such as xMessageBufferSend()) inside a critical section and set the send
+ * block time to 0. Likewise, if there are to be multiple different readers
+ * then the application writer must place each call to a reading API function
+ * (such as xMessageBufferRead()) inside a critical section and set the receive
+ * block time to 0.
+ *
+ * Use xMessageBufferSend() to write to a message buffer from a task. Use
+ * xMessageBufferSendFromISR() to write to a message buffer from an interrupt
+ * service routine (ISR).
+ *
+ * @param xMessageBuffer The handle of the message buffer to which a message is
+ * being sent.
+ *
+ * @param pvTxData A pointer to the message that is to be copied into the
+ * message buffer.
+ *
+ * @param xDataLengthBytes The length of the message. That is, the number of
+ * bytes to copy from pvTxData into the message buffer. When a message is
+ * written to the message buffer an additional sizeof( size_t ) bytes are also
+ * written to store the message's length. sizeof( size_t ) is typically 4 bytes
+ * on a 32-bit architecture, so on most 32-bit architecture setting
+ * xDataLengthBytes to 20 will reduce the free space in the message buffer by 24
+ * bytes (20 bytes of message data and 4 bytes to hold the message length).
+ *
+ * @param xTicksToWait The maximum amount of time the calling task should remain
+ * in the Blocked state to wait for enough space to become available in the
+ * message buffer, should the message buffer have insufficient space when
+ * xMessageBufferSend() is called. The calling task will never block if
+ * xTicksToWait is zero. The block time is specified in tick periods, so the
+ * absolute time it represents is dependent on the tick frequency. The macro
+ * pdMS_TO_TICKS() can be used to convert a time specified in milliseconds into
+ * a time specified in ticks. Setting xTicksToWait to portMAX_DELAY will cause
+ * the task to wait indefinitely (without timing out), provided
+ * INCLUDE_vTaskSuspend is set to 1 in FreeRTOSConfig.h. Tasks do not use any
+ * CPU time when they are in the Blocked state.
+ *
+ * @return The number of bytes written to the message buffer. If the call to
+ * xMessageBufferSend() times out before there was enough space to write the
+ * message into the message buffer then zero is returned. If the call did not
+ * time out then xDataLengthBytes is returned.
+ *
+ * Example use:
+<pre>
+void vAFunction( MessageBufferHandle_t xMessageBuffer )
+{
+size_t xBytesSent;
+uint8_t ucArrayToSend[] = { 0, 1, 2, 3 };
+char *pcStringToSend = "String to send";
+const TickType_t x100ms = pdMS_TO_TICKS( 100 );
+
+ // Send an array to the message buffer, blocking for a maximum of 100ms to
+ // wait for enough space to be available in the message buffer.
+ xBytesSent = xMessageBufferSend( xMessageBuffer, ( void * ) ucArrayToSend, sizeof( ucArrayToSend ), x100ms );
+
+ if( xBytesSent != sizeof( ucArrayToSend ) )
+ {
+ // The call to xMessageBufferSend() times out before there was enough
+ // space in the buffer for the data to be written.
+ }
+
+ // Send the string to the message buffer. Return immediately if there is
+ // not enough space in the buffer.
+ xBytesSent = xMessageBufferSend( xMessageBuffer, ( void * ) pcStringToSend, strlen( pcStringToSend ), 0 );
+
+ if( xBytesSent != strlen( pcStringToSend ) )
+ {
+ // The string could not be added to the message buffer because there was
+ // not enough free space in the buffer.
+ }
+}
+</pre>
+ * \defgroup xMessageBufferSend xMessageBufferSend
+ * \ingroup MessageBufferManagement
+ */
+#define xMessageBufferSend( xMessageBuffer, pvTxData, xDataLengthBytes, xTicksToWait ) xStreamBufferSend( ( StreamBufferHandle_t ) xMessageBuffer, pvTxData, xDataLengthBytes, xTicksToWait )
+
+/**
+ * message_buffer.h
+ *
+<pre>
+size_t xMessageBufferSendFromISR( MessageBufferHandle_t xMessageBuffer,
+ const void *pvTxData,
+ size_t xDataLengthBytes,
+ BaseType_t *pxHigherPriorityTaskWoken );
+<pre>
+ *
+ * Interrupt safe version of the API function that sends a discrete message to
+ * the message buffer. The message can be any length that fits within the
+ * buffer's free space, and is copied into the buffer.
+ *
+ * ***NOTE***: Uniquely among FreeRTOS objects, the stream buffer
+ * implementation (so also the message buffer implementation, as message buffers
+ * are built on top of stream buffers) assumes there is only one task or
+ * interrupt that will write to the buffer (the writer), and only one task or
+ * interrupt that will read from the buffer (the reader). It is safe for the
+ * writer and reader to be different tasks or interrupts, but, unlike other
+ * FreeRTOS objects, it is not safe to have multiple different writers or
+ * multiple different readers. If there are to be multiple different writers
+ * then the application writer must place each call to a writing API function
+ * (such as xMessageBufferSend()) inside a critical section and set the send
+ * block time to 0. Likewise, if there are to be multiple different readers
+ * then the application writer must place each call to a reading API function
+ * (such as xMessageBufferRead()) inside a critical section and set the receive
+ * block time to 0.
+ *
+ * Use xMessageBufferSend() to write to a message buffer from a task. Use
+ * xMessageBufferSendFromISR() to write to a message buffer from an interrupt
+ * service routine (ISR).
+ *
+ * @param xMessageBuffer The handle of the message buffer to which a message is
+ * being sent.
+ *
+ * @param pvTxData A pointer to the message that is to be copied into the
+ * message buffer.
+ *
+ * @param xDataLengthBytes The length of the message. That is, the number of
+ * bytes to copy from pvTxData into the message buffer. When a message is
+ * written to the message buffer an additional sizeof( size_t ) bytes are also
+ * written to store the message's length. sizeof( size_t ) is typically 4 bytes
+ * on a 32-bit architecture, so on most 32-bit architecture setting
+ * xDataLengthBytes to 20 will reduce the free space in the message buffer by 24
+ * bytes (20 bytes of message data and 4 bytes to hold the message length).
+ *
+ * @param pxHigherPriorityTaskWoken It is possible that a message buffer will
+ * have a task blocked on it waiting for data. Calling
+ * xMessageBufferSendFromISR() can make data available, and so cause a task that
+ * was waiting for data to leave the Blocked state. If calling
+ * xMessageBufferSendFromISR() causes a task to leave the Blocked state, and the
+ * unblocked task has a priority higher than the currently executing task (the
+ * task that was interrupted), then, internally, xMessageBufferSendFromISR()
+ * will set *pxHigherPriorityTaskWoken to pdTRUE. If
+ * xMessageBufferSendFromISR() sets this value to pdTRUE, then normally a
+ * context switch should be performed before the interrupt is exited. This will
+ * ensure that the interrupt returns directly to the highest priority Ready
+ * state task. *pxHigherPriorityTaskWoken should be set to pdFALSE before it
+ * is passed into the function. See the code example below for an example.
+ *
+ * @return The number of bytes actually written to the message buffer. If the
+ * message buffer didn't have enough free space for the message to be stored
+ * then 0 is returned, otherwise xDataLengthBytes is returned.
+ *
+ * Example use:
+<pre>
+// A message buffer that has already been created.
+MessageBufferHandle_t xMessageBuffer;
+
+void vAnInterruptServiceRoutine( void )
+{
+size_t xBytesSent;
+char *pcStringToSend = "String to send";
+BaseType_t xHigherPriorityTaskWoken = pdFALSE; // Initialised to pdFALSE.
+
+ // Attempt to send the string to the message buffer.
+ xBytesSent = xMessageBufferSendFromISR( xMessageBuffer,
+ ( void * ) pcStringToSend,
+ strlen( pcStringToSend ),
+ &xHigherPriorityTaskWoken );
+
+ if( xBytesSent != strlen( pcStringToSend ) )
+ {
+ // The string could not be added to the message buffer because there was
+ // not enough free space in the buffer.
+ }
+
+ // If xHigherPriorityTaskWoken was set to pdTRUE inside
+ // xMessageBufferSendFromISR() then a task that has a priority above the
+ // priority of the currently executing task was unblocked and a context
+ // switch should be performed to ensure the ISR returns to the unblocked
+ // task. In most FreeRTOS ports this is done by simply passing
+ // xHigherPriorityTaskWoken into taskYIELD_FROM_ISR(), which will test the
+ // variables value, and perform the context switch if necessary. Check the
+ // documentation for the port in use for port specific instructions.
+ taskYIELD_FROM_ISR( xHigherPriorityTaskWoken );
+}
+</pre>
+ * \defgroup xMessageBufferSendFromISR xMessageBufferSendFromISR
+ * \ingroup MessageBufferManagement
+ */
+#define xMessageBufferSendFromISR( xMessageBuffer, pvTxData, xDataLengthBytes, pxHigherPriorityTaskWoken ) xStreamBufferSendFromISR( ( StreamBufferHandle_t ) xMessageBuffer, pvTxData, xDataLengthBytes, pxHigherPriorityTaskWoken )
+
+/**
+ * message_buffer.h
+ *
+<pre>
+size_t xMessageBufferReceive( MessageBufferHandle_t xMessageBuffer,
+ void *pvRxData,
+ size_t xBufferLengthBytes,
+ TickType_t xTicksToWait );
+</pre>
+ *
+ * Receives a discrete message from a message buffer. Messages can be of
+ * variable length and are copied out of the buffer.
+ *
+ * ***NOTE***: Uniquely among FreeRTOS objects, the stream buffer
+ * implementation (so also the message buffer implementation, as message buffers
+ * are built on top of stream buffers) assumes there is only one task or
+ * interrupt that will write to the buffer (the writer), and only one task or
+ * interrupt that will read from the buffer (the reader). It is safe for the
+ * writer and reader to be different tasks or interrupts, but, unlike other
+ * FreeRTOS objects, it is not safe to have multiple different writers or
+ * multiple different readers. If there are to be multiple different writers
+ * then the application writer must place each call to a writing API function
+ * (such as xMessageBufferSend()) inside a critical section and set the send
+ * block time to 0. Likewise, if there are to be multiple different readers
+ * then the application writer must place each call to a reading API function
+ * (such as xMessageBufferRead()) inside a critical section and set the receive
+ * block time to 0.
+ *
+ * Use xMessageBufferReceive() to read from a message buffer from a task. Use
+ * xMessageBufferReceiveFromISR() to read from a message buffer from an
+ * interrupt service routine (ISR).
+ *
+ * @param xMessageBuffer The handle of the message buffer from which a message
+ * is being received.
+ *
+ * @param pvRxData A pointer to the buffer into which the received message is
+ * to be copied.
+ *
+ * @param xBufferLengthBytes The length of the buffer pointed to by the pvRxData
+ * parameter. This sets the maximum length of the message that can be received.
+ * If xBufferLengthBytes is too small to hold the next message then the message
+ * will be left in the message buffer and 0 will be returned.
+ *
+ * @param xTicksToWait The maximum amount of time the task should remain in the
+ * Blocked state to wait for a message, should the message buffer be empty.
+ * xMessageBufferReceive() will return immediately if xTicksToWait is zero and
+ * the message buffer is empty. The block time is specified in tick periods, so
+ * the absolute time it represents is dependent on the tick frequency. The
+ * macro pdMS_TO_TICKS() can be used to convert a time specified in milliseconds
+ * into a time specified in ticks. Setting xTicksToWait to portMAX_DELAY will
+ * cause the task to wait indefinitely (without timing out), provided
+ * INCLUDE_vTaskSuspend is set to 1 in FreeRTOSConfig.h. Tasks do not use any
+ * CPU time when they are in the Blocked state.
+ *
+ * @return The length, in bytes, of the message read from the message buffer, if
+ * any. If xMessageBufferReceive() times out before a message became available
+ * then zero is returned. If the length of the message is greater than
+ * xBufferLengthBytes then the message will be left in the message buffer and
+ * zero is returned.
+ *
+ * Example use:
+<pre>
+void vAFunction( MessageBuffer_t xMessageBuffer )
+{
+uint8_t ucRxData[ 20 ];
+size_t xReceivedBytes;
+const TickType_t xBlockTime = pdMS_TO_TICKS( 20 );
+
+ // Receive the next message from the message buffer. Wait in the Blocked
+ // state (so not using any CPU processing time) for a maximum of 100ms for
+ // a message to become available.
+ xReceivedBytes = xMessageBufferReceive( xMessageBuffer,
+ ( void * ) ucRxData,
+ sizeof( ucRxData ),
+ xBlockTime );
+
+ if( xReceivedBytes > 0 )
+ {
+ // A ucRxData contains a message that is xReceivedBytes long. Process
+ // the message here....
+ }
+}
+</pre>
+ * \defgroup xMessageBufferReceive xMessageBufferReceive
+ * \ingroup MessageBufferManagement
+ */
+#define xMessageBufferReceive( xMessageBuffer, pvRxData, xBufferLengthBytes, xTicksToWait ) xStreamBufferReceive( ( StreamBufferHandle_t ) xMessageBuffer, pvRxData, xBufferLengthBytes, xTicksToWait )
+
+
+/**
+ * message_buffer.h
+ *
+<pre>
+size_t xMessageBufferReceiveFromISR( MessageBufferHandle_t xMessageBuffer,
+ void *pvRxData,
+ size_t xBufferLengthBytes,
+ BaseType_t *pxHigherPriorityTaskWoken );
+</pre>
+ *
+ * An interrupt safe version of the API function that receives a discrete
+ * message from a message buffer. Messages can be of variable length and are
+ * copied out of the buffer.
+ *
+ * ***NOTE***: Uniquely among FreeRTOS objects, the stream buffer
+ * implementation (so also the message buffer implementation, as message buffers
+ * are built on top of stream buffers) assumes there is only one task or
+ * interrupt that will write to the buffer (the writer), and only one task or
+ * interrupt that will read from the buffer (the reader). It is safe for the
+ * writer and reader to be different tasks or interrupts, but, unlike other
+ * FreeRTOS objects, it is not safe to have multiple different writers or
+ * multiple different readers. If there are to be multiple different writers
+ * then the application writer must place each call to a writing API function
+ * (such as xMessageBufferSend()) inside a critical section and set the send
+ * block time to 0. Likewise, if there are to be multiple different readers
+ * then the application writer must place each call to a reading API function
+ * (such as xMessageBufferRead()) inside a critical section and set the receive
+ * block time to 0.
+ *
+ * Use xMessageBufferReceive() to read from a message buffer from a task. Use
+ * xMessageBufferReceiveFromISR() to read from a message buffer from an
+ * interrupt service routine (ISR).
+ *
+ * @param xMessageBuffer The handle of the message buffer from which a message
+ * is being received.
+ *
+ * @param pvRxData A pointer to the buffer into which the received message is
+ * to be copied.
+ *
+ * @param xBufferLengthBytes The length of the buffer pointed to by the pvRxData
+ * parameter. This sets the maximum length of the message that can be received.
+ * If xBufferLengthBytes is too small to hold the next message then the message
+ * will be left in the message buffer and 0 will be returned.
+ *
+ * @param pxHigherPriorityTaskWoken It is possible that a message buffer will
+ * have a task blocked on it waiting for space to become available. Calling
+ * xMessageBufferReceiveFromISR() can make space available, and so cause a task
+ * that is waiting for space to leave the Blocked state. If calling
+ * xMessageBufferReceiveFromISR() causes a task to leave the Blocked state, and
+ * the unblocked task has a priority higher than the currently executing task
+ * (the task that was interrupted), then, internally,
+ * xMessageBufferReceiveFromISR() will set *pxHigherPriorityTaskWoken to pdTRUE.
+ * If xMessageBufferReceiveFromISR() sets this value to pdTRUE, then normally a
+ * context switch should be performed before the interrupt is exited. That will
+ * ensure the interrupt returns directly to the highest priority Ready state
+ * task. *pxHigherPriorityTaskWoken should be set to pdFALSE before it is
+ * passed into the function. See the code example below for an example.
+ *
+ * @return The length, in bytes, of the message read from the message buffer, if
+ * any.
+ *
+ * Example use:
+<pre>
+// A message buffer that has already been created.
+MessageBuffer_t xMessageBuffer;
+
+void vAnInterruptServiceRoutine( void )
+{
+uint8_t ucRxData[ 20 ];
+size_t xReceivedBytes;
+BaseType_t xHigherPriorityTaskWoken = pdFALSE; // Initialised to pdFALSE.
+
+ // Receive the next message from the message buffer.
+ xReceivedBytes = xMessageBufferReceiveFromISR( xMessageBuffer,
+ ( void * ) ucRxData,
+ sizeof( ucRxData ),
+ &xHigherPriorityTaskWoken );
+
+ if( xReceivedBytes > 0 )
+ {
+ // A ucRxData contains a message that is xReceivedBytes long. Process
+ // the message here....
+ }
+
+ // If xHigherPriorityTaskWoken was set to pdTRUE inside
+ // xMessageBufferReceiveFromISR() then a task that has a priority above the
+ // priority of the currently executing task was unblocked and a context
+ // switch should be performed to ensure the ISR returns to the unblocked
+ // task. In most FreeRTOS ports this is done by simply passing
+ // xHigherPriorityTaskWoken into taskYIELD_FROM_ISR(), which will test the
+ // variables value, and perform the context switch if necessary. Check the
+ // documentation for the port in use for port specific instructions.
+ taskYIELD_FROM_ISR( xHigherPriorityTaskWoken );
+}
+</pre>
+ * \defgroup xMessageBufferReceiveFromISR xMessageBufferReceiveFromISR
+ * \ingroup MessageBufferManagement
+ */
+#define xMessageBufferReceiveFromISR( xMessageBuffer, pvRxData, xBufferLengthBytes, pxHigherPriorityTaskWoken ) xStreamBufferReceiveFromISR( ( StreamBufferHandle_t ) xMessageBuffer, pvRxData, xBufferLengthBytes, pxHigherPriorityTaskWoken )
+
+/**
+ * message_buffer.h
+ *
+<pre>
+void vMessageBufferDelete( MessageBufferHandle_t xMessageBuffer );
+</pre>
+ *
+ * Deletes a message buffer that was previously created using a call to
+ * xMessageBufferCreate() or xMessageBufferCreateStatic(). If the message
+ * buffer was created using dynamic memory (that is, by xMessageBufferCreate()),
+ * then the allocated memory is freed.
+ *
+ * A message buffer handle must not be used after the message buffer has been
+ * deleted.
+ *
+ * @param xMessageBuffer The handle of the message buffer to be deleted.
+ *
+ */
+#define vMessageBufferDelete( xMessageBuffer ) vStreamBufferDelete( ( StreamBufferHandle_t ) xMessageBuffer )
+
+/**
+ * message_buffer.h
+<pre>
+BaseType_t xMessageBufferIsFull( MessageBufferHandle_t xMessageBuffer ) );
+</pre>
+ *
+ * Tests to see if a message buffer is full. A message buffer is full if it
+ * cannot accept any more messages, of any size, until space is made available
+ * by a message being removed from the message buffer.
+ *
+ * @param xMessageBuffer The handle of the message buffer being queried.
+ *
+ * @return If the message buffer referenced by xMessageBuffer is full then
+ * pdTRUE is returned. Otherwise pdFALSE is returned.
+ */
+#define xMessageBufferIsFull( xMessageBuffer ) xStreamBufferIsFull( ( StreamBufferHandle_t ) xMessageBuffer )
+
+/**
+ * message_buffer.h
+<pre>
+BaseType_t xMessageBufferIsEmpty( MessageBufferHandle_t xMessageBuffer ) );
+</pre>
+ *
+ * Tests to see if a message buffer is empty (does not contain any messages).
+ *
+ * @param xMessageBuffer The handle of the message buffer being queried.
+ *
+ * @return If the message buffer referenced by xMessageBuffer is empty then
+ * pdTRUE is returned. Otherwise pdFALSE is returned.
+ *
+ */
+#define xMessageBufferIsEmpty( xMessageBuffer ) xStreamBufferIsEmpty( ( StreamBufferHandle_t ) xMessageBuffer )
+
+/**
+ * message_buffer.h
+<pre>
+BaseType_t xMessageBufferReset( MessageBufferHandle_t xMessageBuffer );
+</pre>
+ *
+ * Resets a message buffer to its initial empty state, discarding any message it
+ * contained.
+ *
+ * A message buffer can only be reset if there are no tasks blocked on it.
+ *
+ * @param xMessageBuffer The handle of the message buffer being reset.
+ *
+ * @return If the message buffer was reset then pdPASS is returned. If the
+ * message buffer could not be reset because either there was a task blocked on
+ * the message queue to wait for space to become available, or to wait for a
+ * a message to be available, then pdFAIL is returned.
+ *
+ * \defgroup xMessageBufferReset xMessageBufferReset
+ * \ingroup MessageBufferManagement
+ */
+#define xMessageBufferReset( xMessageBuffer ) xStreamBufferReset( ( StreamBufferHandle_t ) xMessageBuffer )
+
+
+/**
+ * message_buffer.h
+<pre>
+size_t xMessageBufferSpaceAvailable( MessageBufferHandle_t xMessageBuffer ) );
+</pre>
+ * Returns the number of bytes of free space in the message buffer.
+ *
+ * @param xMessageBuffer The handle of the message buffer being queried.
+ *
+ * @return The number of bytes that can be written to the message buffer before
+ * the message buffer would be full. When a message is written to the message
+ * buffer an additional sizeof( size_t ) bytes are also written to store the
+ * message's length. sizeof( size_t ) is typically 4 bytes on a 32-bit
+ * architecture, so if xMessageBufferSpacesAvailable() returns 10, then the size
+ * of the largest message that can be written to the message buffer is 6 bytes.
+ *
+ * \defgroup xMessageBufferSpaceAvailable xMessageBufferSpaceAvailable
+ * \ingroup MessageBufferManagement
+ */
+#define xMessageBufferSpaceAvailable( xMessageBuffer ) xStreamBufferSpacesAvailable( ( StreamBufferHandle_t ) xMessageBuffer )
+
+/**
+ * message_buffer.h
+ <pre>
+ size_t xMessageBufferNextLengthBytes( MessageBufferHandle_t xMessageBuffer ) );
+ </pre>
+ * Returns the length (in bytes) of the next message in a message buffer.
+ * Useful if xMessageBufferReceive() returned 0 because the size of the buffer
+ * passed into xMessageBufferReceive() was too small to hold the next message.
+ *
+ * @param xMessageBuffer The handle of the message buffer being queried.
+ *
+ * @return The length (in bytes) of the next message in the message buffer, or 0
+ * if the message buffer is empty.
+ *
+ * \defgroup xMessageBufferNextLengthBytes xMessageBufferNextLengthBytes
+ * \ingroup MessageBufferManagement
+ */
+#define xMessageBufferNextLengthBytes( xMessageBuffer ) xStreamBufferNextMessageLengthBytes( ( StreamBufferHandle_t ) xMessageBuffer ) PRIVILEGED_FUNCTION;
+
+/**
+ * message_buffer.h
+ *
+<pre>
+BaseType_t xMessageBufferSendCompletedFromISR( MessageBufferHandle_t xStreamBuffer, BaseType_t *pxHigherPriorityTaskWoken );
+</pre>
+ *
+ * For advanced users only.
+ *
+ * The sbSEND_COMPLETED() macro is called from within the FreeRTOS APIs when
+ * data is sent to a message buffer or stream buffer. If there was a task that
+ * was blocked on the message or stream buffer waiting for data to arrive then
+ * the sbSEND_COMPLETED() macro sends a notification to the task to remove it
+ * from the Blocked state. xMessageBufferSendCompletedFromISR() does the same
+ * thing. It is provided to enable application writers to implement their own
+ * version of sbSEND_COMPLETED(), and MUST NOT BE USED AT ANY OTHER TIME.
+ *
+ * See the example implemented in FreeRTOS/Demo/Minimal/MessageBufferAMP.c for
+ * additional information.
+ *
+ * @param xStreamBuffer The handle of the stream buffer to which data was
+ * written.
+ *
+ * @param pxHigherPriorityTaskWoken *pxHigherPriorityTaskWoken should be
+ * initialised to pdFALSE before it is passed into
+ * xMessageBufferSendCompletedFromISR(). If calling
+ * xMessageBufferSendCompletedFromISR() removes a task from the Blocked state,
+ * and the task has a priority above the priority of the currently running task,
+ * then *pxHigherPriorityTaskWoken will get set to pdTRUE indicating that a
+ * context switch should be performed before exiting the ISR.
+ *
+ * @return If a task was removed from the Blocked state then pdTRUE is returned.
+ * Otherwise pdFALSE is returned.
+ *
+ * \defgroup xMessageBufferSendCompletedFromISR xMessageBufferSendCompletedFromISR
+ * \ingroup StreamBufferManagement
+ */
+#define xMessageBufferSendCompletedFromISR( xMessageBuffer, pxHigherPriorityTaskWoken ) xStreamBufferSendCompletedFromISR( ( StreamBufferHandle_t ) xMessageBuffer, pxHigherPriorityTaskWoken )
+
+/**
+ * message_buffer.h
+ *
+<pre>
+BaseType_t xMessageBufferReceiveCompletedFromISR( MessageBufferHandle_t xStreamBuffer, BaseType_t *pxHigherPriorityTaskWoken );
+</pre>
+ *
+ * For advanced users only.
+ *
+ * The sbRECEIVE_COMPLETED() macro is called from within the FreeRTOS APIs when
+ * data is read out of a message buffer or stream buffer. If there was a task
+ * that was blocked on the message or stream buffer waiting for data to arrive
+ * then the sbRECEIVE_COMPLETED() macro sends a notification to the task to
+ * remove it from the Blocked state. xMessageBufferReceiveCompletedFromISR()
+ * does the same thing. It is provided to enable application writers to
+ * implement their own version of sbRECEIVE_COMPLETED(), and MUST NOT BE USED AT
+ * ANY OTHER TIME.
+ *
+ * See the example implemented in FreeRTOS/Demo/Minimal/MessageBufferAMP.c for
+ * additional information.
+ *
+ * @param xStreamBuffer The handle of the stream buffer from which data was
+ * read.
+ *
+ * @param pxHigherPriorityTaskWoken *pxHigherPriorityTaskWoken should be
+ * initialised to pdFALSE before it is passed into
+ * xMessageBufferReceiveCompletedFromISR(). If calling
+ * xMessageBufferReceiveCompletedFromISR() removes a task from the Blocked state,
+ * and the task has a priority above the priority of the currently running task,
+ * then *pxHigherPriorityTaskWoken will get set to pdTRUE indicating that a
+ * context switch should be performed before exiting the ISR.
+ *
+ * @return If a task was removed from the Blocked state then pdTRUE is returned.
+ * Otherwise pdFALSE is returned.
+ *
+ * \defgroup xMessageBufferReceiveCompletedFromISR xMessageBufferReceiveCompletedFromISR
+ * \ingroup StreamBufferManagement
+ */
+#define xMessageBufferReceiveCompletedFromISR( xMessageBuffer, pxHigherPriorityTaskWoken ) xStreamBufferReceiveCompletedFromISR( ( StreamBufferHandle_t ) xMessageBuffer, pxHigherPriorityTaskWoken )
+
+#if defined( __cplusplus )
+} /* extern "C" */
+#endif
+
+#endif /* !defined( FREERTOS_MESSAGE_BUFFER_H ) */
diff --git a/src/FreeRTOS/Source/include/mpu_prototypes.h b/src/FreeRTOS/Source/include/mpu_prototypes.h new file mode 100644 index 0000000..4e3baf7 --- /dev/null +++ b/src/FreeRTOS/Source/include/mpu_prototypes.h @@ -0,0 +1,157 @@ +/*
+ * FreeRTOS Kernel V10.2.0
+ * Copyright (C) 2019 Amazon.com, Inc. or its affiliates. All Rights Reserved.
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy of
+ * this software and associated documentation files (the "Software"), to deal in
+ * the Software without restriction, including without limitation the rights to
+ * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
+ * the Software, and to permit persons to whom the Software is furnished to do so,
+ * subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
+ * FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
+ * COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
+ * IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
+ * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+ *
+ * http://www.FreeRTOS.org
+ * http://aws.amazon.com/freertos
+ *
+ * 1 tab == 4 spaces!
+ */
+
+/*
+ * When the MPU is used the standard (non MPU) API functions are mapped to
+ * equivalents that start "MPU_", the prototypes for which are defined in this
+ * header files. This will cause the application code to call the MPU_ version
+ * which wraps the non-MPU version with privilege promoting then demoting code,
+ * so the kernel code always runs will full privileges.
+ */
+
+
+#ifndef MPU_PROTOTYPES_H
+#define MPU_PROTOTYPES_H
+
+/* MPU versions of tasks.h API functions. */
+BaseType_t MPU_xTaskCreate( TaskFunction_t pxTaskCode, const char * const pcName, const uint16_t usStackDepth, void * const pvParameters, UBaseType_t uxPriority, TaskHandle_t * const pxCreatedTask ) FREERTOS_SYSTEM_CALL;
+TaskHandle_t MPU_xTaskCreateStatic( TaskFunction_t pxTaskCode, const char * const pcName, const uint32_t ulStackDepth, void * const pvParameters, UBaseType_t uxPriority, StackType_t * const puxStackBuffer, StaticTask_t * const pxTaskBuffer ) FREERTOS_SYSTEM_CALL;
+BaseType_t MPU_xTaskCreateRestricted( const TaskParameters_t * const pxTaskDefinition, TaskHandle_t *pxCreatedTask ) FREERTOS_SYSTEM_CALL;
+BaseType_t MPU_xTaskCreateRestrictedStatic( const TaskParameters_t * const pxTaskDefinition, TaskHandle_t *pxCreatedTask ) FREERTOS_SYSTEM_CALL;
+void MPU_vTaskAllocateMPURegions( TaskHandle_t xTask, const MemoryRegion_t * const pxRegions ) FREERTOS_SYSTEM_CALL;
+void MPU_vTaskDelete( TaskHandle_t xTaskToDelete ) FREERTOS_SYSTEM_CALL;
+void MPU_vTaskDelay( const TickType_t xTicksToDelay ) FREERTOS_SYSTEM_CALL;
+void MPU_vTaskDelayUntil( TickType_t * const pxPreviousWakeTime, const TickType_t xTimeIncrement ) FREERTOS_SYSTEM_CALL;
+BaseType_t MPU_xTaskAbortDelay( TaskHandle_t xTask ) FREERTOS_SYSTEM_CALL;
+UBaseType_t MPU_uxTaskPriorityGet( const TaskHandle_t xTask ) FREERTOS_SYSTEM_CALL;
+eTaskState MPU_eTaskGetState( TaskHandle_t xTask ) FREERTOS_SYSTEM_CALL;
+void MPU_vTaskGetInfo( TaskHandle_t xTask, TaskStatus_t *pxTaskStatus, BaseType_t xGetFreeStackSpace, eTaskState eState ) FREERTOS_SYSTEM_CALL;
+void MPU_vTaskPrioritySet( TaskHandle_t xTask, UBaseType_t uxNewPriority ) FREERTOS_SYSTEM_CALL;
+void MPU_vTaskSuspend( TaskHandle_t xTaskToSuspend ) FREERTOS_SYSTEM_CALL;
+void MPU_vTaskResume( TaskHandle_t xTaskToResume ) FREERTOS_SYSTEM_CALL;
+void MPU_vTaskStartScheduler( void ) FREERTOS_SYSTEM_CALL;
+void MPU_vTaskSuspendAll( void ) FREERTOS_SYSTEM_CALL;
+BaseType_t MPU_xTaskResumeAll( void ) FREERTOS_SYSTEM_CALL;
+TickType_t MPU_xTaskGetTickCount( void ) FREERTOS_SYSTEM_CALL;
+UBaseType_t MPU_uxTaskGetNumberOfTasks( void ) FREERTOS_SYSTEM_CALL;
+char * MPU_pcTaskGetName( TaskHandle_t xTaskToQuery ) FREERTOS_SYSTEM_CALL;
+TaskHandle_t MPU_xTaskGetHandle( const char *pcNameToQuery ) FREERTOS_SYSTEM_CALL;
+UBaseType_t MPU_uxTaskGetStackHighWaterMark( TaskHandle_t xTask ) FREERTOS_SYSTEM_CALL;
+configSTACK_DEPTH_TYPE MPU_uxTaskGetStackHighWaterMark2( TaskHandle_t xTask ) FREERTOS_SYSTEM_CALL;
+void MPU_vTaskSetApplicationTaskTag( TaskHandle_t xTask, TaskHookFunction_t pxHookFunction ) FREERTOS_SYSTEM_CALL;
+TaskHookFunction_t MPU_xTaskGetApplicationTaskTag( TaskHandle_t xTask ) FREERTOS_SYSTEM_CALL;
+void MPU_vTaskSetThreadLocalStoragePointer( TaskHandle_t xTaskToSet, BaseType_t xIndex, void *pvValue ) FREERTOS_SYSTEM_CALL;
+void * MPU_pvTaskGetThreadLocalStoragePointer( TaskHandle_t xTaskToQuery, BaseType_t xIndex ) FREERTOS_SYSTEM_CALL;
+BaseType_t MPU_xTaskCallApplicationTaskHook( TaskHandle_t xTask, void *pvParameter ) FREERTOS_SYSTEM_CALL;
+TaskHandle_t MPU_xTaskGetIdleTaskHandle( void ) FREERTOS_SYSTEM_CALL;
+UBaseType_t MPU_uxTaskGetSystemState( TaskStatus_t * const pxTaskStatusArray, const UBaseType_t uxArraySize, uint32_t * const pulTotalRunTime ) FREERTOS_SYSTEM_CALL;
+TickType_t MPU_xTaskGetIdleRunTimeCounter( void ) FREERTOS_SYSTEM_CALL;
+void MPU_vTaskList( char * pcWriteBuffer ) FREERTOS_SYSTEM_CALL;
+void MPU_vTaskGetRunTimeStats( char *pcWriteBuffer ) FREERTOS_SYSTEM_CALL;
+BaseType_t MPU_xTaskGenericNotify( TaskHandle_t xTaskToNotify, uint32_t ulValue, eNotifyAction eAction, uint32_t *pulPreviousNotificationValue ) FREERTOS_SYSTEM_CALL;
+BaseType_t MPU_xTaskNotifyWait( uint32_t ulBitsToClearOnEntry, uint32_t ulBitsToClearOnExit, uint32_t *pulNotificationValue, TickType_t xTicksToWait ) FREERTOS_SYSTEM_CALL;
+uint32_t MPU_ulTaskNotifyTake( BaseType_t xClearCountOnExit, TickType_t xTicksToWait ) FREERTOS_SYSTEM_CALL;
+BaseType_t MPU_xTaskNotifyStateClear( TaskHandle_t xTask ) FREERTOS_SYSTEM_CALL;
+BaseType_t MPU_xTaskIncrementTick( void ) FREERTOS_SYSTEM_CALL;
+TaskHandle_t MPU_xTaskGetCurrentTaskHandle( void ) FREERTOS_SYSTEM_CALL;
+void MPU_vTaskSetTimeOutState( TimeOut_t * const pxTimeOut ) FREERTOS_SYSTEM_CALL;
+BaseType_t MPU_xTaskCheckForTimeOut( TimeOut_t * const pxTimeOut, TickType_t * const pxTicksToWait ) FREERTOS_SYSTEM_CALL;
+void MPU_vTaskMissedYield( void ) FREERTOS_SYSTEM_CALL;
+BaseType_t MPU_xTaskGetSchedulerState( void ) FREERTOS_SYSTEM_CALL;
+
+/* MPU versions of queue.h API functions. */
+BaseType_t MPU_xQueueGenericSend( QueueHandle_t xQueue, const void * const pvItemToQueue, TickType_t xTicksToWait, const BaseType_t xCopyPosition ) FREERTOS_SYSTEM_CALL;
+BaseType_t MPU_xQueueReceive( QueueHandle_t xQueue, void * const pvBuffer, TickType_t xTicksToWait ) FREERTOS_SYSTEM_CALL;
+BaseType_t MPU_xQueuePeek( QueueHandle_t xQueue, void * const pvBuffer, TickType_t xTicksToWait ) FREERTOS_SYSTEM_CALL;
+BaseType_t MPU_xQueueSemaphoreTake( QueueHandle_t xQueue, TickType_t xTicksToWait ) FREERTOS_SYSTEM_CALL;
+UBaseType_t MPU_uxQueueMessagesWaiting( const QueueHandle_t xQueue ) FREERTOS_SYSTEM_CALL;
+UBaseType_t MPU_uxQueueSpacesAvailable( const QueueHandle_t xQueue ) FREERTOS_SYSTEM_CALL;
+void MPU_vQueueDelete( QueueHandle_t xQueue ) FREERTOS_SYSTEM_CALL;
+QueueHandle_t MPU_xQueueCreateMutex( const uint8_t ucQueueType ) FREERTOS_SYSTEM_CALL;
+QueueHandle_t MPU_xQueueCreateMutexStatic( const uint8_t ucQueueType, StaticQueue_t *pxStaticQueue ) FREERTOS_SYSTEM_CALL;
+QueueHandle_t MPU_xQueueCreateCountingSemaphore( const UBaseType_t uxMaxCount, const UBaseType_t uxInitialCount ) FREERTOS_SYSTEM_CALL;
+QueueHandle_t MPU_xQueueCreateCountingSemaphoreStatic( const UBaseType_t uxMaxCount, const UBaseType_t uxInitialCount, StaticQueue_t *pxStaticQueue ) FREERTOS_SYSTEM_CALL;
+TaskHandle_t MPU_xQueueGetMutexHolder( QueueHandle_t xSemaphore ) FREERTOS_SYSTEM_CALL;
+BaseType_t MPU_xQueueTakeMutexRecursive( QueueHandle_t xMutex, TickType_t xTicksToWait ) FREERTOS_SYSTEM_CALL;
+BaseType_t MPU_xQueueGiveMutexRecursive( QueueHandle_t pxMutex ) FREERTOS_SYSTEM_CALL;
+void MPU_vQueueAddToRegistry( QueueHandle_t xQueue, const char *pcName ) FREERTOS_SYSTEM_CALL;
+void MPU_vQueueUnregisterQueue( QueueHandle_t xQueue ) FREERTOS_SYSTEM_CALL;
+const char * MPU_pcQueueGetName( QueueHandle_t xQueue ) FREERTOS_SYSTEM_CALL;
+QueueHandle_t MPU_xQueueGenericCreate( const UBaseType_t uxQueueLength, const UBaseType_t uxItemSize, const uint8_t ucQueueType ) FREERTOS_SYSTEM_CALL;
+QueueHandle_t MPU_xQueueGenericCreateStatic( const UBaseType_t uxQueueLength, const UBaseType_t uxItemSize, uint8_t *pucQueueStorage, StaticQueue_t *pxStaticQueue, const uint8_t ucQueueType ) FREERTOS_SYSTEM_CALL;
+QueueSetHandle_t MPU_xQueueCreateSet( const UBaseType_t uxEventQueueLength ) FREERTOS_SYSTEM_CALL;
+BaseType_t MPU_xQueueAddToSet( QueueSetMemberHandle_t xQueueOrSemaphore, QueueSetHandle_t xQueueSet ) FREERTOS_SYSTEM_CALL;
+BaseType_t MPU_xQueueRemoveFromSet( QueueSetMemberHandle_t xQueueOrSemaphore, QueueSetHandle_t xQueueSet ) FREERTOS_SYSTEM_CALL;
+QueueSetMemberHandle_t MPU_xQueueSelectFromSet( QueueSetHandle_t xQueueSet, const TickType_t xTicksToWait ) FREERTOS_SYSTEM_CALL;
+BaseType_t MPU_xQueueGenericReset( QueueHandle_t xQueue, BaseType_t xNewQueue ) FREERTOS_SYSTEM_CALL;
+void MPU_vQueueSetQueueNumber( QueueHandle_t xQueue, UBaseType_t uxQueueNumber ) FREERTOS_SYSTEM_CALL;
+UBaseType_t MPU_uxQueueGetQueueNumber( QueueHandle_t xQueue ) FREERTOS_SYSTEM_CALL;
+uint8_t MPU_ucQueueGetQueueType( QueueHandle_t xQueue ) FREERTOS_SYSTEM_CALL;
+
+/* MPU versions of timers.h API functions. */
+TimerHandle_t MPU_xTimerCreate( const char * const pcTimerName, const TickType_t xTimerPeriodInTicks, const UBaseType_t uxAutoReload, void * const pvTimerID, TimerCallbackFunction_t pxCallbackFunction ) FREERTOS_SYSTEM_CALL;
+TimerHandle_t MPU_xTimerCreateStatic( const char * const pcTimerName, const TickType_t xTimerPeriodInTicks, const UBaseType_t uxAutoReload, void * const pvTimerID, TimerCallbackFunction_t pxCallbackFunction, StaticTimer_t *pxTimerBuffer ) FREERTOS_SYSTEM_CALL;
+void * MPU_pvTimerGetTimerID( const TimerHandle_t xTimer ) FREERTOS_SYSTEM_CALL;
+void MPU_vTimerSetTimerID( TimerHandle_t xTimer, void *pvNewID ) FREERTOS_SYSTEM_CALL;
+BaseType_t MPU_xTimerIsTimerActive( TimerHandle_t xTimer ) FREERTOS_SYSTEM_CALL;
+TaskHandle_t MPU_xTimerGetTimerDaemonTaskHandle( void ) FREERTOS_SYSTEM_CALL;
+BaseType_t MPU_xTimerPendFunctionCall( PendedFunction_t xFunctionToPend, void *pvParameter1, uint32_t ulParameter2, TickType_t xTicksToWait ) FREERTOS_SYSTEM_CALL;
+const char * MPU_pcTimerGetName( TimerHandle_t xTimer ) FREERTOS_SYSTEM_CALL;
+void MPU_vTimerSetReloadMode( TimerHandle_t xTimer, const UBaseType_t uxAutoReload ) FREERTOS_SYSTEM_CALL;
+TickType_t MPU_xTimerGetPeriod( TimerHandle_t xTimer ) FREERTOS_SYSTEM_CALL;
+TickType_t MPU_xTimerGetExpiryTime( TimerHandle_t xTimer ) FREERTOS_SYSTEM_CALL;
+BaseType_t MPU_xTimerCreateTimerTask( void ) FREERTOS_SYSTEM_CALL;
+BaseType_t MPU_xTimerGenericCommand( TimerHandle_t xTimer, const BaseType_t xCommandID, const TickType_t xOptionalValue, BaseType_t * const pxHigherPriorityTaskWoken, const TickType_t xTicksToWait ) FREERTOS_SYSTEM_CALL;
+
+/* MPU versions of event_group.h API functions. */
+EventGroupHandle_t MPU_xEventGroupCreate( void ) FREERTOS_SYSTEM_CALL;
+EventGroupHandle_t MPU_xEventGroupCreateStatic( StaticEventGroup_t *pxEventGroupBuffer ) FREERTOS_SYSTEM_CALL;
+EventBits_t MPU_xEventGroupWaitBits( EventGroupHandle_t xEventGroup, const EventBits_t uxBitsToWaitFor, const BaseType_t xClearOnExit, const BaseType_t xWaitForAllBits, TickType_t xTicksToWait ) FREERTOS_SYSTEM_CALL;
+EventBits_t MPU_xEventGroupClearBits( EventGroupHandle_t xEventGroup, const EventBits_t uxBitsToClear ) FREERTOS_SYSTEM_CALL;
+EventBits_t MPU_xEventGroupSetBits( EventGroupHandle_t xEventGroup, const EventBits_t uxBitsToSet ) FREERTOS_SYSTEM_CALL;
+EventBits_t MPU_xEventGroupSync( EventGroupHandle_t xEventGroup, const EventBits_t uxBitsToSet, const EventBits_t uxBitsToWaitFor, TickType_t xTicksToWait ) FREERTOS_SYSTEM_CALL;
+void MPU_vEventGroupDelete( EventGroupHandle_t xEventGroup ) FREERTOS_SYSTEM_CALL;
+UBaseType_t MPU_uxEventGroupGetNumber( void* xEventGroup ) FREERTOS_SYSTEM_CALL;
+
+/* MPU versions of message/stream_buffer.h API functions. */
+size_t MPU_xStreamBufferSend( StreamBufferHandle_t xStreamBuffer, const void *pvTxData, size_t xDataLengthBytes, TickType_t xTicksToWait ) FREERTOS_SYSTEM_CALL;
+size_t MPU_xStreamBufferReceive( StreamBufferHandle_t xStreamBuffer, void *pvRxData, size_t xBufferLengthBytes, TickType_t xTicksToWait ) FREERTOS_SYSTEM_CALL;
+size_t MPU_xStreamBufferNextMessageLengthBytes( StreamBufferHandle_t xStreamBuffer ) FREERTOS_SYSTEM_CALL;
+void MPU_vStreamBufferDelete( StreamBufferHandle_t xStreamBuffer ) FREERTOS_SYSTEM_CALL;
+BaseType_t MPU_xStreamBufferIsFull( StreamBufferHandle_t xStreamBuffer ) FREERTOS_SYSTEM_CALL;
+BaseType_t MPU_xStreamBufferIsEmpty( StreamBufferHandle_t xStreamBuffer ) FREERTOS_SYSTEM_CALL;
+BaseType_t MPU_xStreamBufferReset( StreamBufferHandle_t xStreamBuffer ) FREERTOS_SYSTEM_CALL;
+size_t MPU_xStreamBufferSpacesAvailable( StreamBufferHandle_t xStreamBuffer ) FREERTOS_SYSTEM_CALL;
+size_t MPU_xStreamBufferBytesAvailable( StreamBufferHandle_t xStreamBuffer ) FREERTOS_SYSTEM_CALL;
+BaseType_t MPU_xStreamBufferSetTriggerLevel( StreamBufferHandle_t xStreamBuffer, size_t xTriggerLevel ) FREERTOS_SYSTEM_CALL;
+StreamBufferHandle_t MPU_xStreamBufferGenericCreate( size_t xBufferSizeBytes, size_t xTriggerLevelBytes, BaseType_t xIsMessageBuffer ) FREERTOS_SYSTEM_CALL;
+StreamBufferHandle_t MPU_xStreamBufferGenericCreateStatic( size_t xBufferSizeBytes, size_t xTriggerLevelBytes, BaseType_t xIsMessageBuffer, uint8_t * const pucStreamBufferStorageArea, StaticStreamBuffer_t * const pxStaticStreamBuffer ) FREERTOS_SYSTEM_CALL;
+
+
+
+#endif /* MPU_PROTOTYPES_H */
+
diff --git a/src/FreeRTOS/Source/include/mpu_wrappers.h b/src/FreeRTOS/Source/include/mpu_wrappers.h index 5b2ad47..879bad4 100644 --- a/src/FreeRTOS/Source/include/mpu_wrappers.h +++ b/src/FreeRTOS/Source/include/mpu_wrappers.h @@ -1,71 +1,29 @@ /*
- FreeRTOS V8.2.3 - Copyright (C) 2015 Real Time Engineers Ltd.
- All rights reserved
-
- VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
-
- This file is part of the FreeRTOS distribution.
-
- FreeRTOS is free software; you can redistribute it and/or modify it under
- the terms of the GNU General Public License (version 2) as published by the
- Free Software Foundation >>>> AND MODIFIED BY <<<< the FreeRTOS exception.
-
- ***************************************************************************
- >>! NOTE: The modification to the GPL is included to allow you to !<<
- >>! distribute a combined work that includes FreeRTOS without being !<<
- >>! obliged to provide the source code for proprietary components !<<
- >>! outside of the FreeRTOS kernel. !<<
- ***************************************************************************
-
- FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
- WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
- FOR A PARTICULAR PURPOSE. Full license text is available on the following
- link: http://www.freertos.org/a00114.html
-
- ***************************************************************************
- * *
- * FreeRTOS provides completely free yet professionally developed, *
- * robust, strictly quality controlled, supported, and cross *
- * platform software that is more than just the market leader, it *
- * is the industry's de facto standard. *
- * *
- * Help yourself get started quickly while simultaneously helping *
- * to support the FreeRTOS project by purchasing a FreeRTOS *
- * tutorial book, reference manual, or both: *
- * http://www.FreeRTOS.org/Documentation *
- * *
- ***************************************************************************
-
- http://www.FreeRTOS.org/FAQHelp.html - Having a problem? Start by reading
- the FAQ page "My application does not run, what could be wrong?". Have you
- defined configASSERT()?
-
- http://www.FreeRTOS.org/support - In return for receiving this top quality
- embedded software for free we request you assist our global community by
- participating in the support forum.
-
- http://www.FreeRTOS.org/training - Investing in training allows your team to
- be as productive as possible as early as possible. Now you can receive
- FreeRTOS training directly from Richard Barry, CEO of Real Time Engineers
- Ltd, and the world's leading authority on the world's leading RTOS.
-
- http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
- including FreeRTOS+Trace - an indispensable productivity tool, a DOS
- compatible FAT file system, and our tiny thread aware UDP/IP stack.
-
- http://www.FreeRTOS.org/labs - Where new FreeRTOS products go to incubate.
- Come and try FreeRTOS+TCP, our new open source TCP/IP stack for FreeRTOS.
-
- http://www.OpenRTOS.com - Real Time Engineers ltd. license FreeRTOS to High
- Integrity Systems ltd. to sell under the OpenRTOS brand. Low cost OpenRTOS
- licenses offer ticketed support, indemnification and commercial middleware.
-
- http://www.SafeRTOS.com - High Integrity Systems also provide a safety
- engineered and independently SIL3 certified version for use in safety and
- mission critical applications that require provable dependability.
-
- 1 tab == 4 spaces!
-*/
+ * FreeRTOS Kernel V10.2.0
+ * Copyright (C) 2019 Amazon.com, Inc. or its affiliates. All Rights Reserved.
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy of
+ * this software and associated documentation files (the "Software"), to deal in
+ * the Software without restriction, including without limitation the rights to
+ * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
+ * the Software, and to permit persons to whom the Software is furnished to do so,
+ * subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
+ * FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
+ * COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
+ * IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
+ * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+ *
+ * http://www.FreeRTOS.org
+ * http://aws.amazon.com/freertos
+ *
+ * 1 tab == 4 spaces!
+ */
#ifndef MPU_WRAPPERS_H
#define MPU_WRAPPERS_H
@@ -79,88 +37,138 @@ only for ports that are using the MPU. */ those files. */
#ifndef MPU_WRAPPERS_INCLUDED_FROM_API_FILE
- #define xTaskGenericCreate MPU_xTaskGenericCreate
- #define vTaskAllocateMPURegions MPU_vTaskAllocateMPURegions
- #define vTaskDelete MPU_vTaskDelete
- #define vTaskDelayUntil MPU_vTaskDelayUntil
- #define vTaskDelay MPU_vTaskDelay
- #define uxTaskPriorityGet MPU_uxTaskPriorityGet
- #define vTaskPrioritySet MPU_vTaskPrioritySet
- #define eTaskGetState MPU_eTaskGetState
- #define vTaskSuspend MPU_vTaskSuspend
- #define vTaskResume MPU_vTaskResume
- #define vTaskSuspendAll MPU_vTaskSuspendAll
- #define xTaskResumeAll MPU_xTaskResumeAll
- #define xTaskGetTickCount MPU_xTaskGetTickCount
- #define uxTaskGetNumberOfTasks MPU_uxTaskGetNumberOfTasks
- #define vTaskList MPU_vTaskList
- #define vTaskGetRunTimeStats MPU_vTaskGetRunTimeStats
- #define vTaskSetApplicationTaskTag MPU_vTaskSetApplicationTaskTag
- #define xTaskGetApplicationTaskTag MPU_xTaskGetApplicationTaskTag
- #define xTaskCallApplicationTaskHook MPU_xTaskCallApplicationTaskHook
- #define uxTaskGetStackHighWaterMark MPU_uxTaskGetStackHighWaterMark
- #define xTaskGetCurrentTaskHandle MPU_xTaskGetCurrentTaskHandle
- #define xTaskGetSchedulerState MPU_xTaskGetSchedulerState
- #define xTaskGetIdleTaskHandle MPU_xTaskGetIdleTaskHandle
- #define uxTaskGetSystemState MPU_uxTaskGetSystemState
- #define xTaskGenericNotify MPU_xTaskGenericNotify
- #define xTaskNotifyWait MPU_xTaskNotifyWait
- #define ulTaskNotifyTake MPU_ulTaskNotifyTake
-
- #define xQueueGenericCreate MPU_xQueueGenericCreate
- #define xQueueCreateMutex MPU_xQueueCreateMutex
- #define xQueueGiveMutexRecursive MPU_xQueueGiveMutexRecursive
- #define xQueueTakeMutexRecursive MPU_xQueueTakeMutexRecursive
- #define xQueueCreateCountingSemaphore MPU_xQueueCreateCountingSemaphore
- #define xQueueGenericSend MPU_xQueueGenericSend
- #define xQueueAltGenericSend MPU_xQueueAltGenericSend
- #define xQueueAltGenericReceive MPU_xQueueAltGenericReceive
- #define xQueueGenericReceive MPU_xQueueGenericReceive
- #define uxQueueMessagesWaiting MPU_uxQueueMessagesWaiting
- #define vQueueDelete MPU_vQueueDelete
- #define xQueueGenericReset MPU_xQueueGenericReset
- #define xQueueCreateSet MPU_xQueueCreateSet
- #define xQueueSelectFromSet MPU_xQueueSelectFromSet
- #define xQueueAddToSet MPU_xQueueAddToSet
- #define xQueueRemoveFromSet MPU_xQueueRemoveFromSet
- #define xQueueGetMutexHolder MPU_xQueueGetMutexHolder
- #define xQueueGetMutexHolder MPU_xQueueGetMutexHolder
-
- #define pvPortMalloc MPU_pvPortMalloc
- #define vPortFree MPU_vPortFree
- #define xPortGetFreeHeapSize MPU_xPortGetFreeHeapSize
- #define vPortInitialiseBlocks MPU_vPortInitialiseBlocks
- #define xPortGetMinimumEverFreeHeapSize MPU_xPortGetMinimumEverFreeHeapSize
-
- #if configQUEUE_REGISTRY_SIZE > 0
- #define vQueueAddToRegistry MPU_vQueueAddToRegistry
- #define vQueueUnregisterQueue MPU_vQueueUnregisterQueue
+ /*
+ * Map standard (non MPU) API functions to equivalents that start
+ * "MPU_". This will cause the application code to call the MPU_
+ * version, which wraps the non-MPU version with privilege promoting
+ * then demoting code, so the kernel code always runs will full
+ * privileges.
+ */
+
+ /* Map standard tasks.h API functions to the MPU equivalents. */
+ #define xTaskCreate MPU_xTaskCreate
+ #define xTaskCreateStatic MPU_xTaskCreateStatic
+ #define xTaskCreateRestricted MPU_xTaskCreateRestricted
+ #define vTaskAllocateMPURegions MPU_vTaskAllocateMPURegions
+ #define vTaskDelete MPU_vTaskDelete
+ #define vTaskDelay MPU_vTaskDelay
+ #define vTaskDelayUntil MPU_vTaskDelayUntil
+ #define xTaskAbortDelay MPU_xTaskAbortDelay
+ #define uxTaskPriorityGet MPU_uxTaskPriorityGet
+ #define eTaskGetState MPU_eTaskGetState
+ #define vTaskGetInfo MPU_vTaskGetInfo
+ #define vTaskPrioritySet MPU_vTaskPrioritySet
+ #define vTaskSuspend MPU_vTaskSuspend
+ #define vTaskResume MPU_vTaskResume
+ #define vTaskSuspendAll MPU_vTaskSuspendAll
+ #define xTaskResumeAll MPU_xTaskResumeAll
+ #define xTaskGetTickCount MPU_xTaskGetTickCount
+ #define uxTaskGetNumberOfTasks MPU_uxTaskGetNumberOfTasks
+ #define pcTaskGetName MPU_pcTaskGetName
+ #define xTaskGetHandle MPU_xTaskGetHandle
+ #define uxTaskGetStackHighWaterMark MPU_uxTaskGetStackHighWaterMark
+ #define uxTaskGetStackHighWaterMark2 MPU_uxTaskGetStackHighWaterMark2
+ #define vTaskSetApplicationTaskTag MPU_vTaskSetApplicationTaskTag
+ #define xTaskGetApplicationTaskTag MPU_xTaskGetApplicationTaskTag
+ #define vTaskSetThreadLocalStoragePointer MPU_vTaskSetThreadLocalStoragePointer
+ #define pvTaskGetThreadLocalStoragePointer MPU_pvTaskGetThreadLocalStoragePointer
+ #define xTaskCallApplicationTaskHook MPU_xTaskCallApplicationTaskHook
+ #define xTaskGetIdleTaskHandle MPU_xTaskGetIdleTaskHandle
+ #define uxTaskGetSystemState MPU_uxTaskGetSystemState
+ #define vTaskList MPU_vTaskList
+ #define vTaskGetRunTimeStats MPU_vTaskGetRunTimeStats
+ #define xTaskGetIdleRunTimeCounter MPU_xTaskGetIdleRunTimeCounter
+ #define xTaskGenericNotify MPU_xTaskGenericNotify
+ #define xTaskNotifyWait MPU_xTaskNotifyWait
+ #define ulTaskNotifyTake MPU_ulTaskNotifyTake
+ #define xTaskNotifyStateClear MPU_xTaskNotifyStateClear
+
+ #define xTaskGetCurrentTaskHandle MPU_xTaskGetCurrentTaskHandle
+ #define vTaskSetTimeOutState MPU_vTaskSetTimeOutState
+ #define xTaskCheckForTimeOut MPU_xTaskCheckForTimeOut
+ #define xTaskGetSchedulerState MPU_xTaskGetSchedulerState
+
+ /* Map standard queue.h API functions to the MPU equivalents. */
+ #define xQueueGenericSend MPU_xQueueGenericSend
+ #define xQueueReceive MPU_xQueueReceive
+ #define xQueuePeek MPU_xQueuePeek
+ #define xQueueSemaphoreTake MPU_xQueueSemaphoreTake
+ #define uxQueueMessagesWaiting MPU_uxQueueMessagesWaiting
+ #define uxQueueSpacesAvailable MPU_uxQueueSpacesAvailable
+ #define vQueueDelete MPU_vQueueDelete
+ #define xQueueCreateMutex MPU_xQueueCreateMutex
+ #define xQueueCreateMutexStatic MPU_xQueueCreateMutexStatic
+ #define xQueueCreateCountingSemaphore MPU_xQueueCreateCountingSemaphore
+ #define xQueueCreateCountingSemaphoreStatic MPU_xQueueCreateCountingSemaphoreStatic
+ #define xQueueGetMutexHolder MPU_xQueueGetMutexHolder
+ #define xQueueTakeMutexRecursive MPU_xQueueTakeMutexRecursive
+ #define xQueueGiveMutexRecursive MPU_xQueueGiveMutexRecursive
+ #define xQueueGenericCreate MPU_xQueueGenericCreate
+ #define xQueueGenericCreateStatic MPU_xQueueGenericCreateStatic
+ #define xQueueCreateSet MPU_xQueueCreateSet
+ #define xQueueAddToSet MPU_xQueueAddToSet
+ #define xQueueRemoveFromSet MPU_xQueueRemoveFromSet
+ #define xQueueSelectFromSet MPU_xQueueSelectFromSet
+ #define xQueueGenericReset MPU_xQueueGenericReset
+
+ #if( configQUEUE_REGISTRY_SIZE > 0 )
+ #define vQueueAddToRegistry MPU_vQueueAddToRegistry
+ #define vQueueUnregisterQueue MPU_vQueueUnregisterQueue
+ #define pcQueueGetName MPU_pcQueueGetName
#endif
- #define xTimerCreate MPU_xTimerCreate
- #define pvTimerGetTimerID MPU_pvTimerGetTimerID
- #define vTimerSetTimerID MPU_vTimerSetTimerID
- #define xTimerIsTimerActive MPU_xTimerIsTimerActive
- #define xTimerGetTimerDaemonTaskHandle MPU_xTimerGetTimerDaemonTaskHandle
- #define xTimerPendFunctionCall MPU_xTimerPendFunctionCall
- #define pcTimerGetTimerName MPU_pcTimerGetTimerName
- #define xTimerGenericCommand MPU_xTimerGenericCommand
-
- #define xEventGroupCreate MPU_xEventGroupCreate
- #define xEventGroupWaitBits MPU_xEventGroupWaitBits
- #define xEventGroupClearBits MPU_xEventGroupClearBits
- #define xEventGroupSetBits MPU_xEventGroupSetBits
- #define xEventGroupSync MPU_xEventGroupSync
- #define vEventGroupDelete MPU_vEventGroupDelete
-
- /* Remove the privileged function macro. */
+ /* Map standard timer.h API functions to the MPU equivalents. */
+ #define xTimerCreate MPU_xTimerCreate
+ #define xTimerCreateStatic MPU_xTimerCreateStatic
+ #define pvTimerGetTimerID MPU_pvTimerGetTimerID
+ #define vTimerSetTimerID MPU_vTimerSetTimerID
+ #define xTimerIsTimerActive MPU_xTimerIsTimerActive
+ #define xTimerGetTimerDaemonTaskHandle MPU_xTimerGetTimerDaemonTaskHandle
+ #define xTimerPendFunctionCall MPU_xTimerPendFunctionCall
+ #define pcTimerGetName MPU_pcTimerGetName
+ #define vTimerSetReloadMode MPU_vTimerSetReloadMode
+ #define xTimerGetPeriod MPU_xTimerGetPeriod
+ #define xTimerGetExpiryTime MPU_xTimerGetExpiryTime
+ #define xTimerGenericCommand MPU_xTimerGenericCommand
+
+ /* Map standard event_group.h API functions to the MPU equivalents. */
+ #define xEventGroupCreate MPU_xEventGroupCreate
+ #define xEventGroupCreateStatic MPU_xEventGroupCreateStatic
+ #define xEventGroupWaitBits MPU_xEventGroupWaitBits
+ #define xEventGroupClearBits MPU_xEventGroupClearBits
+ #define xEventGroupSetBits MPU_xEventGroupSetBits
+ #define xEventGroupSync MPU_xEventGroupSync
+ #define vEventGroupDelete MPU_vEventGroupDelete
+
+ /* Map standard message/stream_buffer.h API functions to the MPU
+ equivalents. */
+ #define xStreamBufferSend MPU_xStreamBufferSend
+ #define xStreamBufferReceive MPU_xStreamBufferReceive
+ #define xStreamBufferNextMessageLengthBytes MPU_xStreamBufferNextMessageLengthBytes
+ #define vStreamBufferDelete MPU_vStreamBufferDelete
+ #define xStreamBufferIsFull MPU_xStreamBufferIsFull
+ #define xStreamBufferIsEmpty MPU_xStreamBufferIsEmpty
+ #define xStreamBufferReset MPU_xStreamBufferReset
+ #define xStreamBufferSpacesAvailable MPU_xStreamBufferSpacesAvailable
+ #define xStreamBufferBytesAvailable MPU_xStreamBufferBytesAvailable
+ #define xStreamBufferSetTriggerLevel MPU_xStreamBufferSetTriggerLevel
+ #define xStreamBufferGenericCreate MPU_xStreamBufferGenericCreate
+ #define xStreamBufferGenericCreateStatic MPU_xStreamBufferGenericCreateStatic
+
+
+ /* Remove the privileged function macro, but keep the PRIVILEGED_DATA
+ macro so applications can place data in privileged access sections
+ (useful when using statically allocated objects). */
#define PRIVILEGED_FUNCTION
+ #define PRIVILEGED_DATA __attribute__((section("privileged_data")))
+ #define FREERTOS_SYSTEM_CALL
#else /* MPU_WRAPPERS_INCLUDED_FROM_API_FILE */
/* Ensure API functions go in the privileged execution section. */
#define PRIVILEGED_FUNCTION __attribute__((section("privileged_functions")))
#define PRIVILEGED_DATA __attribute__((section("privileged_data")))
+ #define FREERTOS_SYSTEM_CALL __attribute__((section( "freertos_system_calls")))
#endif /* MPU_WRAPPERS_INCLUDED_FROM_API_FILE */
@@ -168,6 +176,7 @@ only for ports that are using the MPU. */ #define PRIVILEGED_FUNCTION
#define PRIVILEGED_DATA
+ #define FREERTOS_SYSTEM_CALL
#define portUSING_MPU_WRAPPERS 0
#endif /* portUSING_MPU_WRAPPERS */
diff --git a/src/FreeRTOS/Source/include/portable.h b/src/FreeRTOS/Source/include/portable.h index cd6a934..51ef6d6 100644 --- a/src/FreeRTOS/Source/include/portable.h +++ b/src/FreeRTOS/Source/include/portable.h @@ -1,71 +1,29 @@ /*
- FreeRTOS V8.2.3 - Copyright (C) 2015 Real Time Engineers Ltd.
- All rights reserved
-
- VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
-
- This file is part of the FreeRTOS distribution.
-
- FreeRTOS is free software; you can redistribute it and/or modify it under
- the terms of the GNU General Public License (version 2) as published by the
- Free Software Foundation >>>> AND MODIFIED BY <<<< the FreeRTOS exception.
-
- ***************************************************************************
- >>! NOTE: The modification to the GPL is included to allow you to !<<
- >>! distribute a combined work that includes FreeRTOS without being !<<
- >>! obliged to provide the source code for proprietary components !<<
- >>! outside of the FreeRTOS kernel. !<<
- ***************************************************************************
-
- FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
- WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
- FOR A PARTICULAR PURPOSE. Full license text is available on the following
- link: http://www.freertos.org/a00114.html
-
- ***************************************************************************
- * *
- * FreeRTOS provides completely free yet professionally developed, *
- * robust, strictly quality controlled, supported, and cross *
- * platform software that is more than just the market leader, it *
- * is the industry's de facto standard. *
- * *
- * Help yourself get started quickly while simultaneously helping *
- * to support the FreeRTOS project by purchasing a FreeRTOS *
- * tutorial book, reference manual, or both: *
- * http://www.FreeRTOS.org/Documentation *
- * *
- ***************************************************************************
-
- http://www.FreeRTOS.org/FAQHelp.html - Having a problem? Start by reading
- the FAQ page "My application does not run, what could be wrong?". Have you
- defined configASSERT()?
-
- http://www.FreeRTOS.org/support - In return for receiving this top quality
- embedded software for free we request you assist our global community by
- participating in the support forum.
-
- http://www.FreeRTOS.org/training - Investing in training allows your team to
- be as productive as possible as early as possible. Now you can receive
- FreeRTOS training directly from Richard Barry, CEO of Real Time Engineers
- Ltd, and the world's leading authority on the world's leading RTOS.
-
- http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
- including FreeRTOS+Trace - an indispensable productivity tool, a DOS
- compatible FAT file system, and our tiny thread aware UDP/IP stack.
-
- http://www.FreeRTOS.org/labs - Where new FreeRTOS products go to incubate.
- Come and try FreeRTOS+TCP, our new open source TCP/IP stack for FreeRTOS.
-
- http://www.OpenRTOS.com - Real Time Engineers ltd. license FreeRTOS to High
- Integrity Systems ltd. to sell under the OpenRTOS brand. Low cost OpenRTOS
- licenses offer ticketed support, indemnification and commercial middleware.
-
- http://www.SafeRTOS.com - High Integrity Systems also provide a safety
- engineered and independently SIL3 certified version for use in safety and
- mission critical applications that require provable dependability.
-
- 1 tab == 4 spaces!
-*/
+ * FreeRTOS Kernel V10.2.0
+ * Copyright (C) 2019 Amazon.com, Inc. or its affiliates. All Rights Reserved.
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy of
+ * this software and associated documentation files (the "Software"), to deal in
+ * the Software without restriction, including without limitation the rights to
+ * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
+ * the Software, and to permit persons to whom the Software is furnished to do so,
+ * subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
+ * FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
+ * COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
+ * IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
+ * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+ *
+ * http://www.FreeRTOS.org
+ * http://aws.amazon.com/freertos
+ *
+ * 1 tab == 4 spaces!
+ */
/*-----------------------------------------------------------
* Portable layer API. Each function must be defined for each port.
@@ -139,9 +97,17 @@ extern "C" { *
*/
#if( portUSING_MPU_WRAPPERS == 1 )
- StackType_t *pxPortInitialiseStack( StackType_t *pxTopOfStack, TaskFunction_t pxCode, void *pvParameters, BaseType_t xRunPrivileged ) PRIVILEGED_FUNCTION;
+ #if( portHAS_STACK_OVERFLOW_CHECKING == 1 )
+ StackType_t *pxPortInitialiseStack( StackType_t *pxTopOfStack, StackType_t *pxEndOfStack, TaskFunction_t pxCode, void *pvParameters, BaseType_t xRunPrivileged ) PRIVILEGED_FUNCTION;
+ #else
+ StackType_t *pxPortInitialiseStack( StackType_t *pxTopOfStack, TaskFunction_t pxCode, void *pvParameters, BaseType_t xRunPrivileged ) PRIVILEGED_FUNCTION;
+ #endif
#else
- StackType_t *pxPortInitialiseStack( StackType_t *pxTopOfStack, TaskFunction_t pxCode, void *pvParameters ) PRIVILEGED_FUNCTION;
+ #if( portHAS_STACK_OVERFLOW_CHECKING == 1 )
+ StackType_t *pxPortInitialiseStack( StackType_t *pxTopOfStack, StackType_t *pxEndOfStack, TaskFunction_t pxCode, void *pvParameters ) PRIVILEGED_FUNCTION;
+ #else
+ StackType_t *pxPortInitialiseStack( StackType_t *pxTopOfStack, TaskFunction_t pxCode, void *pvParameters ) PRIVILEGED_FUNCTION;
+ #endif
#endif
/* Used by heap_5.c. */
@@ -196,7 +162,7 @@ void vPortEndScheduler( void ) PRIVILEGED_FUNCTION; */
#if( portUSING_MPU_WRAPPERS == 1 )
struct xMEMORY_REGION;
- void vPortStoreTaskMPUSettings( xMPU_SETTINGS *xMPUSettings, const struct xMEMORY_REGION * const xRegions, StackType_t *pxBottomOfStack, uint16_t usStackDepth ) PRIVILEGED_FUNCTION;
+ void vPortStoreTaskMPUSettings( xMPU_SETTINGS *xMPUSettings, const struct xMEMORY_REGION * const xRegions, StackType_t *pxBottomOfStack, uint32_t ulStackDepth ) PRIVILEGED_FUNCTION;
#endif
#ifdef __cplusplus
diff --git a/src/FreeRTOS/Source/include/projdefs.h b/src/FreeRTOS/Source/include/projdefs.h index 956264b..ce62c44 100644 --- a/src/FreeRTOS/Source/include/projdefs.h +++ b/src/FreeRTOS/Source/include/projdefs.h @@ -1,71 +1,29 @@ /*
- FreeRTOS V8.2.3 - Copyright (C) 2015 Real Time Engineers Ltd.
- All rights reserved
-
- VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
-
- This file is part of the FreeRTOS distribution.
-
- FreeRTOS is free software; you can redistribute it and/or modify it under
- the terms of the GNU General Public License (version 2) as published by the
- Free Software Foundation >>>> AND MODIFIED BY <<<< the FreeRTOS exception.
-
- ***************************************************************************
- >>! NOTE: The modification to the GPL is included to allow you to !<<
- >>! distribute a combined work that includes FreeRTOS without being !<<
- >>! obliged to provide the source code for proprietary components !<<
- >>! outside of the FreeRTOS kernel. !<<
- ***************************************************************************
-
- FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
- WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
- FOR A PARTICULAR PURPOSE. Full license text is available on the following
- link: http://www.freertos.org/a00114.html
-
- ***************************************************************************
- * *
- * FreeRTOS provides completely free yet professionally developed, *
- * robust, strictly quality controlled, supported, and cross *
- * platform software that is more than just the market leader, it *
- * is the industry's de facto standard. *
- * *
- * Help yourself get started quickly while simultaneously helping *
- * to support the FreeRTOS project by purchasing a FreeRTOS *
- * tutorial book, reference manual, or both: *
- * http://www.FreeRTOS.org/Documentation *
- * *
- ***************************************************************************
-
- http://www.FreeRTOS.org/FAQHelp.html - Having a problem? Start by reading
- the FAQ page "My application does not run, what could be wrong?". Have you
- defined configASSERT()?
-
- http://www.FreeRTOS.org/support - In return for receiving this top quality
- embedded software for free we request you assist our global community by
- participating in the support forum.
-
- http://www.FreeRTOS.org/training - Investing in training allows your team to
- be as productive as possible as early as possible. Now you can receive
- FreeRTOS training directly from Richard Barry, CEO of Real Time Engineers
- Ltd, and the world's leading authority on the world's leading RTOS.
-
- http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
- including FreeRTOS+Trace - an indispensable productivity tool, a DOS
- compatible FAT file system, and our tiny thread aware UDP/IP stack.
-
- http://www.FreeRTOS.org/labs - Where new FreeRTOS products go to incubate.
- Come and try FreeRTOS+TCP, our new open source TCP/IP stack for FreeRTOS.
-
- http://www.OpenRTOS.com - Real Time Engineers ltd. license FreeRTOS to High
- Integrity Systems ltd. to sell under the OpenRTOS brand. Low cost OpenRTOS
- licenses offer ticketed support, indemnification and commercial middleware.
-
- http://www.SafeRTOS.com - High Integrity Systems also provide a safety
- engineered and independently SIL3 certified version for use in safety and
- mission critical applications that require provable dependability.
-
- 1 tab == 4 spaces!
-*/
+ * FreeRTOS Kernel V10.2.0
+ * Copyright (C) 2019 Amazon.com, Inc. or its affiliates. All Rights Reserved.
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy of
+ * this software and associated documentation files (the "Software"), to deal in
+ * the Software without restriction, including without limitation the rights to
+ * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
+ * the Software, and to permit persons to whom the Software is furnished to do so,
+ * subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
+ * FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
+ * COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
+ * IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
+ * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+ *
+ * http://www.FreeRTOS.org
+ * http://aws.amazon.com/freertos
+ *
+ * 1 tab == 4 spaces!
+ */
#ifndef PROJDEFS_H
#define PROJDEFS_H
@@ -76,8 +34,12 @@ */
typedef void (*TaskFunction_t)( void * );
-/* Converts a time in milliseconds to a time in ticks. */
-#define pdMS_TO_TICKS( xTimeInMs ) ( ( TickType_t ) ( ( ( TickType_t ) ( xTimeInMs ) * ( TickType_t ) configTICK_RATE_HZ ) / ( TickType_t ) 1000 ) )
+/* Converts a time in milliseconds to a time in ticks. This macro can be
+overridden by a macro of the same name defined in FreeRTOSConfig.h in case the
+definition here is not suitable for your application. */
+#ifndef pdMS_TO_TICKS
+ #define pdMS_TO_TICKS( xTimeInMs ) ( ( TickType_t ) ( ( ( TickType_t ) ( xTimeInMs ) * ( TickType_t ) configTICK_RATE_HZ ) / ( TickType_t ) 1000 ) )
+#endif
#define pdFALSE ( ( BaseType_t ) 0 )
#define pdTRUE ( ( BaseType_t ) 1 )
@@ -107,6 +69,7 @@ typedef void (*TaskFunction_t)( void * ); itself. */
#define pdFREERTOS_ERRNO_NONE 0 /* No errors */
#define pdFREERTOS_ERRNO_ENOENT 2 /* No such file or directory */
+#define pdFREERTOS_ERRNO_EINTR 4 /* Interrupted system call */
#define pdFREERTOS_ERRNO_EIO 5 /* I/O error */
#define pdFREERTOS_ERRNO_ENXIO 6 /* No such device or address */
#define pdFREERTOS_ERRNO_EBADF 9 /* Bad file number */
@@ -147,8 +110,13 @@ itself. */ /* The following endian values are used by FreeRTOS+ components, not FreeRTOS
itself. */
-#define pdFREERTOS_LITTLE_ENDIAN 0
-#define pdFREERTOS_BIG_ENDIAN 1
+#define pdFREERTOS_LITTLE_ENDIAN 0
+#define pdFREERTOS_BIG_ENDIAN 1
+
+/* Re-defining endian values for generic naming. */
+#define pdLITTLE_ENDIAN pdFREERTOS_LITTLE_ENDIAN
+#define pdBIG_ENDIAN pdFREERTOS_BIG_ENDIAN
+
#endif /* PROJDEFS_H */
diff --git a/src/FreeRTOS/Source/include/queue.h b/src/FreeRTOS/Source/include/queue.h index 2d7b5e9..5b1e35c 100644 --- a/src/FreeRTOS/Source/include/queue.h +++ b/src/FreeRTOS/Source/include/queue.h @@ -1,71 +1,29 @@ /*
- FreeRTOS V8.2.3 - Copyright (C) 2015 Real Time Engineers Ltd.
- All rights reserved
-
- VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
-
- This file is part of the FreeRTOS distribution.
-
- FreeRTOS is free software; you can redistribute it and/or modify it under
- the terms of the GNU General Public License (version 2) as published by the
- Free Software Foundation >>>> AND MODIFIED BY <<<< the FreeRTOS exception.
-
- ***************************************************************************
- >>! NOTE: The modification to the GPL is included to allow you to !<<
- >>! distribute a combined work that includes FreeRTOS without being !<<
- >>! obliged to provide the source code for proprietary components !<<
- >>! outside of the FreeRTOS kernel. !<<
- ***************************************************************************
-
- FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
- WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
- FOR A PARTICULAR PURPOSE. Full license text is available on the following
- link: http://www.freertos.org/a00114.html
-
- ***************************************************************************
- * *
- * FreeRTOS provides completely free yet professionally developed, *
- * robust, strictly quality controlled, supported, and cross *
- * platform software that is more than just the market leader, it *
- * is the industry's de facto standard. *
- * *
- * Help yourself get started quickly while simultaneously helping *
- * to support the FreeRTOS project by purchasing a FreeRTOS *
- * tutorial book, reference manual, or both: *
- * http://www.FreeRTOS.org/Documentation *
- * *
- ***************************************************************************
-
- http://www.FreeRTOS.org/FAQHelp.html - Having a problem? Start by reading
- the FAQ page "My application does not run, what could be wrong?". Have you
- defined configASSERT()?
-
- http://www.FreeRTOS.org/support - In return for receiving this top quality
- embedded software for free we request you assist our global community by
- participating in the support forum.
-
- http://www.FreeRTOS.org/training - Investing in training allows your team to
- be as productive as possible as early as possible. Now you can receive
- FreeRTOS training directly from Richard Barry, CEO of Real Time Engineers
- Ltd, and the world's leading authority on the world's leading RTOS.
-
- http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
- including FreeRTOS+Trace - an indispensable productivity tool, a DOS
- compatible FAT file system, and our tiny thread aware UDP/IP stack.
-
- http://www.FreeRTOS.org/labs - Where new FreeRTOS products go to incubate.
- Come and try FreeRTOS+TCP, our new open source TCP/IP stack for FreeRTOS.
-
- http://www.OpenRTOS.com - Real Time Engineers ltd. license FreeRTOS to High
- Integrity Systems ltd. to sell under the OpenRTOS brand. Low cost OpenRTOS
- licenses offer ticketed support, indemnification and commercial middleware.
-
- http://www.SafeRTOS.com - High Integrity Systems also provide a safety
- engineered and independently SIL3 certified version for use in safety and
- mission critical applications that require provable dependability.
-
- 1 tab == 4 spaces!
-*/
+ * FreeRTOS Kernel V10.2.0
+ * Copyright (C) 2019 Amazon.com, Inc. or its affiliates. All Rights Reserved.
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy of
+ * this software and associated documentation files (the "Software"), to deal in
+ * the Software without restriction, including without limitation the rights to
+ * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
+ * the Software, and to permit persons to whom the Software is furnished to do so,
+ * subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
+ * FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
+ * COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
+ * IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
+ * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+ *
+ * http://www.FreeRTOS.org
+ * http://aws.amazon.com/freertos
+ *
+ * 1 tab == 4 spaces!
+ */
#ifndef QUEUE_H
@@ -79,27 +37,29 @@ extern "C" {
#endif
+#include "task.h"
/**
* Type by which queues are referenced. For example, a call to xQueueCreate()
* returns an QueueHandle_t variable that can then be used as a parameter to
* xQueueSend(), xQueueReceive(), etc.
*/
-typedef void * QueueHandle_t;
+struct QueueDefinition; /* Using old naming convention so as not to break kernel aware debuggers. */
+typedef struct QueueDefinition * QueueHandle_t;
/**
* Type by which queue sets are referenced. For example, a call to
* xQueueCreateSet() returns an xQueueSet variable that can then be used as a
* parameter to xQueueSelectFromSet(), xQueueAddToSet(), etc.
*/
-typedef void * QueueSetHandle_t;
+typedef struct QueueDefinition * QueueSetHandle_t;
/**
* Queue sets can contain both queues and semaphores, so the
* QueueSetMemberHandle_t is defined as a type to be used where a parameter or
* return value can be either an QueueHandle_t or an SemaphoreHandle_t.
*/
-typedef void * QueueSetMemberHandle_t;
+typedef struct QueueDefinition * QueueSetMemberHandle_t;
/* For internal use only. */
#define queueSEND_TO_BACK ( ( BaseType_t ) 0 )
@@ -123,8 +83,20 @@ typedef void * QueueSetMemberHandle_t; );
* </pre>
*
- * Creates a new queue instance. This allocates the storage required by the
- * new queue and returns a handle for the queue.
+ * Creates a new queue instance, and returns a handle by which the new queue
+ * can be referenced.
+ *
+ * Internally, within the FreeRTOS implementation, queues use two blocks of
+ * memory. The first block is used to hold the queue's data structures. The
+ * second block is used to hold items placed into the queue. If a queue is
+ * created using xQueueCreate() then both blocks of memory are automatically
+ * dynamically allocated inside the xQueueCreate() function. (see
+ * http://www.freertos.org/a00111.html). If a queue is created using
+ * xQueueCreateStatic() then the application writer must provide the memory that
+ * will get used by the queue. xQueueCreateStatic() therefore allows a queue to
+ * be created without using any dynamic memory allocation.
+ *
+ * http://www.FreeRTOS.org/Embedded-RTOS-Queues.html
*
* @param uxQueueLength The maximum number of items that the queue can contain.
*
@@ -170,7 +142,95 @@ typedef void * QueueSetMemberHandle_t; * \defgroup xQueueCreate xQueueCreate
* \ingroup QueueManagement
*/
-#define xQueueCreate( uxQueueLength, uxItemSize ) xQueueGenericCreate( uxQueueLength, uxItemSize, queueQUEUE_TYPE_BASE )
+#if( configSUPPORT_DYNAMIC_ALLOCATION == 1 )
+ #define xQueueCreate( uxQueueLength, uxItemSize ) xQueueGenericCreate( ( uxQueueLength ), ( uxItemSize ), ( queueQUEUE_TYPE_BASE ) )
+#endif
+
+/**
+ * queue. h
+ * <pre>
+ QueueHandle_t xQueueCreateStatic(
+ UBaseType_t uxQueueLength,
+ UBaseType_t uxItemSize,
+ uint8_t *pucQueueStorageBuffer,
+ StaticQueue_t *pxQueueBuffer
+ );
+ * </pre>
+ *
+ * Creates a new queue instance, and returns a handle by which the new queue
+ * can be referenced.
+ *
+ * Internally, within the FreeRTOS implementation, queues use two blocks of
+ * memory. The first block is used to hold the queue's data structures. The
+ * second block is used to hold items placed into the queue. If a queue is
+ * created using xQueueCreate() then both blocks of memory are automatically
+ * dynamically allocated inside the xQueueCreate() function. (see
+ * http://www.freertos.org/a00111.html). If a queue is created using
+ * xQueueCreateStatic() then the application writer must provide the memory that
+ * will get used by the queue. xQueueCreateStatic() therefore allows a queue to
+ * be created without using any dynamic memory allocation.
+ *
+ * http://www.FreeRTOS.org/Embedded-RTOS-Queues.html
+ *
+ * @param uxQueueLength The maximum number of items that the queue can contain.
+ *
+ * @param uxItemSize The number of bytes each item in the queue will require.
+ * Items are queued by copy, not by reference, so this is the number of bytes
+ * that will be copied for each posted item. Each item on the queue must be
+ * the same size.
+ *
+ * @param pucQueueStorageBuffer If uxItemSize is not zero then
+ * pucQueueStorageBuffer must point to a uint8_t array that is at least large
+ * enough to hold the maximum number of items that can be in the queue at any
+ * one time - which is ( uxQueueLength * uxItemsSize ) bytes. If uxItemSize is
+ * zero then pucQueueStorageBuffer can be NULL.
+ *
+ * @param pxQueueBuffer Must point to a variable of type StaticQueue_t, which
+ * will be used to hold the queue's data structure.
+ *
+ * @return If the queue is created then a handle to the created queue is
+ * returned. If pxQueueBuffer is NULL then NULL is returned.
+ *
+ * Example usage:
+ <pre>
+ struct AMessage
+ {
+ char ucMessageID;
+ char ucData[ 20 ];
+ };
+
+ #define QUEUE_LENGTH 10
+ #define ITEM_SIZE sizeof( uint32_t )
+
+ // xQueueBuffer will hold the queue structure.
+ StaticQueue_t xQueueBuffer;
+
+ // ucQueueStorage will hold the items posted to the queue. Must be at least
+ // [(queue length) * ( queue item size)] bytes long.
+ uint8_t ucQueueStorage[ QUEUE_LENGTH * ITEM_SIZE ];
+
+ void vATask( void *pvParameters )
+ {
+ QueueHandle_t xQueue1;
+
+ // Create a queue capable of containing 10 uint32_t values.
+ xQueue1 = xQueueCreate( QUEUE_LENGTH, // The number of items the queue can hold.
+ ITEM_SIZE // The size of each item in the queue
+ &( ucQueueStorage[ 0 ] ), // The buffer that will hold the items in the queue.
+ &xQueueBuffer ); // The buffer that will hold the queue structure.
+
+ // The queue is guaranteed to be created successfully as no dynamic memory
+ // allocation is used. Therefore xQueue1 is now a handle to a valid queue.
+
+ // ... Rest of task code.
+ }
+ </pre>
+ * \defgroup xQueueCreateStatic xQueueCreateStatic
+ * \ingroup QueueManagement
+ */
+#if( configSUPPORT_STATIC_ALLOCATION == 1 )
+ #define xQueueCreateStatic( uxQueueLength, uxItemSize, pucQueueStorage, pxQueueBuffer ) xQueueGenericCreateStatic( ( uxQueueLength ), ( uxItemSize ), ( pucQueueStorage ), ( pxQueueBuffer ), ( queueQUEUE_TYPE_BASE ) )
+#endif /* configSUPPORT_STATIC_ALLOCATION */
/**
* queue. h
@@ -182,8 +242,6 @@ typedef void * QueueSetMemberHandle_t; );
* </pre>
*
- * This is a macro that calls xQueueGenericSend().
- *
* Post an item to the front of a queue. The item is queued by copy, not by
* reference. This function must not be called from an interrupt service
* routine. See xQueueSendFromISR () for an alternative which may be used
@@ -596,12 +654,10 @@ BaseType_t xQueueGenericSend( QueueHandle_t xQueue, const void * const pvItemToQ * <pre>
BaseType_t xQueuePeek(
QueueHandle_t xQueue,
- void *pvBuffer,
+ void * const pvBuffer,
TickType_t xTicksToWait
);</pre>
*
- * This is a macro that calls the xQueueGenericReceive() function.
- *
* Receive an item from a queue without removing the item from the queue.
* The item is received by copy so a buffer of adequate size must be
* provided. The number of bytes copied into the buffer was defined when
@@ -682,10 +738,10 @@ BaseType_t xQueueGenericSend( QueueHandle_t xQueue, const void * const pvItemToQ // ... Rest of task code.
}
</pre>
- * \defgroup xQueueReceive xQueueReceive
+ * \defgroup xQueuePeek xQueuePeek
* \ingroup QueueManagement
*/
-#define xQueuePeek( xQueue, pvBuffer, xTicksToWait ) xQueueGenericReceive( ( xQueue ), ( pvBuffer ), ( xTicksToWait ), pdTRUE )
+BaseType_t xQueuePeek( QueueHandle_t xQueue, void * const pvBuffer, TickType_t xTicksToWait ) PRIVILEGED_FUNCTION;
/**
* queue. h
@@ -729,8 +785,6 @@ BaseType_t xQueuePeekFromISR( QueueHandle_t xQueue, void * const pvBuffer ) PRIV TickType_t xTicksToWait
);</pre>
*
- * This is a macro that calls the xQueueGenericReceive() function.
- *
* Receive an item from a queue. The item is received by copy so a buffer of
* adequate size must be provided. The number of bytes copied into the buffer
* was defined when the queue was created.
@@ -811,106 +865,7 @@ BaseType_t xQueuePeekFromISR( QueueHandle_t xQueue, void * const pvBuffer ) PRIV * \defgroup xQueueReceive xQueueReceive
* \ingroup QueueManagement
*/
-#define xQueueReceive( xQueue, pvBuffer, xTicksToWait ) xQueueGenericReceive( ( xQueue ), ( pvBuffer ), ( xTicksToWait ), pdFALSE )
-
-
-/**
- * queue. h
- * <pre>
- BaseType_t xQueueGenericReceive(
- QueueHandle_t xQueue,
- void *pvBuffer,
- TickType_t xTicksToWait
- BaseType_t xJustPeek
- );</pre>
- *
- * It is preferred that the macro xQueueReceive() be used rather than calling
- * this function directly.
- *
- * Receive an item from a queue. The item is received by copy so a buffer of
- * adequate size must be provided. The number of bytes copied into the buffer
- * was defined when the queue was created.
- *
- * This function must not be used in an interrupt service routine. See
- * xQueueReceiveFromISR for an alternative that can.
- *
- * @param xQueue The handle to the queue from which the item is to be
- * received.
- *
- * @param pvBuffer Pointer to the buffer into which the received item will
- * be copied.
- *
- * @param xTicksToWait The maximum amount of time the task should block
- * waiting for an item to receive should the queue be empty at the time
- * of the call. The time is defined in tick periods so the constant
- * portTICK_PERIOD_MS should be used to convert to real time if this is required.
- * xQueueGenericReceive() will return immediately if the queue is empty and
- * xTicksToWait is 0.
- *
- * @param xJustPeek When set to true, the item received from the queue is not
- * actually removed from the queue - meaning a subsequent call to
- * xQueueReceive() will return the same item. When set to false, the item
- * being received from the queue is also removed from the queue.
- *
- * @return pdTRUE if an item was successfully received from the queue,
- * otherwise pdFALSE.
- *
- * Example usage:
- <pre>
- struct AMessage
- {
- char ucMessageID;
- char ucData[ 20 ];
- } xMessage;
-
- QueueHandle_t xQueue;
-
- // Task to create a queue and post a value.
- void vATask( void *pvParameters )
- {
- struct AMessage *pxMessage;
-
- // Create a queue capable of containing 10 pointers to AMessage structures.
- // These should be passed by pointer as they contain a lot of data.
- xQueue = xQueueCreate( 10, sizeof( struct AMessage * ) );
- if( xQueue == 0 )
- {
- // Failed to create the queue.
- }
-
- // ...
-
- // Send a pointer to a struct AMessage object. Don't block if the
- // queue is already full.
- pxMessage = & xMessage;
- xQueueSend( xQueue, ( void * ) &pxMessage, ( TickType_t ) 0 );
-
- // ... Rest of task code.
- }
-
- // Task to receive from the queue.
- void vADifferentTask( void *pvParameters )
- {
- struct AMessage *pxRxedMessage;
-
- if( xQueue != 0 )
- {
- // Receive a message on the created queue. Block for 10 ticks if a
- // message is not immediately available.
- if( xQueueGenericReceive( xQueue, &( pxRxedMessage ), ( TickType_t ) 10 ) )
- {
- // pcRxedMessage now points to the struct AMessage variable posted
- // by vATask.
- }
- }
-
- // ... Rest of task code.
- }
- </pre>
- * \defgroup xQueueReceive xQueueReceive
- * \ingroup QueueManagement
- */
-BaseType_t xQueueGenericReceive( QueueHandle_t xQueue, void * const pvBuffer, TickType_t xTicksToWait, const BaseType_t xJustPeek ) PRIVILEGED_FUNCTION;
+BaseType_t xQueueReceive( QueueHandle_t xQueue, void * const pvBuffer, TickType_t xTicksToWait ) PRIVILEGED_FUNCTION;
/**
* queue. h
@@ -1437,28 +1392,6 @@ BaseType_t xQueueIsQueueEmptyFromISR( const QueueHandle_t xQueue ) PRIVILEGED_FU BaseType_t xQueueIsQueueFullFromISR( const QueueHandle_t xQueue ) PRIVILEGED_FUNCTION;
UBaseType_t uxQueueMessagesWaitingFromISR( const QueueHandle_t xQueue ) PRIVILEGED_FUNCTION;
-
-/*
- * xQueueAltGenericSend() is an alternative version of xQueueGenericSend().
- * Likewise xQueueAltGenericReceive() is an alternative version of
- * xQueueGenericReceive().
- *
- * The source code that implements the alternative (Alt) API is much
- * simpler because it executes everything from within a critical section.
- * This is the approach taken by many other RTOSes, but FreeRTOS.org has the
- * preferred fully featured API too. The fully featured API has more
- * complex code that takes longer to execute, but makes much less use of
- * critical sections. Therefore the alternative API sacrifices interrupt
- * responsiveness to gain execution speed, whereas the fully featured API
- * sacrifices execution speed to ensure better interrupt responsiveness.
- */
-BaseType_t xQueueAltGenericSend( QueueHandle_t xQueue, const void * const pvItemToQueue, TickType_t xTicksToWait, BaseType_t xCopyPosition ) PRIVILEGED_FUNCTION;
-BaseType_t xQueueAltGenericReceive( QueueHandle_t xQueue, void * const pvBuffer, TickType_t xTicksToWait, BaseType_t xJustPeeking ) PRIVILEGED_FUNCTION;
-#define xQueueAltSendToFront( xQueue, pvItemToQueue, xTicksToWait ) xQueueAltGenericSend( ( xQueue ), ( pvItemToQueue ), ( xTicksToWait ), queueSEND_TO_FRONT )
-#define xQueueAltSendToBack( xQueue, pvItemToQueue, xTicksToWait ) xQueueAltGenericSend( ( xQueue ), ( pvItemToQueue ), ( xTicksToWait ), queueSEND_TO_BACK )
-#define xQueueAltReceive( xQueue, pvBuffer, xTicksToWait ) xQueueAltGenericReceive( ( xQueue ), ( pvBuffer ), ( xTicksToWait ), pdFALSE )
-#define xQueueAltPeek( xQueue, pvBuffer, xTicksToWait ) xQueueAltGenericReceive( ( xQueue ), ( pvBuffer ), ( xTicksToWait ), pdTRUE )
-
/*
* The functions defined above are for passing data to and from tasks. The
* functions below are the equivalents for passing data to and from
@@ -1479,15 +1412,19 @@ BaseType_t xQueueCRReceive( QueueHandle_t xQueue, void *pvBuffer, TickType_t xTi * these functions directly.
*/
QueueHandle_t xQueueCreateMutex( const uint8_t ucQueueType ) PRIVILEGED_FUNCTION;
+QueueHandle_t xQueueCreateMutexStatic( const uint8_t ucQueueType, StaticQueue_t *pxStaticQueue ) PRIVILEGED_FUNCTION;
QueueHandle_t xQueueCreateCountingSemaphore( const UBaseType_t uxMaxCount, const UBaseType_t uxInitialCount ) PRIVILEGED_FUNCTION;
-void* xQueueGetMutexHolder( QueueHandle_t xSemaphore ) PRIVILEGED_FUNCTION;
+QueueHandle_t xQueueCreateCountingSemaphoreStatic( const UBaseType_t uxMaxCount, const UBaseType_t uxInitialCount, StaticQueue_t *pxStaticQueue ) PRIVILEGED_FUNCTION;
+BaseType_t xQueueSemaphoreTake( QueueHandle_t xQueue, TickType_t xTicksToWait ) PRIVILEGED_FUNCTION;
+TaskHandle_t xQueueGetMutexHolder( QueueHandle_t xSemaphore ) PRIVILEGED_FUNCTION;
+TaskHandle_t xQueueGetMutexHolderFromISR( QueueHandle_t xSemaphore ) PRIVILEGED_FUNCTION;
/*
* For internal use only. Use xSemaphoreTakeMutexRecursive() or
* xSemaphoreGiveMutexRecursive() instead of calling these functions directly.
*/
BaseType_t xQueueTakeMutexRecursive( QueueHandle_t xMutex, TickType_t xTicksToWait ) PRIVILEGED_FUNCTION;
-BaseType_t xQueueGiveMutexRecursive( QueueHandle_t pxMutex ) PRIVILEGED_FUNCTION;
+BaseType_t xQueueGiveMutexRecursive( QueueHandle_t xMutex ) PRIVILEGED_FUNCTION;
/*
* Reset a queue back to its original empty state. The return value is now
@@ -1517,8 +1454,8 @@ BaseType_t xQueueGiveMutexRecursive( QueueHandle_t pxMutex ) PRIVILEGED_FUNCTION * stores a pointer to the string - so the string must be persistent (global or
* preferably in ROM/Flash), not on the stack.
*/
-#if configQUEUE_REGISTRY_SIZE > 0
- void vQueueAddToRegistry( QueueHandle_t xQueue, const char *pcName ) PRIVILEGED_FUNCTION; /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
+#if( configQUEUE_REGISTRY_SIZE > 0 )
+ void vQueueAddToRegistry( QueueHandle_t xQueue, const char *pcQueueName ) PRIVILEGED_FUNCTION; /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
#endif
/*
@@ -1531,15 +1468,42 @@ BaseType_t xQueueGiveMutexRecursive( QueueHandle_t pxMutex ) PRIVILEGED_FUNCTION *
* @param xQueue The handle of the queue being removed from the registry.
*/
-#if configQUEUE_REGISTRY_SIZE > 0
+#if( configQUEUE_REGISTRY_SIZE > 0 )
void vQueueUnregisterQueue( QueueHandle_t xQueue ) PRIVILEGED_FUNCTION;
#endif
/*
- * Generic version of the queue creation function, which is in turn called by
- * any queue, semaphore or mutex creation function or macro.
+ * The queue registry is provided as a means for kernel aware debuggers to
+ * locate queues, semaphores and mutexes. Call pcQueueGetName() to look
+ * up and return the name of a queue in the queue registry from the queue's
+ * handle.
+ *
+ * @param xQueue The handle of the queue the name of which will be returned.
+ * @return If the queue is in the registry then a pointer to the name of the
+ * queue is returned. If the queue is not in the registry then NULL is
+ * returned.
+ */
+#if( configQUEUE_REGISTRY_SIZE > 0 )
+ const char *pcQueueGetName( QueueHandle_t xQueue ) PRIVILEGED_FUNCTION; /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
+#endif
+
+/*
+ * Generic version of the function used to creaet a queue using dynamic memory
+ * allocation. This is called by other functions and macros that create other
+ * RTOS objects that use the queue structure as their base.
*/
-QueueHandle_t xQueueGenericCreate( const UBaseType_t uxQueueLength, const UBaseType_t uxItemSize, const uint8_t ucQueueType ) PRIVILEGED_FUNCTION;
+#if( configSUPPORT_DYNAMIC_ALLOCATION == 1 )
+ QueueHandle_t xQueueGenericCreate( const UBaseType_t uxQueueLength, const UBaseType_t uxItemSize, const uint8_t ucQueueType ) PRIVILEGED_FUNCTION;
+#endif
+
+/*
+ * Generic version of the function used to creaet a queue using dynamic memory
+ * allocation. This is called by other functions and macros that create other
+ * RTOS objects that use the queue structure as their base.
+ */
+#if( configSUPPORT_STATIC_ALLOCATION == 1 )
+ QueueHandle_t xQueueGenericCreateStatic( const UBaseType_t uxQueueLength, const UBaseType_t uxItemSize, uint8_t *pucQueueStorage, StaticQueue_t *pxStaticQueue, const uint8_t ucQueueType ) PRIVILEGED_FUNCTION;
+#endif
/*
* Queue sets provide a mechanism to allow a task to block (pend) on a read
diff --git a/src/FreeRTOS/Source/include/semphr.h b/src/FreeRTOS/Source/include/semphr.h index ab00d09..827a877 100644 --- a/src/FreeRTOS/Source/include/semphr.h +++ b/src/FreeRTOS/Source/include/semphr.h @@ -1,71 +1,29 @@ /*
- FreeRTOS V8.2.3 - Copyright (C) 2015 Real Time Engineers Ltd.
- All rights reserved
-
- VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
-
- This file is part of the FreeRTOS distribution.
-
- FreeRTOS is free software; you can redistribute it and/or modify it under
- the terms of the GNU General Public License (version 2) as published by the
- Free Software Foundation >>>> AND MODIFIED BY <<<< the FreeRTOS exception.
-
- ***************************************************************************
- >>! NOTE: The modification to the GPL is included to allow you to !<<
- >>! distribute a combined work that includes FreeRTOS without being !<<
- >>! obliged to provide the source code for proprietary components !<<
- >>! outside of the FreeRTOS kernel. !<<
- ***************************************************************************
-
- FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
- WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
- FOR A PARTICULAR PURPOSE. Full license text is available on the following
- link: http://www.freertos.org/a00114.html
-
- ***************************************************************************
- * *
- * FreeRTOS provides completely free yet professionally developed, *
- * robust, strictly quality controlled, supported, and cross *
- * platform software that is more than just the market leader, it *
- * is the industry's de facto standard. *
- * *
- * Help yourself get started quickly while simultaneously helping *
- * to support the FreeRTOS project by purchasing a FreeRTOS *
- * tutorial book, reference manual, or both: *
- * http://www.FreeRTOS.org/Documentation *
- * *
- ***************************************************************************
-
- http://www.FreeRTOS.org/FAQHelp.html - Having a problem? Start by reading
- the FAQ page "My application does not run, what could be wrong?". Have you
- defined configASSERT()?
-
- http://www.FreeRTOS.org/support - In return for receiving this top quality
- embedded software for free we request you assist our global community by
- participating in the support forum.
-
- http://www.FreeRTOS.org/training - Investing in training allows your team to
- be as productive as possible as early as possible. Now you can receive
- FreeRTOS training directly from Richard Barry, CEO of Real Time Engineers
- Ltd, and the world's leading authority on the world's leading RTOS.
-
- http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
- including FreeRTOS+Trace - an indispensable productivity tool, a DOS
- compatible FAT file system, and our tiny thread aware UDP/IP stack.
-
- http://www.FreeRTOS.org/labs - Where new FreeRTOS products go to incubate.
- Come and try FreeRTOS+TCP, our new open source TCP/IP stack for FreeRTOS.
-
- http://www.OpenRTOS.com - Real Time Engineers ltd. license FreeRTOS to High
- Integrity Systems ltd. to sell under the OpenRTOS brand. Low cost OpenRTOS
- licenses offer ticketed support, indemnification and commercial middleware.
-
- http://www.SafeRTOS.com - High Integrity Systems also provide a safety
- engineered and independently SIL3 certified version for use in safety and
- mission critical applications that require provable dependability.
-
- 1 tab == 4 spaces!
-*/
+ * FreeRTOS Kernel V10.2.0
+ * Copyright (C) 2019 Amazon.com, Inc. or its affiliates. All Rights Reserved.
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy of
+ * this software and associated documentation files (the "Software"), to deal in
+ * the Software without restriction, including without limitation the rights to
+ * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
+ * the Software, and to permit persons to whom the Software is furnished to do so,
+ * subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
+ * FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
+ * COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
+ * IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
+ * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+ *
+ * http://www.FreeRTOS.org
+ * http://aws.amazon.com/freertos
+ *
+ * 1 tab == 4 spaces!
+ */
#ifndef SEMAPHORE_H
#define SEMAPHORE_H
@@ -87,6 +45,10 @@ typedef QueueHandle_t SemaphoreHandle_t; * semphr. h
* <pre>vSemaphoreCreateBinary( SemaphoreHandle_t xSemaphore )</pre>
*
+ * In many usage scenarios it is faster and more memory efficient to use a
+ * direct to task notification in place of a binary semaphore!
+ * http://www.freertos.org/RTOS-task-notifications.html
+ *
* This old vSemaphoreCreateBinary() macro is now deprecated in favour of the
* xSemaphoreCreateBinary() function. Note that binary semaphores created using
* the vSemaphoreCreateBinary() macro are created in a state such that the
@@ -128,19 +90,37 @@ typedef QueueHandle_t SemaphoreHandle_t; * \defgroup vSemaphoreCreateBinary vSemaphoreCreateBinary
* \ingroup Semaphores
*/
-#define vSemaphoreCreateBinary( xSemaphore ) \
- { \
- ( xSemaphore ) = xQueueGenericCreate( ( UBaseType_t ) 1, semSEMAPHORE_QUEUE_ITEM_LENGTH, queueQUEUE_TYPE_BINARY_SEMAPHORE ); \
- if( ( xSemaphore ) != NULL ) \
- { \
- ( void ) xSemaphoreGive( ( xSemaphore ) ); \
- } \
- }
+#if( configSUPPORT_DYNAMIC_ALLOCATION == 1 )
+ #define vSemaphoreCreateBinary( xSemaphore ) \
+ { \
+ ( xSemaphore ) = xQueueGenericCreate( ( UBaseType_t ) 1, semSEMAPHORE_QUEUE_ITEM_LENGTH, queueQUEUE_TYPE_BINARY_SEMAPHORE ); \
+ if( ( xSemaphore ) != NULL ) \
+ { \
+ ( void ) xSemaphoreGive( ( xSemaphore ) ); \
+ } \
+ }
+#endif
/**
* semphr. h
* <pre>SemaphoreHandle_t xSemaphoreCreateBinary( void )</pre>
*
+ * Creates a new binary semaphore instance, and returns a handle by which the
+ * new semaphore can be referenced.
+ *
+ * In many usage scenarios it is faster and more memory efficient to use a
+ * direct to task notification in place of a binary semaphore!
+ * http://www.freertos.org/RTOS-task-notifications.html
+ *
+ * Internally, within the FreeRTOS implementation, binary semaphores use a block
+ * of memory, in which the semaphore structure is stored. If a binary semaphore
+ * is created using xSemaphoreCreateBinary() then the required memory is
+ * automatically dynamically allocated inside the xSemaphoreCreateBinary()
+ * function. (see http://www.freertos.org/a00111.html). If a binary semaphore
+ * is created using xSemaphoreCreateBinaryStatic() then the application writer
+ * must provide the memory. xSemaphoreCreateBinaryStatic() therefore allows a
+ * binary semaphore to be created without using any dynamic memory allocation.
+ *
* The old vSemaphoreCreateBinary() macro is now deprecated in favour of this
* xSemaphoreCreateBinary() function. Note that binary semaphores created using
* the vSemaphoreCreateBinary() macro are created in a state such that the
@@ -148,11 +128,6 @@ typedef QueueHandle_t SemaphoreHandle_t; * created using xSemaphoreCreateBinary() are created in a state such that the
* the semaphore must first be 'given' before it can be 'taken'.
*
- * Function that creates a semaphore by using the existing queue mechanism.
- * The queue length is 1 as this is a binary semaphore. The data size is 0
- * as nothing is actually stored - all that is important is whether the queue is
- * empty or full (the binary semaphore is available or not).
- *
* This type of semaphore can be used for pure synchronisation between tasks or
* between an interrupt and a task. The semaphore need not be given back once
* obtained, so one task/interrupt can continuously 'give' the semaphore while
@@ -160,7 +135,8 @@ typedef QueueHandle_t SemaphoreHandle_t; * semaphore does not use a priority inheritance mechanism. For an alternative
* that does use priority inheritance see xSemaphoreCreateMutex().
*
- * @return Handle to the created semaphore.
+ * @return Handle to the created semaphore, or NULL if the memory required to
+ * hold the semaphore's data structures could not be allocated.
*
* Example usage:
<pre>
@@ -168,7 +144,7 @@ typedef QueueHandle_t SemaphoreHandle_t; void vATask( void * pvParameters )
{
- // Semaphore cannot be used before a call to vSemaphoreCreateBinary ().
+ // Semaphore cannot be used before a call to xSemaphoreCreateBinary().
// This is a macro so pass the variable in directly.
xSemaphore = xSemaphoreCreateBinary();
@@ -179,10 +155,71 @@ typedef QueueHandle_t SemaphoreHandle_t; }
}
</pre>
- * \defgroup vSemaphoreCreateBinary vSemaphoreCreateBinary
+ * \defgroup xSemaphoreCreateBinary xSemaphoreCreateBinary
+ * \ingroup Semaphores
+ */
+#if( configSUPPORT_DYNAMIC_ALLOCATION == 1 )
+ #define xSemaphoreCreateBinary() xQueueGenericCreate( ( UBaseType_t ) 1, semSEMAPHORE_QUEUE_ITEM_LENGTH, queueQUEUE_TYPE_BINARY_SEMAPHORE )
+#endif
+
+/**
+ * semphr. h
+ * <pre>SemaphoreHandle_t xSemaphoreCreateBinaryStatic( StaticSemaphore_t *pxSemaphoreBuffer )</pre>
+ *
+ * Creates a new binary semaphore instance, and returns a handle by which the
+ * new semaphore can be referenced.
+ *
+ * NOTE: In many usage scenarios it is faster and more memory efficient to use a
+ * direct to task notification in place of a binary semaphore!
+ * http://www.freertos.org/RTOS-task-notifications.html
+ *
+ * Internally, within the FreeRTOS implementation, binary semaphores use a block
+ * of memory, in which the semaphore structure is stored. If a binary semaphore
+ * is created using xSemaphoreCreateBinary() then the required memory is
+ * automatically dynamically allocated inside the xSemaphoreCreateBinary()
+ * function. (see http://www.freertos.org/a00111.html). If a binary semaphore
+ * is created using xSemaphoreCreateBinaryStatic() then the application writer
+ * must provide the memory. xSemaphoreCreateBinaryStatic() therefore allows a
+ * binary semaphore to be created without using any dynamic memory allocation.
+ *
+ * This type of semaphore can be used for pure synchronisation between tasks or
+ * between an interrupt and a task. The semaphore need not be given back once
+ * obtained, so one task/interrupt can continuously 'give' the semaphore while
+ * another continuously 'takes' the semaphore. For this reason this type of
+ * semaphore does not use a priority inheritance mechanism. For an alternative
+ * that does use priority inheritance see xSemaphoreCreateMutex().
+ *
+ * @param pxSemaphoreBuffer Must point to a variable of type StaticSemaphore_t,
+ * which will then be used to hold the semaphore's data structure, removing the
+ * need for the memory to be allocated dynamically.
+ *
+ * @return If the semaphore is created then a handle to the created semaphore is
+ * returned. If pxSemaphoreBuffer is NULL then NULL is returned.
+ *
+ * Example usage:
+ <pre>
+ SemaphoreHandle_t xSemaphore = NULL;
+ StaticSemaphore_t xSemaphoreBuffer;
+
+ void vATask( void * pvParameters )
+ {
+ // Semaphore cannot be used before a call to xSemaphoreCreateBinary().
+ // The semaphore's data structures will be placed in the xSemaphoreBuffer
+ // variable, the address of which is passed into the function. The
+ // function's parameter is not NULL, so the function will not attempt any
+ // dynamic memory allocation, and therefore the function will not return
+ // return NULL.
+ xSemaphore = xSemaphoreCreateBinary( &xSemaphoreBuffer );
+
+ // Rest of task code goes here.
+ }
+ </pre>
+ * \defgroup xSemaphoreCreateBinaryStatic xSemaphoreCreateBinaryStatic
* \ingroup Semaphores
*/
-#define xSemaphoreCreateBinary() xQueueGenericCreate( ( UBaseType_t ) 1, semSEMAPHORE_QUEUE_ITEM_LENGTH, queueQUEUE_TYPE_BINARY_SEMAPHORE )
+#if( configSUPPORT_STATIC_ALLOCATION == 1 )
+ #define xSemaphoreCreateBinaryStatic( pxStaticSemaphore ) xQueueGenericCreateStatic( ( UBaseType_t ) 1, semSEMAPHORE_QUEUE_ITEM_LENGTH, NULL, pxStaticSemaphore, queueQUEUE_TYPE_BINARY_SEMAPHORE )
+#endif /* configSUPPORT_STATIC_ALLOCATION */
/**
* semphr. h
@@ -192,7 +229,7 @@ typedef QueueHandle_t SemaphoreHandle_t; * )</pre>
*
* <i>Macro</i> to obtain a semaphore. The semaphore must have previously been
- * created with a call to vSemaphoreCreateBinary(), xSemaphoreCreateMutex() or
+ * created with a call to xSemaphoreCreateBinary(), xSemaphoreCreateMutex() or
* xSemaphoreCreateCounting().
*
* @param xSemaphore A handle to the semaphore being taken - obtained when
@@ -215,7 +252,7 @@ typedef QueueHandle_t SemaphoreHandle_t; void vATask( void * pvParameters )
{
// Create the semaphore to guard a shared resource.
- vSemaphoreCreateBinary( xSemaphore );
+ xSemaphore = xSemaphoreCreateBinary();
}
// A task that uses the semaphore.
@@ -249,7 +286,7 @@ typedef QueueHandle_t SemaphoreHandle_t; * \defgroup xSemaphoreTake xSemaphoreTake
* \ingroup Semaphores
*/
-#define xSemaphoreTake( xSemaphore, xBlockTime ) xQueueGenericReceive( ( QueueHandle_t ) ( xSemaphore ), NULL, ( xBlockTime ), pdFALSE )
+#define xSemaphoreTake( xSemaphore, xBlockTime ) xQueueSemaphoreTake( ( xSemaphore ), ( xBlockTime ) )
/**
* semphr. h
@@ -313,23 +350,23 @@ typedef QueueHandle_t SemaphoreHandle_t; // ...
// For some reason due to the nature of the code further calls to
- // xSemaphoreTakeRecursive() are made on the same mutex. In real
- // code these would not be just sequential calls as this would make
- // no sense. Instead the calls are likely to be buried inside
- // a more complex call structure.
+ // xSemaphoreTakeRecursive() are made on the same mutex. In real
+ // code these would not be just sequential calls as this would make
+ // no sense. Instead the calls are likely to be buried inside
+ // a more complex call structure.
xSemaphoreTakeRecursive( xMutex, ( TickType_t ) 10 );
xSemaphoreTakeRecursive( xMutex, ( TickType_t ) 10 );
// The mutex has now been 'taken' three times, so will not be
- // available to another task until it has also been given back
- // three times. Again it is unlikely that real code would have
- // these calls sequentially, but instead buried in a more complex
- // call structure. This is just for illustrative purposes.
+ // available to another task until it has also been given back
+ // three times. Again it is unlikely that real code would have
+ // these calls sequentially, but instead buried in a more complex
+ // call structure. This is just for illustrative purposes.
+ xSemaphoreGiveRecursive( xMutex );
+ xSemaphoreGiveRecursive( xMutex );
xSemaphoreGiveRecursive( xMutex );
- xSemaphoreGiveRecursive( xMutex );
- xSemaphoreGiveRecursive( xMutex );
- // Now the mutex can be taken by other tasks.
+ // Now the mutex can be taken by other tasks.
}
else
{
@@ -342,29 +379,16 @@ typedef QueueHandle_t SemaphoreHandle_t; * \defgroup xSemaphoreTakeRecursive xSemaphoreTakeRecursive
* \ingroup Semaphores
*/
-#define xSemaphoreTakeRecursive( xMutex, xBlockTime ) xQueueTakeMutexRecursive( ( xMutex ), ( xBlockTime ) )
-
-
-/*
- * xSemaphoreAltTake() is an alternative version of xSemaphoreTake().
- *
- * The source code that implements the alternative (Alt) API is much
- * simpler because it executes everything from within a critical section.
- * This is the approach taken by many other RTOSes, but FreeRTOS.org has the
- * preferred fully featured API too. The fully featured API has more
- * complex code that takes longer to execute, but makes much less use of
- * critical sections. Therefore the alternative API sacrifices interrupt
- * responsiveness to gain execution speed, whereas the fully featured API
- * sacrifices execution speed to ensure better interrupt responsiveness.
- */
-#define xSemaphoreAltTake( xSemaphore, xBlockTime ) xQueueAltGenericReceive( ( QueueHandle_t ) ( xSemaphore ), NULL, ( xBlockTime ), pdFALSE )
+#if( configUSE_RECURSIVE_MUTEXES == 1 )
+ #define xSemaphoreTakeRecursive( xMutex, xBlockTime ) xQueueTakeMutexRecursive( ( xMutex ), ( xBlockTime ) )
+#endif
/**
* semphr. h
* <pre>xSemaphoreGive( SemaphoreHandle_t xSemaphore )</pre>
*
* <i>Macro</i> to release a semaphore. The semaphore must have previously been
- * created with a call to vSemaphoreCreateBinary(), xSemaphoreCreateMutex() or
+ * created with a call to xSemaphoreCreateBinary(), xSemaphoreCreateMutex() or
* xSemaphoreCreateCounting(). and obtained using sSemaphoreTake().
*
* This macro must not be used from an ISR. See xSemaphoreGiveFromISR () for
@@ -388,7 +412,7 @@ typedef QueueHandle_t SemaphoreHandle_t; void vATask( void * pvParameters )
{
// Create the semaphore to guard a shared resource.
- vSemaphoreCreateBinary( xSemaphore );
+ xSemaphore = vSemaphoreCreateBinary();
if( xSemaphore != NULL )
{
@@ -504,21 +528,9 @@ typedef QueueHandle_t SemaphoreHandle_t; * \defgroup xSemaphoreGiveRecursive xSemaphoreGiveRecursive
* \ingroup Semaphores
*/
-#define xSemaphoreGiveRecursive( xMutex ) xQueueGiveMutexRecursive( ( xMutex ) )
-
-/*
- * xSemaphoreAltGive() is an alternative version of xSemaphoreGive().
- *
- * The source code that implements the alternative (Alt) API is much
- * simpler because it executes everything from within a critical section.
- * This is the approach taken by many other RTOSes, but FreeRTOS.org has the
- * preferred fully featured API too. The fully featured API has more
- * complex code that takes longer to execute, but makes much less use of
- * critical sections. Therefore the alternative API sacrifices interrupt
- * responsiveness to gain execution speed, whereas the fully featured API
- * sacrifices execution speed to ensure better interrupt responsiveness.
- */
-#define xSemaphoreAltGive( xSemaphore ) xQueueAltGenericSend( ( QueueHandle_t ) ( xSemaphore ), NULL, semGIVE_BLOCK_TIME, queueSEND_TO_BACK )
+#if( configUSE_RECURSIVE_MUTEXES == 1 )
+ #define xSemaphoreGiveRecursive( xMutex ) xQueueGiveMutexRecursive( ( xMutex ) )
+#endif
/**
* semphr. h
@@ -529,7 +541,7 @@ typedef QueueHandle_t SemaphoreHandle_t; )</pre>
*
* <i>Macro</i> to release a semaphore. The semaphore must have previously been
- * created with a call to vSemaphoreCreateBinary() or xSemaphoreCreateCounting().
+ * created with a call to xSemaphoreCreateBinary() or xSemaphoreCreateCounting().
*
* Mutex type semaphores (those created using a call to xSemaphoreCreateMutex())
* must not be used with this macro.
@@ -620,7 +632,7 @@ typedef QueueHandle_t SemaphoreHandle_t; )</pre>
*
* <i>Macro</i> to take a semaphore from an ISR. The semaphore must have
- * previously been created with a call to vSemaphoreCreateBinary() or
+ * previously been created with a call to xSemaphoreCreateBinary() or
* xSemaphoreCreateCounting().
*
* Mutex type semaphores (those created using a call to xSemaphoreCreateMutex())
@@ -649,12 +661,21 @@ typedef QueueHandle_t SemaphoreHandle_t; * semphr. h
* <pre>SemaphoreHandle_t xSemaphoreCreateMutex( void )</pre>
*
- * <i>Macro</i> that implements a mutex semaphore by using the existing queue
- * mechanism.
+ * Creates a new mutex type semaphore instance, and returns a handle by which
+ * the new mutex can be referenced.
*
- * Mutexes created using this macro can be accessed using the xSemaphoreTake()
+ * Internally, within the FreeRTOS implementation, mutex semaphores use a block
+ * of memory, in which the mutex structure is stored. If a mutex is created
+ * using xSemaphoreCreateMutex() then the required memory is automatically
+ * dynamically allocated inside the xSemaphoreCreateMutex() function. (see
+ * http://www.freertos.org/a00111.html). If a mutex is created using
+ * xSemaphoreCreateMutexStatic() then the application writer must provided the
+ * memory. xSemaphoreCreateMutexStatic() therefore allows a mutex to be created
+ * without using any dynamic memory allocation.
+ *
+ * Mutexes created using this function can be accessed using the xSemaphoreTake()
* and xSemaphoreGive() macros. The xSemaphoreTakeRecursive() and
- * xSemaphoreGiveRecursive() macros should not be used.
+ * xSemaphoreGiveRecursive() macros must not be used.
*
* This type of semaphore uses a priority inheritance mechanism so a task
* 'taking' a semaphore MUST ALWAYS 'give' the semaphore back once the
@@ -662,13 +683,14 @@ typedef QueueHandle_t SemaphoreHandle_t; *
* Mutex type semaphores cannot be used from within interrupt service routines.
*
- * See vSemaphoreCreateBinary() for an alternative implementation that can be
+ * See xSemaphoreCreateBinary() for an alternative implementation that can be
* used for pure synchronisation (where one task or interrupt always 'gives' the
* semaphore and another always 'takes' the semaphore) and from within interrupt
* service routines.
*
- * @return xSemaphore Handle to the created mutex semaphore. Should be of type
- * SemaphoreHandle_t.
+ * @return If the mutex was successfully created then a handle to the created
+ * semaphore is returned. If there was not enough heap to allocate the mutex
+ * data structures then NULL is returned.
*
* Example usage:
<pre>
@@ -687,22 +709,96 @@ typedef QueueHandle_t SemaphoreHandle_t; }
}
</pre>
- * \defgroup vSemaphoreCreateMutex vSemaphoreCreateMutex
+ * \defgroup xSemaphoreCreateMutex xSemaphoreCreateMutex
+ * \ingroup Semaphores
+ */
+#if( configSUPPORT_DYNAMIC_ALLOCATION == 1 )
+ #define xSemaphoreCreateMutex() xQueueCreateMutex( queueQUEUE_TYPE_MUTEX )
+#endif
+
+/**
+ * semphr. h
+ * <pre>SemaphoreHandle_t xSemaphoreCreateMutexStatic( StaticSemaphore_t *pxMutexBuffer )</pre>
+ *
+ * Creates a new mutex type semaphore instance, and returns a handle by which
+ * the new mutex can be referenced.
+ *
+ * Internally, within the FreeRTOS implementation, mutex semaphores use a block
+ * of memory, in which the mutex structure is stored. If a mutex is created
+ * using xSemaphoreCreateMutex() then the required memory is automatically
+ * dynamically allocated inside the xSemaphoreCreateMutex() function. (see
+ * http://www.freertos.org/a00111.html). If a mutex is created using
+ * xSemaphoreCreateMutexStatic() then the application writer must provided the
+ * memory. xSemaphoreCreateMutexStatic() therefore allows a mutex to be created
+ * without using any dynamic memory allocation.
+ *
+ * Mutexes created using this function can be accessed using the xSemaphoreTake()
+ * and xSemaphoreGive() macros. The xSemaphoreTakeRecursive() and
+ * xSemaphoreGiveRecursive() macros must not be used.
+ *
+ * This type of semaphore uses a priority inheritance mechanism so a task
+ * 'taking' a semaphore MUST ALWAYS 'give' the semaphore back once the
+ * semaphore it is no longer required.
+ *
+ * Mutex type semaphores cannot be used from within interrupt service routines.
+ *
+ * See xSemaphoreCreateBinary() for an alternative implementation that can be
+ * used for pure synchronisation (where one task or interrupt always 'gives' the
+ * semaphore and another always 'takes' the semaphore) and from within interrupt
+ * service routines.
+ *
+ * @param pxMutexBuffer Must point to a variable of type StaticSemaphore_t,
+ * which will be used to hold the mutex's data structure, removing the need for
+ * the memory to be allocated dynamically.
+ *
+ * @return If the mutex was successfully created then a handle to the created
+ * mutex is returned. If pxMutexBuffer was NULL then NULL is returned.
+ *
+ * Example usage:
+ <pre>
+ SemaphoreHandle_t xSemaphore;
+ StaticSemaphore_t xMutexBuffer;
+
+ void vATask( void * pvParameters )
+ {
+ // A mutex cannot be used before it has been created. xMutexBuffer is
+ // into xSemaphoreCreateMutexStatic() so no dynamic memory allocation is
+ // attempted.
+ xSemaphore = xSemaphoreCreateMutexStatic( &xMutexBuffer );
+
+ // As no dynamic memory allocation was performed, xSemaphore cannot be NULL,
+ // so there is no need to check it.
+ }
+ </pre>
+ * \defgroup xSemaphoreCreateMutexStatic xSemaphoreCreateMutexStatic
* \ingroup Semaphores
*/
-#define xSemaphoreCreateMutex() xQueueCreateMutex( queueQUEUE_TYPE_MUTEX )
+ #if( configSUPPORT_STATIC_ALLOCATION == 1 )
+ #define xSemaphoreCreateMutexStatic( pxMutexBuffer ) xQueueCreateMutexStatic( queueQUEUE_TYPE_MUTEX, ( pxMutexBuffer ) )
+#endif /* configSUPPORT_STATIC_ALLOCATION */
/**
* semphr. h
* <pre>SemaphoreHandle_t xSemaphoreCreateRecursiveMutex( void )</pre>
*
- * <i>Macro</i> that implements a recursive mutex by using the existing queue
- * mechanism.
+ * Creates a new recursive mutex type semaphore instance, and returns a handle
+ * by which the new recursive mutex can be referenced.
+ *
+ * Internally, within the FreeRTOS implementation, recursive mutexs use a block
+ * of memory, in which the mutex structure is stored. If a recursive mutex is
+ * created using xSemaphoreCreateRecursiveMutex() then the required memory is
+ * automatically dynamically allocated inside the
+ * xSemaphoreCreateRecursiveMutex() function. (see
+ * http://www.freertos.org/a00111.html). If a recursive mutex is created using
+ * xSemaphoreCreateRecursiveMutexStatic() then the application writer must
+ * provide the memory that will get used by the mutex.
+ * xSemaphoreCreateRecursiveMutexStatic() therefore allows a recursive mutex to
+ * be created without using any dynamic memory allocation.
*
* Mutexes created using this macro can be accessed using the
* xSemaphoreTakeRecursive() and xSemaphoreGiveRecursive() macros. The
- * xSemaphoreTake() and xSemaphoreGive() macros should not be used.
+ * xSemaphoreTake() and xSemaphoreGive() macros must not be used.
*
* A mutex used recursively can be 'taken' repeatedly by the owner. The mutex
* doesn't become available again until the owner has called
@@ -717,13 +813,13 @@ typedef QueueHandle_t SemaphoreHandle_t; *
* Mutex type semaphores cannot be used from within interrupt service routines.
*
- * See vSemaphoreCreateBinary() for an alternative implementation that can be
+ * See xSemaphoreCreateBinary() for an alternative implementation that can be
* used for pure synchronisation (where one task or interrupt always 'gives' the
* semaphore and another always 'takes' the semaphore) and from within interrupt
* service routines.
*
* @return xSemaphore Handle to the created mutex semaphore. Should be of type
- * SemaphoreHandle_t.
+ * SemaphoreHandle_t.
*
* Example usage:
<pre>
@@ -742,17 +838,107 @@ typedef QueueHandle_t SemaphoreHandle_t; }
}
</pre>
- * \defgroup vSemaphoreCreateMutex vSemaphoreCreateMutex
+ * \defgroup xSemaphoreCreateRecursiveMutex xSemaphoreCreateRecursiveMutex
+ * \ingroup Semaphores
+ */
+#if( ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) && ( configUSE_RECURSIVE_MUTEXES == 1 ) )
+ #define xSemaphoreCreateRecursiveMutex() xQueueCreateMutex( queueQUEUE_TYPE_RECURSIVE_MUTEX )
+#endif
+
+/**
+ * semphr. h
+ * <pre>SemaphoreHandle_t xSemaphoreCreateRecursiveMutexStatic( StaticSemaphore_t *pxMutexBuffer )</pre>
+ *
+ * Creates a new recursive mutex type semaphore instance, and returns a handle
+ * by which the new recursive mutex can be referenced.
+ *
+ * Internally, within the FreeRTOS implementation, recursive mutexs use a block
+ * of memory, in which the mutex structure is stored. If a recursive mutex is
+ * created using xSemaphoreCreateRecursiveMutex() then the required memory is
+ * automatically dynamically allocated inside the
+ * xSemaphoreCreateRecursiveMutex() function. (see
+ * http://www.freertos.org/a00111.html). If a recursive mutex is created using
+ * xSemaphoreCreateRecursiveMutexStatic() then the application writer must
+ * provide the memory that will get used by the mutex.
+ * xSemaphoreCreateRecursiveMutexStatic() therefore allows a recursive mutex to
+ * be created without using any dynamic memory allocation.
+ *
+ * Mutexes created using this macro can be accessed using the
+ * xSemaphoreTakeRecursive() and xSemaphoreGiveRecursive() macros. The
+ * xSemaphoreTake() and xSemaphoreGive() macros must not be used.
+ *
+ * A mutex used recursively can be 'taken' repeatedly by the owner. The mutex
+ * doesn't become available again until the owner has called
+ * xSemaphoreGiveRecursive() for each successful 'take' request. For example,
+ * if a task successfully 'takes' the same mutex 5 times then the mutex will
+ * not be available to any other task until it has also 'given' the mutex back
+ * exactly five times.
+ *
+ * This type of semaphore uses a priority inheritance mechanism so a task
+ * 'taking' a semaphore MUST ALWAYS 'give' the semaphore back once the
+ * semaphore it is no longer required.
+ *
+ * Mutex type semaphores cannot be used from within interrupt service routines.
+ *
+ * See xSemaphoreCreateBinary() for an alternative implementation that can be
+ * used for pure synchronisation (where one task or interrupt always 'gives' the
+ * semaphore and another always 'takes' the semaphore) and from within interrupt
+ * service routines.
+ *
+ * @param pxMutexBuffer Must point to a variable of type StaticSemaphore_t,
+ * which will then be used to hold the recursive mutex's data structure,
+ * removing the need for the memory to be allocated dynamically.
+ *
+ * @return If the recursive mutex was successfully created then a handle to the
+ * created recursive mutex is returned. If pxMutexBuffer was NULL then NULL is
+ * returned.
+ *
+ * Example usage:
+ <pre>
+ SemaphoreHandle_t xSemaphore;
+ StaticSemaphore_t xMutexBuffer;
+
+ void vATask( void * pvParameters )
+ {
+ // A recursive semaphore cannot be used before it is created. Here a
+ // recursive mutex is created using xSemaphoreCreateRecursiveMutexStatic().
+ // The address of xMutexBuffer is passed into the function, and will hold
+ // the mutexes data structures - so no dynamic memory allocation will be
+ // attempted.
+ xSemaphore = xSemaphoreCreateRecursiveMutexStatic( &xMutexBuffer );
+
+ // As no dynamic memory allocation was performed, xSemaphore cannot be NULL,
+ // so there is no need to check it.
+ }
+ </pre>
+ * \defgroup xSemaphoreCreateRecursiveMutexStatic xSemaphoreCreateRecursiveMutexStatic
* \ingroup Semaphores
*/
-#define xSemaphoreCreateRecursiveMutex() xQueueCreateMutex( queueQUEUE_TYPE_RECURSIVE_MUTEX )
+#if( ( configSUPPORT_STATIC_ALLOCATION == 1 ) && ( configUSE_RECURSIVE_MUTEXES == 1 ) )
+ #define xSemaphoreCreateRecursiveMutexStatic( pxStaticSemaphore ) xQueueCreateMutexStatic( queueQUEUE_TYPE_RECURSIVE_MUTEX, pxStaticSemaphore )
+#endif /* configSUPPORT_STATIC_ALLOCATION */
/**
* semphr. h
* <pre>SemaphoreHandle_t xSemaphoreCreateCounting( UBaseType_t uxMaxCount, UBaseType_t uxInitialCount )</pre>
*
- * <i>Macro</i> that creates a counting semaphore by using the existing
- * queue mechanism.
+ * Creates a new counting semaphore instance, and returns a handle by which the
+ * new counting semaphore can be referenced.
+ *
+ * In many usage scenarios it is faster and more memory efficient to use a
+ * direct to task notification in place of a counting semaphore!
+ * http://www.freertos.org/RTOS-task-notifications.html
+ *
+ * Internally, within the FreeRTOS implementation, counting semaphores use a
+ * block of memory, in which the counting semaphore structure is stored. If a
+ * counting semaphore is created using xSemaphoreCreateCounting() then the
+ * required memory is automatically dynamically allocated inside the
+ * xSemaphoreCreateCounting() function. (see
+ * http://www.freertos.org/a00111.html). If a counting semaphore is created
+ * using xSemaphoreCreateCountingStatic() then the application writer can
+ * instead optionally provide the memory that will get used by the counting
+ * semaphore. xSemaphoreCreateCountingStatic() therefore allows a counting
+ * semaphore to be created without using any dynamic memory allocation.
*
* Counting semaphores are typically used for two things:
*
@@ -808,7 +994,94 @@ typedef QueueHandle_t SemaphoreHandle_t; * \defgroup xSemaphoreCreateCounting xSemaphoreCreateCounting
* \ingroup Semaphores
*/
-#define xSemaphoreCreateCounting( uxMaxCount, uxInitialCount ) xQueueCreateCountingSemaphore( ( uxMaxCount ), ( uxInitialCount ) )
+#if( configSUPPORT_DYNAMIC_ALLOCATION == 1 )
+ #define xSemaphoreCreateCounting( uxMaxCount, uxInitialCount ) xQueueCreateCountingSemaphore( ( uxMaxCount ), ( uxInitialCount ) )
+#endif
+
+/**
+ * semphr. h
+ * <pre>SemaphoreHandle_t xSemaphoreCreateCountingStatic( UBaseType_t uxMaxCount, UBaseType_t uxInitialCount, StaticSemaphore_t *pxSemaphoreBuffer )</pre>
+ *
+ * Creates a new counting semaphore instance, and returns a handle by which the
+ * new counting semaphore can be referenced.
+ *
+ * In many usage scenarios it is faster and more memory efficient to use a
+ * direct to task notification in place of a counting semaphore!
+ * http://www.freertos.org/RTOS-task-notifications.html
+ *
+ * Internally, within the FreeRTOS implementation, counting semaphores use a
+ * block of memory, in which the counting semaphore structure is stored. If a
+ * counting semaphore is created using xSemaphoreCreateCounting() then the
+ * required memory is automatically dynamically allocated inside the
+ * xSemaphoreCreateCounting() function. (see
+ * http://www.freertos.org/a00111.html). If a counting semaphore is created
+ * using xSemaphoreCreateCountingStatic() then the application writer must
+ * provide the memory. xSemaphoreCreateCountingStatic() therefore allows a
+ * counting semaphore to be created without using any dynamic memory allocation.
+ *
+ * Counting semaphores are typically used for two things:
+ *
+ * 1) Counting events.
+ *
+ * In this usage scenario an event handler will 'give' a semaphore each time
+ * an event occurs (incrementing the semaphore count value), and a handler
+ * task will 'take' a semaphore each time it processes an event
+ * (decrementing the semaphore count value). The count value is therefore
+ * the difference between the number of events that have occurred and the
+ * number that have been processed. In this case it is desirable for the
+ * initial count value to be zero.
+ *
+ * 2) Resource management.
+ *
+ * In this usage scenario the count value indicates the number of resources
+ * available. To obtain control of a resource a task must first obtain a
+ * semaphore - decrementing the semaphore count value. When the count value
+ * reaches zero there are no free resources. When a task finishes with the
+ * resource it 'gives' the semaphore back - incrementing the semaphore count
+ * value. In this case it is desirable for the initial count value to be
+ * equal to the maximum count value, indicating that all resources are free.
+ *
+ * @param uxMaxCount The maximum count value that can be reached. When the
+ * semaphore reaches this value it can no longer be 'given'.
+ *
+ * @param uxInitialCount The count value assigned to the semaphore when it is
+ * created.
+ *
+ * @param pxSemaphoreBuffer Must point to a variable of type StaticSemaphore_t,
+ * which will then be used to hold the semaphore's data structure, removing the
+ * need for the memory to be allocated dynamically.
+ *
+ * @return If the counting semaphore was successfully created then a handle to
+ * the created counting semaphore is returned. If pxSemaphoreBuffer was NULL
+ * then NULL is returned.
+ *
+ * Example usage:
+ <pre>
+ SemaphoreHandle_t xSemaphore;
+ StaticSemaphore_t xSemaphoreBuffer;
+
+ void vATask( void * pvParameters )
+ {
+ SemaphoreHandle_t xSemaphore = NULL;
+
+ // Counting semaphore cannot be used before they have been created. Create
+ // a counting semaphore using xSemaphoreCreateCountingStatic(). The max
+ // value to which the semaphore can count is 10, and the initial value
+ // assigned to the count will be 0. The address of xSemaphoreBuffer is
+ // passed in and will be used to hold the semaphore structure, so no dynamic
+ // memory allocation will be used.
+ xSemaphore = xSemaphoreCreateCounting( 10, 0, &xSemaphoreBuffer );
+
+ // No memory allocation was attempted so xSemaphore cannot be NULL, so there
+ // is no need to check its value.
+ }
+ </pre>
+ * \defgroup xSemaphoreCreateCountingStatic xSemaphoreCreateCountingStatic
+ * \ingroup Semaphores
+ */
+#if( configSUPPORT_STATIC_ALLOCATION == 1 )
+ #define xSemaphoreCreateCountingStatic( uxMaxCount, uxInitialCount, pxSemaphoreBuffer ) xQueueCreateCountingSemaphoreStatic( ( uxMaxCount ), ( uxInitialCount ), ( pxSemaphoreBuffer ) )
+#endif /* configSUPPORT_STATIC_ALLOCATION */
/**
* semphr. h
@@ -839,6 +1112,29 @@ typedef QueueHandle_t SemaphoreHandle_t; */
#define xSemaphoreGetMutexHolder( xSemaphore ) xQueueGetMutexHolder( ( xSemaphore ) )
+/**
+ * semphr.h
+ * <pre>TaskHandle_t xSemaphoreGetMutexHolderFromISR( SemaphoreHandle_t xMutex );</pre>
+ *
+ * If xMutex is indeed a mutex type semaphore, return the current mutex holder.
+ * If xMutex is not a mutex type semaphore, or the mutex is available (not held
+ * by a task), return NULL.
+ *
+ */
+#define xSemaphoreGetMutexHolderFromISR( xSemaphore ) xQueueGetMutexHolderFromISR( ( xSemaphore ) )
+
+/**
+ * semphr.h
+ * <pre>UBaseType_t uxSemaphoreGetCount( SemaphoreHandle_t xSemaphore );</pre>
+ *
+ * If the semaphore is a counting semaphore then uxSemaphoreGetCount() returns
+ * its current count value. If the semaphore is a binary semaphore then
+ * uxSemaphoreGetCount() returns 1 if the semaphore is available, and 0 if the
+ * semaphore is not available.
+ *
+ */
+#define uxSemaphoreGetCount( xSemaphore ) uxQueueMessagesWaiting( ( QueueHandle_t ) ( xSemaphore ) )
+
#endif /* SEMAPHORE_H */
diff --git a/src/FreeRTOS/Source/include/stack_macros.h b/src/FreeRTOS/Source/include/stack_macros.h new file mode 100644 index 0000000..23cf452 --- /dev/null +++ b/src/FreeRTOS/Source/include/stack_macros.h @@ -0,0 +1,129 @@ +/*
+ * FreeRTOS Kernel V10.2.0
+ * Copyright (C) 2019 Amazon.com, Inc. or its affiliates. All Rights Reserved.
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy of
+ * this software and associated documentation files (the "Software"), to deal in
+ * the Software without restriction, including without limitation the rights to
+ * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
+ * the Software, and to permit persons to whom the Software is furnished to do so,
+ * subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
+ * FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
+ * COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
+ * IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
+ * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+ *
+ * http://www.FreeRTOS.org
+ * http://aws.amazon.com/freertos
+ *
+ * 1 tab == 4 spaces!
+ */
+
+#ifndef STACK_MACROS_H
+#define STACK_MACROS_H
+
+/*
+ * Call the stack overflow hook function if the stack of the task being swapped
+ * out is currently overflowed, or looks like it might have overflowed in the
+ * past.
+ *
+ * Setting configCHECK_FOR_STACK_OVERFLOW to 1 will cause the macro to check
+ * the current stack state only - comparing the current top of stack value to
+ * the stack limit. Setting configCHECK_FOR_STACK_OVERFLOW to greater than 1
+ * will also cause the last few stack bytes to be checked to ensure the value
+ * to which the bytes were set when the task was created have not been
+ * overwritten. Note this second test does not guarantee that an overflowed
+ * stack will always be recognised.
+ */
+
+/*-----------------------------------------------------------*/
+
+#if( ( configCHECK_FOR_STACK_OVERFLOW == 1 ) && ( portSTACK_GROWTH < 0 ) )
+
+ /* Only the current stack state is to be checked. */
+ #define taskCHECK_FOR_STACK_OVERFLOW() \
+ { \
+ /* Is the currently saved stack pointer within the stack limit? */ \
+ if( pxCurrentTCB->pxTopOfStack <= pxCurrentTCB->pxStack ) \
+ { \
+ vApplicationStackOverflowHook( ( TaskHandle_t ) pxCurrentTCB, pxCurrentTCB->pcTaskName ); \
+ } \
+ }
+
+#endif /* configCHECK_FOR_STACK_OVERFLOW == 1 */
+/*-----------------------------------------------------------*/
+
+#if( ( configCHECK_FOR_STACK_OVERFLOW == 1 ) && ( portSTACK_GROWTH > 0 ) )
+
+ /* Only the current stack state is to be checked. */
+ #define taskCHECK_FOR_STACK_OVERFLOW() \
+ { \
+ \
+ /* Is the currently saved stack pointer within the stack limit? */ \
+ if( pxCurrentTCB->pxTopOfStack >= pxCurrentTCB->pxEndOfStack ) \
+ { \
+ vApplicationStackOverflowHook( ( TaskHandle_t ) pxCurrentTCB, pxCurrentTCB->pcTaskName ); \
+ } \
+ }
+
+#endif /* configCHECK_FOR_STACK_OVERFLOW == 1 */
+/*-----------------------------------------------------------*/
+
+#if( ( configCHECK_FOR_STACK_OVERFLOW > 1 ) && ( portSTACK_GROWTH < 0 ) )
+
+ #define taskCHECK_FOR_STACK_OVERFLOW() \
+ { \
+ const uint32_t * const pulStack = ( uint32_t * ) pxCurrentTCB->pxStack; \
+ const uint32_t ulCheckValue = ( uint32_t ) 0xa5a5a5a5; \
+ \
+ if( ( pulStack[ 0 ] != ulCheckValue ) || \
+ ( pulStack[ 1 ] != ulCheckValue ) || \
+ ( pulStack[ 2 ] != ulCheckValue ) || \
+ ( pulStack[ 3 ] != ulCheckValue ) ) \
+ { \
+ vApplicationStackOverflowHook( ( TaskHandle_t ) pxCurrentTCB, pxCurrentTCB->pcTaskName ); \
+ } \
+ }
+
+#endif /* #if( configCHECK_FOR_STACK_OVERFLOW > 1 ) */
+/*-----------------------------------------------------------*/
+
+#if( ( configCHECK_FOR_STACK_OVERFLOW > 1 ) && ( portSTACK_GROWTH > 0 ) )
+
+ #define taskCHECK_FOR_STACK_OVERFLOW() \
+ { \
+ int8_t *pcEndOfStack = ( int8_t * ) pxCurrentTCB->pxEndOfStack; \
+ static const uint8_t ucExpectedStackBytes[] = { tskSTACK_FILL_BYTE, tskSTACK_FILL_BYTE, tskSTACK_FILL_BYTE, tskSTACK_FILL_BYTE, \
+ tskSTACK_FILL_BYTE, tskSTACK_FILL_BYTE, tskSTACK_FILL_BYTE, tskSTACK_FILL_BYTE, \
+ tskSTACK_FILL_BYTE, tskSTACK_FILL_BYTE, tskSTACK_FILL_BYTE, tskSTACK_FILL_BYTE, \
+ tskSTACK_FILL_BYTE, tskSTACK_FILL_BYTE, tskSTACK_FILL_BYTE, tskSTACK_FILL_BYTE, \
+ tskSTACK_FILL_BYTE, tskSTACK_FILL_BYTE, tskSTACK_FILL_BYTE, tskSTACK_FILL_BYTE }; \
+ \
+ \
+ pcEndOfStack -= sizeof( ucExpectedStackBytes ); \
+ \
+ /* Has the extremity of the task stack ever been written over? */ \
+ if( memcmp( ( void * ) pcEndOfStack, ( void * ) ucExpectedStackBytes, sizeof( ucExpectedStackBytes ) ) != 0 ) \
+ { \
+ vApplicationStackOverflowHook( ( TaskHandle_t ) pxCurrentTCB, pxCurrentTCB->pcTaskName ); \
+ } \
+ }
+
+#endif /* #if( configCHECK_FOR_STACK_OVERFLOW > 1 ) */
+/*-----------------------------------------------------------*/
+
+/* Remove stack overflow macro if not being used. */
+#ifndef taskCHECK_FOR_STACK_OVERFLOW
+ #define taskCHECK_FOR_STACK_OVERFLOW()
+#endif
+
+
+
+#endif /* STACK_MACROS_H */
+
diff --git a/src/FreeRTOS/Source/include/stream_buffer.h b/src/FreeRTOS/Source/include/stream_buffer.h new file mode 100644 index 0000000..3764a8e --- /dev/null +++ b/src/FreeRTOS/Source/include/stream_buffer.h @@ -0,0 +1,855 @@ +/*
+ * FreeRTOS Kernel V10.2.0
+ * Copyright (C) 2019 Amazon.com, Inc. or its affiliates. All Rights Reserved.
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy of
+ * this software and associated documentation files (the "Software"), to deal in
+ * the Software without restriction, including without limitation the rights to
+ * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
+ * the Software, and to permit persons to whom the Software is furnished to do so,
+ * subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
+ * FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
+ * COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
+ * IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
+ * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+ *
+ * http://www.FreeRTOS.org
+ * http://aws.amazon.com/freertos
+ *
+ * 1 tab == 4 spaces!
+ */
+
+/*
+ * Stream buffers are used to send a continuous stream of data from one task or
+ * interrupt to another. Their implementation is light weight, making them
+ * particularly suited for interrupt to task and core to core communication
+ * scenarios.
+ *
+ * ***NOTE***: Uniquely among FreeRTOS objects, the stream buffer
+ * implementation (so also the message buffer implementation, as message buffers
+ * are built on top of stream buffers) assumes there is only one task or
+ * interrupt that will write to the buffer (the writer), and only one task or
+ * interrupt that will read from the buffer (the reader). It is safe for the
+ * writer and reader to be different tasks or interrupts, but, unlike other
+ * FreeRTOS objects, it is not safe to have multiple different writers or
+ * multiple different readers. If there are to be multiple different writers
+ * then the application writer must place each call to a writing API function
+ * (such as xStreamBufferSend()) inside a critical section and set the send
+ * block time to 0. Likewise, if there are to be multiple different readers
+ * then the application writer must place each call to a reading API function
+ * (such as xStreamBufferRead()) inside a critical section section and set the
+ * receive block time to 0.
+ *
+ */
+
+#ifndef STREAM_BUFFER_H
+#define STREAM_BUFFER_H
+
+#if defined( __cplusplus )
+extern "C" {
+#endif
+
+/**
+ * Type by which stream buffers are referenced. For example, a call to
+ * xStreamBufferCreate() returns an StreamBufferHandle_t variable that can
+ * then be used as a parameter to xStreamBufferSend(), xStreamBufferReceive(),
+ * etc.
+ */
+struct StreamBufferDef_t;
+typedef struct StreamBufferDef_t * StreamBufferHandle_t;
+
+
+/**
+ * message_buffer.h
+ *
+<pre>
+StreamBufferHandle_t xStreamBufferCreate( size_t xBufferSizeBytes, size_t xTriggerLevelBytes );
+</pre>
+ *
+ * Creates a new stream buffer using dynamically allocated memory. See
+ * xStreamBufferCreateStatic() for a version that uses statically allocated
+ * memory (memory that is allocated at compile time).
+ *
+ * configSUPPORT_DYNAMIC_ALLOCATION must be set to 1 or left undefined in
+ * FreeRTOSConfig.h for xStreamBufferCreate() to be available.
+ *
+ * @param xBufferSizeBytes The total number of bytes the stream buffer will be
+ * able to hold at any one time.
+ *
+ * @param xTriggerLevelBytes The number of bytes that must be in the stream
+ * buffer before a task that is blocked on the stream buffer to wait for data is
+ * moved out of the blocked state. For example, if a task is blocked on a read
+ * of an empty stream buffer that has a trigger level of 1 then the task will be
+ * unblocked when a single byte is written to the buffer or the task's block
+ * time expires. As another example, if a task is blocked on a read of an empty
+ * stream buffer that has a trigger level of 10 then the task will not be
+ * unblocked until the stream buffer contains at least 10 bytes or the task's
+ * block time expires. If a reading task's block time expires before the
+ * trigger level is reached then the task will still receive however many bytes
+ * are actually available. Setting a trigger level of 0 will result in a
+ * trigger level of 1 being used. It is not valid to specify a trigger level
+ * that is greater than the buffer size.
+ *
+ * @return If NULL is returned, then the stream buffer cannot be created
+ * because there is insufficient heap memory available for FreeRTOS to allocate
+ * the stream buffer data structures and storage area. A non-NULL value being
+ * returned indicates that the stream buffer has been created successfully -
+ * the returned value should be stored as the handle to the created stream
+ * buffer.
+ *
+ * Example use:
+<pre>
+
+void vAFunction( void )
+{
+StreamBufferHandle_t xStreamBuffer;
+const size_t xStreamBufferSizeBytes = 100, xTriggerLevel = 10;
+
+ // Create a stream buffer that can hold 100 bytes. The memory used to hold
+ // both the stream buffer structure and the data in the stream buffer is
+ // allocated dynamically.
+ xStreamBuffer = xStreamBufferCreate( xStreamBufferSizeBytes, xTriggerLevel );
+
+ if( xStreamBuffer == NULL )
+ {
+ // There was not enough heap memory space available to create the
+ // stream buffer.
+ }
+ else
+ {
+ // The stream buffer was created successfully and can now be used.
+ }
+}
+</pre>
+ * \defgroup xStreamBufferCreate xStreamBufferCreate
+ * \ingroup StreamBufferManagement
+ */
+#define xStreamBufferCreate( xBufferSizeBytes, xTriggerLevelBytes ) xStreamBufferGenericCreate( xBufferSizeBytes, xTriggerLevelBytes, pdFALSE )
+
+/**
+ * stream_buffer.h
+ *
+<pre>
+StreamBufferHandle_t xStreamBufferCreateStatic( size_t xBufferSizeBytes,
+ size_t xTriggerLevelBytes,
+ uint8_t *pucStreamBufferStorageArea,
+ StaticStreamBuffer_t *pxStaticStreamBuffer );
+</pre>
+ * Creates a new stream buffer using statically allocated memory. See
+ * xStreamBufferCreate() for a version that uses dynamically allocated memory.
+ *
+ * configSUPPORT_STATIC_ALLOCATION must be set to 1 in FreeRTOSConfig.h for
+ * xStreamBufferCreateStatic() to be available.
+ *
+ * @param xBufferSizeBytes The size, in bytes, of the buffer pointed to by the
+ * pucStreamBufferStorageArea parameter.
+ *
+ * @param xTriggerLevelBytes The number of bytes that must be in the stream
+ * buffer before a task that is blocked on the stream buffer to wait for data is
+ * moved out of the blocked state. For example, if a task is blocked on a read
+ * of an empty stream buffer that has a trigger level of 1 then the task will be
+ * unblocked when a single byte is written to the buffer or the task's block
+ * time expires. As another example, if a task is blocked on a read of an empty
+ * stream buffer that has a trigger level of 10 then the task will not be
+ * unblocked until the stream buffer contains at least 10 bytes or the task's
+ * block time expires. If a reading task's block time expires before the
+ * trigger level is reached then the task will still receive however many bytes
+ * are actually available. Setting a trigger level of 0 will result in a
+ * trigger level of 1 being used. It is not valid to specify a trigger level
+ * that is greater than the buffer size.
+ *
+ * @param pucStreamBufferStorageArea Must point to a uint8_t array that is at
+ * least xBufferSizeBytes + 1 big. This is the array to which streams are
+ * copied when they are written to the stream buffer.
+ *
+ * @param pxStaticStreamBuffer Must point to a variable of type
+ * StaticStreamBuffer_t, which will be used to hold the stream buffer's data
+ * structure.
+ *
+ * @return If the stream buffer is created successfully then a handle to the
+ * created stream buffer is returned. If either pucStreamBufferStorageArea or
+ * pxStaticstreamBuffer are NULL then NULL is returned.
+ *
+ * Example use:
+<pre>
+
+// Used to dimension the array used to hold the streams. The available space
+// will actually be one less than this, so 999.
+#define STORAGE_SIZE_BYTES 1000
+
+// Defines the memory that will actually hold the streams within the stream
+// buffer.
+static uint8_t ucStorageBuffer[ STORAGE_SIZE_BYTES ];
+
+// The variable used to hold the stream buffer structure.
+StaticStreamBuffer_t xStreamBufferStruct;
+
+void MyFunction( void )
+{
+StreamBufferHandle_t xStreamBuffer;
+const size_t xTriggerLevel = 1;
+
+ xStreamBuffer = xStreamBufferCreateStatic( sizeof( ucBufferStorage ),
+ xTriggerLevel,
+ ucBufferStorage,
+ &xStreamBufferStruct );
+
+ // As neither the pucStreamBufferStorageArea or pxStaticStreamBuffer
+ // parameters were NULL, xStreamBuffer will not be NULL, and can be used to
+ // reference the created stream buffer in other stream buffer API calls.
+
+ // Other code that uses the stream buffer can go here.
+}
+
+</pre>
+ * \defgroup xStreamBufferCreateStatic xStreamBufferCreateStatic
+ * \ingroup StreamBufferManagement
+ */
+#define xStreamBufferCreateStatic( xBufferSizeBytes, xTriggerLevelBytes, pucStreamBufferStorageArea, pxStaticStreamBuffer ) xStreamBufferGenericCreateStatic( xBufferSizeBytes, xTriggerLevelBytes, pdFALSE, pucStreamBufferStorageArea, pxStaticStreamBuffer )
+
+/**
+ * stream_buffer.h
+ *
+<pre>
+size_t xStreamBufferSend( StreamBufferHandle_t xStreamBuffer,
+ const void *pvTxData,
+ size_t xDataLengthBytes,
+ TickType_t xTicksToWait );
+</pre>
+ *
+ * Sends bytes to a stream buffer. The bytes are copied into the stream buffer.
+ *
+ * ***NOTE***: Uniquely among FreeRTOS objects, the stream buffer
+ * implementation (so also the message buffer implementation, as message buffers
+ * are built on top of stream buffers) assumes there is only one task or
+ * interrupt that will write to the buffer (the writer), and only one task or
+ * interrupt that will read from the buffer (the reader). It is safe for the
+ * writer and reader to be different tasks or interrupts, but, unlike other
+ * FreeRTOS objects, it is not safe to have multiple different writers or
+ * multiple different readers. If there are to be multiple different writers
+ * then the application writer must place each call to a writing API function
+ * (such as xStreamBufferSend()) inside a critical section and set the send
+ * block time to 0. Likewise, if there are to be multiple different readers
+ * then the application writer must place each call to a reading API function
+ * (such as xStreamBufferRead()) inside a critical section and set the receive
+ * block time to 0.
+ *
+ * Use xStreamBufferSend() to write to a stream buffer from a task. Use
+ * xStreamBufferSendFromISR() to write to a stream buffer from an interrupt
+ * service routine (ISR).
+ *
+ * @param xStreamBuffer The handle of the stream buffer to which a stream is
+ * being sent.
+ *
+ * @param pvTxData A pointer to the buffer that holds the bytes to be copied
+ * into the stream buffer.
+ *
+ * @param xDataLengthBytes The maximum number of bytes to copy from pvTxData
+ * into the stream buffer.
+ *
+ * @param xTicksToWait The maximum amount of time the task should remain in the
+ * Blocked state to wait for enough space to become available in the stream
+ * buffer, should the stream buffer contain too little space to hold the
+ * another xDataLengthBytes bytes. The block time is specified in tick periods,
+ * so the absolute time it represents is dependent on the tick frequency. The
+ * macro pdMS_TO_TICKS() can be used to convert a time specified in milliseconds
+ * into a time specified in ticks. Setting xTicksToWait to portMAX_DELAY will
+ * cause the task to wait indefinitely (without timing out), provided
+ * INCLUDE_vTaskSuspend is set to 1 in FreeRTOSConfig.h. If a task times out
+ * before it can write all xDataLengthBytes into the buffer it will still write
+ * as many bytes as possible. A task does not use any CPU time when it is in
+ * the blocked state.
+ *
+ * @return The number of bytes written to the stream buffer. If a task times
+ * out before it can write all xDataLengthBytes into the buffer it will still
+ * write as many bytes as possible.
+ *
+ * Example use:
+<pre>
+void vAFunction( StreamBufferHandle_t xStreamBuffer )
+{
+size_t xBytesSent;
+uint8_t ucArrayToSend[] = { 0, 1, 2, 3 };
+char *pcStringToSend = "String to send";
+const TickType_t x100ms = pdMS_TO_TICKS( 100 );
+
+ // Send an array to the stream buffer, blocking for a maximum of 100ms to
+ // wait for enough space to be available in the stream buffer.
+ xBytesSent = xStreamBufferSend( xStreamBuffer, ( void * ) ucArrayToSend, sizeof( ucArrayToSend ), x100ms );
+
+ if( xBytesSent != sizeof( ucArrayToSend ) )
+ {
+ // The call to xStreamBufferSend() times out before there was enough
+ // space in the buffer for the data to be written, but it did
+ // successfully write xBytesSent bytes.
+ }
+
+ // Send the string to the stream buffer. Return immediately if there is not
+ // enough space in the buffer.
+ xBytesSent = xStreamBufferSend( xStreamBuffer, ( void * ) pcStringToSend, strlen( pcStringToSend ), 0 );
+
+ if( xBytesSent != strlen( pcStringToSend ) )
+ {
+ // The entire string could not be added to the stream buffer because
+ // there was not enough free space in the buffer, but xBytesSent bytes
+ // were sent. Could try again to send the remaining bytes.
+ }
+}
+</pre>
+ * \defgroup xStreamBufferSend xStreamBufferSend
+ * \ingroup StreamBufferManagement
+ */
+size_t xStreamBufferSend( StreamBufferHandle_t xStreamBuffer,
+ const void *pvTxData,
+ size_t xDataLengthBytes,
+ TickType_t xTicksToWait ) PRIVILEGED_FUNCTION;
+
+/**
+ * stream_buffer.h
+ *
+<pre>
+size_t xStreamBufferSendFromISR( StreamBufferHandle_t xStreamBuffer,
+ const void *pvTxData,
+ size_t xDataLengthBytes,
+ BaseType_t *pxHigherPriorityTaskWoken );
+</pre>
+ *
+ * Interrupt safe version of the API function that sends a stream of bytes to
+ * the stream buffer.
+ *
+ * ***NOTE***: Uniquely among FreeRTOS objects, the stream buffer
+ * implementation (so also the message buffer implementation, as message buffers
+ * are built on top of stream buffers) assumes there is only one task or
+ * interrupt that will write to the buffer (the writer), and only one task or
+ * interrupt that will read from the buffer (the reader). It is safe for the
+ * writer and reader to be different tasks or interrupts, but, unlike other
+ * FreeRTOS objects, it is not safe to have multiple different writers or
+ * multiple different readers. If there are to be multiple different writers
+ * then the application writer must place each call to a writing API function
+ * (such as xStreamBufferSend()) inside a critical section and set the send
+ * block time to 0. Likewise, if there are to be multiple different readers
+ * then the application writer must place each call to a reading API function
+ * (such as xStreamBufferRead()) inside a critical section and set the receive
+ * block time to 0.
+ *
+ * Use xStreamBufferSend() to write to a stream buffer from a task. Use
+ * xStreamBufferSendFromISR() to write to a stream buffer from an interrupt
+ * service routine (ISR).
+ *
+ * @param xStreamBuffer The handle of the stream buffer to which a stream is
+ * being sent.
+ *
+ * @param pvTxData A pointer to the data that is to be copied into the stream
+ * buffer.
+ *
+ * @param xDataLengthBytes The maximum number of bytes to copy from pvTxData
+ * into the stream buffer.
+ *
+ * @param pxHigherPriorityTaskWoken It is possible that a stream buffer will
+ * have a task blocked on it waiting for data. Calling
+ * xStreamBufferSendFromISR() can make data available, and so cause a task that
+ * was waiting for data to leave the Blocked state. If calling
+ * xStreamBufferSendFromISR() causes a task to leave the Blocked state, and the
+ * unblocked task has a priority higher than the currently executing task (the
+ * task that was interrupted), then, internally, xStreamBufferSendFromISR()
+ * will set *pxHigherPriorityTaskWoken to pdTRUE. If
+ * xStreamBufferSendFromISR() sets this value to pdTRUE, then normally a
+ * context switch should be performed before the interrupt is exited. This will
+ * ensure that the interrupt returns directly to the highest priority Ready
+ * state task. *pxHigherPriorityTaskWoken should be set to pdFALSE before it
+ * is passed into the function. See the example code below for an example.
+ *
+ * @return The number of bytes actually written to the stream buffer, which will
+ * be less than xDataLengthBytes if the stream buffer didn't have enough free
+ * space for all the bytes to be written.
+ *
+ * Example use:
+<pre>
+// A stream buffer that has already been created.
+StreamBufferHandle_t xStreamBuffer;
+
+void vAnInterruptServiceRoutine( void )
+{
+size_t xBytesSent;
+char *pcStringToSend = "String to send";
+BaseType_t xHigherPriorityTaskWoken = pdFALSE; // Initialised to pdFALSE.
+
+ // Attempt to send the string to the stream buffer.
+ xBytesSent = xStreamBufferSendFromISR( xStreamBuffer,
+ ( void * ) pcStringToSend,
+ strlen( pcStringToSend ),
+ &xHigherPriorityTaskWoken );
+
+ if( xBytesSent != strlen( pcStringToSend ) )
+ {
+ // There was not enough free space in the stream buffer for the entire
+ // string to be written, ut xBytesSent bytes were written.
+ }
+
+ // If xHigherPriorityTaskWoken was set to pdTRUE inside
+ // xStreamBufferSendFromISR() then a task that has a priority above the
+ // priority of the currently executing task was unblocked and a context
+ // switch should be performed to ensure the ISR returns to the unblocked
+ // task. In most FreeRTOS ports this is done by simply passing
+ // xHigherPriorityTaskWoken into taskYIELD_FROM_ISR(), which will test the
+ // variables value, and perform the context switch if necessary. Check the
+ // documentation for the port in use for port specific instructions.
+ taskYIELD_FROM_ISR( xHigherPriorityTaskWoken );
+}
+</pre>
+ * \defgroup xStreamBufferSendFromISR xStreamBufferSendFromISR
+ * \ingroup StreamBufferManagement
+ */
+size_t xStreamBufferSendFromISR( StreamBufferHandle_t xStreamBuffer,
+ const void *pvTxData,
+ size_t xDataLengthBytes,
+ BaseType_t * const pxHigherPriorityTaskWoken ) PRIVILEGED_FUNCTION;
+
+/**
+ * stream_buffer.h
+ *
+<pre>
+size_t xStreamBufferReceive( StreamBufferHandle_t xStreamBuffer,
+ void *pvRxData,
+ size_t xBufferLengthBytes,
+ TickType_t xTicksToWait );
+</pre>
+ *
+ * Receives bytes from a stream buffer.
+ *
+ * ***NOTE***: Uniquely among FreeRTOS objects, the stream buffer
+ * implementation (so also the message buffer implementation, as message buffers
+ * are built on top of stream buffers) assumes there is only one task or
+ * interrupt that will write to the buffer (the writer), and only one task or
+ * interrupt that will read from the buffer (the reader). It is safe for the
+ * writer and reader to be different tasks or interrupts, but, unlike other
+ * FreeRTOS objects, it is not safe to have multiple different writers or
+ * multiple different readers. If there are to be multiple different writers
+ * then the application writer must place each call to a writing API function
+ * (such as xStreamBufferSend()) inside a critical section and set the send
+ * block time to 0. Likewise, if there are to be multiple different readers
+ * then the application writer must place each call to a reading API function
+ * (such as xStreamBufferRead()) inside a critical section and set the receive
+ * block time to 0.
+ *
+ * Use xStreamBufferReceive() to read from a stream buffer from a task. Use
+ * xStreamBufferReceiveFromISR() to read from a stream buffer from an
+ * interrupt service routine (ISR).
+ *
+ * @param xStreamBuffer The handle of the stream buffer from which bytes are to
+ * be received.
+ *
+ * @param pvRxData A pointer to the buffer into which the received bytes will be
+ * copied.
+ *
+ * @param xBufferLengthBytes The length of the buffer pointed to by the
+ * pvRxData parameter. This sets the maximum number of bytes to receive in one
+ * call. xStreamBufferReceive will return as many bytes as possible up to a
+ * maximum set by xBufferLengthBytes.
+ *
+ * @param xTicksToWait The maximum amount of time the task should remain in the
+ * Blocked state to wait for data to become available if the stream buffer is
+ * empty. xStreamBufferReceive() will return immediately if xTicksToWait is
+ * zero. The block time is specified in tick periods, so the absolute time it
+ * represents is dependent on the tick frequency. The macro pdMS_TO_TICKS() can
+ * be used to convert a time specified in milliseconds into a time specified in
+ * ticks. Setting xTicksToWait to portMAX_DELAY will cause the task to wait
+ * indefinitely (without timing out), provided INCLUDE_vTaskSuspend is set to 1
+ * in FreeRTOSConfig.h. A task does not use any CPU time when it is in the
+ * Blocked state.
+ *
+ * @return The number of bytes actually read from the stream buffer, which will
+ * be less than xBufferLengthBytes if the call to xStreamBufferReceive() timed
+ * out before xBufferLengthBytes were available.
+ *
+ * Example use:
+<pre>
+void vAFunction( StreamBuffer_t xStreamBuffer )
+{
+uint8_t ucRxData[ 20 ];
+size_t xReceivedBytes;
+const TickType_t xBlockTime = pdMS_TO_TICKS( 20 );
+
+ // Receive up to another sizeof( ucRxData ) bytes from the stream buffer.
+ // Wait in the Blocked state (so not using any CPU processing time) for a
+ // maximum of 100ms for the full sizeof( ucRxData ) number of bytes to be
+ // available.
+ xReceivedBytes = xStreamBufferReceive( xStreamBuffer,
+ ( void * ) ucRxData,
+ sizeof( ucRxData ),
+ xBlockTime );
+
+ if( xReceivedBytes > 0 )
+ {
+ // A ucRxData contains another xRecievedBytes bytes of data, which can
+ // be processed here....
+ }
+}
+</pre>
+ * \defgroup xStreamBufferReceive xStreamBufferReceive
+ * \ingroup StreamBufferManagement
+ */
+size_t xStreamBufferReceive( StreamBufferHandle_t xStreamBuffer,
+ void *pvRxData,
+ size_t xBufferLengthBytes,
+ TickType_t xTicksToWait ) PRIVILEGED_FUNCTION;
+
+/**
+ * stream_buffer.h
+ *
+<pre>
+size_t xStreamBufferReceiveFromISR( StreamBufferHandle_t xStreamBuffer,
+ void *pvRxData,
+ size_t xBufferLengthBytes,
+ BaseType_t *pxHigherPriorityTaskWoken );
+</pre>
+ *
+ * An interrupt safe version of the API function that receives bytes from a
+ * stream buffer.
+ *
+ * Use xStreamBufferReceive() to read bytes from a stream buffer from a task.
+ * Use xStreamBufferReceiveFromISR() to read bytes from a stream buffer from an
+ * interrupt service routine (ISR).
+ *
+ * @param xStreamBuffer The handle of the stream buffer from which a stream
+ * is being received.
+ *
+ * @param pvRxData A pointer to the buffer into which the received bytes are
+ * copied.
+ *
+ * @param xBufferLengthBytes The length of the buffer pointed to by the
+ * pvRxData parameter. This sets the maximum number of bytes to receive in one
+ * call. xStreamBufferReceive will return as many bytes as possible up to a
+ * maximum set by xBufferLengthBytes.
+ *
+ * @param pxHigherPriorityTaskWoken It is possible that a stream buffer will
+ * have a task blocked on it waiting for space to become available. Calling
+ * xStreamBufferReceiveFromISR() can make space available, and so cause a task
+ * that is waiting for space to leave the Blocked state. If calling
+ * xStreamBufferReceiveFromISR() causes a task to leave the Blocked state, and
+ * the unblocked task has a priority higher than the currently executing task
+ * (the task that was interrupted), then, internally,
+ * xStreamBufferReceiveFromISR() will set *pxHigherPriorityTaskWoken to pdTRUE.
+ * If xStreamBufferReceiveFromISR() sets this value to pdTRUE, then normally a
+ * context switch should be performed before the interrupt is exited. That will
+ * ensure the interrupt returns directly to the highest priority Ready state
+ * task. *pxHigherPriorityTaskWoken should be set to pdFALSE before it is
+ * passed into the function. See the code example below for an example.
+ *
+ * @return The number of bytes read from the stream buffer, if any.
+ *
+ * Example use:
+<pre>
+// A stream buffer that has already been created.
+StreamBuffer_t xStreamBuffer;
+
+void vAnInterruptServiceRoutine( void )
+{
+uint8_t ucRxData[ 20 ];
+size_t xReceivedBytes;
+BaseType_t xHigherPriorityTaskWoken = pdFALSE; // Initialised to pdFALSE.
+
+ // Receive the next stream from the stream buffer.
+ xReceivedBytes = xStreamBufferReceiveFromISR( xStreamBuffer,
+ ( void * ) ucRxData,
+ sizeof( ucRxData ),
+ &xHigherPriorityTaskWoken );
+
+ if( xReceivedBytes > 0 )
+ {
+ // ucRxData contains xReceivedBytes read from the stream buffer.
+ // Process the stream here....
+ }
+
+ // If xHigherPriorityTaskWoken was set to pdTRUE inside
+ // xStreamBufferReceiveFromISR() then a task that has a priority above the
+ // priority of the currently executing task was unblocked and a context
+ // switch should be performed to ensure the ISR returns to the unblocked
+ // task. In most FreeRTOS ports this is done by simply passing
+ // xHigherPriorityTaskWoken into taskYIELD_FROM_ISR(), which will test the
+ // variables value, and perform the context switch if necessary. Check the
+ // documentation for the port in use for port specific instructions.
+ taskYIELD_FROM_ISR( xHigherPriorityTaskWoken );
+}
+</pre>
+ * \defgroup xStreamBufferReceiveFromISR xStreamBufferReceiveFromISR
+ * \ingroup StreamBufferManagement
+ */
+size_t xStreamBufferReceiveFromISR( StreamBufferHandle_t xStreamBuffer,
+ void *pvRxData,
+ size_t xBufferLengthBytes,
+ BaseType_t * const pxHigherPriorityTaskWoken ) PRIVILEGED_FUNCTION;
+
+/**
+ * stream_buffer.h
+ *
+<pre>
+void vStreamBufferDelete( StreamBufferHandle_t xStreamBuffer );
+</pre>
+ *
+ * Deletes a stream buffer that was previously created using a call to
+ * xStreamBufferCreate() or xStreamBufferCreateStatic(). If the stream
+ * buffer was created using dynamic memory (that is, by xStreamBufferCreate()),
+ * then the allocated memory is freed.
+ *
+ * A stream buffer handle must not be used after the stream buffer has been
+ * deleted.
+ *
+ * @param xStreamBuffer The handle of the stream buffer to be deleted.
+ *
+ * \defgroup vStreamBufferDelete vStreamBufferDelete
+ * \ingroup StreamBufferManagement
+ */
+void vStreamBufferDelete( StreamBufferHandle_t xStreamBuffer ) PRIVILEGED_FUNCTION;
+
+/**
+ * stream_buffer.h
+ *
+<pre>
+BaseType_t xStreamBufferIsFull( StreamBufferHandle_t xStreamBuffer );
+</pre>
+ *
+ * Queries a stream buffer to see if it is full. A stream buffer is full if it
+ * does not have any free space, and therefore cannot accept any more data.
+ *
+ * @param xStreamBuffer The handle of the stream buffer being queried.
+ *
+ * @return If the stream buffer is full then pdTRUE is returned. Otherwise
+ * pdFALSE is returned.
+ *
+ * \defgroup xStreamBufferIsFull xStreamBufferIsFull
+ * \ingroup StreamBufferManagement
+ */
+BaseType_t xStreamBufferIsFull( StreamBufferHandle_t xStreamBuffer ) PRIVILEGED_FUNCTION;
+
+/**
+ * stream_buffer.h
+ *
+<pre>
+BaseType_t xStreamBufferIsEmpty( StreamBufferHandle_t xStreamBuffer );
+</pre>
+ *
+ * Queries a stream buffer to see if it is empty. A stream buffer is empty if
+ * it does not contain any data.
+ *
+ * @param xStreamBuffer The handle of the stream buffer being queried.
+ *
+ * @return If the stream buffer is empty then pdTRUE is returned. Otherwise
+ * pdFALSE is returned.
+ *
+ * \defgroup xStreamBufferIsEmpty xStreamBufferIsEmpty
+ * \ingroup StreamBufferManagement
+ */
+BaseType_t xStreamBufferIsEmpty( StreamBufferHandle_t xStreamBuffer ) PRIVILEGED_FUNCTION;
+
+/**
+ * stream_buffer.h
+ *
+<pre>
+BaseType_t xStreamBufferReset( StreamBufferHandle_t xStreamBuffer );
+</pre>
+ *
+ * Resets a stream buffer to its initial, empty, state. Any data that was in
+ * the stream buffer is discarded. A stream buffer can only be reset if there
+ * are no tasks blocked waiting to either send to or receive from the stream
+ * buffer.
+ *
+ * @param xStreamBuffer The handle of the stream buffer being reset.
+ *
+ * @return If the stream buffer is reset then pdPASS is returned. If there was
+ * a task blocked waiting to send to or read from the stream buffer then the
+ * stream buffer is not reset and pdFAIL is returned.
+ *
+ * \defgroup xStreamBufferReset xStreamBufferReset
+ * \ingroup StreamBufferManagement
+ */
+BaseType_t xStreamBufferReset( StreamBufferHandle_t xStreamBuffer ) PRIVILEGED_FUNCTION;
+
+/**
+ * stream_buffer.h
+ *
+<pre>
+size_t xStreamBufferSpacesAvailable( StreamBufferHandle_t xStreamBuffer );
+</pre>
+ *
+ * Queries a stream buffer to see how much free space it contains, which is
+ * equal to the amount of data that can be sent to the stream buffer before it
+ * is full.
+ *
+ * @param xStreamBuffer The handle of the stream buffer being queried.
+ *
+ * @return The number of bytes that can be written to the stream buffer before
+ * the stream buffer would be full.
+ *
+ * \defgroup xStreamBufferSpacesAvailable xStreamBufferSpacesAvailable
+ * \ingroup StreamBufferManagement
+ */
+size_t xStreamBufferSpacesAvailable( StreamBufferHandle_t xStreamBuffer ) PRIVILEGED_FUNCTION;
+
+/**
+ * stream_buffer.h
+ *
+<pre>
+size_t xStreamBufferBytesAvailable( StreamBufferHandle_t xStreamBuffer );
+</pre>
+ *
+ * Queries a stream buffer to see how much data it contains, which is equal to
+ * the number of bytes that can be read from the stream buffer before the stream
+ * buffer would be empty.
+ *
+ * @param xStreamBuffer The handle of the stream buffer being queried.
+ *
+ * @return The number of bytes that can be read from the stream buffer before
+ * the stream buffer would be empty.
+ *
+ * \defgroup xStreamBufferBytesAvailable xStreamBufferBytesAvailable
+ * \ingroup StreamBufferManagement
+ */
+size_t xStreamBufferBytesAvailable( StreamBufferHandle_t xStreamBuffer ) PRIVILEGED_FUNCTION;
+
+/**
+ * stream_buffer.h
+ *
+<pre>
+BaseType_t xStreamBufferSetTriggerLevel( StreamBufferHandle_t xStreamBuffer, size_t xTriggerLevel );
+</pre>
+ *
+ * A stream buffer's trigger level is the number of bytes that must be in the
+ * stream buffer before a task that is blocked on the stream buffer to
+ * wait for data is moved out of the blocked state. For example, if a task is
+ * blocked on a read of an empty stream buffer that has a trigger level of 1
+ * then the task will be unblocked when a single byte is written to the buffer
+ * or the task's block time expires. As another example, if a task is blocked
+ * on a read of an empty stream buffer that has a trigger level of 10 then the
+ * task will not be unblocked until the stream buffer contains at least 10 bytes
+ * or the task's block time expires. If a reading task's block time expires
+ * before the trigger level is reached then the task will still receive however
+ * many bytes are actually available. Setting a trigger level of 0 will result
+ * in a trigger level of 1 being used. It is not valid to specify a trigger
+ * level that is greater than the buffer size.
+ *
+ * A trigger level is set when the stream buffer is created, and can be modified
+ * using xStreamBufferSetTriggerLevel().
+ *
+ * @param xStreamBuffer The handle of the stream buffer being updated.
+ *
+ * @param xTriggerLevel The new trigger level for the stream buffer.
+ *
+ * @return If xTriggerLevel was less than or equal to the stream buffer's length
+ * then the trigger level will be updated and pdTRUE is returned. Otherwise
+ * pdFALSE is returned.
+ *
+ * \defgroup xStreamBufferSetTriggerLevel xStreamBufferSetTriggerLevel
+ * \ingroup StreamBufferManagement
+ */
+BaseType_t xStreamBufferSetTriggerLevel( StreamBufferHandle_t xStreamBuffer, size_t xTriggerLevel ) PRIVILEGED_FUNCTION;
+
+/**
+ * stream_buffer.h
+ *
+<pre>
+BaseType_t xStreamBufferSendCompletedFromISR( StreamBufferHandle_t xStreamBuffer, BaseType_t *pxHigherPriorityTaskWoken );
+</pre>
+ *
+ * For advanced users only.
+ *
+ * The sbSEND_COMPLETED() macro is called from within the FreeRTOS APIs when
+ * data is sent to a message buffer or stream buffer. If there was a task that
+ * was blocked on the message or stream buffer waiting for data to arrive then
+ * the sbSEND_COMPLETED() macro sends a notification to the task to remove it
+ * from the Blocked state. xStreamBufferSendCompletedFromISR() does the same
+ * thing. It is provided to enable application writers to implement their own
+ * version of sbSEND_COMPLETED(), and MUST NOT BE USED AT ANY OTHER TIME.
+ *
+ * See the example implemented in FreeRTOS/Demo/Minimal/MessageBufferAMP.c for
+ * additional information.
+ *
+ * @param xStreamBuffer The handle of the stream buffer to which data was
+ * written.
+ *
+ * @param pxHigherPriorityTaskWoken *pxHigherPriorityTaskWoken should be
+ * initialised to pdFALSE before it is passed into
+ * xStreamBufferSendCompletedFromISR(). If calling
+ * xStreamBufferSendCompletedFromISR() removes a task from the Blocked state,
+ * and the task has a priority above the priority of the currently running task,
+ * then *pxHigherPriorityTaskWoken will get set to pdTRUE indicating that a
+ * context switch should be performed before exiting the ISR.
+ *
+ * @return If a task was removed from the Blocked state then pdTRUE is returned.
+ * Otherwise pdFALSE is returned.
+ *
+ * \defgroup xStreamBufferSendCompletedFromISR xStreamBufferSendCompletedFromISR
+ * \ingroup StreamBufferManagement
+ */
+BaseType_t xStreamBufferSendCompletedFromISR( StreamBufferHandle_t xStreamBuffer, BaseType_t *pxHigherPriorityTaskWoken ) PRIVILEGED_FUNCTION;
+
+/**
+ * stream_buffer.h
+ *
+<pre>
+BaseType_t xStreamBufferReceiveCompletedFromISR( StreamBufferHandle_t xStreamBuffer, BaseType_t *pxHigherPriorityTaskWoken );
+</pre>
+ *
+ * For advanced users only.
+ *
+ * The sbRECEIVE_COMPLETED() macro is called from within the FreeRTOS APIs when
+ * data is read out of a message buffer or stream buffer. If there was a task
+ * that was blocked on the message or stream buffer waiting for data to arrive
+ * then the sbRECEIVE_COMPLETED() macro sends a notification to the task to
+ * remove it from the Blocked state. xStreamBufferReceiveCompletedFromISR()
+ * does the same thing. It is provided to enable application writers to
+ * implement their own version of sbRECEIVE_COMPLETED(), and MUST NOT BE USED AT
+ * ANY OTHER TIME.
+ *
+ * See the example implemented in FreeRTOS/Demo/Minimal/MessageBufferAMP.c for
+ * additional information.
+ *
+ * @param xStreamBuffer The handle of the stream buffer from which data was
+ * read.
+ *
+ * @param pxHigherPriorityTaskWoken *pxHigherPriorityTaskWoken should be
+ * initialised to pdFALSE before it is passed into
+ * xStreamBufferReceiveCompletedFromISR(). If calling
+ * xStreamBufferReceiveCompletedFromISR() removes a task from the Blocked state,
+ * and the task has a priority above the priority of the currently running task,
+ * then *pxHigherPriorityTaskWoken will get set to pdTRUE indicating that a
+ * context switch should be performed before exiting the ISR.
+ *
+ * @return If a task was removed from the Blocked state then pdTRUE is returned.
+ * Otherwise pdFALSE is returned.
+ *
+ * \defgroup xStreamBufferReceiveCompletedFromISR xStreamBufferReceiveCompletedFromISR
+ * \ingroup StreamBufferManagement
+ */
+BaseType_t xStreamBufferReceiveCompletedFromISR( StreamBufferHandle_t xStreamBuffer, BaseType_t *pxHigherPriorityTaskWoken ) PRIVILEGED_FUNCTION;
+
+/* Functions below here are not part of the public API. */
+StreamBufferHandle_t xStreamBufferGenericCreate( size_t xBufferSizeBytes,
+ size_t xTriggerLevelBytes,
+ BaseType_t xIsMessageBuffer ) PRIVILEGED_FUNCTION;
+
+StreamBufferHandle_t xStreamBufferGenericCreateStatic( size_t xBufferSizeBytes,
+ size_t xTriggerLevelBytes,
+ BaseType_t xIsMessageBuffer,
+ uint8_t * const pucStreamBufferStorageArea,
+ StaticStreamBuffer_t * const pxStaticStreamBuffer ) PRIVILEGED_FUNCTION;
+
+size_t xStreamBufferNextMessageLengthBytes( StreamBufferHandle_t xStreamBuffer ) PRIVILEGED_FUNCTION;
+
+#if( configUSE_TRACE_FACILITY == 1 )
+ void vStreamBufferSetStreamBufferNumber( StreamBufferHandle_t xStreamBuffer, UBaseType_t uxStreamBufferNumber ) PRIVILEGED_FUNCTION;
+ UBaseType_t uxStreamBufferGetStreamBufferNumber( StreamBufferHandle_t xStreamBuffer ) PRIVILEGED_FUNCTION;
+ uint8_t ucStreamBufferGetStreamBufferType( StreamBufferHandle_t xStreamBuffer ) PRIVILEGED_FUNCTION;
+#endif
+
+#if defined( __cplusplus )
+}
+#endif
+
+#endif /* !defined( STREAM_BUFFER_H ) */
diff --git a/src/FreeRTOS/Source/include/task.h b/src/FreeRTOS/Source/include/task.h index b8d6dd8..f957ab5 100644 --- a/src/FreeRTOS/Source/include/task.h +++ b/src/FreeRTOS/Source/include/task.h @@ -1,71 +1,29 @@ /*
- FreeRTOS V8.2.3 - Copyright (C) 2015 Real Time Engineers Ltd.
- All rights reserved
-
- VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
-
- This file is part of the FreeRTOS distribution.
-
- FreeRTOS is free software; you can redistribute it and/or modify it under
- the terms of the GNU General Public License (version 2) as published by the
- Free Software Foundation >>>> AND MODIFIED BY <<<< the FreeRTOS exception.
-
- ***************************************************************************
- >>! NOTE: The modification to the GPL is included to allow you to !<<
- >>! distribute a combined work that includes FreeRTOS without being !<<
- >>! obliged to provide the source code for proprietary components !<<
- >>! outside of the FreeRTOS kernel. !<<
- ***************************************************************************
-
- FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
- WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
- FOR A PARTICULAR PURPOSE. Full license text is available on the following
- link: http://www.freertos.org/a00114.html
-
- ***************************************************************************
- * *
- * FreeRTOS provides completely free yet professionally developed, *
- * robust, strictly quality controlled, supported, and cross *
- * platform software that is more than just the market leader, it *
- * is the industry's de facto standard. *
- * *
- * Help yourself get started quickly while simultaneously helping *
- * to support the FreeRTOS project by purchasing a FreeRTOS *
- * tutorial book, reference manual, or both: *
- * http://www.FreeRTOS.org/Documentation *
- * *
- ***************************************************************************
-
- http://www.FreeRTOS.org/FAQHelp.html - Having a problem? Start by reading
- the FAQ page "My application does not run, what could be wrong?". Have you
- defined configASSERT()?
-
- http://www.FreeRTOS.org/support - In return for receiving this top quality
- embedded software for free we request you assist our global community by
- participating in the support forum.
-
- http://www.FreeRTOS.org/training - Investing in training allows your team to
- be as productive as possible as early as possible. Now you can receive
- FreeRTOS training directly from Richard Barry, CEO of Real Time Engineers
- Ltd, and the world's leading authority on the world's leading RTOS.
-
- http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
- including FreeRTOS+Trace - an indispensable productivity tool, a DOS
- compatible FAT file system, and our tiny thread aware UDP/IP stack.
-
- http://www.FreeRTOS.org/labs - Where new FreeRTOS products go to incubate.
- Come and try FreeRTOS+TCP, our new open source TCP/IP stack for FreeRTOS.
-
- http://www.OpenRTOS.com - Real Time Engineers ltd. license FreeRTOS to High
- Integrity Systems ltd. to sell under the OpenRTOS brand. Low cost OpenRTOS
- licenses offer ticketed support, indemnification and commercial middleware.
-
- http://www.SafeRTOS.com - High Integrity Systems also provide a safety
- engineered and independently SIL3 certified version for use in safety and
- mission critical applications that require provable dependability.
-
- 1 tab == 4 spaces!
-*/
+ * FreeRTOS Kernel V10.2.0
+ * Copyright (C) 2019 Amazon.com, Inc. or its affiliates. All Rights Reserved.
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy of
+ * this software and associated documentation files (the "Software"), to deal in
+ * the Software without restriction, including without limitation the rights to
+ * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
+ * the Software, and to permit persons to whom the Software is furnished to do so,
+ * subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
+ * FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
+ * COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
+ * IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
+ * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+ *
+ * http://www.FreeRTOS.org
+ * http://aws.amazon.com/freertos
+ *
+ * 1 tab == 4 spaces!
+ */
#ifndef INC_TASK_H
@@ -85,10 +43,18 @@ extern "C" { * MACROS AND DEFINITIONS
*----------------------------------------------------------*/
-#define tskKERNEL_VERSION_NUMBER "V8.2.3"
-#define tskKERNEL_VERSION_MAJOR 8
+#define tskKERNEL_VERSION_NUMBER "V10.2.0"
+#define tskKERNEL_VERSION_MAJOR 10
#define tskKERNEL_VERSION_MINOR 2
-#define tskKERNEL_VERSION_BUILD 3
+#define tskKERNEL_VERSION_BUILD 0
+
+/* MPU region parameters passed in ulParameters
+ * of MemoryRegion_t struct. */
+#define tskMPU_REGION_READ_ONLY ( 1UL << 0UL )
+#define tskMPU_REGION_READ_WRITE ( 1UL << 1UL )
+#define tskMPU_REGION_EXECUTE_NEVER ( 1UL << 2UL )
+#define tskMPU_REGION_NORMAL_MEMORY ( 1UL << 3UL )
+#define tskMPU_REGION_DEVICE_MEMORY ( 1UL << 4UL )
/**
* task. h
@@ -100,7 +66,8 @@ extern "C" { * \defgroup TaskHandle_t TaskHandle_t
* \ingroup Tasks
*/
-typedef void * TaskHandle_t;
+struct tskTaskControlBlock; /* The old naming convention is used to prevent breaking kernel aware debuggers. */
+typedef struct tskTaskControlBlock* TaskHandle_t;
/*
* Defines the prototype to which the application task hook function must
@@ -115,7 +82,8 @@ typedef enum eReady, /* The task being queried is in a read or pending ready list. */
eBlocked, /* The task being queried is in the Blocked state. */
eSuspended, /* The task being queried is in the Suspended state, or is in the Blocked state with an infinite time out. */
- eDeleted /* The task being queried has been deleted, but its TCB has not yet been freed. */
+ eDeleted, /* The task being queried has been deleted, but its TCB has not yet been freed. */
+ eInvalid /* Used as an 'invalid state' value. */
} eTaskState;
/* Actions that can be performed when vTaskNotify() is called. */
@@ -154,11 +122,14 @@ typedef struct xTASK_PARAMETERS {
TaskFunction_t pvTaskCode;
const char * const pcName; /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
- uint16_t usStackDepth;
+ configSTACK_DEPTH_TYPE usStackDepth;
void *pvParameters;
UBaseType_t uxPriority;
StackType_t *puxStackBuffer;
MemoryRegion_t xRegions[ portNUM_CONFIGURABLE_REGIONS ];
+ #if ( ( portUSING_MPU_WRAPPERS == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 1 ) )
+ StaticTask_t * const pxTaskBuffer;
+ #endif
} TaskParameters_t;
/* Used with the uxTaskGetSystemState() function to return the state of each task
@@ -172,7 +143,8 @@ typedef struct xTASK_STATUS UBaseType_t uxCurrentPriority; /* The priority at which the task was running (may be inherited) when the structure was populated. */
UBaseType_t uxBasePriority; /* The priority to which the task will return if the task's current priority has been inherited to avoid unbounded priority inversion when obtaining a mutex. Only valid if configUSE_MUTEXES is defined as 1 in FreeRTOSConfig.h. */
uint32_t ulRunTimeCounter; /* The total run time allocated to the task so far, as defined by the run time stats clock. See http://www.freertos.org/rtos-run-time-stats.html. Only valid when configGENERATE_RUN_TIME_STATS is defined as 1 in FreeRTOSConfig.h. */
- uint16_t usStackHighWaterMark; /* The minimum amount of stack space that has remained for the task since the task was created. The closer this value is to zero the closer the task has come to overflowing its stack. */
+ StackType_t *pxStackBase; /* Points to the lowest address of the task's stack area. */
+ configSTACK_DEPTH_TYPE usStackHighWaterMark; /* The minimum amount of stack space that has remained for the task since the task was created. The closer this value is to zero the closer the task has come to overflowing its stack. */
} TaskStatus_t;
/* Possible return values for eTaskConfirmSleepModeStatus(). */
@@ -183,7 +155,6 @@ typedef enum eNoTasksWaitingTimeout /* No tasks are waiting for a timeout so it is safe to enter a sleep mode that can only be exited by an external interrupt. */
} eSleepModeStatus;
-
/**
* Defines the priority used by the idle task. This must not be modified.
*
@@ -268,7 +239,7 @@ is used in assert() statements. */ BaseType_t xTaskCreate(
TaskFunction_t pvTaskCode,
const char * const pcName,
- uint16_t usStackDepth,
+ configSTACK_DEPTH_TYPE usStackDepth,
void *pvParameters,
UBaseType_t uxPriority,
TaskHandle_t *pvCreatedTask
@@ -276,6 +247,19 @@ is used in assert() statements. */ *
* Create a new task and add it to the list of tasks that are ready to run.
*
+ * Internally, within the FreeRTOS implementation, tasks use two blocks of
+ * memory. The first block is used to hold the task's data structures. The
+ * second block is used by the task as its stack. If a task is created using
+ * xTaskCreate() then both blocks of memory are automatically dynamically
+ * allocated inside the xTaskCreate() function. (see
+ * http://www.freertos.org/a00111.html). If a task is created using
+ * xTaskCreateStatic() then the application writer must provide the required
+ * memory. xTaskCreateStatic() therefore allows a task to be created without
+ * using any dynamic memory allocation.
+ *
+ * See xTaskCreateStatic() for a version that does not use any dynamic memory
+ * allocation.
+ *
* xTaskCreate() can only be used to create a task that has unrestricted
* access to the entire microcontroller memory map. Systems that include MPU
* support can alternatively create an MPU constrained task using
@@ -342,13 +326,139 @@ is used in assert() statements. */ * \defgroup xTaskCreate xTaskCreate
* \ingroup Tasks
*/
-#define xTaskCreate( pvTaskCode, pcName, usStackDepth, pvParameters, uxPriority, pxCreatedTask ) xTaskGenericCreate( ( pvTaskCode ), ( pcName ), ( usStackDepth ), ( pvParameters ), ( uxPriority ), ( pxCreatedTask ), ( NULL ), ( NULL ) )
+#if( configSUPPORT_DYNAMIC_ALLOCATION == 1 )
+ BaseType_t xTaskCreate( TaskFunction_t pxTaskCode,
+ const char * const pcName, /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
+ const configSTACK_DEPTH_TYPE usStackDepth,
+ void * const pvParameters,
+ UBaseType_t uxPriority,
+ TaskHandle_t * const pxCreatedTask ) PRIVILEGED_FUNCTION;
+#endif
+
+/**
+ * task. h
+ *<pre>
+ TaskHandle_t xTaskCreateStatic( TaskFunction_t pvTaskCode,
+ const char * const pcName,
+ uint32_t ulStackDepth,
+ void *pvParameters,
+ UBaseType_t uxPriority,
+ StackType_t *pxStackBuffer,
+ StaticTask_t *pxTaskBuffer );</pre>
+ *
+ * Create a new task and add it to the list of tasks that are ready to run.
+ *
+ * Internally, within the FreeRTOS implementation, tasks use two blocks of
+ * memory. The first block is used to hold the task's data structures. The
+ * second block is used by the task as its stack. If a task is created using
+ * xTaskCreate() then both blocks of memory are automatically dynamically
+ * allocated inside the xTaskCreate() function. (see
+ * http://www.freertos.org/a00111.html). If a task is created using
+ * xTaskCreateStatic() then the application writer must provide the required
+ * memory. xTaskCreateStatic() therefore allows a task to be created without
+ * using any dynamic memory allocation.
+ *
+ * @param pvTaskCode Pointer to the task entry function. Tasks
+ * must be implemented to never return (i.e. continuous loop).
+ *
+ * @param pcName A descriptive name for the task. This is mainly used to
+ * facilitate debugging. The maximum length of the string is defined by
+ * configMAX_TASK_NAME_LEN in FreeRTOSConfig.h.
+ *
+ * @param ulStackDepth The size of the task stack specified as the number of
+ * variables the stack can hold - not the number of bytes. For example, if
+ * the stack is 32-bits wide and ulStackDepth is defined as 100 then 400 bytes
+ * will be allocated for stack storage.
+ *
+ * @param pvParameters Pointer that will be used as the parameter for the task
+ * being created.
+ *
+ * @param uxPriority The priority at which the task will run.
+ *
+ * @param pxStackBuffer Must point to a StackType_t array that has at least
+ * ulStackDepth indexes - the array will then be used as the task's stack,
+ * removing the need for the stack to be allocated dynamically.
+ *
+ * @param pxTaskBuffer Must point to a variable of type StaticTask_t, which will
+ * then be used to hold the task's data structures, removing the need for the
+ * memory to be allocated dynamically.
+ *
+ * @return If neither pxStackBuffer or pxTaskBuffer are NULL, then the task will
+ * be created and a handle to the created task is returned. If either
+ * pxStackBuffer or pxTaskBuffer are NULL then the task will not be created and
+ * NULL is returned.
+ *
+ * Example usage:
+ <pre>
+
+ // Dimensions the buffer that the task being created will use as its stack.
+ // NOTE: This is the number of words the stack will hold, not the number of
+ // bytes. For example, if each stack item is 32-bits, and this is set to 100,
+ // then 400 bytes (100 * 32-bits) will be allocated.
+ #define STACK_SIZE 200
+
+ // Structure that will hold the TCB of the task being created.
+ StaticTask_t xTaskBuffer;
+
+ // Buffer that the task being created will use as its stack. Note this is
+ // an array of StackType_t variables. The size of StackType_t is dependent on
+ // the RTOS port.
+ StackType_t xStack[ STACK_SIZE ];
+
+ // Function that implements the task being created.
+ void vTaskCode( void * pvParameters )
+ {
+ // The parameter value is expected to be 1 as 1 is passed in the
+ // pvParameters value in the call to xTaskCreateStatic().
+ configASSERT( ( uint32_t ) pvParameters == 1UL );
+
+ for( ;; )
+ {
+ // Task code goes here.
+ }
+ }
+
+ // Function that creates a task.
+ void vOtherFunction( void )
+ {
+ TaskHandle_t xHandle = NULL;
+
+ // Create the task without using any dynamic memory allocation.
+ xHandle = xTaskCreateStatic(
+ vTaskCode, // Function that implements the task.
+ "NAME", // Text name for the task.
+ STACK_SIZE, // Stack size in words, not bytes.
+ ( void * ) 1, // Parameter passed into the task.
+ tskIDLE_PRIORITY,// Priority at which the task is created.
+ xStack, // Array to use as the task's stack.
+ &xTaskBuffer ); // Variable to hold the task's data structure.
+
+ // puxStackBuffer and pxTaskBuffer were not NULL, so the task will have
+ // been created, and xHandle will be the task's handle. Use the handle
+ // to suspend the task.
+ vTaskSuspend( xHandle );
+ }
+ </pre>
+ * \defgroup xTaskCreateStatic xTaskCreateStatic
+ * \ingroup Tasks
+ */
+#if( configSUPPORT_STATIC_ALLOCATION == 1 )
+ TaskHandle_t xTaskCreateStatic( TaskFunction_t pxTaskCode,
+ const char * const pcName, /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
+ const uint32_t ulStackDepth,
+ void * const pvParameters,
+ UBaseType_t uxPriority,
+ StackType_t * const puxStackBuffer,
+ StaticTask_t * const pxTaskBuffer ) PRIVILEGED_FUNCTION;
+#endif /* configSUPPORT_STATIC_ALLOCATION */
/**
* task. h
*<pre>
BaseType_t xTaskCreateRestricted( TaskParameters_t *pxTaskDefinition, TaskHandle_t *pxCreatedTask );</pre>
*
+ * Only available when configSUPPORT_DYNAMIC_ALLOCATION is set to 1.
+ *
* xTaskCreateRestricted() should only be used in systems that include an MPU
* implementation.
*
@@ -356,6 +466,9 @@ is used in assert() statements. */ * The function parameters define the memory regions and associated access
* permissions allocated to the task.
*
+ * See xTaskCreateRestrictedStatic() for a version that does not use any
+ * dynamic memory allocation.
+ *
* @param pxTaskDefinition Pointer to a structure that contains a member
* for each of the normal xTaskCreate() parameters (see the xTaskCreate() API
* documentation) plus an optional stack buffer and the memory region
@@ -411,7 +524,97 @@ TaskHandle_t xHandle; * \defgroup xTaskCreateRestricted xTaskCreateRestricted
* \ingroup Tasks
*/
-#define xTaskCreateRestricted( x, pxCreatedTask ) xTaskGenericCreate( ((x)->pvTaskCode), ((x)->pcName), ((x)->usStackDepth), ((x)->pvParameters), ((x)->uxPriority), (pxCreatedTask), ((x)->puxStackBuffer), ((x)->xRegions) )
+#if( portUSING_MPU_WRAPPERS == 1 )
+ BaseType_t xTaskCreateRestricted( const TaskParameters_t * const pxTaskDefinition, TaskHandle_t *pxCreatedTask ) PRIVILEGED_FUNCTION;
+#endif
+
+/**
+ * task. h
+ *<pre>
+ BaseType_t xTaskCreateRestrictedStatic( TaskParameters_t *pxTaskDefinition, TaskHandle_t *pxCreatedTask );</pre>
+ *
+ * Only available when configSUPPORT_STATIC_ALLOCATION is set to 1.
+ *
+ * xTaskCreateRestrictedStatic() should only be used in systems that include an
+ * MPU implementation.
+ *
+ * Internally, within the FreeRTOS implementation, tasks use two blocks of
+ * memory. The first block is used to hold the task's data structures. The
+ * second block is used by the task as its stack. If a task is created using
+ * xTaskCreateRestricted() then the stack is provided by the application writer,
+ * and the memory used to hold the task's data structure is automatically
+ * dynamically allocated inside the xTaskCreateRestricted() function. If a task
+ * is created using xTaskCreateRestrictedStatic() then the application writer
+ * must provide the memory used to hold the task's data structures too.
+ * xTaskCreateRestrictedStatic() therefore allows a memory protected task to be
+ * created without using any dynamic memory allocation.
+ *
+ * @param pxTaskDefinition Pointer to a structure that contains a member
+ * for each of the normal xTaskCreate() parameters (see the xTaskCreate() API
+ * documentation) plus an optional stack buffer and the memory region
+ * definitions. If configSUPPORT_STATIC_ALLOCATION is set to 1 the structure
+ * contains an additional member, which is used to point to a variable of type
+ * StaticTask_t - which is then used to hold the task's data structure.
+ *
+ * @param pxCreatedTask Used to pass back a handle by which the created task
+ * can be referenced.
+ *
+ * @return pdPASS if the task was successfully created and added to a ready
+ * list, otherwise an error code defined in the file projdefs.h
+ *
+ * Example usage:
+ <pre>
+// Create an TaskParameters_t structure that defines the task to be created.
+// The StaticTask_t variable is only included in the structure when
+// configSUPPORT_STATIC_ALLOCATION is set to 1. The PRIVILEGED_DATA macro can
+// be used to force the variable into the RTOS kernel's privileged data area.
+static PRIVILEGED_DATA StaticTask_t xTaskBuffer;
+static const TaskParameters_t xCheckTaskParameters =
+{
+ vATask, // pvTaskCode - the function that implements the task.
+ "ATask", // pcName - just a text name for the task to assist debugging.
+ 100, // usStackDepth - the stack size DEFINED IN WORDS.
+ NULL, // pvParameters - passed into the task function as the function parameters.
+ ( 1UL | portPRIVILEGE_BIT ),// uxPriority - task priority, set the portPRIVILEGE_BIT if the task should run in a privileged state.
+ cStackBuffer,// puxStackBuffer - the buffer to be used as the task stack.
+
+ // xRegions - Allocate up to three separate memory regions for access by
+ // the task, with appropriate access permissions. Different processors have
+ // different memory alignment requirements - refer to the FreeRTOS documentation
+ // for full information.
+ {
+ // Base address Length Parameters
+ { cReadWriteArray, 32, portMPU_REGION_READ_WRITE },
+ { cReadOnlyArray, 32, portMPU_REGION_READ_ONLY },
+ { cPrivilegedOnlyAccessArray, 128, portMPU_REGION_PRIVILEGED_READ_WRITE }
+ }
+
+ &xTaskBuffer; // Holds the task's data structure.
+};
+
+int main( void )
+{
+TaskHandle_t xHandle;
+
+ // Create a task from the const structure defined above. The task handle
+ // is requested (the second parameter is not NULL) but in this case just for
+ // demonstration purposes as its not actually used.
+ xTaskCreateRestricted( &xRegTest1Parameters, &xHandle );
+
+ // Start the scheduler.
+ vTaskStartScheduler();
+
+ // Will only get here if there was insufficient memory to create the idle
+ // and/or timer task.
+ for( ;; );
+}
+ </pre>
+ * \defgroup xTaskCreateRestrictedStatic xTaskCreateRestrictedStatic
+ * \ingroup Tasks
+ */
+#if( ( portUSING_MPU_WRAPPERS == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 1 ) )
+ BaseType_t xTaskCreateRestrictedStatic( const TaskParameters_t * const pxTaskDefinition, TaskHandle_t *pxCreatedTask ) PRIVILEGED_FUNCTION;
+#endif
/**
* task. h
@@ -615,7 +818,32 @@ void vTaskDelayUntil( TickType_t * const pxPreviousWakeTime, const TickType_t xT /**
* task. h
- * <pre>UBaseType_t uxTaskPriorityGet( TaskHandle_t xTask );</pre>
+ * <pre>BaseType_t xTaskAbortDelay( TaskHandle_t xTask );</pre>
+ *
+ * INCLUDE_xTaskAbortDelay must be defined as 1 in FreeRTOSConfig.h for this
+ * function to be available.
+ *
+ * A task will enter the Blocked state when it is waiting for an event. The
+ * event it is waiting for can be a temporal event (waiting for a time), such
+ * as when vTaskDelay() is called, or an event on an object, such as when
+ * xQueueReceive() or ulTaskNotifyTake() is called. If the handle of a task
+ * that is in the Blocked state is used in a call to xTaskAbortDelay() then the
+ * task will leave the Blocked state, and return from whichever function call
+ * placed the task into the Blocked state.
+ *
+ * @param xTask The handle of the task to remove from the Blocked state.
+ *
+ * @return If the task referenced by xTask was not in the Blocked state then
+ * pdFAIL is returned. Otherwise pdPASS is returned.
+ *
+ * \defgroup xTaskAbortDelay xTaskAbortDelay
+ * \ingroup TaskCtrl
+ */
+BaseType_t xTaskAbortDelay( TaskHandle_t xTask ) PRIVILEGED_FUNCTION;
+
+/**
+ * task. h
+ * <pre>UBaseType_t uxTaskPriorityGet( const TaskHandle_t xTask );</pre>
*
* INCLUDE_uxTaskPriorityGet must be defined as 1 for this function to be available.
* See the configuration section for more information.
@@ -658,15 +886,15 @@ void vTaskDelayUntil( TickType_t * const pxPreviousWakeTime, const TickType_t xT * \defgroup uxTaskPriorityGet uxTaskPriorityGet
* \ingroup TaskCtrl
*/
-UBaseType_t uxTaskPriorityGet( TaskHandle_t xTask ) PRIVILEGED_FUNCTION;
+UBaseType_t uxTaskPriorityGet( const TaskHandle_t xTask ) PRIVILEGED_FUNCTION;
/**
* task. h
- * <pre>UBaseType_t uxTaskPriorityGetFromISR( TaskHandle_t xTask );</pre>
+ * <pre>UBaseType_t uxTaskPriorityGetFromISR( const TaskHandle_t xTask );</pre>
*
* A version of uxTaskPriorityGet() that can be used from an ISR.
*/
-UBaseType_t uxTaskPriorityGetFromISR( TaskHandle_t xTask ) PRIVILEGED_FUNCTION;
+UBaseType_t uxTaskPriorityGetFromISR( const TaskHandle_t xTask ) PRIVILEGED_FUNCTION;
/**
* task. h
@@ -688,6 +916,62 @@ eTaskState eTaskGetState( TaskHandle_t xTask ) PRIVILEGED_FUNCTION; /**
* task. h
+ * <pre>void vTaskGetInfo( TaskHandle_t xTask, TaskStatus_t *pxTaskStatus, BaseType_t xGetFreeStackSpace, eTaskState eState );</pre>
+ *
+ * configUSE_TRACE_FACILITY must be defined as 1 for this function to be
+ * available. See the configuration section for more information.
+ *
+ * Populates a TaskStatus_t structure with information about a task.
+ *
+ * @param xTask Handle of the task being queried. If xTask is NULL then
+ * information will be returned about the calling task.
+ *
+ * @param pxTaskStatus A pointer to the TaskStatus_t structure that will be
+ * filled with information about the task referenced by the handle passed using
+ * the xTask parameter.
+ *
+ * @xGetFreeStackSpace The TaskStatus_t structure contains a member to report
+ * the stack high water mark of the task being queried. Calculating the stack
+ * high water mark takes a relatively long time, and can make the system
+ * temporarily unresponsive - so the xGetFreeStackSpace parameter is provided to
+ * allow the high water mark checking to be skipped. The high watermark value
+ * will only be written to the TaskStatus_t structure if xGetFreeStackSpace is
+ * not set to pdFALSE;
+ *
+ * @param eState The TaskStatus_t structure contains a member to report the
+ * state of the task being queried. Obtaining the task state is not as fast as
+ * a simple assignment - so the eState parameter is provided to allow the state
+ * information to be omitted from the TaskStatus_t structure. To obtain state
+ * information then set eState to eInvalid - otherwise the value passed in
+ * eState will be reported as the task state in the TaskStatus_t structure.
+ *
+ * Example usage:
+ <pre>
+ void vAFunction( void )
+ {
+ TaskHandle_t xHandle;
+ TaskStatus_t xTaskDetails;
+
+ // Obtain the handle of a task from its name.
+ xHandle = xTaskGetHandle( "Task_Name" );
+
+ // Check the handle is not NULL.
+ configASSERT( xHandle );
+
+ // Use the handle to obtain further information about the task.
+ vTaskGetInfo( xHandle,
+ &xTaskDetails,
+ pdTRUE, // Include the high water mark in xTaskDetails.
+ eInvalid ); // Include the task state in xTaskDetails.
+ }
+ </pre>
+ * \defgroup vTaskGetInfo vTaskGetInfo
+ * \ingroup TaskCtrl
+ */
+void vTaskGetInfo( TaskHandle_t xTask, TaskStatus_t *pxTaskStatus, BaseType_t xGetFreeStackSpace, eTaskState eState ) PRIVILEGED_FUNCTION;
+
+/**
+ * task. h
* <pre>void vTaskPrioritySet( TaskHandle_t xTask, UBaseType_t uxNewPriority );</pre>
*
* INCLUDE_vTaskPrioritySet must be defined as 1 for this function to be available.
@@ -1098,17 +1382,32 @@ UBaseType_t uxTaskGetNumberOfTasks( void ) PRIVILEGED_FUNCTION; /**
* task. h
- * <PRE>char *pcTaskGetTaskName( TaskHandle_t xTaskToQuery );</PRE>
+ * <PRE>char *pcTaskGetName( TaskHandle_t xTaskToQuery );</PRE>
*
* @return The text (human readable) name of the task referenced by the handle
* xTaskToQuery. A task can query its own name by either passing in its own
- * handle, or by setting xTaskToQuery to NULL. INCLUDE_pcTaskGetTaskName must be
- * set to 1 in FreeRTOSConfig.h for pcTaskGetTaskName() to be available.
+ * handle, or by setting xTaskToQuery to NULL.
+ *
+ * \defgroup pcTaskGetName pcTaskGetName
+ * \ingroup TaskUtils
+ */
+char *pcTaskGetName( TaskHandle_t xTaskToQuery ) PRIVILEGED_FUNCTION; /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
+
+/**
+ * task. h
+ * <PRE>TaskHandle_t xTaskGetHandle( const char *pcNameToQuery );</PRE>
+ *
+ * NOTE: This function takes a relatively long time to complete and should be
+ * used sparingly.
+ *
+ * @return The handle of the task that has the human readable name pcNameToQuery.
+ * NULL is returned if no matching name is found. INCLUDE_xTaskGetHandle
+ * must be set to 1 in FreeRTOSConfig.h for pcTaskGetHandle() to be available.
*
- * \defgroup pcTaskGetTaskName pcTaskGetTaskName
+ * \defgroup pcTaskGetHandle pcTaskGetHandle
* \ingroup TaskUtils
*/
-char *pcTaskGetTaskName( TaskHandle_t xTaskToQuery ) PRIVILEGED_FUNCTION; /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
+TaskHandle_t xTaskGetHandle( const char *pcNameToQuery ) PRIVILEGED_FUNCTION; /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
/**
* task.h
@@ -1122,6 +1421,12 @@ char *pcTaskGetTaskName( TaskHandle_t xTaskToQuery ) PRIVILEGED_FUNCTION; /*lint * a value of 1 means 4 bytes) since the task started. The smaller the returned
* number the closer the task has come to overflowing its stack.
*
+ * uxTaskGetStackHighWaterMark() and uxTaskGetStackHighWaterMark2() are the
+ * same except for their return type. Using configSTACK_DEPTH_TYPE allows the
+ * user to determine the return type. It gets around the problem of the value
+ * overflowing on 8-bit types without breaking backward compatibility for
+ * applications that expect an 8-bit return type.
+ *
* @param xTask Handle of the task associated with the stack to be checked.
* Set xTask to NULL to check the stack of the calling task.
*
@@ -1131,6 +1436,33 @@ char *pcTaskGetTaskName( TaskHandle_t xTaskToQuery ) PRIVILEGED_FUNCTION; /*lint */
UBaseType_t uxTaskGetStackHighWaterMark( TaskHandle_t xTask ) PRIVILEGED_FUNCTION;
+/**
+ * task.h
+ * <PRE>configSTACK_DEPTH_TYPE uxTaskGetStackHighWaterMark2( TaskHandle_t xTask );</PRE>
+ *
+ * INCLUDE_uxTaskGetStackHighWaterMark2 must be set to 1 in FreeRTOSConfig.h for
+ * this function to be available.
+ *
+ * Returns the high water mark of the stack associated with xTask. That is,
+ * the minimum free stack space there has been (in words, so on a 32 bit machine
+ * a value of 1 means 4 bytes) since the task started. The smaller the returned
+ * number the closer the task has come to overflowing its stack.
+ *
+ * uxTaskGetStackHighWaterMark() and uxTaskGetStackHighWaterMark2() are the
+ * same except for their return type. Using configSTACK_DEPTH_TYPE allows the
+ * user to determine the return type. It gets around the problem of the value
+ * overflowing on 8-bit types without breaking backward compatibility for
+ * applications that expect an 8-bit return type.
+ *
+ * @param xTask Handle of the task associated with the stack to be checked.
+ * Set xTask to NULL to check the stack of the calling task.
+ *
+ * @return The smallest amount of free stack space there has been (in words, so
+ * actual spaces on the stack rather than bytes) since the task referenced by
+ * xTask was created.
+ */
+configSTACK_DEPTH_TYPE uxTaskGetStackHighWaterMark2( TaskHandle_t xTask ) PRIVILEGED_FUNCTION;
+
/* When using trace macros it is sometimes necessary to include task.h before
FreeRTOS.h. When this is done TaskHookFunction_t will not yet have been defined,
so the following two prototypes will cause a compilation error. This can be
@@ -1153,9 +1485,20 @@ constant. */ * task.h
* <pre>void xTaskGetApplicationTaskTag( TaskHandle_t xTask );</pre>
*
- * Returns the pxHookFunction value assigned to the task xTask.
+ * Returns the pxHookFunction value assigned to the task xTask. Do not
+ * call from an interrupt service routine - call
+ * xTaskGetApplicationTaskTagFromISR() instead.
*/
TaskHookFunction_t xTaskGetApplicationTaskTag( TaskHandle_t xTask ) PRIVILEGED_FUNCTION;
+
+ /**
+ * task.h
+ * <pre>void xTaskGetApplicationTaskTagFromISR( TaskHandle_t xTask );</pre>
+ *
+ * Returns the pxHookFunction value assigned to the task xTask. Can
+ * be called from an interrupt service routine.
+ */
+ TaskHookFunction_t xTaskGetApplicationTaskTagFromISR( TaskHandle_t xTask ) PRIVILEGED_FUNCTION;
#endif /* configUSE_APPLICATION_TASK_TAG ==1 */
#endif /* ifdef configUSE_APPLICATION_TASK_TAG */
@@ -1394,6 +1737,36 @@ void vTaskList( char * pcWriteBuffer ) PRIVILEGED_FUNCTION; /*lint !e971 Unquali void vTaskGetRunTimeStats( char *pcWriteBuffer ) PRIVILEGED_FUNCTION; /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
/**
+* task. h
+* <PRE>TickType_t xTaskGetIdleRunTimeCounter( void );</PRE>
+*
+* configGENERATE_RUN_TIME_STATS and configUSE_STATS_FORMATTING_FUNCTIONS
+* must both be defined as 1 for this function to be available. The application
+* must also then provide definitions for
+* portCONFIGURE_TIMER_FOR_RUN_TIME_STATS() and portGET_RUN_TIME_COUNTER_VALUE()
+* to configure a peripheral timer/counter and return the timers current count
+* value respectively. The counter should be at least 10 times the frequency of
+* the tick count.
+*
+* Setting configGENERATE_RUN_TIME_STATS to 1 will result in a total
+* accumulated execution time being stored for each task. The resolution
+* of the accumulated time value depends on the frequency of the timer
+* configured by the portCONFIGURE_TIMER_FOR_RUN_TIME_STATS() macro.
+* While uxTaskGetSystemState() and vTaskGetRunTimeStats() writes the total
+* execution time of each task into a buffer, xTaskGetIdleRunTimeCounter()
+* returns the total execution time of just the idle task.
+*
+* @return The total run time of the idle task. This is the amount of time the
+* idle task has actually been executing. The unit of time is dependent on the
+* frequency configured using the portCONFIGURE_TIMER_FOR_RUN_TIME_STATS() and
+* portGET_RUN_TIME_COUNTER_VALUE() macros.
+*
+* \defgroup xTaskGetIdleRunTimeCounter xTaskGetIdleRunTimeCounter
+* \ingroup TaskUtils
+*/
+TickType_t xTaskGetIdleRunTimeCounter( void ) PRIVILEGED_FUNCTION;
+
+/**
* task. h
* <PRE>BaseType_t xTaskNotify( TaskHandle_t xTaskToNotify, uint32_t ulValue, eNotifyAction eAction );</PRE>
*
@@ -1894,7 +2267,7 @@ void vTaskPlaceOnUnorderedEventList( List_t * pxEventList, const TickType_t xIte * indefinitely, whereas vTaskPlaceOnEventList() does.
*
*/
-void vTaskPlaceOnEventListRestricted( List_t * const pxEventList, const TickType_t xTicksToWait, const BaseType_t xWaitIndefinitely ) PRIVILEGED_FUNCTION;
+void vTaskPlaceOnEventListRestricted( List_t * const pxEventList, TickType_t xTicksToWait, const BaseType_t xWaitIndefinitely ) PRIVILEGED_FUNCTION;
/*
* THIS FUNCTION MUST NOT BE USED FROM APPLICATION CODE. IT IS AN
@@ -1905,14 +2278,14 @@ void vTaskPlaceOnEventListRestricted( List_t * const pxEventList, const TickType * Removes a task from both the specified event list and the list of blocked
* tasks, and places it on a ready queue.
*
- * xTaskRemoveFromEventList()/xTaskRemoveFromUnorderedEventList() will be called
+ * xTaskRemoveFromEventList()/vTaskRemoveFromUnorderedEventList() will be called
* if either an event occurs to unblock a task, or the block timeout period
* expires.
*
* xTaskRemoveFromEventList() is used when the event list is in task priority
* order. It removes the list item from the head of the event list as that will
* have the highest priority owning task of all the tasks on the event list.
- * xTaskRemoveFromUnorderedEventList() is used when the event list is not
+ * vTaskRemoveFromUnorderedEventList() is used when the event list is not
* ordered and the event list items hold something other than the owning tasks
* priority. In this case the event list item value is updated to the value
* passed in the xItemValue parameter.
@@ -1921,7 +2294,7 @@ void vTaskPlaceOnEventListRestricted( List_t * const pxEventList, const TickType * making the call, otherwise pdFALSE.
*/
BaseType_t xTaskRemoveFromEventList( const List_t * const pxEventList ) PRIVILEGED_FUNCTION;
-BaseType_t xTaskRemoveFromUnorderedEventList( ListItem_t * pxEventListItem, const TickType_t xItemValue ) PRIVILEGED_FUNCTION;
+void vTaskRemoveFromUnorderedEventList( ListItem_t * pxEventListItem, const TickType_t xItemValue ) PRIVILEGED_FUNCTION;
/*
* THIS FUNCTION MUST NOT BE USED FROM APPLICATION CODE. IT IS ONLY
@@ -1971,7 +2344,7 @@ BaseType_t xTaskGetSchedulerState( void ) PRIVILEGED_FUNCTION; * Raises the priority of the mutex holder to that of the calling task should
* the mutex holder have a priority less than the calling task.
*/
-void vTaskPriorityInherit( TaskHandle_t const pxMutexHolder ) PRIVILEGED_FUNCTION;
+BaseType_t xTaskPriorityInherit( TaskHandle_t const pxMutexHolder ) PRIVILEGED_FUNCTION;
/*
* Set the priority of a task back to its proper priority in the case that it
@@ -1980,10 +2353,14 @@ void vTaskPriorityInherit( TaskHandle_t const pxMutexHolder ) PRIVILEGED_FUNCTIO BaseType_t xTaskPriorityDisinherit( TaskHandle_t const pxMutexHolder ) PRIVILEGED_FUNCTION;
/*
- * Generic version of the task creation function which is in turn called by the
- * xTaskCreate() and xTaskCreateRestricted() macros.
+ * If a higher priority task attempting to obtain a mutex caused a lower
+ * priority task to inherit the higher priority task's priority - but the higher
+ * priority task then timed out without obtaining the mutex, then the lower
+ * priority task will disinherit the priority again - but only down as far as
+ * the highest priority task that is still waiting for the mutex (if there were
+ * more than one task waiting for the mutex).
*/
-BaseType_t xTaskGenericCreate( TaskFunction_t pxTaskCode, const char * const pcName, const uint16_t usStackDepth, void * const pvParameters, UBaseType_t uxPriority, TaskHandle_t * const pxCreatedTask, StackType_t * const puxStackBuffer, const MemoryRegion_t * const xRegions ) PRIVILEGED_FUNCTION; /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
+void vTaskPriorityDisinheritAfterTimeout( TaskHandle_t const pxMutexHolder, UBaseType_t uxHighestPriorityWaitingTask ) PRIVILEGED_FUNCTION;
/*
* Get the uxTCBNumber assigned to the task referenced by the xTask parameter.
@@ -2007,7 +2384,7 @@ void vTaskSetTaskNumber( TaskHandle_t xTask, const UBaseType_t uxHandle ) PRIVIL void vTaskStepTick( const TickType_t xTicksToJump ) PRIVILEGED_FUNCTION;
/*
- * Only avilable when configUSE_TICKLESS_IDLE is set to 1.
+ * Only available when configUSE_TICKLESS_IDLE is set to 1.
* Provided for use within portSUPPRESS_TICKS_AND_SLEEP() to allow the port
* specific sleep function to determine if it is ok to proceed with the sleep,
* and if it is ok to proceed, if it is ok to sleep indefinitely.
@@ -2026,7 +2403,14 @@ eSleepModeStatus eTaskConfirmSleepModeStatus( void ) PRIVILEGED_FUNCTION; * For internal use only. Increment the mutex held count when a mutex is
* taken and return the handle of the task that has taken the mutex.
*/
-void *pvTaskIncrementMutexHeldCount( void ) PRIVILEGED_FUNCTION;
+TaskHandle_t pvTaskIncrementMutexHeldCount( void ) PRIVILEGED_FUNCTION;
+
+/*
+ * For internal use only. Same as vTaskSetTimeOutState(), but without a critial
+ * section.
+ */
+void vTaskInternalSetTimeOutState( TimeOut_t * const pxTimeOut ) PRIVILEGED_FUNCTION;
+
#ifdef __cplusplus
}
diff --git a/src/FreeRTOS/Source/include/timers.h b/src/FreeRTOS/Source/include/timers.h index 3c6c6bf..7aaf1ae 100644 --- a/src/FreeRTOS/Source/include/timers.h +++ b/src/FreeRTOS/Source/include/timers.h @@ -1,71 +1,29 @@ /*
- FreeRTOS V8.2.3 - Copyright (C) 2015 Real Time Engineers Ltd.
- All rights reserved
-
- VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
-
- This file is part of the FreeRTOS distribution.
-
- FreeRTOS is free software; you can redistribute it and/or modify it under
- the terms of the GNU General Public License (version 2) as published by the
- Free Software Foundation >>>> AND MODIFIED BY <<<< the FreeRTOS exception.
-
- ***************************************************************************
- >>! NOTE: The modification to the GPL is included to allow you to !<<
- >>! distribute a combined work that includes FreeRTOS without being !<<
- >>! obliged to provide the source code for proprietary components !<<
- >>! outside of the FreeRTOS kernel. !<<
- ***************************************************************************
-
- FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
- WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
- FOR A PARTICULAR PURPOSE. Full license text is available on the following
- link: http://www.freertos.org/a00114.html
-
- ***************************************************************************
- * *
- * FreeRTOS provides completely free yet professionally developed, *
- * robust, strictly quality controlled, supported, and cross *
- * platform software that is more than just the market leader, it *
- * is the industry's de facto standard. *
- * *
- * Help yourself get started quickly while simultaneously helping *
- * to support the FreeRTOS project by purchasing a FreeRTOS *
- * tutorial book, reference manual, or both: *
- * http://www.FreeRTOS.org/Documentation *
- * *
- ***************************************************************************
-
- http://www.FreeRTOS.org/FAQHelp.html - Having a problem? Start by reading
- the FAQ page "My application does not run, what could be wrong?". Have you
- defined configASSERT()?
-
- http://www.FreeRTOS.org/support - In return for receiving this top quality
- embedded software for free we request you assist our global community by
- participating in the support forum.
-
- http://www.FreeRTOS.org/training - Investing in training allows your team to
- be as productive as possible as early as possible. Now you can receive
- FreeRTOS training directly from Richard Barry, CEO of Real Time Engineers
- Ltd, and the world's leading authority on the world's leading RTOS.
-
- http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
- including FreeRTOS+Trace - an indispensable productivity tool, a DOS
- compatible FAT file system, and our tiny thread aware UDP/IP stack.
-
- http://www.FreeRTOS.org/labs - Where new FreeRTOS products go to incubate.
- Come and try FreeRTOS+TCP, our new open source TCP/IP stack for FreeRTOS.
-
- http://www.OpenRTOS.com - Real Time Engineers ltd. license FreeRTOS to High
- Integrity Systems ltd. to sell under the OpenRTOS brand. Low cost OpenRTOS
- licenses offer ticketed support, indemnification and commercial middleware.
-
- http://www.SafeRTOS.com - High Integrity Systems also provide a safety
- engineered and independently SIL3 certified version for use in safety and
- mission critical applications that require provable dependability.
-
- 1 tab == 4 spaces!
-*/
+ * FreeRTOS Kernel V10.2.0
+ * Copyright (C) 2019 Amazon.com, Inc. or its affiliates. All Rights Reserved.
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy of
+ * this software and associated documentation files (the "Software"), to deal in
+ * the Software without restriction, including without limitation the rights to
+ * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
+ * the Software, and to permit persons to whom the Software is furnished to do so,
+ * subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
+ * FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
+ * COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
+ * IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
+ * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+ *
+ * http://www.FreeRTOS.org
+ * http://aws.amazon.com/freertos
+ *
+ * 1 tab == 4 spaces!
+ */
#ifndef TIMERS_H
@@ -75,10 +33,10 @@ #error "include FreeRTOS.h must appear in source files before include timers.h"
#endif
-/*lint -e537 This headers are only multiply included if the application code
+/*lint -save -e537 This headers are only multiply included if the application code
happens to also be including task.h. */
#include "task.h"
-/*lint +e537 */
+/*lint -restore */
#ifdef __cplusplus
extern "C" {
@@ -115,7 +73,8 @@ or interrupt version of the queue send function should be used. */ * reference the subject timer in calls to other software timer API functions
* (for example, xTimerStart(), xTimerReset(), etc.).
*/
-typedef void * TimerHandle_t;
+struct tmrTimerControl; /* The old naming convention is used to prevent breaking kernel aware debuggers. */
+typedef struct tmrTimerControl * TimerHandle_t;
/*
* Defines the prototype to which timer callback functions must conform.
@@ -135,9 +94,17 @@ typedef void (*PendedFunction_t)( void *, uint32_t ); * void * pvTimerID,
* TimerCallbackFunction_t pxCallbackFunction );
*
- * Creates a new software timer instance. This allocates the storage required
- * by the new timer, initialises the new timers internal state, and returns a
- * handle by which the new timer can be referenced.
+ * Creates a new software timer instance, and returns a handle by which the
+ * created software timer can be referenced.
+ *
+ * Internally, within the FreeRTOS implementation, software timers use a block
+ * of memory, in which the timer data structure is stored. If a software timer
+ * is created using xTimerCreate() then the required memory is automatically
+ * dynamically allocated inside the xTimerCreate() function. (see
+ * http://www.freertos.org/a00111.html). If a software timer is created using
+ * xTimerCreateStatic() then the application writer must provide the memory that
+ * will get used by the software timer. xTimerCreateStatic() therefore allows a
+ * software timer to be created without using any dynamic memory allocation.
*
* Timers are created in the dormant state. The xTimerStart(), xTimerReset(),
* xTimerStartFromISR(), xTimerResetFromISR(), xTimerChangePeriod() and
@@ -250,14 +217,151 @@ typedef void (*PendedFunction_t)( void *, uint32_t ); *
* // Starting the scheduler will start the timers running as they have already
* // been set into the active state.
- * xTaskStartScheduler();
+ * vTaskStartScheduler();
*
* // Should not reach here.
* for( ;; );
* }
* @endverbatim
*/
-TimerHandle_t xTimerCreate( const char * const pcTimerName, const TickType_t xTimerPeriodInTicks, const UBaseType_t uxAutoReload, void * const pvTimerID, TimerCallbackFunction_t pxCallbackFunction ) PRIVILEGED_FUNCTION; /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
+#if( configSUPPORT_DYNAMIC_ALLOCATION == 1 )
+ TimerHandle_t xTimerCreate( const char * const pcTimerName, /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
+ const TickType_t xTimerPeriodInTicks,
+ const UBaseType_t uxAutoReload,
+ void * const pvTimerID,
+ TimerCallbackFunction_t pxCallbackFunction ) PRIVILEGED_FUNCTION;
+#endif
+
+/**
+ * TimerHandle_t xTimerCreateStatic(const char * const pcTimerName,
+ * TickType_t xTimerPeriodInTicks,
+ * UBaseType_t uxAutoReload,
+ * void * pvTimerID,
+ * TimerCallbackFunction_t pxCallbackFunction,
+ * StaticTimer_t *pxTimerBuffer );
+ *
+ * Creates a new software timer instance, and returns a handle by which the
+ * created software timer can be referenced.
+ *
+ * Internally, within the FreeRTOS implementation, software timers use a block
+ * of memory, in which the timer data structure is stored. If a software timer
+ * is created using xTimerCreate() then the required memory is automatically
+ * dynamically allocated inside the xTimerCreate() function. (see
+ * http://www.freertos.org/a00111.html). If a software timer is created using
+ * xTimerCreateStatic() then the application writer must provide the memory that
+ * will get used by the software timer. xTimerCreateStatic() therefore allows a
+ * software timer to be created without using any dynamic memory allocation.
+ *
+ * Timers are created in the dormant state. The xTimerStart(), xTimerReset(),
+ * xTimerStartFromISR(), xTimerResetFromISR(), xTimerChangePeriod() and
+ * xTimerChangePeriodFromISR() API functions can all be used to transition a
+ * timer into the active state.
+ *
+ * @param pcTimerName A text name that is assigned to the timer. This is done
+ * purely to assist debugging. The kernel itself only ever references a timer
+ * by its handle, and never by its name.
+ *
+ * @param xTimerPeriodInTicks The timer period. The time is defined in tick
+ * periods so the constant portTICK_PERIOD_MS can be used to convert a time that
+ * has been specified in milliseconds. For example, if the timer must expire
+ * after 100 ticks, then xTimerPeriodInTicks should be set to 100.
+ * Alternatively, if the timer must expire after 500ms, then xPeriod can be set
+ * to ( 500 / portTICK_PERIOD_MS ) provided configTICK_RATE_HZ is less than or
+ * equal to 1000.
+ *
+ * @param uxAutoReload If uxAutoReload is set to pdTRUE then the timer will
+ * expire repeatedly with a frequency set by the xTimerPeriodInTicks parameter.
+ * If uxAutoReload is set to pdFALSE then the timer will be a one-shot timer and
+ * enter the dormant state after it expires.
+ *
+ * @param pvTimerID An identifier that is assigned to the timer being created.
+ * Typically this would be used in the timer callback function to identify which
+ * timer expired when the same callback function is assigned to more than one
+ * timer.
+ *
+ * @param pxCallbackFunction The function to call when the timer expires.
+ * Callback functions must have the prototype defined by TimerCallbackFunction_t,
+ * which is "void vCallbackFunction( TimerHandle_t xTimer );".
+ *
+ * @param pxTimerBuffer Must point to a variable of type StaticTimer_t, which
+ * will be then be used to hold the software timer's data structures, removing
+ * the need for the memory to be allocated dynamically.
+ *
+ * @return If the timer is created then a handle to the created timer is
+ * returned. If pxTimerBuffer was NULL then NULL is returned.
+ *
+ * Example usage:
+ * @verbatim
+ *
+ * // The buffer used to hold the software timer's data structure.
+ * static StaticTimer_t xTimerBuffer;
+ *
+ * // A variable that will be incremented by the software timer's callback
+ * // function.
+ * UBaseType_t uxVariableToIncrement = 0;
+ *
+ * // A software timer callback function that increments a variable passed to
+ * // it when the software timer was created. After the 5th increment the
+ * // callback function stops the software timer.
+ * static void prvTimerCallback( TimerHandle_t xExpiredTimer )
+ * {
+ * UBaseType_t *puxVariableToIncrement;
+ * BaseType_t xReturned;
+ *
+ * // Obtain the address of the variable to increment from the timer ID.
+ * puxVariableToIncrement = ( UBaseType_t * ) pvTimerGetTimerID( xExpiredTimer );
+ *
+ * // Increment the variable to show the timer callback has executed.
+ * ( *puxVariableToIncrement )++;
+ *
+ * // If this callback has executed the required number of times, stop the
+ * // timer.
+ * if( *puxVariableToIncrement == 5 )
+ * {
+ * // This is called from a timer callback so must not block.
+ * xTimerStop( xExpiredTimer, staticDONT_BLOCK );
+ * }
+ * }
+ *
+ *
+ * void main( void )
+ * {
+ * // Create the software time. xTimerCreateStatic() has an extra parameter
+ * // than the normal xTimerCreate() API function. The parameter is a pointer
+ * // to the StaticTimer_t structure that will hold the software timer
+ * // structure. If the parameter is passed as NULL then the structure will be
+ * // allocated dynamically, just as if xTimerCreate() had been called.
+ * xTimer = xTimerCreateStatic( "T1", // Text name for the task. Helps debugging only. Not used by FreeRTOS.
+ * xTimerPeriod, // The period of the timer in ticks.
+ * pdTRUE, // This is an auto-reload timer.
+ * ( void * ) &uxVariableToIncrement, // A variable incremented by the software timer's callback function
+ * prvTimerCallback, // The function to execute when the timer expires.
+ * &xTimerBuffer ); // The buffer that will hold the software timer structure.
+ *
+ * // The scheduler has not started yet so a block time is not used.
+ * xReturned = xTimerStart( xTimer, 0 );
+ *
+ * // ...
+ * // Create tasks here.
+ * // ...
+ *
+ * // Starting the scheduler will start the timers running as they have already
+ * // been set into the active state.
+ * vTaskStartScheduler();
+ *
+ * // Should not reach here.
+ * for( ;; );
+ * }
+ * @endverbatim
+ */
+#if( configSUPPORT_STATIC_ALLOCATION == 1 )
+ TimerHandle_t xTimerCreateStatic( const char * const pcTimerName, /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
+ const TickType_t xTimerPeriodInTicks,
+ const UBaseType_t uxAutoReload,
+ void * const pvTimerID,
+ TimerCallbackFunction_t pxCallbackFunction,
+ StaticTimer_t *pxTimerBuffer ) PRIVILEGED_FUNCTION;
+#endif /* configSUPPORT_STATIC_ALLOCATION */
/**
* void *pvTimerGetTimerID( TimerHandle_t xTimer );
@@ -342,9 +446,6 @@ BaseType_t xTimerIsTimerActive( TimerHandle_t xTimer ) PRIVILEGED_FUNCTION; /**
* TaskHandle_t xTimerGetTimerDaemonTaskHandle( void );
*
- * xTimerGetTimerDaemonTaskHandle() is only available if
- * INCLUDE_xTimerGetTimerDaemonTaskHandle is set to 1 in FreeRTOSConfig.h.
- *
* Simply returns the handle of the timer service/daemon task. It it not valid
* to call xTimerGetTimerDaemonTaskHandle() before the scheduler has been started.
*/
@@ -677,7 +778,7 @@ TaskHandle_t xTimerGetTimerDaemonTaskHandle( void ) PRIVILEGED_FUNCTION; *
* // Starting the scheduler will start the timer running as it has already
* // been set into the active state.
- * xTaskStartScheduler();
+ * vTaskStartScheduler();
*
* // Should not reach here.
* for( ;; );
@@ -1120,7 +1221,7 @@ BaseType_t xTimerPendFunctionCallFromISR( PendedFunction_t xFunctionToPend, void BaseType_t xTimerPendFunctionCall( PendedFunction_t xFunctionToPend, void *pvParameter1, uint32_t ulParameter2, TickType_t xTicksToWait ) PRIVILEGED_FUNCTION;
/**
- * const char * const pcTimerGetTimerName( TimerHandle_t xTimer );
+ * const char * const pcTimerGetName( TimerHandle_t xTimer );
*
* Returns the name that was assigned to a timer when the timer was created.
*
@@ -1128,7 +1229,50 @@ BaseType_t xTimerPendFunctionCall( PendedFunction_t xFunctionToPend, void *pvPar *
* @return The name assigned to the timer specified by the xTimer parameter.
*/
-const char * pcTimerGetTimerName( TimerHandle_t xTimer ) PRIVILEGED_FUNCTION; /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
+const char * pcTimerGetName( TimerHandle_t xTimer ) PRIVILEGED_FUNCTION; /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
+
+/**
+ * void vTimerSetReloadMode( TimerHandle_t xTimer, const UBaseType_t uxAutoReload );
+ *
+ * Updates a timer to be either an autoreload timer, in which case the timer
+ * automatically resets itself each time it expires, or a one shot timer, in
+ * which case the timer will only expire once unless it is manually restarted.
+ *
+ * @param xTimer The handle of the timer being updated.
+ *
+ * @param uxAutoReload If uxAutoReload is set to pdTRUE then the timer will
+ * expire repeatedly with a frequency set by the timer's period (see the
+ * xTimerPeriodInTicks parameter of the xTimerCreate() API function). If
+ * uxAutoReload is set to pdFALSE then the timer will be a one-shot timer and
+ * enter the dormant state after it expires.
+ */
+void vTimerSetReloadMode( TimerHandle_t xTimer, const UBaseType_t uxAutoReload ) PRIVILEGED_FUNCTION;
+
+/**
+ * TickType_t xTimerGetPeriod( TimerHandle_t xTimer );
+ *
+ * Returns the period of a timer.
+ *
+ * @param xTimer The handle of the timer being queried.
+ *
+ * @return The period of the timer in ticks.
+ */
+TickType_t xTimerGetPeriod( TimerHandle_t xTimer ) PRIVILEGED_FUNCTION;
+
+/**
+* TickType_t xTimerGetExpiryTime( TimerHandle_t xTimer );
+*
+* Returns the time in ticks at which the timer will expire. If this is less
+* than the current tick count then the expiry time has overflowed from the
+* current time.
+*
+* @param xTimer The handle of the timer being queried.
+*
+* @return If the timer is running then the time in ticks at which the timer
+* will next expire is returned. If the timer is not running then the return
+* value is undefined.
+*/
+TickType_t xTimerGetExpiryTime( TimerHandle_t xTimer ) PRIVILEGED_FUNCTION;
/*
* Functions beyond this part are not part of the public API and are intended
@@ -1137,6 +1281,11 @@ const char * pcTimerGetTimerName( TimerHandle_t xTimer ) PRIVILEGED_FUNCTION; /* BaseType_t xTimerCreateTimerTask( void ) PRIVILEGED_FUNCTION;
BaseType_t xTimerGenericCommand( TimerHandle_t xTimer, const BaseType_t xCommandID, const TickType_t xOptionalValue, BaseType_t * const pxHigherPriorityTaskWoken, const TickType_t xTicksToWait ) PRIVILEGED_FUNCTION;
+#if( configUSE_TRACE_FACILITY == 1 )
+ void vTimerSetTimerNumber( TimerHandle_t xTimer, UBaseType_t uxTimerNumber ) PRIVILEGED_FUNCTION;
+ UBaseType_t uxTimerGetTimerNumber( TimerHandle_t xTimer ) PRIVILEGED_FUNCTION;
+#endif
+
#ifdef __cplusplus
}
#endif
|